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Nonlocal Effects in Two-Dimensional
Conductivity

Marc Briane

Abstract

The paper deals with the asymptotic behaviour as ε → 0 of a two-dimensional
conduction problem whose matrix-valued conductivity aε is ε-periodic and not
uniformly bounded with respect to ε. We prove that only under the assumptions
of equi-coerciveness and L1-boundedness of the sequence aε, the limit problem
is a conduction problem of same nature. This new result points out a fundamental
difference between the two-dimensional conductivity and the three-dimensional
one. Indeed, under the same assumptions of periodicity, equi-coerciveness and L1-
boundedness, it is known that the high-conductivity regions can induce nonlocal
effects in three (or greater) dimensions.

1. Introduction

In the paper we are interested in the limit behaviour as ε → 0 of the two-
dimensional conduction problem{− div (aε∇uε) = f in �

uε = 0 on ∂�,
(1.1)

in a bounded open set � of R
2 and for a given f in H−1(�). For each ε >

0, the conductivity aε is a symmetric positive definite matrix-valued function
in L∞(�; R

2×2) which is ε-periodic, i.e. aε(x) = Aε(
x
ε
) with Aε(y1 + 1, y2) =

Aε(y1, y2 + 1) = Aε(y) for a.e. y ∈ R
2. The sequence aε is assumed to be equi-

coercive in � (i.e. there exists α > 0 such that aε � α I a.e. in �) and bounded
in L1(�; R

2×2), but not bounded in L∞(�; R
2×2).

The question we ask is can the high-conductivity regions induce nonlocal effects
in the limit problem? In three (or greater) dimensions the answer is known to be
positive. Indeed, Fenchenko and Khruslov [13] (see also [15]) first obtained non-
local effects from microstructures aε with high-conductivity regions. The model
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example, which was extended by Bellieud and Bouchitté [2] to a nonlinear
framework, consists of a medium reinforced by one-directional and high-conduc-
tivity fibres. More precisely, in a cylinder � := ω × (0, 1) the fibres form an
ε-periodic lattice of x3-directional cylinders of radius ε rε such that γ ε2 |ln rε| = 1
with γ > 0, their conductivity is equal to κ r−2

ε with κ > 0, and they are embedded
in a medium of conductivity equal to 1. Then, the solution uε of the conduction
problem (1.1) weakly converges in H 1

0 (�) to the solution u0 of the nonlocal homog-
enized equation


 − �u0 + 2πγ

(
u0 −

∫ 1

0
u0(x1, x2, t) θγ,κ (t, x3) dt

)
= f in �

u0 = 0 on ∂�,

(1.2)

where the kernel θγ,κ can be explicitely computed (see [2] for details). The nonlocal
term in (1.2) is due to the diffusion along the fibres combined with their capacitary
effect.

These works were also extended by [8] and [6] in conduction, as well as by [19]
and [3] in elasticity. More generally, Mosco [16] proved that the energy associated
with (1.1) converges to a quadratic form according to the Beurling & Deny [5]
representation formula. In some sense Camar-Eddine and Seppecher [10] closed
the topic not only in three-dimensional conduction by proving that any nonlo-
cal effect can be attained by a suitable conductivity sequence, but also in three-
dimensional elasticity [11] by proving a remarkable closure result.

On the other hand, in any dimension, various conditions on the conductivity
sequence aε prevent the appearance of nonlocal effects. Firstly, Spagnolo [20]
with the G-convergence theory, then Murat and Tartar [21,18] with the
H -convergence theory, proved that the equi-coerciveness combined with the equi-
boundedness of the sequence aε (without periodicity restriction) implies a compact-
ness result for the sequence of problems (1.1). Buttazzo and Dal Maso [9] (see
also [12]) extended this compactness result to any sequence of isotropic conductivi-
ties aε = αε I such that αε is bounded and equi-integrable in L1(�). More recently,
Briane [7] proved that for any ε-periodic conductivity aε(x) := Aε(

x
ε
) with Aε

bounded in L1(Y ), Y := (0, 1)d , the estimate of the weighted Poincaré–Wirtinger
inequality

∀ V ∈ H 1(Y ),

∫
Y

Aε

(
V − −

∫
Y

V

)2

dy � C(ε)

∫
Y

Aε∇V · ∇V dy,

with ε2 C(ε) → 0,

(1.3)

also leads to a classical limit of problem (1.1). However, the opposite behaviour
ε2C(ε) � 0 can imply nonlocal effects in three dimensions.

In contrast with these previous works, the present paper points out the gap
between the second and third (or greater) dimension regarding the appearance of
nonlocal effects in conductivity. The main result of the paper (see Theorem 1)
claims that any sequence of ε-periodic conductivities aε, which is equi-coercive
and bounded only in L1(�; R

2×2), cannot induce nonlocal effects in dimension
two.
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The proof is based on a Poincaré–Wirtinger type inequality and a div-curl type
lemma. These two auxiliary results are specific to dimension two and allow us to
apply the method of the oscillating test functions of Tartar [21], which implies a
classical limit behaviour of the conduction problem (1.1).

On the one hand, the Poincaré–Wirtinger inequality (see Proposition 2) reads
as, in the ε-periodic case,

∀ V ∈ H 1(Y ),

∫
Y

(
V − −

∫
Y

V

)2

dy � C

∫
Y

Ãε∇V · ∇V dy

where Ãε := Aε

det Aε
.

(1.4)

Inequality (1.4) can be regarded as the conjugate of inequality (1.3). However,
contrary to (1.3) the constant C of the Poincaré–Wirtinger inequality (1.4) is inde-
pendent of ε and thus cannot be blown up.

On the other hand, the div-curl result (see Proposition 3) is an extension of
the classical div-curl lemma of Murat & Tartar [17], for any sequence ξε with
compact divergence in H−1(�), and such that a

−1/2
ε ξε (but not ξε) is bounded

in L2(�; R
2). The ingredients of this weak div-curl lemma is the representation

of a divergence-free function by a stream function and the approximation of this
stream function by a piecewise-constant function, based on the Poincaré–Wirtinger
inequality (1.4). At this level and contrary to the third (or greater) dimension, an
estimate on the two-dimensional curl of the stream function yields an estimate on
its whole gradient. A three-dimensional counter-example (see Example 1) clarifies
the two-dimensional character of the div-curl result.

The paper is organised as follows. In the first section we state the main result
of the paper. The second section is devoted to the proofs and is divided into three
parts. The first part deals with the Poincaré–Wirtinger inequality (3.2), the second
one with the div-curl result, and the third one with the proof of Theorem 1.

2. Statement of the result

In the following:

(i) | · | denotes the euclidian norm in R
2 as well as its subordinate matrix-

norm:

|A| := max
x∈R2\{0}

|Ax|
|x| =

√
ρ(AAT ) for A ∈ R

2×2,

where ρ is the spectral radius and AT the transpose of the matrix A.
Note that |A| = ρ(A) if A is symmetric, which will be the case in the
sequel;

(ii) I denotes the unit matrix of R
2×2 and J :=

(
0 −1
1 0

)
;

(iii) Y denotes the unit square (0, 1)2 of R
2;

(iv) L
p
# (Y ) (resp. H 1

# (Y )) denotes the set of the Y -periodic functions which

belong to L
p
loc(R

2) (resp. H 1
loc(R

2));

(v) � denotes a bounded open subset of R
2; and
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(vi) D(�) denotes the set of the infinitely differentiable functions with com-
pact support on �.

Let Aε, for ε > 0, be a sequence of symmetric positive definite matrix-valued
fiunctions and Y -periodic matrix-valued functions in L∞

# (Y ). We assume that there
exist two positive constants α, β such that

∀ ε > 0, Aε � α I a.e. in R
2, (2.1)

∀ ε > 0,

∫
Y

|Aε| dy � β. (2.2)

Therefore, the sequence Aε is equi-coercive by (2.1) but only bounded in L1(Y )

due to (2.2).
For each λ ∈ R

2, let Xλ
ε be the unique function in H 1

# (Y ) with zero average
value, solution of the equation

div (Aε∇Wλ
ε ) = 0 in D′(R2), where Wλ

ε (y) := λ · y − Xλ
ε (y), (2.3)

and let A∗
ε be the constant matrix defined by

A∗
ελ :=

∫
Y

Aε∇Wλ
ε dy, (2.4)

which satisfies the equality

A∗
ελ · λ =

∫
Y

Aε∇Wλ
ε · ∇Wλ

ε dy. (2.5)

For a fixed ε > 0, A∗
ε is the homogenized matrix induced by the oscillating sequence

Aε(
x
δ
) as δ tends to 0 (see e.g. [1] or [4]).

We easily deduce from the equi-coerciveness (2.1), the boundedness (2.2) and
from (2.5), that the sequence Wλ

ε satisfies the bound

‖∇Wλ
ε ‖L2(Y ) �

√
β

α
|λ|, (2.6)

and that A∗
ε satisfies the estimates

A∗
ε � α I and |A∗

ε | � β. (2.7)

Taking into account (2.7) we can assume that (up to a subsequence)

A∗
ε −→

ε→0
A∗

0, (2.8)

where A∗
0 is a symmetric positive definite matrix.

The main result of the paper is the following:

Theorem 1. Assume that conditions (2.1) and (2.2) hold true. Then, the solution uε

of the conduction problem (1.1) with conductivity aε(x) = Aε(
x
ε
), weakly con-

verges in H 1
0 (�) to the solution u0 of the conduction problem with the constant

conductivity A∗
0 defined by (2.8) and (2.4).
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Remark 1. The result of Theorem 1 implies that the equi-coerciveness constraint
(2.1) combined with the one of L1-boundedness (2.2) prevents the appearance of
nonlocal effects in dimension two.

Convergence (2.8), rather than the more restrictive condition (2.2), seems to be
the natural assumption to obtain the previous homogenization result. We did not
succeed in proving Theorem 1 by only assuming (2.8) together with the equi-
coerciveness (2.1). Indeed, our approach, through the Propositions 1 and 2 is
essentially based on the boundedness (2.2). However, this condition is sufficiently
general to point out the difference between the second and third dimension and the
appearance of nonlocal effects in strong conductivity.

3. Proof of the result

The first section is devoted to a Poincaré–Wirtinger inequality and the second
one to a div-curl lemma. We prove these two auxiliary results for a class of micro-
structures satisfying a kind of uniform L1-boundedness (see Definition 1), which
contains any ε-periodic and L1-bounded conductivity. The third section deals with
the proof of Theorem 1 in the case of ε-periodic microstructures.

3.1. A Poincaré–Wirtinger inequality

Definition 1. A sequence bε, for ε > 0, of nonnegative measurable functions on �

is said to be ω-bounded in L1(�) if there exists a positive function ω : (0, +∞) −→
(0, +∞) with zero limit at 0, satisfying

∀ δ > 0, ∃ ε0 > 0 such that

∀ ε ∈ (0, ε0), ∀ Q square of � with |Q| � δ,

∫
Q

bε dx � ω(|Q|), (3.1)

where |Q| denotes the Lebesgue measure of Q.

Proposition 1. Let bε be the sequence defined on � by bε(x) := Bε(
x
ε
), where

Bε is a Y -periodic positive sequence bounded in L1(Y ). Then, bε is ω-bounded
in L1(�).

Proof. Let Q be a square of � with |Q| � ε2. The square Q is included in a
minimal square Qε composed of a number Nε � 9 ε−2 |Q|, of cells of the type
ε(k + Y ), k ∈ Z

2. The εY -periodicity of bε implies that

∫
Q

bε dx �
∫

Qε

bε dx = Nε ε2
∫

Y

Bε dy � 9

(
sup
ε>0

‖Bε‖L1(Y )

)
|Q|.

Therefore, the sequence bε is ω-bounded in L1(�) with ω(t) := c t , where c is a
positive constant.

With Definition 1 we have the following result:
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Proposition 2. Let aε, for ε > 0, be a sequence of symmetric positive definite
matrix-valued functions with aε and a−1

ε in L∞(�; R
2×2), such that the sequence

|aε| is ω-bounded in L1(�). Then, there exists a positive constant C such that, for
any δ > 0 and any ε > 0 small enough, each square Q ⊂ �, with |Q| � δ, satisfies
the Poincaré–Wirtinger inequality

∀ v ∈ H 1(Q),

∫
Q

(
v − −

∫
Q

v

)2

dx � C ω(|Q|)
∫

Q

ãε∇v · ∇v dx,

where ãε := aε

det aε
.

(3.2)

Remark 2. Inequality (3.2) is weighted by the matrix-valued ãε but, in contrast
with (1.3), with a constant which is independent of δ and ε provided that ε is small
enough with respect to δ. This constant also tends to 0 with the measure of Q. This
result is strongly linked to dimension two as shown in the following proof.

Proof of Proposition 2. Let δ > 0 and let Q be a square of � of side h �
√

δ. Let
v ∈ H 1(Q) with

∫
Q

v = 0 and let V ∈ H 1(Y ) be defined by v(x) := V (
x−xh

h
),

where Q = xh + hY . By the change of variable y := x−xh

h
, and using the embed-

ding of W 1,1(Y ) into L2(Y ) (which is specific to the second dimension) combined
with the classical Poincaré–Wirtinger inequality in W 1,1(Y ), we have

∫
Q

v2 dx = h2
∫

Y

V 2 dy � C h2
(∫

Y

|∇V | dy

)2

= C

(∫
Q

|∇v| dx

)2

,

where C is a positive constant. Moreover, if λε � µε := |aε| are the eigen-
values of aε, then the eigenvalues of ãε are µ−1

ε � λ−1
ε , the ones of ãε

−1/2 are
thus

√
λε � √

µε, from which |ãε
−1/2| = √

µε = |aε|1/2. Then, combining the
equality |ãε

−1/2| = |aε|1/2 and the inequality |∇v| � |ãε
−1/2| |ãε

1/2∇v| with the
Cauchy–Schwarz inequality yields

(∫
Q

|∇v| dx

)2

�
∫

Q

|aε| dx

∫
Q

ãε∇v · ∇v dx.

Therefore, we obtain the estimate

∫
Q

v2 dx � C

∫
Q

|aε| dx

∫
Q

ãε∇v · ∇v dx,

which combined with the ω-boundedness (3.1) of |aε| implies the desired inequal-
ity (3.2), provided that ε is small enough.

3.2. A div-curl result

In this section we extend the classical div-curl lemma of Murat & Tartar [17]
to sequences which are not bounded in L2(�; R

2):
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Proposition 3. Let aε, for ε > 0, be a sequence of symmetric positive definite
matrix-valued functions with aε ∈ L∞(�; R

2×2), such that for a given α > 0,
aε � α I a.e. in � and the sequence |aε| is ω-bounded in L1(�). Let ξε be a
sequence in L2(�; R

2) and let vε be a sequence in H 1(�; R
2) which satisfy the

following assumptions: ∫
�

a−1
ε ξε · ξε dx � c, (3.3)

∫
�

|∇vε|2 dx � c, (3.4)

where c is a positive constant,

div ξε is compact in H−1(�), (3.5)

and

∇vε ⇀ 0 weakly in L2(�; R
2) or ξε ⇀ 0 weakly ∗ in M(�; R

2) (3.6)

in the weak ∗ sense of the Radon measures on �.
Then, the following convergence in the sense of distributions holds true

ξε · ∇vε ⇀ 0 in D′(�). (3.7)

The following example shows that the previous div-curl result does not hold in
dimension three.

Example 1. With reference to the model example presented in the Introduction.
Let � := (0, 1)3, let ωε ⊂ � be the ε-periodic lattice of x3-parallel cylinders of
axis x1 = k1 ε, x2 = k2 ε, for k1, k2 ∈ N, and of radius ε rε, and let aε be the
ε-periodic isotropic conductivity defined by

aε(x) :=
{

κ
r2
ε

I3 if x ∈ ωε

I3 if x ∈ � \ ωε,
where rε := exp

( −1

γ ε2

)
and κ, γ > 0.

Let uε be the solution in H 1
0 (�) of − div (aε∇uε) = f , where f is a given function

in L2(�). For a fixed R0 ∈ (0, 1
2 ), let vε be the ε-periodic function defined in � by

vε(x) = Vε(
x
ε
), where Vε is the continuous periodic function of period

(− 1
2 , 1

2

)3
,

independent of y3, and defined on its period by

Vε(y) :=



0 if r � rε
ln r−ln rε

ln R0−ln rε
if rε < r < R0,

1 if r � R0

where r :=
√

y2
1 + y2

2 .

It can be checked that the sequences ξε := aε∇uε and vε satisfy the assumptions
(3.3)–(3.6) of Proposition 3. In particular, ∇vε ⇀ 0 weakly in L2(�; R

3) since
vε ⇀ 1 weakly in H 1(�). Moreover, it can be proven (see e.g. [8]) that

ξε · ∇vε = ∇uε · ∇vε ⇀ 2πγ (u0 − v0) in D′(�), (3.8)
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where u0 is the weak limit of uε in H 1
0 (�) and v0 is the weak ∗ limit of 1ωε

πr2
ε

uε

in the Radon measures sense on �. The functions u0, v0 are the solutions of the
coupled system



− �u0 + 2πγ (u0 − v0) = f in �

−κ ∂2v0
∂x2

3
+ 2γ (v0 − u0) = 0 in �

u0(x) = 0 if x ∈ ∂�

v0(x
′, 0) = v0(x

′, 1) = 0 if x′ = (x1, x2) ∈ (0, 1)2,

(3.9)

which is equivalent to the nonlocal problem (1.2). We easily deduce from (3.9)
that u0 − v0 is nonzero if f is a nonzero function. Therefore, in this case conver-
gence (3.8) contradicts the result (3.7) of Proposition 3.

Proof of Proposition 3. We have to prove that, for any ϕ ∈ D(�),∫
�

ξε · ∇vε ϕ dx −→
ε→0

0.

By using a partition of the unity we may assume that the support of the test func-
tion ϕ is included in an open square Q with Q ⊂ �.

The proof is divided in three steps. In the first step we replace the sequence ξε

by a divergence-free one J∇ũε, where ũε is a stream function. In the second step
we approach ũε by a piecewise-constant function ūε. In the third step we prove that
the sequence ũε∇vε converges to 0 in the sense of distributions.

Step 1. Introduction of a stream function. First note that there exists a positive
constant cQ such that ∫

Q

|ξε| dx � cQ. (3.10)

Indeed, the Cauchy–Schwarz inequality combined with the ω-boundedness (3.1)
of |aε| and estimate (3.3), implies that for any ε small enough,

∫
Q

|ξε| dx �
∫

�

|a
1
2
ε | |a− 1

2
ε ξε| dx �

(∫
Q

|aε| dx

) 1
2
(∫

Q

a−1
ε ξε · ξε dx

) 1
2

�
√

ω(|Q|)
(∫

�

a−1
ε ξε · ξε dx

) 1
2

� cQ,

from which we get the desired estimate (3.10).
Let uε be the solution in H 1

0 (�) of the equation �uε = div ξε in D′(�).
Since the function ξε − ∇uε is divergence-free in Q, there exists a stream function
ũε ∈ H 1(Q) (see e.g. [14], page 22) such that

ξε = ∇uε + J∇ũε with
∫

Q

ũε dx = 0. (3.11)

Due to the compactness (3.5), the sequence uε strongly converges in H 1
0 (�) to

some function u0. According to (3.6) we have the two following alternatives:
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(i) If ξε weakly ∗ converges to 0 in M(�; R
2), then div ξε = �uε converges

to 0 = �u0 in D′(�), from which u0 = 0 and ∇uε strongly converges to 0
in L2(�; R

2). Therefore, the sequence ∇uε · ∇vε strongly converges to 0
in L1(�), which implies∫

Q

ξε · ∇vε ϕ dx −
∫

Q

J∇ũε · ∇vε ϕ dx −→
ε→0

0. (3.12)

(ii) Otherwise, ∇vε weakly converges to 0 in L2(�; R
2), then the strong conver-

gence of ∇uε in L2(�; R
2) implies that ∇uε · ∇vε weakly converges to 0

in L1(�). Therefore, limit (3.12) still holds true.

Moreover, since J T = −J and J∇vε is divergence-free, integrating by parts yields∫
Q

J∇ũε · ∇vε ϕ dx = −
∫

Q

∇(ϕũε) · J∇vε dx +
∫

Q

ũε∇ϕ · J∇vε dx

=
∫

Q

ũε∇ϕ · J∇vε dx.

Therefore, to prove the div-curl convergence (3.7) it is sufficient to prove that the
sequence ũε∇vε converges to 0 in D′(Q; R

2). Note that the sequence ũε is only
bounded in W 1,1(Q) due to (3.11) and (3.10), which does not imply its strong
convergence in L2(Q) since the embedding of W 1,1(Q) into L2(Q) is not com-
pact in the second dimension. The next step provides an alternative based on the
approximation of ũε by a piecewise-constant function combined with the Poincaré–
Wirtinger inequality (3.2).

Step 2. Approximation of ũε by a piecewise-constant function. Let � ∈ D

(Q; R
2). For a fixed h > 0 small enough, let (Qk)k∈Kh

be a finite covering of
the support of � by the squares Qk := h(k + Y ) ⊂ Q, for k ∈ Kh ⊂ Z

2.
By Proposition 2 there exists ωh > 0 which tends to 0 as h → 0 such that, for
any ε > 0 small enough (it is sufficient that ε � h by the proof of Proposition 1)
and any k ∈ Kh,

∫
Qk

(
ũε − −

∫
Qk

ũε

)2

dx � ωh

∫
Qk

ãε∇ũε · ∇ũε dx.

Moreover, the equalities ∇ũε = J (∇uε − ξε) and a−1
ε = J T ãεJ imply that∫

Qk

ãε∇ũε · ∇ũε dx =
∫

Qk

a−1
ε (ξε − ∇uε) · (ξε − ∇uε) dx,

from which the Cauchy–Schwarz inequality combined with aε � α I , yields
∫

Qk

(
ũε − −

∫
Q

ũε

)2

dx � 2 ωh

∫
Qk

(
a−1
ε ξε · ξε + α−1|∇uε|2

)
dx. (3.13)

On the other hand, let ūε be the piecewise-constant function defined from the
function ũε and the covering (Qk)k∈Kh

by

ūε :=
∑
k∈Kh

(
−
∫

Qk

ũε

)
1Qk

, (3.14)
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where 1Qk
denotes the characteristic function of the set Qk . Then, summing the

inequalities (3.13) over k ∈ Kh, yields

∫
Q

|�|2 (ũε − ūε)
2 dx � 2 ‖�‖2

L∞(Q) ωh

∫
Q

(
a−1
ε ξε · ξε + α−1|∇uε|2

)
dx.

Thus, the estimate (3.3) and the boundedness of ∇uε in L2(�; R
2) (which is

strongly convergent) imply that

∫
Q

|�|2 (ũε − ūε)
2 dx � c� ωh.

Finally, by the Cauchy–Schwarz inequality combined with the boundedness of ∇vε

in L2(�; R
2), we obtain that for any ε > 0 small enough,

∣∣∣∣
∫

Q

� · ∇vε (ũε − ūε) dx

∣∣∣∣ � c�
√

ωh, (3.15)

where c� > 0 is independent of h and ε and ωh → 0 as h → 0.
The third step of the proof deals with the convergence of ūε∇vε. The conver-

gence of ũε∇vε then follows thanks to the previous step.

Step 3. Convergence of ūε∇vε and ũε∇vε. Let us fix h > 0. The sequence ∇ũε

is bounded in L1(Q; R
2) by its definition (3.11) and estimate (3.10). Then, since∫

Q
ũε = 0 the sequence ũε is bounded in W 1,1(Q) by the classical Poincaré–

Wirtinger inequality, and thus in L2(Q) by the embedding of W 1,1(Q) into L2(Q).
Therefore, the sequence ũε weakly converges (up to a subsequence) in L2(Q) to
some function ũ0, from which the sequence ūε defined by (3.14) strongly converges
in L∞(Q) to the function

ū0 :=
∑
k∈Kh

(
−
∫

Qk

ũ0

)
1Qk

.

Moreover, by (3.4) and by the regularity of Q, the sequence ∇vε weakly converges
(up to a subsequence) in L2(Q; R

2) to ∇v0 with v0 ∈ H 1(Q), whence

∫
Q

ūε∇vε · � dx −→
ε→0

∫
Q

ū0∇v0 · � dx. (3.16)

According to (3.6) we have the two following alternatives:

(i) If ξε weakly ∗ converges to 0 in M(�; R
2), so does ∇ũε by (3.11). Then,

∇ũ0 = 0 in D′(Q), which implies ũ0 = 0 since
∫
Q

ũ0 = 0. The right-hand
side of (3.16) is thus equal to 0.

(ii) Otherwise, ∇vε weakly converges to 0 in L2(Q; R
2) and the right-hand side

of (3.16) is still equal to 0.
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Therefore, for any h > 0 and for the whole sequence ε, we obtain
∫

Q

ūε∇vε · � dx −→
ε→0

0.

The previous limit combined with the uniform (with respect to ε) estimate (3.15)
yields

∫
Q

ũε∇vε · � dx −→
ε→0

0 for any � ∈ D(Q; R
2),

which concludes the proof.

3.3. Proof of Theorem 1

We will apply the method of the oscillating test functions of Tartar [21] by
using the div-curl result of Proposition 3. To this end we consider for a fixed
λ ∈ R

2, the oscillating function wλ
ε (x) := εWλ

ε ( x
ε
) for x ∈ �, where Wλ

ε is
defined by (2.3). We will determine the limit in the sense of distributions of the
sequence aε∇uε · ∇wλ

ε = aε∇wλ
ε · ∇uε.

First note that, in virtue of Proposition 1 and the boundedness (2.2) of Aε, the
sequence |aε| is ω-bounded in L1(�).

Step 1. Limit of aε∇uε · ∇wλ
ε . Set ξε := aε∇uε and vε(x) := wλ

ε (x) − λ · x, for
x ∈ �. By the classical Poincaré inequality in H 1

0 (�) and the equi-coerciveness
aε � α I , we have
∫

�

ξε · ∇uε dx = 〈f, uε〉H−1(�),H 1
0 (�) � c ‖f ‖H−1(�) ‖∇uε‖L2(�)

� c√
α

‖f ‖H−1(�)

(∫
�

ξε · ∇uε dx

) 1
2

,

from which ξε · ∇uε = a−1
ε ξε · ξε is bounded in L1(�) and estimate (3.3) holds

true. The sequence ∇vε satisfies estimate (3.4) since ∇Wλ
ε is bounded in L2

#(Y ; R
2)

by (2.6). The equality − div ξε = f implies (3.5). Moreover, successively using the
Y -periodicity of the zero average value function Xλ

ε and the Poincaré–Wirtinger
inequality in H 1

# (Y ), yields

‖wλ
ε − λ · x‖L2(�) � c ε ‖Xλ

ε ‖L2(Y ) � c′ ε ‖∇Xλ
ε ‖L2(Y ) = O(ε) by (2.6),

from which ∇vε = ∇wλ
ε − λ weakly converges to 0 in L2(�; R

2), which im-
plies (3.6).

Therefore, the convergence (3.7) of Proposition 3 yields (up to a subsequence)

aε∇uε · ∇wλ
ε = ξε · λ + ξε · ∇vε ⇀ ξ0 · λ in D′(�), (3.17)

where ξ0 is the weak ∗ limit of aε∇uε in M(�; R
2).
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Step 2. Limit of aε∇wλ
ε · ∇uε. Set ξε := aε∇wλ

ε − A∗
ελ, where A∗

ε is the matrix
defined by (2.3)–(2.4), and vε := uε.

Thanks to the Y -periodicity of Aε∇Wλ
ε · ∇Wλ

ε and estimate (2.6), the se-
quence ξε satisfies the bound (3.3). This combined with the bound (2.2) satisfied
by Aε, implies that ξε is also bounded in L1(�; R

2) (see the proof of (3.10)). The
sequence vε clearly satisfies (3.4). Moreover, the compactness (3.5) holds true since
div ξε = 0 by rescaling (2.3). Thus, it remains to prove condition (3.6).

The function ξε(x) reads as �ε(
x
ε
), where �ε is Y -periodic with zero average

value and bounded in L1(Y ; R
2). Let � ∈ D(�; R

2) and let �ε be a piecewise-
constant function with compact support in �, constant in each square ε(k + Y ),
for k ∈ Z

2, and such that ‖� − �ε‖L∞(�) = o(1). Since the Y -periodicity of �ε

implies that ∫
ε(k+Y )

�ε

(x

ε

)
dx = ε2

∫
Y

�ε(y) dy = 0,

and since ξε is bounded in L1(�; R
2), we have∫

�

ξε · � dx =
∫

R2
�ε

(x

ε

)
· �ε(x) dx + o(1) = 0 + o(1) −→

ε→0
0.

Therefore, the sequence ξε weakly ∗ converges to 0 in D′(�; R
2) and is bounded

in L1(�; R
2), which implies (3.6).

By applying Proposition 3 and convergence (2.8) we thus obtain

aε∇wλ
ε · ∇uε = A∗

ελ · ∇uε + ξε · ∇vε ⇀ A∗
0λ · ∇u0 in D′(�), (3.18)

where u0 is the weak limit (up to a subsequence) of uε in H 1
0 (�).

Step 3. Conclusion. The limits (3.17) and (3.18) imply the equality ξ0 · λ =
A∗

0λ · ∇u0 in D′(�), for any λ ∈ R
2, from which ξ0 = A∗

0∇u0. Since the se-
quence − div ξε = f converges to − div ξ0 in D′(�), we thus obtain the equation
− div

(
A∗

0∇u0
) = f in D′(�). Theorem 1 is now proved.

Acknowledgements. M.Briane wishes to thank F. Murat for having suggested to him the
presentation of the proof through a div-curl result.
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