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Abstract

Let (X, X, u, 7) be an ergodic dynamical system and ¢ be a measurable map from
X to a locally compact second countable group G with left Haar measure mqg. We
consider the map 7, defined on X x G by 7, : (x,9) — (72, p(x)g) and the cocycle
(¢n)nez generated by ¢.

Using a characterization of the ergodic invariant measures for 7, ([Ra06]), we
give the form of the ergodic decomposition of u(dz) ® ma(dg) or more generally of
the 7, -invariant measures (i, (dz) ® x(g9)ma(dg), where p,(dz) is x o ¢-conformal
for an exponential y on G.
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1 Introduction

We consider a dynamical system (X, X, i, 7), where (X, X) is a standard Borel space, p a
o-finite measure on X and 7 an invertible measurable transformation on X such that p is
quasi-invariant and ergodic for the action of 7.

Let G be a locally compact second countable (lcsc) group. We denote by B the o-algebra
of its Borel sets, mg(dg) (or simply dg) a left Haar measure on G, e its identity element.

Let ¢ be a measurable function on X taking its values in G and 7, the map on X x G
(skew product) defined by

T i (2,9) = (12, 0(2)9). (1)
The corresponding G-valued cocycle (p,,)nez over (X, i, 7) (noted also (¢, 7)) is
o(t"1z) - p(x), for n > 0,

on(z) =< €, for n =0,
o(tmz)™t - p(r )T for n < 0.

If pv is 7-invariant, the map 7, leaves invariant the product measure \; := p ® mg. The
cocycle (¢,) can be seen as a stationary walk in G over the dynamical system (X, p, 7).
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More generally, let x be an exponential on G, i.e. a continuous map from G to |0, +oo[
such that: Vg,¢' € G, x(99') = x(9) x(¢'). If i1, is a x o ¢ conformal o-finite measure on
X, i.e. such that

() (dz) = x(p(77"2)) py(da), (2)

then the measure X\, (dz,dg) := p,(dz) ® x(g9)ma(dg) (sometimes called Maharam mea-
sure) is a o-finite measure on X x G which is 7 -invariant.

The study of cocycles was the subject of many papers since K. Schmidt ([Sc77]), J.
Feldman and C.C. Moore (|[FeMo77|). There has been recently a new interest for the
invariant measures for skew products (cf. [ANSS02]|, [Sa04], [LeSa07]).

Our main goal is to give the precise form of the ergodic decomposition (for the skew
product 7,) of the measures A, on X x G. We give in the first section the statement of
the results on this ergodic decomposition, then some consequences in terms of regularity,
boundness and essential values of the cocycle (¢,,),ez. The following sections are devoted
to the proof of the main results. We also discuss a conjugacy equation for the closed
subgroups of G which arises in the ergodic decomposition. In the appendix, we recall and
specify some results on ergodic decompositions and regular conditional probabilities.

We wish to thank B. Bekka, Y. Coudéne, S. Gouézel and Y. Guivarc’h for helpful discus-
sions and the referee for his careful reading and valuable comments.

2 Statement of the main results

2.1 Ergodic decomposition

Before we state the main results, we recall some facts about a topology on the set F(G)
of closed subsets of G' and give some notations.

e A topology on F(G)

Let G be a lesc group. We equip the set F(G) of closed subsets of G with the so-called
Chabauty’s topology. In this topology the open sets are defined by

U(0,C)={Se€F(G):VU €0, SNU#Q and SNC =@},

where O is a finite family of open sets of G and C' is a compact subset of G.

It can be shown that a sequence (F},) of closed subsets of G converges to a closed subset
F'in Chabauty’s topology if and only if the two following properties are satisfied :

(1) Let £ : N — N be an increasing sequence and let (g,)n,en be a sequence such that
Gn € Fe(n) for every n > 0. If (g, )nen converges to g € G, then the limit ¢ is in F.

(i) Each g € F' is the limit of a sequence (g, )nen With g, € F,, for every n > 0.
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The Borel structure associated to this topology is generated by the sets {S € F(G) :
S C F} where F' € F(G). The lesc group G is metrizable. We denote by d a metric
on G which defines the topology of G. For any dense sequence (g,)nen of elements of
G, the family of continuous functions {d(g,,),n € N} separates the points of F(G) (see
[AuMo66], Ch. II section 2).

e Notations

Notations 2.1.1 For a locally compact second countable group H, we denote by my(dv)
(or simply dv) a left Haar measure on the Borel sets of H, by §, the Dirac measure at a
point u € H. The identity element is denoted by e.

If p; and p, are positive measures on the Borel sets of H, we denote by p; * py their
convolution (i.e. the image of the product measure p; ® po by the map (g,¢') € H x H —
99 € H).

As in the introduction we consider a measurable map ¢ from X to G and 7, the skew-
product defined by (1). Let A be a 7,-quasi-invariant positive measure on X x G. We
denote by J or J, the o-algebra of 7,-invariant subsets. We are interested in the X x B¢-
measurable functions on X x G which are invariant by the map 7.

The following remark is useful. If f is 7 -invariant A-a.e., then there is a 7 -invariant
function g such that f = g A-a.e.. Therefore it is enough to consider functions which are
everywhere T,-invariant.

Recall that two G-valued cocycles (¢, 7) and (¢, 7) over the dynamical system (X, p, 7)
are -cohomologous, if there is a measurable map u : X — G such that

() = u(tz) P(x) (u(x))™" for p — a.e. z. (3)

The function w in (3) is called transfer function. We write ¢ () 1 when (3) is satisfied.
A cocycle (@, 7) is a p-coboundary if it is p-cohomologous to the constant function ¢ = e.

Notations 2.1.2 In what follows, we consider a 7,-invariant measure X\, of the form
Ay = Uy @ (xmq), where x is an exponential on G, p, is a o-finite measure which is

X © p-conformal and T-ergodic on X. When x = 1, the measure ji,, is T-invariant.

Once and for all we choose a measurable positive function h on X X G such that
/ Mz, g) py(dz) x(9) ma(dg) = 1.
XxG

The existence of h results from the facts that pi, is o-finite on X and that G is a lcsc
group.

Let P" be a regular conditional probability with respect to the probability measure h A,
and the o-algebra 3 of T,-invariant subsets (i.e. P" is a transition probability on X x G
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such that, for every nonnegative measurable function f on X x G, P"f is a version of the
conditional expectation Ey . [f|3]).

We define a positive kernel M" on X x G by
V(z,9) € X x G, M"f(x,9) = P"(f/h)(z,9),
for any measurable nonnegative function f on X x G.
If we replace h by an other density 4/, we have M" ((x, g),.) = P*(h/W)(x, g) M"((x,g),.).

For \-a.e. (z,9) € X x G, the positive measure M"((z,g),.) on X x G is 7 -invariant
ergodic. (See the appendix)

e Statement of the main result
The formula Eyy [-] = Epa [Ena, [ [3]] can be written

A (dy, dt) = ; GMh((x,g),(dy,dt))h(frag) A (dz, dg),

which represents a decomposition of A, in 7,-ergodic components. Our goal is to give
a precise description of these ergodic components. This is the content of the following
theorem:

Theorem 2.1.3 (Ergodic decomposition of \,)
1) There ezist:
e a family (piz)zex of o-finite T-quasi-invariant measures on X defining a o-finite

positive kernel from (X, %) to (X, %) (i.e. for every x € X, p, is a o-finite positive
measure on X and for every A € X the map v — u,(A) € [0, +00] is X-measurable),

e o family (H,).ex of closed amenable subgroups of G such that the map ©+ — H,
from X to F(G) is measurable,

e a measurable map n : X x G — RY such that, for each x € X, x,(-) == n(z,")
defines an exponential on H,,

e a measurable map u : X x X — G (for x € X, we set uy(.) = u(z,.))

satisfying for p-a.e. x € X and every g € G the following properties (4) to (10):

Hey = p(2)Hy o(x) 7", (4)

)= ua(Ty) " 9(y) ux(y) € Ha, for pa—ace.y, (5)
Tha(dy) = Xa(V(771y)) paldy), (6)
Xa(7) = Xm(w(x) v (p(@)™), ¥y € Hy, (7)

( y) (@) € Hy, for py—ae.y, (8)
ta(dy), for a positive constant c(x). 9)



and
S, Foua(y) v 9) X, (v) ma, (dy) pa(dy)

M"f(z, g . 10
(#.9) = T (o, My, ua(y) v 9) X, () ma, () pz(dy) (10)
If we take for my,, v € X, the unique left Haar measure on H, such that
/ o) mi () = 1,
H,n{d(e,")<1}
then K(x,dt) :== mg,(dt) is a positive kernel from (X, %) to (G, Bq).
An ergodic decomposition of the measure N, = pu, ® (x mq) is given by
A (dy. dt) = M"((x, 9), (dy, dt)) h(z, g) A (dw, dg). (11)

XxG

For every nonnegative measurable \,-a.e. T -invariant function f, we have, A -a.e.,
f = P"f (the last function being T,~invariant according to the definition of a regular
conditional probability).

2) When there exist a fized closed subgroup H of G and a measurable map a : X — G
such that H, = a(z)H (a(x))™" for py-a.e. x € X (which is the case when G is a nilpotent
connected Lie group (Theorem 5.1.1)), the ergodic measures can be written, with X.(y) =

Xz (azyaz ),

Xe
/\
5}
SN~—
QU
)
S~—
=
8
—
=8
s

- Jx U f (s waly) alz) v (a(x))”

h €T =
M"f(x,g fx(fH My, u.(y) a(z) v (a(z))~

(12)

H

9)
g

3) When G is abelian, the subgroups H, are equal to a fized closed subgroup H of G, the
exponentials x, are equal to the exponential x and the ergodic measures are given by

Jx Uy ua(y) v g) x(7) d) pa(dy)
S5 s by ua(y) v 9) x() dv) pa(dy)”

M"f(z,9) = (13)

The proof of Theorem 2.1.3 will be given in section 3.

2.2 Notion of regularity for a cocycle

e Regularity

Definitions 2.2.1 We say that the cocycle defined by ¢ is pu,-regular, if there exist
a closed subgroup H of G and a measurable map u : X — G such that the cocycle
Y= (uoT) L pu takes p,-a.e. its values in H and 7 : (z,h) — (72,9 (z)h) is ergodic
for the product measure p, ® (x mpy).



The measure (x o u) p, ® xmpy is Ty-invariant. In the regular case we have a "good"
ergodic decomposition of 1, ® (xdg) and the subgroups H, of Theorem 2.1.3 are conjugate
to H: H, = u(z) Hu(z)™"

Theorem 2.2.2 - 1) For xg € X, the set {x € X : p, ~ iy, } is measurable and has zero
or full p,-measure.

2) Assume that the cocycle (@, T) is piy-reqular. Then every measurable T,-invariant func-
tion f can be written f(x,g9) = Fy((u(x))™tg), py ® mg-a.e., where Fy is a left H-
invariant function on G. The ergodic components of X, (see (10)) can be written:

S U flyyuly) v (u(@) = g) x(v) dy) x(u(y)) py(dy)

M) = ) (@) T 9) () ) x(u(w) o ()

In other words we have H, = u(x) Hu(z)™" and x,(v) = x(u(z) yu(xz)™'). We can take
ua(y) = u(y) u(x) ™" and pa(dy) = x(u(y)) p(dy).

3) Assume that the cocycle (¢, T) is not pu,-reqular. Then for p,-a.e. x, the measures fi,
of the ergodic decomposition of j, ® (x me) are singular with respect to the measure fi,,.
There are uncountably many of them pairwise mutually singular. If G is abelian and i,
is finite, then, for py-a.e. x € X, the measure p, is infinite.

The proof of Theorem 2.2.2 will be given in section 4.

Examples of nonregular cocycle over rotations were given by Lemariczyk in [Le95]. In 5.2,
Remark 5.2.2, we give an example of a nonregular cocycle over a rotation which is the
difference 1y gy — 1jo,(. + r), for some 3 and r on circle.

e Boundness

In the proposition below, we discuss the boundness of the map u and of the cocycle (¢,,).
The notations are those of Theorem 2.1.3.

As the group G is lesc, we can write G = J,, U, for an increasing sequence of open sets
such that K,, = U, is compact. Consequently G = | J, .y K, and for any compact subset
K of G there exists n € N such that K C K,,.

Lemma 2.2.3 1) Let u be the measurable map from X x X to G defined in Theorem
2.1.3. For any compact subset K of G we define the following subset of X :

Xk ={xe€ X :u,(y)H, C K Hy, for pz-a.e. y€ X} ={x € X : Supp (uz(u,)) C K H,}.

Then Xk is measurable and v € X = 70 € Xg (p(2))-1-

The set U, ey Xk, is a T-invariant measurable subset of X and (ergodicity of i, ) has zero
or full pu,-measure.



2) If there exists a compact subset K of G such that j1,(Xg) > 0, then U, ey Xk, has full
iy -measure. In this case, we can replace the measurable map w by another measurable
map u satisfying, for any n € N,

for py-a.e. v € X, = X, \ Xk, 4, ua(y) € Ky, for pg-a.e. y € X. (14)

3) In particular, the set {x : G/H, is compact} is measurable and has zero or full measure.
If this set has full measure, we are in the above situation.

Proof of Lemma 2.2.3

1) If K is a fixed compact set in G, the map F' — K.F from the set F(G) of closed
subsets of GG into itself is continuous. Since x — H, is measurable, the map v — K.H, is
measurable. In section 3, we will see that the map (z,y) € X x X — u(z,y) H, € F(GQ)
is measurable. We also know that, for any g € G, the map F' € F(G) — d(g,F) € Ry
is continuous. It follows that the set {(z,y) € X x X : d(g, KH,) < d(g,u(x,y)H,)} is
measurable. Let (g,)nen be a dense sequence in G. Then we have

Xg={reX:VneN, vyo({y € X d(gn, K Hy) < d(gn,u(z,y) Hy)}) = 1}
It shows that Xy is measurable.
From the formulas (4) and (8) of Theorem 2.1.3, we obtain © € Xx = 72 € Xg (p(@))-1-
Since for any compact subset K of GG, there exists n € N such that K C K,,, we deduce

that the measurable set |J, . Xk, is 7-invariant and (ergodicity of s, ) has zero or full
measure.

neN

2) If puy (Xx) > 0 for some compact subset K of G, then the same argument shows that
Unen Xk, has full g, -measure.

The last assertion follows from the construction of u (cf. Lemma 7.1.1).

3) We have
{r € X :G/H, is compact} = U{x e X:K,H, =G},
neN

which shows that the set is measurable. By the conjugacy relation (4) this set is 7-invariant
and (ergodicity of y,) has zero or full y1,-measure. In the last case, for p,-a.e. x € X, we
have (J,,cy KnH, = G, which implies that the set J, .y Xk, has a full y,-measure.
Proposition 2.2.4 1) Assume that the measure i, in the basis is a finite measure and
that there exists a compact subset K of G such that pu,(Xk) > 0. Then when the map u
satisfies the boundness condition (14), the measures i, are finite, for p,-a.e. x € X.

2) Assume G abelian and there ezists a compact subset K of G such that j,(Xx) > 0.
Then the cocycle is reqular.



3) Assume G abelian, i, finite and T conservative for p. If p,({z € X @ fi,(X) <
+oo}) > 0, where
fro(dy) = (X(ua(9)) " pa(dy), (15)

then the cocycle is regular.

4) Assume that T is conservative for p,. If the cocycle () is pi,-bounded (i.e. there
exists a compact subset K of G such that, for py-a.e. x € X, Vn >0, ¢,(x) € K), then
H, is a compact subgroup of G and the cocycle is cohomologous with a bounded transfer
function to a cocycle taking its values in a compact subgroup of G.

Proof Let r be a positive continuous function on G such that [, r(t) x(t)dt = 1. For
any compact subset K of G, we set ri(g) := min,ex r(ug) > 0. For all measurable
nonnegative functions f on X, we have (cf. 34),

M o) = elra) [ O] rnm)70) x.0)mi ) )
> clwg) [ W 100 0) 19) x.3) i () el
= ceo) [ o) OV ma () [ )Ll ldy)
and therefore
i) = Ao 2 [ ta) ([ Fon) m() mldo. 19

where Wi (2) = [ c(x,9) ([, rx(v9) x.(v) ma,(dy)) h(z, g) x(g) dg > 0.

1) Under the assumptions of the first assertion, we have from (14) and (16), for each
n €N,

() > / Wi, (2) 12 (f) oy (d)

and taking f = 1y, we obtain that 1, (X) < 400, for p,-a.e. z € X,,, hence for u,-a.e.
r € X since U, X,, has full measure in X.

2) In this section 2) and in section 3), we assume that G is abelian. With the notations of
Theorem 2.1.3, the exponentials in (13) do not depend on x and the measures p, satisfy

(T2)(dy) = x(V(771y)) pe(dy). One easily sees that the measures ji,(dy) defined by (15)
satisfy, as the measure fi,, the conformal property

Thia(dy) = x(o(77y)) fiu(dy). (17)
By (16) we have, for any n € N,

ilf) = [ e, () l) il (18)
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where @g (v) = Vg, (v) inf ek, x(u).

This implies that, for any B € X, B C X,,, there exists a nonnegative measurable function
¢g on X such that

/ 15(2) @, (2) fia(dy) o (dz) = En(y) piy(dy).

From the conformal property (17), it follows that Egor™! = &g, py-a.e.. As p, is T-ergodic,
g is py-a.e. equal to a constant v(B). The map B — v(B) defines a positive measure v
on (X,, X, N Xx) absolutely continuous with respect to the measure p,. Therefore there
exists a measurable nonnegative function & on X such that:

[ 150 (o) o) () = (B) o) = ([ 1a(a)e(z) iy () gl

and, for py-a.e. v € X,
() py(dy) = P, () fru(dy).

As [J,en Xn is of full measure, by gluing the @, , we obtain a function ® such that, for
fy-a.e. T € X,

§(x) py(dy) = P(x) fia(dy).
This shows the regularity of the cocycle.

3) We set Xog = {z € X : i,(X) < +00}. For z € X;, we denote by fi, the probability
fi/ fiz(X). From (16), for any compact subset K of G, we have

()2 [ euta) ([ titu ) iulan) m(da) (19)
where @y () := W (x) inf,ex x(u) fi.(X).

Let h; be a positive bounded measurable function on X. We know that 7 is conservative;
ie. py({Dpsohi o™ < +o0}) = 0. From (19), it follows that, for p-a.e. = € X,

Vn €N, f1({d hiot" < +oo} N{u, € K,}) =0.

k>0

When n increases towards +oo, from the monotone convergence theorem, we obtain, for
fy-a.e. v € X,

/lx({z hyoT" < +o00}) = 0.

k>0

Since h; is bounded and thus /i, integrable, for z € X, we deduce that, for p-a.e. x € X,
7 is conservative for fi,. Replacing Xo by XoN{z € X : 1.({d> 50 o™ < +o00}) = 0}
we can assume that, for any x € X, 7 is conservative for [i,.

10



From (19), there exists a measurable [0, 1]-valued function £ such that

D () L (12 () frady) pn () < / By (x) fia(dy) piy (d).

Xo

Exc () iy (dy) = /

Xo

Consequently, there exists a measurable [0, 1]-valued function ¢, such that

Ex(y) 1n(dy) = V() / D) fialdy) o (de).

Xo

Since the measure i, and the measures /i, satisfy the same conformal property (cf. (17)),
we have

> Theilo) () = [ @ucle) ST (o) ) ()

where T is the operator defined by
Tfly)=for ' (y) x(p(r™'y)).

As 7 is conservative for p, and for fi,, z € Xy, by Hurewicz’s ergodic theorem, for any
bounded measurable function f on X, the sequence of functions

(nZ_IT’ff/ nz_lTﬁ) N
k=0 =0

converges ji,-a.e. to i, (f) and converges fi,-a.e. to fi,(f), for x € Xj. As the sequence of
functions is bounded and the measures are finite, these convergences also hold in L!-norm.

Therefore, for any bounded measurable function f,

[ s ST ) — el

and for p,-a.e. v € X

o T (y) ) .
k=0 . d . . . '

anle) = [ 1

The inequality (19) shows that ®f is p,-integrable. Moreover the sequence of functions
(cv,) is bounded. By the dominated convergence theorem, it follows that

| e an@intde) = [ (o) o) il ) (o)

n—-+o00 Xo

We deduce,
paldy) = [ Bicla) ) ),
Xo

11



where @ () = ®rc(w) fio(x) /11 (Ex)-

Now, as above, for any B € X, B C X)), there exists a nonnegative measurable function
&g such that

n(0) paldy) = [ Bicla) puld) (o).

B

From the conformal property (17), it follows that {g o 77! = &g, py-a.e.. With the same
argument as in 2), since p, is 7-ergodic, &g is py-a.e. equal to v(B), where v if a positive
measure on (X, X,, NX) absolutely continuous with respect to the measure j,. Therefore
there exists a measurable nonnegative function £ on X such that:

[ (@) ) i) = v(B) ) = ([ e (de)) ()

and, for p-a.e. x € Xo,
() py(dy) = Pr(x) fru(dy).

This shows the regularity of the cocycle.

4) Now let us assume that 7 is conservative for s, and that there exists a compact subset
K such that, for p-ae. v € X, p,(z) € K, for every n € N.

For any nonnegative measurable function on X with u,(f) €]0, +oo], we have

Z f(r"2) 1k (on(x)) = Z f(m"z) = +o00, py-ae..

n>0 n>0

Hence 7, is conservative for A,. We deduce that, for x € X, where X is a set of full
p-measure, and any g € G, 7, is conservative for M"((z, g), ).

We take x € X,. Let s € Supp (u,(u,)) and ¢ € H,.. Then, for any neighborhoods V' and
W of s and t, for p-a.e. y € X, 3 -0 lv(7"y) lw(pn(y)) = +oo. From the inclusion

Uz (T"Y) Un(¥) = on(y) uz(y) C K ug(y), for pae. y € X,

it follows that, for py,-a.e. =z € X and for p,-ae. y € X, st € Ku,(y). Taking a
fixed s and a dense sequence (t,) in H,, we obtain that, for u,-a.e. z € X and for
pg-ae. y € X, ¥n >0, t, € s Kug(y). Therefore H, C s K u,(y) is a compact
subgroup of G and, with a similar argument, for y,-a.e. * € X and for p,-a.e. y € X,
Supp (uy(pt2)) € K uy(y) Hy. This implies that, for p,-a.e. x € X, there exists a compact
subset K, of G such that Supp (u,(p.)) € K, H,. Since any compact subset K of G
satisfies K' C K, for n large enough, we deduce that | J, . Xk, has full y,-measure. So
we can assume that u satisfies the boundness condition (14) (cf. Lemma 2.2.3).

By (16) we have, for any n € N,

plf) = [ Wi () el (), (20)
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This implies that, there exists a [0, 1]-valued measurable function £ such that

[ @) paldy) (o) =€) ).

n

Observe that for any = € X, the exponential y, on the compact group is trivial and
consequently the measures pu,, + € X, are 7-invariant.

From the conformal property (17), it follows that & o 7-'drp, /dp, = &, py-a.e.. This
shows that the measure £ i, is 7-invariant. Moreover {¢ > 0} is p,-a.e. T-invariant and
therefore has full 1, -measure.

For any B € X, B C X,,, there exists a [0, 1]-valued measurable function £z such that
[ s @) ma(dy) () = €(0) 00) (), (21)
B

From the conformal property (17), it follows that {5 o 77! = &, py-a.e.. As in 2)
and 3), {p is py-a.e. equal to v(B), where v if a positive measure on (X, X, N X)
absolutely continuous with respect to the measure y,. Therefore there exists a measurable
nonnegative function ¢ on X such that:

/B Ui, () pa(dy) py(dr) = v(B)(y) py(dy) = ( /B V() py(dr)) E(y) py(dy)

and, for p-a.e. v € X,
(@) E(y) e (dy) = Vi, (2) pa(dy).

This shows the regularity of the cocycle. hence the last assertion of 4). 4

Remark If GG is a compact group, then it is well known that every G-valued cocycle ¢ is
regular and therefore cohomologous to a cocycle ¥ taking its values in a compact subgroup
K of G such that p ® m is ergodic for 7. (cf. [PaPo97], [Pa97]| for the regularity of the
cohomology when G is compact and the cocycle ¢ is Holderian over a subshift of finite

type.)

See also [AWO00] for results under the assumption of tightness for the cocycle ().

2.3 Essential values and periods of invariant functions

The notion of essential values was introduced by K. Schmidt [Sc77], J. Feldman and C.C.
Moore |[FeMo77|. See also [Sc79|, [Sc81|, [Aa97]. The results in this section, excepted
Proposition 2.3.6, are not new, at least when p is 7-invariant. For the sake of completeness,
we will give proofs. Remark that we are here in the more general case of a quasi-invariant
measure.
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Definitions 2.3.1 : Let u be a 7-quasi-invariant conservative measure on X. An element
a € GU{oo} is an essential value of the cocycle (¢, 7) (with respect to p) if, for every
neighborhood V' of a, for every subset B such that pu(B) > 0, there is n € Z such that

u(BNr"Bn{z:p,(zr) eV} >0.

We denote by () the set of essential values of the cocycle (p, 7) and by £(¢) = E(¢) NG
the set of finite essential values.

Let B be a measurable set of positive p-measure. Let 75 be the induced transformation
on B and p”(z) := @nu)(x), where n(z) = np(z) := inf{j > 1: 77z € B}, for z € B.
The "induced" cocycle is given, for n > 1, by ¢Z(x) := ©B(z) @P(rpz) - pP(rp 7).
Equivalently to the definition 2.3.1, an element a € G U {co} is an essential value of the
cocycle (p, 7) if and only if, for every subset B such that p(B) > 0, for any neighborhood
V oof a, u({x : pB(x) € V}) > 0 for some n € Z.

Proposition 2.3.2 Assume that T is conservative for p,. If oo & E(p), ¢ is cohomol-
ogous to a cocycle taking its values in a compact subgroup of G. When G is abelian we
have E(p) = {e} if and only if ¢ is a coboundary.

Proof If co &€ E(yp), then there is B with p,(B) > 0 such that (¢2),cz is a bounded
sequence. This implies that ¢? is 75-cohomologous to a cocycle taking values in a compact
subgroup of G (cf. Proposition 2.2.4), i.e. there are measurable maps (? from B to G
and ¢? from B to a compact subgroup of G such that

(pB = CB oTp wB (CB)_I. (22)

By ergodicity and conservativity of (X, u,,7), for p-a.e. y € X there are an unique
x € B and an integer k, 0 < k < np(x), such that y = 7%2. We define ( on X by taking,
for y = %2, 0 < k < np(z).

C(y) = wulz) P () (¥(y) ™,
with ¥ (y) = e, if k < ng(z) — 1, and ¥(y) = ¥P(x), for k = np(x) — 1.

For 0 < k < ng(z) — 1, the cocycle relation is clearly satisfied by construction. For
k =npg(x) — 1, it results from the cocycle relation (22) for the induced cocycle.

Now we consider the abelian case. Let us show that, when £(¢) = {e} then ¢ is a
coboundary. From the first assertion we know that the cocycle is cohomologous to a
cocycle ¢ taking values in a compact subgroup K of G. The set of essential values is the
same for ¢ and 1 (see below). As 7, is ergodic conservative and £(¢)) = {e}, one has

K ={e}. g
We consider now, as in Theorem 2.1.3, a measure \,.
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Notation 2.3.3 Let P(¢) be the closed subgroup of G of left periods of the 7 -invariant
measurable functions (i.e. the subgroup of elements v € G such that, for every 7 -invariant
function f, f(z,vg) = f(x,g), for \\-a.e (z,9) € X x G).

Remark that we should write P (g, 11, ), since P(p) and E(¢) depend on the measure f,.
We will show that P(¢) = E(¢) by using the following lemma from [ArNgOs].

Let (Y, p) be a complete separable metric space with a continuous action (g,y) — g.y of
a group GG on it. Let f be a measurable map from X to Y. Given a G-valued cocycle ¢,
we say that f is (¢, 7)-invariant if f(7z) = p(z).f(x), p-a.e..

Lemma 2.3.4 ([ArNgOs|) If [ is (¢, T)-invariant, then a.f(x) = f(z) p — a.e., Ya €
E(p)-

Proof (Y, p) being a separable metric space, the set
Xp={re X u({z' € X :p(f(2'), f(x)) <e}) >0, for every £ > 0}

has full g-measure since it contains f~!(suppf(p)). Let 2 € X; and a € E(p). Let € > 0
be arbitrary. Then the subset E, = {2’ : p(f(2'), f(z)) < €} has positive py-measure.
Since a € E(p), for every €1 > 0 there exist x; € E, and n € Z such that 7"z, € E, and
d(a, pp(x1)) < €1, where d is a distance on G. By the invariance of f we have

pla-f(x), f(z)) < plaf(x),af(x1)) + plaf (21), en(z1).f(21)) + p(f (T"21), f(2)).
Since € and e; are arbitrary and the action of G is continuous, we get p(af(z), f(z)) = 0.

O

Proposition 2.3.5 £(y) = P(p)

Proof 1) If a € £(y), there are a subset A, with u(A) > 0, and a neighborhood V' of e
such that
ANT"AN{p, €aVV '} =0,VYn € Z

This implies that a is not a period of the 7, -invariant set B = UnezTg(A x V).

2) Let h be a strictly positive function on G such that [ h(g)ma(dg) = 1. We apply
Lemma 2.3.4 to the G-space Y of real measurable functions on G, with the metric defined
by p(fi, f2) = [ inf(|fi = f2],1) h dme. A function on X x G can be viewed as a function
on X taking its values in Y. By Lemma 2.3.4, if a function f on X x G is 7 -invariant,
then every element of £(y) is a period for f.

The proposition shows that £(¢) = G if and only if A, is ergodic for 7,,.

With the notations of Theorem 2.1.3, we have:
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Proposition 2.3.6 An element v in G belongs to P(p) if and only if v belongs to H,,
for py-a.e. x € X.

In the abelian case, P(p) (and therefore E(p)) coincides with the subgroup H.
Proof For (z,g9) € X x G, we set (cf. (34))
-1
c(x,9) = ( / ( / h(y,ux(y)vg)xx(v)dv)ux(dy)) :
b

According to Theorem 2.1.3, we have
v € P(p) & M"((z,79),") = M"((z,9),") for \-a.e. (z,9) € X x G.
For A\ -a.e. (z,9) € X x G, the right member is equivalent to

c(z,9) Mx(dy) 6uz(y) * (Xacme) * 59 = c(z,79) Mx(dy) 6uz(y) * (Xacme) * 5797
that is, for pu,-a.e. y € X,

(2, 9) Supy) * (XaM,) * 6y = c(2,79) Ou,(y) ¥ (XaMom,)-

The equality of the supports of these measures implies H,y = H,, for p-a.e. v € X.
Hence the result.

Abelian groups

If ¢ and ¢ are two cohomologous cocycles, ¢ () ¥, then f is 7 -invariant if and only if
f is Ty-invariant, where f(z,g) = f(x,u(z)g).

If G is abelian, this implies that P(p) = P(¢), so that two cohomologous cocycles have
the same set of essential values. This is false in the nonabelian case (cf. [ArNgOs]).

When G is abelian, the cocycle ¢ := ¢ mod E(p) satisfies £(p) = {0}. If £(p) = {0},
then by 2.3.2, ¢ is p,-cohomologous to a cocycle taking its values in £(p). Therefore the
regularity of the cocycle is equivalent to £() = {0}. This last property, for an invariant
measure, corresponds to the definition of regularity given by K. Schmidt for a cocycle
(defined for a group action) taking its values in an abelian group.

If G/E(p) is compact, then £(3) = {0} and ¢ is regular. In particular this is the case
when G =R and £(p) # {0}.

Remark that if ¢ is cohomologous to ¢, and to @9, two functions with values respectively
in closed subgroups whose intersection is reduced to the identity element e of G, then

E(p) = {e}-

For instance, if ¢ is a Z-valued cocycle such that there is s € Q for which the multiplicative
equation e?™*¥ =1 /1) o T has a measurable solution v, then either ¢ is a coboundary or
the cocycle ¢ is not regular. We will use this remark to give an example of nonregular
cocycle in section 5.
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3 Proof of Theorem 2.1.3

3.1 Characterization of the 7 -invariant ergodic measures

The key tool in the proof of Theorem 2.1.3 is the following result:

Theorem 3.1.1 ([Ra06]) Let X be a 1,-invariant ergodic measure of the form \(dy, dg) =
wu(dy)N(y, dg), where p is a probability measure on X and N a positive Radon kernel (i.e.
such that, for every y € X, N(y,dg) is a positive Radon measure on the Borel sets of G
and, for every Borel set B of G, the map y — N(y, B) is measurable).

Then there exist a closed subgroup H of G and a measurable map u from X to G such
that:

- ou(y) = (u(ty)) " o(y) uly) € H for p-a.e. y € X;

- the measure X image of \ by the map (y,9) — (y, (u(y))
measure with support X x H and has the form :

“lg)isa T, -tnvariant ergodic

A(dy, dh) = fi(dy)x(h) d. (23)

where x 1s an exponential on H and i a positive o-finite measure, equivalent to p such
that

Ti(dy) = x(eu(t7'y)) i(dy). (24)

If H=G, u(y) = e, Mdy,dg) = fi(dy) x(g)dg, Ti(dy) = x(e(t~'y)) i(dy).

3.2 [Ergodic decomposition of A,

e Abstract ergodic decomposition

Let h be a positive measurable function on X x G such that A\, (h) =1 (cf. 2.1.2). We
apply to the Borel standard space (X x G,Xx X B¢) and to the probability measure h A,
the results of the appendix.

We denote by P" a regular conditional probability with respect to h Ay and the o-algebra
of T -invariant sets J, by M" the positive kernel on X x G defined, for any measurable
nonnegative function f on X x G by :

V(z,9) € X x G, M"f(x,g9) = P"(f/h)(z,9).
We have

A (dy, dt) = ; GMh((I,g),(dy,dt)) h(z, g) A\ (dx, dg). (25)
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For A\ -a.e. (x,9) € X x G, the probability measure P"((z,g), -) is 7,-ergodic (Theorem
7.4.5) (i.e. VA € 3, P"((x,9), A) = 0 or 1). Moreover, according to (49), Lemma 7.2.1,
we have

P (.9) (. d0) = 2T PG ), . ), 26)
which is equivalent to
T, M"((x,9), (dy, dt)) = M"((x, g), (dy, dt)). (27)

We write
P"((x,9), (dy,dt)) = p((z,g), dy) Q((z, g,y), dt),

where p is a transition probability from (X x G, X ® B¢) to (X, %) and @ a transition
probability from (X x G x X, X ® B¢ ® %) to (G, B).

We introduce also the notations :
l/(x,g)(dy) = p((:lr,g),dy) and N(x,g)(yadt) = Q((.T,g,y),dt)

Let (v,9) € X x G. The probability v(,, is uniquely determined by, for any A €
X, Vg (A) = P"((z,9),A x G). The family of probabilities {Ny (y,*) : y € X} is
determined up to a set of v, g-measure zero. If we consider on the probability space
(X x G,x X Bg, P"((x, g),)) the projections U and V on X and G, v, is the law of U
and N, 4 is a version of the conditional law of V' with respect to U.

The kernel M" can then be written:

Mh((x,g), (dyadt>> = p((x,g),dy) Q(($ 9, y) dt) - l/(:vg)(dy) Nérg (yadt) (28)

where Q((z,9,y), dt) = Niz g (y,dt) = h(y,t) "Ny, o (y, dt) is a positive kernel from (X x
G x X, X X Bg X X) to (G G)-

Let f be a measurable positive y,-integrable function on X and K be a compact subset
of G. We know that

/X G {/X f(y) N(x,g)(ny) l/(%g)(dy) h(x>9))‘x(d$,dg)

= f(@)1k(9) A (dr, dg) < +oo.

Therefore, for A\\-a.e. (z,g), we have, for v, »-a.e. y, N(x,g) (y, K) < +o0.

Let (K,)n>0 be the sequence of compact subsets of G such that UneN = G. For A\ -a.e.
(x,g), we have, for v, g-a.e. y, Vn > 0, N g (y, K,) < 400, i.e. N(w)(y, -) is a Radon
measure on G.
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After a modification of P" on a set of \,-measure zero followed, for any (z,g9) € X x G,
by a modification of the family of positives measures N ) (y,-) : y € X} on a set of
V(z,g)-M€ASUTE ZEro, We can assume that:

For every (z,9) € X x G, the positive measure M"((z,g),) is Tp-invariant ergodic and,
for every y € X, Ny o) (y,-) is a Radon measure on G.

e Explicit form of the ergodic decomposition

According to Theorem 3.1.1, the 7 -invariant ergodic measure M"((z,g), - ) can be writ-
ten, up to a multiplicative constant,

M ((2,9), (dy, 7)) = e (d5) X o,y ) * (Xee) () o, (@) (29)

where H(, 4 is a closed subgroup of G, X(s,4) an exponential on H, g, v(s,y) a measurable
map from X to G and fi(, ) a positive o-finite measure on X, equivalent to the probability
V(z,g)> Such that

To(fiw.a)) (AY) = X(Pug, o, (T71Y)) Py (W), (30)

where

1

Pree.g) (y) = (U(:r,g) (Ty))~" »(y) U(a,g) (y) € H gy, for fiey —ae y € X. (31)

For t € G and f defined on X x G, let R,(f)(z,g) := f(z,gt). From Lemma 7.2.1 it
follows that, for every ¢t € GG, for every nonnegative measurable function f on X x G and
for A\y-a.e. (2,9) € X x G,

M"(Re(f))(x, 9) = P"(Reh/h) (@, g) M"(f)(z,gt). (32)

Let c(z,4)+ be defined by
Clag)e = P"(Rih /D) (, ). (33)

From (32), we have :

i) () X B,y () % (X (D) M, (@) %61

Clx,g),t /l(x,gt) (dy) X [5U(m,gt)(y) * <X(:t,gt) (’7) mH(x’gt)(d’y)>]'

Using Fubini’s theorem and the separability of the o-algebra X x B, it follows that, for
Ay-a.e. (x,9) € X x G and for mg-a.e. t € G,

Ry <Mh((:r,g), )) = P"(R;h/h)(x, g) M"((z,gt), )
and therefore
Rg_l (Mh((g;',g)’ )) == Ph(Rth/h)(.T,g) R(gt)—l <Mh((x’gt)’ ))
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This implies that, for A\\-a.e. (z,9) € X x G, the measure M"((z, ), (dy, dt)) is equal,
up to a multiplicative positive constant ¢(x, g), to a fixed measure which has the form:

fia(dy) [5u, ) * (o 1) * 8, (dD),

where my, is a left Haar measure on H, (we will latter change my, into my, by multi-
plying it by a factor).

Now, for \,-a.e. (z,9) € X x G, P"(1)(x,g9) = M"(h)(z,g) = 1. Therefore
g = [ ([ hora)19) () i (d0)) Faly) (34)
x NJH,
and, for A\-a.e. (z,g9) € X x G and every measurable nonnegative function f on X x G,

S (S, £ 0 0)79) X0 0, (d9)) ()
T (i, 1y (0 79) Xel) i () ()

M"(f)(z.9) (35)

Now we carry out the suitable modifications in order to obtain the desired properties of
measurability for the decomposition

e Measurability

We can explicit the decomposition of M" given in (28). We have:

V(ﬂ%g)(dy> = Ph((x,g),dny) = c(x,g) </ h(yavx(y)ﬁ)/g) Xx(V) mHm(d7>) ﬁx(dy): (36)

xT

and

N (:dt) = ([ 0. 020)79) o) (1)) (vt * () 5.

x

The closed set v, (y)H, is the support S(z,y) of the probability Q((z,e,y),.) = N (y, )
on G and H, is the support of the probability measure Q((x,e,y),.)*Q((z,e,y),.), where

@((3:, e,y),.) is the image of the positive measure Q((z,e,y),.) by the transformation
t — t7! of G. Tt follows that the maps r € X — H, € F(G) and (z,y) € X x X
v.(y)H, € F(G) are measurable. For instance, the last property follows from the fact

that, for any closed subset F' of G, we have
{(z,y) e X x X 1 v, (y)H, C F} ={(z,e,y) : Q((x,e,y), F) = 0}.

From Lemma 7.1.1 we can find a measurable map v : X x X — G such that, for any
(x,y) € X x X, u(z,y) € S(z,y). Then, v,(y)H, = u(x,y)H, and, for any nonnegative
measurable function f on X x G,

; FW,va(y) 7 9) Xo(V)0m, (dy) = x5 (w2, ) va(y)) ; [, u(z,y) v g) Xe(V)0m, (dy)
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As

Stutw) -1 valy) * (Xamr,) = Xz ((w(z, 1)) 0 (y)) (XaThmt, )

the positive kernel R((z, g,y), dt) = d(u(zy) -1 * ]fo,g(y, dt) % 04-1 from X x X to G is equal
to

(/Hw h(y, u(z,y) v g) Xa(7) ﬁsz(dy))_l Xe(t) g, (dt).

Denoting by U the unit closed ball in G centered at e, we have

(] Moty i (@)™ [t m i) = R0, 0) >0

=NU

and, for any v € H,,
R x? 67 y Y ’y U
() = ((z,e,y) )’
R((z,e,y),U)
which proves that there exists a measurable map 1 : X x G — R such that, for u,-a.e.
r € X, Vy € Hy, X2(7) = n(z, 7).

We also have
me (dt) o R((ZE, e7y)7dt)

foﬂU Xx(Fy) mHa: (dfy) a R((l‘, €, y)u t U)
which shows that the left-hand member defines a positive kernel from X to G. We observe
that the left-hand member is the unique left Haar measure denoted by mpy, of H, such
that

/H . Xe (V) M, (dy) = 1.

Finally, we obtain

Mh((xa g): dy, dt) = R((JZ’, 9, y): U) V(ac,g)(dy) <5u(ac,y) * (X:t mHz) * 59) (dt)

and

R((x,9,4),U) Vag(dy) = c(z, ) xo((u(z,y) " va(y)) (/H . Xe(t) Mp, (dt)) fi.(dy).
We deduce that
Xo((u(@,9)) " 0a(y)) fia(dy) = d(z) po(dy)
with

(@) =l ([ xalt) . (a1)

H,.NU

and
tz(dy) = R((z, €,9),U) Vz.e)(dy).

We observe that (p.(dy)).ex is a positive kernel on (X, X).
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The formula (35) can be written

M"(f)(z,9) = .
S (. Py, ) 7.9) xalr) mn, (7)) mally)

For every (x,g) € X x G, we choose the expression (37) for M"((z,g), ).

e Proof of the relations (4) to (9).

The equality of measures 7,,(M"((z, g), (dy, dt)) = M"((z, g), (dy, dt)) is equivalent to

() () (o) * Furryy * xaman,) = 85)(d0) = paldy) (Fuugyy * (o min) %, ) (),
which leads to
o(T ) up(77y) Hy = uy(y) Hy, for pg-ae. x € X

and
(Tra)(dy) = Xo (ua(y) ™" (77 ) ua(77'y)) pa(dy);
hence the relations (5) and (6).

The equality M"((z,g), ) = M"(1,(x,g),-) is equivalent to : V(g = Vs (s and, for
V(g,g)-a.€. Y c X, N(x’g)(y, ) = Nm(x’g)(y, )

The equality N(x,g) (¥,°) = Nr,(2,9)(y, ) is equivalent to the following conditions :

Uy (Y) Hy = Ury (y) Hrw ()

(equality of the supports) which implies

Gy) = (u(y) un(y) o(z) € M, (38)
Hyo = o(x)H, ((z)" (39)

and therefore

X (9(2) Ca(y) (D(2)) ™) b (4) * (X T0t1,,) * Gt = By * (ra(0(2) - (0(2) ) s,

where My, = dp() * Mmp,, * 5( @) is a left Haar measure on H,.

)

We write mpy, = d(z)mpy, for a constant d(x) depending on x and we obtain for any
v € Hy,
Xa(7) = Xra(0(2) 7 ((2)) )

and

Xa(Ca(¥)) / My, urey0(2)g) Xra() dy = d() / h(y, ue(y)vg) X2(7) dv.

T xT
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Then the probability equality v(; g = V7 (2,q) 18 equivalent to
fira(dy) = () Xa (G () fa(dy)

for a constant ¢(z) depending on z.

Hence the relations (4), (7), (8), (9).

The ergodicity of the cocycle ¢,, on H, over the o-finite ergodic measure p, implies that
H, is amenable [Zi78§|.

The first assertion of Theorem 2.1.3 is proved.
e Assertions 2) and 3) of Theorem 2.1.3

a) We suppose that the subgroups H, are conjugated to a fixed closed subgroup H (cf.
Theorem 5.1.1 for the nilpotent connected Lie group case), i.e. there exists a measurable
map a : X — G such that H, = a(z)H (a(x))~".

Let x € X. The element a(x) is defined modulo the normalizer of H. The element
Y(x) = a(rz)™' () a(z) is in the normalizer of H and we have

(a(2) ™ (ux(y)) " uraly) o(x) alz) € H.

The ergodic components applied to a function f can be written

Ty fy, ue(y) alz) ya(z) 7 g) xo(al(x) ya(z)™t) dy) p.(dy)
T ([ by, ua(y) a(z) v a(z)g) xo(a(z)ya(z)t) dy) pa(dy)”

We have: x,.(a(7x)ya(rx)™!) = x.(a(x)(Y(x)) " yp(x)a(x)™r).

Setting Yo (7) = Xz(a(z) v (a(z))™"), we have Y7.(7) = Xa((¥(2)) "¢ (2)).

M" f(z,9) =

(40)

b) Abelian groups

If G is abelian, we have H,) = H,, for y-a.e. x € X. Since the map v € X — H, €
F(G) is measurable and the Chabauty’s topology countably separates the points, there
exists a closed subgroup H of G such that H, = H, for p,-a.e. v € X.

For every v € H, we have A\ (R,(f)) = x '(7) \,(f) and, for \,-a.e. (z,9) € X x G,
M"R,(f)(z,9) = x3 ' (v )th(x g) For f h, it follows that,

Wy € H, x(7) = /X ) b g) (. do)

and therefore x, = x, for p,-a.e. v € X.

The ergodic component of A, applied to a function f can be written

he Jx Ui fyua(y) v 9) x(7) dv) po(dy)
M 1e.9) = [y hy ua(y) v 9) x(7) dv) pa(dy)
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This completes the proof of Theorem 2.1.3. 5

4 Proof of Theorem 2.2.2

4.1 Lemmas

For the proof of Theorem 2.2.2, we begin by a lemma which allows to compare the ergodic
components.

Lemma 4.1.1 1) Let  be a cocycle with values in a closed subgroup Hy of G and 1y @my,
be a T,-quasi-invariant positive measure. We suppose that the measure p; @ mp, 18 Ty-
ergodic and that the cocycle ¢ is py-cohomologous to a cocycle ¥ with values in a closed
subgroup Hy of G, with transfer function w.

Then, there exists gy € G such that, for pi-a.e. x € X,
u(z) Hy = go Hy and Hy C u(x) Hy (u(z))™ = go Ha gy '

2) Assume in addition there exist a positive Ty-quasi invariante positive measure fio @My,
with 1o ~ py which is 1,-ergodic. Then there exists gy € G such that

Hyu(z) = Hy go, u(x) Hy = go Hy and 961 Hy gy = H,.

3) Assume in addition that py [resp. ps] is x1 0 T,-conformal [resp. X2 o Ty-conformall for
an exponential x1 on Hy [resp. xo on Hy[. Then

- for pr-a.e. x € X and every vy € Hi, x,(7) = X.(95" 7 90),

- for p-a.e. x € X, x,(u(x) g5') = X, (90 " ulx)),

- up to a multiplicative constant, us(dx) = x, (u(z) gy ") pi(dz).

The T -invariant ergodic measure fia @ (due) * (X2 Mm,)) @5 equal to py @ ((X1 M, ) * g, ),
up to a multiplicative constant.

Proof 1) For every continuous left Hs-invariant function F' on G and every g € G the
function f9(z,t) = F((u(x))~'tg) is 7,-invariant. This function is therefore py @ mp, -a.e.
constant. Applying Fubini’s theorem and the continuity of F', it follows that, for u;-a.e.
r € X and for any g € G, the function t € H; — F((u(x))~'tu(x)g) is constant and
therefore equal to F(g), its value for ¢t = e. Consequently, (u(z))™! Hy u(z) C Hy.

Since @ [resp. | takes values in H; [resp. Hs|, the above inclusion implies that, for u;-a.e.
v € X, (u(tz)) ' u(x) € Hy. Therefore u(tx) Hy = u(z) Hy. By ergodicity of (u1,7), we
deduce the existence of go € G such that pi-a.e. x € X, u(zx) Hy = go Ho.

2) The cocycle 1 is po-cohomologous to the cocycle ¢, via the map z € X — (u(x))™' € G.
Then the second statement is a consequence of the first one.
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3) Set p9 = [ g where [3 is a positive function on X. From the conformity it follows that,
for pi-a.e. x € X,

From part 2), this equality can be written

Xx((ffi(x)))g% Dol (@) o(@) uta)) = 2 (o(@))

For any = € X, we consider the exponential x, on H; and the function f on X, defined

by :

Xa((u(x)) ™" tu(x))
xa(t)
We observe that for any ¢ € Hy, X..(t) = X.(t) and the positive function (x,t) —
f(x) x2(t) on X x H is 7 -invariant. It follows that this function is constant py @ mgy,-a.e.
Hence: for pj-a.e. z € X,
— for every t € Hy, xo((u(z)) tu(z)) = x1(t),

— and up to a multiplicative constant, the function B(x) is equal to xa2(gy* u(z)) =
—1
xi(u(@) g5)- o

Xx(t) = and  f(z) = B(z) x2((u(z)) ™" g0)

Corollary 4.1.2 Let j1,(dy)® (5%@) *(Xe M, )) (dt) and gy (dy)® (5%,@)*(;@, M, )) (dt)

two ergodic components of \,. Then
- either the measures ji, and p on X are mutually singular;
- or there is g, » € G such that, for every g € G,

,U:t/(dy) ® <5um/(y) * (X:L‘/ me/)) - ux(dy) ® <5ux(y) * (X:t mH];)) * 5gx/,x'
Hence P"((z,g),.) = P"(2', 9w 2 9), .).-

Proof For a G-valued cocycle ¢ and a measurable map u from X to GG, we denote by ¢,
the cocycle ¢, (y) := (u(ty)) ™" ¢(y) u(y), ¥y € X.

The values of the cocycles ¢, and ¢y, are respectively in H, and H,. The measures
o, @ (X, mm,) and p,r ® (x,, mu,,) are respectively 7, -invariant ergodic and 7, -
(ux)’lum/

invariant ergodic, and p,_, '~ 7 @y,

The result follows from the previous lemma.

4.2 Proof of 2.2.2

1) Let g € X. From Corollary 4.1.2, for any = € X, if the measure pu, is equivalent to
[z, then there exists g, € G such that P"((z,e),-) = P"((zo,€), ") *d,, and consequently,
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with the notations of Subsection 3.2 (cf. (36)), we have vz ) = V(z,e). Conversely, the
equality () = V(z,,) implies the equivalence of the measures p1, and fi,,.

The o-algebra X x B(G) is separable, i.e. generated by a countable sub-algebra 4. We
deduce the equality of the sets:

{xeX iy~ oy} ={2 € X 1 Vo) = Vo)) ={x € X : VA E A vy (A) = Viaye)(4)}

which proves that {z € X : u, ~ pu,,} is measurable. Since, for any x € X, p; ~ firg,
this set is 7-invariant and therefore (ergodicity of xi,) has zero or full measure.

1) Assume that the cocycle is regular. Then every measurable 7y-invariant function f is
py @mp-a.e. constant. The function F'(g) := || f (-, g)l|Loo(x x Hyuy @my) 18 left H-invariant
on GG and we have, for every g € G,

f(x,vg) = F(g), for p, ® mp-a.e. (z,7) € X x H.

The first statement of 2) follows from the fact that f is a measurable 7 -invariant function
if and only if the function f(z,g) = f(x,u(z) g) is Ty-invariant.

We consider the bijective map 6, from X x G onto itself defined by: V(z,g) € X X
G, 0y(x,9) = (z,u(x)g). A measurable nonnegative function f on X x G is 7, -invariant if
and only if fof, is 7y-invariant. If J = J,, is the o-algebra of 7,-invariant subsets of X x G
then 0, 3, is the o-algebra J, of 7y-invariant subsets of X x G. From Lemma 7.2.1 we
have, for any nonnegative measurable function f on X x G and for \,-a.e. (z,g9) € X xG,

En . [f o 0,

Eh)‘x |:h0h9u X © u“'}w] O eu(xag)

hobu y o UIfw] 0 0y(z,9)

Enx [f3](2, 9) = (42)

Any nonnegative measurable 7 -invariant function is p,, ® mpy-a.e. constant. Hence, we
have, for any nonnegative measurable function f and for A-a.e. (z,9) € X x G,

N Sy @ 9) 1y, v 9) dy p(dy)
Eaxclloule, 9) = Jowr My, 7 9) dy py(dy)

From (42) it follows:

th(l',g) = Eh}\X[hfhw](I?g)
T o Fyouy) v (u(@) ™" g) x(uly)) dy gy (dy)
T S Py, u(y) y (u(z) =1 g) x(u(y)) dy py(dy)

3) If there exists some x such that ju, ~ fi,, then the reduction of the cocycle given by (8)
is "global" p,-a.e.: there exists a measurable function u and a closed subgroup H such
that the cocycle is cohomologous to an ergodic cocycle with values in H and it is regular.
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If there is a countable number of different equivalence classes among the measures ji,, r €
X, then by 1), for p-a.e. z, all the measures p, all equivalent and this equivalence class
is that of f,,.

The last assertion of 3) follows from the assertion 3) of proposition 2.2.4.

5 On the equation H,, = ¢(x) H, (p(x))™!

In Theorem 2.1.3 we encounter a measurable family of subgroups H, such that the fol-
lowing conjugacy equation holds:

H,, = ¢(z) H, (p(2))7", for p,—a.e. z € X. (43)

5.1 Nilpotent groups

When G is a nilpotent connected Lie group, the subgroups H, are conjugate to a fixed
subgroup H.

Theorem 5.1.1 Assume G is a nilpotent connected Lie group. If (H,) is a measurable
family of subgroups such that (43) holds u-a.e., where p is a o-finite measure which is
quasi-invariant and ergodic for T, then there is a fixed closed subgroup H and a measurable
map © — a(z) from X into G such that for py-a.e. x € X:

H, =a(z) H a(x)™".

Proof We equip the set F(G) of closed subsets of G with the Chabauty’s topology (cf.
section 2).

We know that the map © € X — H, € F(G) is measurable. For any F' € F(G), we
have

{reX:{gH,g " :geG}CF}={seX:H,C (g 'Fg}
geG

It follows that the map z € X — {gH,¢9~': g € G} € F(G) is measurable. We denote
by g the Lie algebra of G and call ad the adjoint representation of g (i.e. for any (X,Y) €
g%, ad X (Y) = [X,Y]). We denote by exp : g — G the exponential map and by Ad the
adjoint representation of G on g. We have :

gexpX g-!' = exp(Adg(X)), Vg € G,VX € g,

k
Ad(expY) = Exp(adY) = Z (ai}? , VY €g.
keN ’

First case We assume that GG is a connected and simply connected nilpotent Lie group.
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For p-a.e. z € X, we have:

{gH,g7': g€ G} ={gH,,97" : g € G}.

Since the points of F(G) are separated by a countable family of continuous functions,
there exists a closed subgroup H of GG such that, for p-a.e. x € X,

{9Hog™' 19 € G} ={g9Hg ': g€ G}

Now, from the proposition below, this equality implies that the two open dense subsets
{gH,g7' : g € G} and {gHg ' : g € G} of {gHg ' : g € G} are not disjoint. Therefore
the two G-orbits coincide. Hence the result.

Second case We assume that G is a connected nilpotent Lie group.

Let f : G — G be a group cover of G with G connected and simply connected (see
[Ho65], Ch. IV, Theorems 2.2 and 3.2).

If H is a closed subgroup of G' then H = f~'(H) is a closed subgroup of G. Moreover the
G-orbit of H is the image by f of the G-orbit of H. The theorem follows from the first
case. [

Proposition 5.1.2 For any closed subgroup H of a connected simply connected nilpotent
Lie group G, the G-orbit {gHg ' : g € G} of H is open in its closure.

Proof We know that the exponential map exp is an analytic diffeomorphism. We set
¥ ={1,...,dim(g)}. For any p € ¥, we consider the exterior product V, = A g and the
corresponding projective space P(V,). We denote by m, the natural map from V, \ {0}
onto P(V},).

For each p-dimensional subspace v of g we associate the element u, = m,(u; A - Awy,) of
P(V,) where (uy,...,u,) is a linear basis of v. We denote by D,, the image in P(V},) of the
set of p-dimensional subspaces of g. We consider the disjoint union Upez D,, equipped with
the following topology. A sequence (u,),en converges to x if the two following properties
are satisfied:

(i) there exists N € N and r € ¥ such that, for n > N, u,, € D,.

(ii) the sequence (u,),>n converges towards x on D, for the usual induced topology of
P(V,).

One sees easily that a sequence (v,,) of subspaces of g converges in Chabauty’s topology if
and only if (u,, )nen converges in (J, oy, D,. Hence, the map v — u, is an homeomorphism

from the set of non-trivial subspaces of g onto Upez D,.

Let H be a closed subgroup of G with Lie algebra h = exp ' (H). The G-orbit {g H g~ ' :
g € G} of H is identified with the A AdG-orbit of u,. Now, for a connected simply
connected nilpotent Lie group G, we know (see for example [BoSe64|) that this orbit is
open in its closure. Hence the result.
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5.2 A counter example

Let G be the semi-direct product of R and C2, with the composition law:

(t, 21, 22) % (', 20, 25) = (E+ ', 21 + €72, 29 + €777 2)),

where 0 is a fixed irrational.
The conjugate in G of (0, z1, 29) by a = (s,v1, v9) is:

(5,01, v2)(0, 21, 22) (8, v1, 02)71 = (0, 62”‘921, €2ﬂ9i822)- (44)
Consider the dynamical system defined by an irrational rotation (7 : * — z + o mod 1)

on X =R/Z. Let ® : X — G be the cocycle defined by ®(z) = (¢(x),0,0), where ¢ has
its values in Z.

Let H, := {(0,vz,ve>™¥@ z,) v € R}, where 1 is a function to be defined and z;, z, are
given natural real numbers. Consider the function x — H, with values in the set of the
closed subgroups of G. It satisfies the conjugacy relation:

Hep = O(x) Hy (2(x))7, (45)
if » has integral values and satisfies
0 p(x) +(x) = (rz) mod 1. (46)

For every a whose partial quotients are not bounded, there are real numbers 3 and r for
which the function

¢ = 1pg — log(- +7)
is not a coboundary and there are irrational values of s such that e2™*(10.51=10.81(+7)) g 5
multiplicative coboundary (cf. [Co07]).

If we take for 6 one of these values of s and for ¢/ a function satisfying the multiplicative
coboundary equation: ™% = 2™(VoT=¥) e get, (46).

Proposition 5.2.1 For these choices of 3,r,0,1, there is no subgroup H such that the
equation H, = a(x)Ha(x)™' has a measurable solution a.

Proof Suppose that there are a fixed subgroup H and a measurable function a : X — G
such that H, = a(x)Ha(z)™'.

According to (44), this is equivalent to the existence of a function ¢ defined on X such
that the set

{(0’ Ue?m't(a:)zh Ue?ﬁi(ﬁt(:v)+w(ac))z2)7 = R}
does not depend on z. This implies that ¢t and 1 + 0t have a fixed value mod 1; therefore
O(p(x) — t(x) + t(tz)) = Op(x) + ¥(x) — P(rx) mod1 = 0. As ¢ and t — ¢t o 7 have
integral values and @ is irrational, it follows that ¢ =t o7 — ¢, contrary to the fact that
¢ is not a coboundary.

Remark 5.2.2 By the same arguments it can be shown that the cocycle 1o 5—1j0,5(.+7))
is nonregular in the sense of Definition 2.2.1.
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6 Comments

6.1 Remarks on transience/recurrence

The cocycle (p,)nez gives the position at time n of the "vertical" coordinate for the
iterates 7. If it is recurrent (i.e. if the stationary random walk (¢,) returns infinitely
often in any neighborhood of the identity element), the transformation 7, is conservative.

The ergodicity of the basis implies that the cocycle is either recurrent or transient. When
¢ has its values in R and is integrable, (¢, )nez is recurrent if and only if u(¢) = 0.

For every amenable group G and every ergodic system (X, p,7), there is a measurable
ergodic cocycle (¢, 7) over the system, taking its values in G, such that (X xG, u®@meg, 7,)
is ergodic (cf. [He79|, [GoSi85]). However, a problem is to construct explicitly recurrent
cocycles generated by regular functions over particular dynamical systems and to find
whether they are or not ergodic.

In the recurrent case, the transformation 7, is conservative: there is no wandering set F

with a positive measure (wandering means that the images (7,"E, k € Z) are pairwise

disjoint). This implies that every sub-invariant set is invariant p ® mg-a.e..

Remark that the ergodic decomposition of a recurrent system gives recurrent systems. In
particular the recurrence of the cocycle (p,) relatively to p implies (with the notations
of 2.1.3) that, for p-a.e. = that the cocycle (¢,) is recurrent relatively to the measure fi,,
which is infinite if the cocycle is not regular (cf. Theorem 2.2.2).

Assume now that the cocycle is transient. Let E be a wandering set £ and h > 0 be a
function on G such that [ h dg = 1. The series Y, _, h(¢r(x)g) converges for p®@ mg a.e.
(z,g), according to:

[Ezh(wk(fr)g) dp(x) dg = / h(g) O ez, (r(x)"9)) dg du(z)

kez E kezZ

- /E hg) (3 160, (pu(r™42))9)) du() dg = / h(g) dg = 1.

kEZ

The function h(z, g) := >,y h(pr(2)g) is therefore 7 -invariant and finite for p@me-a.e.
(z, 9).

The subgroups H, defined in Theorem 2.1.3 are reduced to {e} and the ergodic measures
are given, up to a multiplicative factor, by Az¢)(f) = D pep f (75, or(2)g).

The function ¢ is a coboundary with respect to the o-finite measure fi,(dy) =3, .5 0.+, (dy)
(we get u.(y) o(y) (ua(Ty)) ™' = e by setting u,(y) := pr(x) at the point y = 7*x). The
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ergodic decomposition of p(dx) x dg can be written:

/X/Gf(x’g)du(x) = /X/G [(B(x’g))_l > F(Fz en(x)g) | hlg) du(z) dg.

keZ

This shows that, in the transient case, there is no interesting information in the ergodic
decomposition. Therefore it is suitable to have examples of recurrent cocycles (¢, 7). A
family of such cocyles is provided when the basic system is a rotation on the circle and ¢
is a BV function with values in R%. There are also examples over rotations for cocycles
taking their values in nilpotent groups (see [Gr05], [Co07]). For rotations, using BV-
functions, one can construct conformal probability measures j, for which the rotation is
conservative. More precisely if ¢ is a BV-function on the circle with zero integral, x is an
exponential on R and 7 an ergodic rotation, there is a unique probability measure (i, on
the circle such that d(7u,)/dp, = x o ¢ and the corresponding measure A\, on X x G is
conservative due to Koksma’s inequality (see for example [CoGu00]).

6.2 Extension to a group action

For simplicity, we have restricted the paper to the framework of a single transformation,
but the domain of validity can be extended by taking more generally the action of a
countable group I'. This gives access to more examples of transient cocycle with a non
trivial ergodic decomposition. Most of the results presented here when I' = Z are still
valid for the action of a countable group I

Indeed we can use the result of Theorem 3.1.1, since one can easily extend it from the case
of a single invertible transformation to an ergodic group action. Another important point
is the ergodicity of the measures given by a regular conditional probability with respect
to the o-algebra of invariant sets. This point also remains valid (see Remark 7.3.3 at the
end of 7.3).

7 Appendix

In this appendix, we recall a selection lemma and some results on the conditional expec-
tation and the ergodic decomposition that were used in the previous sections.
7.1 A selection lemma

Let G be a lesc group. Recall that the set F(G) of closed subsets of G is equipped by
Chabauty’s topology, for which the open sets are defined by

U(0,C)={Se€F(G):VU €0, SNU#Q and SNC =@},

where O is a finite family of open sets of G and C' is a compact subset of G.
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The Borel structure associated to this topology is generated by the sets {S € F(G) : S C
F} where F' € F(G) (cf. 2.1). For the sake of completeness, we give a proof of a selection
lemma (cf. the theorem of Kuratowski-Ryll-Nardzewski) that was used in section 3:

Lemma 7.1.1 If t — F, is a Borel map from a Borel space (T,T) to F(G), then there
exists a Borel map f from T to G such that f(t) € Fy for each t € T.

Proof 1) Let K be a compact set in GG. Assume that F; C K, for t € R C T, where R is
a Borel set in T'.

For every n > 1, there exists a finite family (K,;,i € I,) of compact sets such that
diameter(K,;) < = and K C Ujer,,, Kni1,5.

For a compact set C' in G, the set {t : F;, N C # ()} is Borel (its complement is the union
of the sets {t : F; C G\ U,}, where U, is basis of open neighborhoods of C'). Therefore,
for every n and j, the set {t: F; N K,,; # 0} is Borel.

We define i,,(t) by i, (t) = inf{j € I, : ;N K, ; # 0}. The map t — K,,;, ) is Borel.

Now we define the point f(t) for t € R by

= ﬂ Ko t)-

n>1

From the condition on the diameters and the compactness of the sets, it follows that f(t)
is well defined for every t € T'.

We have to show that f is Borel, that is that the set {t € T : f(t) € C} is a Borel set
for any closed subset C'in G. Let (Oy) be a decreasing sequence of open sets such that
Ok+1 C Ogq1 C Oy, for every k and C' = (), Ox. We have:

(f(t) € C) & () Kniny € Ok Yk = 1) & () Kniuy € Ok, ¥k > 1),

n>1 n>1

As theset {t € T : K, ;1) C Oy} for each k is Borel, the assertion follows.
2) Now we construct f on the whole space.

For any compact set K in G, the map ¢t — F; N K is Borel, since the map (F, K) — FNK
from F(G) into itself is continuous for a fixed compact set . Let K; be an increasing
sequence of compact sets in GG such that G = Uj K;.

We define f(t) by applying the previous construction to the map ¢ — F, N Kj, on the
set {t : F; N K; # 0}, then to the map t — F; N Ky, on the set {t: F; N Ky # 0} N {t:
F,NK; =0},and soon ... o
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7.2 A lemma on conditional expectation

Lemma 7.2.1 Let P be a probability measure on a measurable space (E,F) and h a
measurable positive function such that [ hdP = 1. Then, for every sub-c-algebra B of F
and every measurable nonnegative (or hP-integrable) function f, we have:

Erp[f|B] = Ep[fh|B]/Ep[h|B], P-a.e.. (47)

If 0 is a bijective bi-measurable map from E onto itself such that OP ~ P, then, for any
P-integrable function f, we have:

Ep[f|8B] :EPK‘%)_IOMB} Ep[foé’ ! @w%] 0 =

Ep[foé’ ! d"PwaB] o0
[d@ﬂw‘e%} 0

(48)

If P = h\, where X is a o-finite 0-invariant measure and B = J the o-algebra of 0-
invariant sets in €, we have:

0 0-1
Enx(f 0 0]3) = Ehx(fh h9 13). (49)

Proof We prove only the second assertion. For every bounded B-measurable ¢ we have

/Ep[foeus]quﬂ» /foedeP’ /fw 0§~ 1@011@
_ /Ep[f dﬂyes} bob ! dp:/EdZ;PE [ dapye%} 08 o dP

_ /EEP[(M IIED|B] Ep[f |093] 0 1 dP,

which implies (48):

Er(f 0 6|B) = Er

[de Ip [dO]P’

B] B[ 1o 0 0.
7.3 Regular conditional probability

Definition 7.3.1 Let (E,F,P) be a probability space and % a sub o-algebra of F. A
reqular conditional probability relatively to B and P is a map P from E x F to [0, 1] such
that :

i) For every x € E, P(x,-) is a probability measure on F.
i1) For every A € F, themapz € E — P(x, A) is a version of the conditional expectation

of 14 with respect to the o-algebra B. This map is thus B-measurable and satisfies for
every B-measurable function :

/E 14(z) () P(dz) = /E P(z, A) p(z) P(dx).
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For every F-measurable nonnegative or bounded function f, Pf defined by Pf(x) :=
J f(y) P(x,dy) is then a version of the conditional expectation of f with respect to B.

For the existence of a regular conditional probability, we can refer to the general setting
used in Neveu’s book (Corollaire, Proposition V-4-4, [Ne64]|):

In the following, we will assume that there exists an approximating compact class in
(E,F,P) (see [Ne64] for this notion) and that F is generated by a countable family.

Theorem 7.3.2 [Ne6/] For every o-algebra B in F, there exists a regular conditional
probability with respect to B.

This result applied to the product space (X x G, % x Bg), the probability hA on X x G,
where h > 0 on X x G is such that [ h(z,g) p,(dz) x(9) ma(dg) = 1, and the sub-o-
algebra J of 7,-invariant sets (see Notations 2.1.1 and 2.1.2) gives the regular conditional
probability P" used in section 2.

Now we have to show that the probability measures P"((z,g), - ) are 7-ergodic. For the
action of a single transformation, this can be done by applying the ergodic theorem (cf.
[Aa97]). For the sake of completeness we give a proof in the last subsection below.

Remark 7.3.3 When the action of a single transformation 7 on X is replaced by the
Borel action of a countable group, the proof of the ergodicity of P"((z,g), -) is more
difficult. A reference is [GrSc00].

7.4 Ergodic theorem and ergodic decomposition

Notations 7.4.1 Let 0 be a bijective bi-measurable transformation on a measurable space
(E,F), p a positive o-finite 0-quasi-invariant measure, 3 := {B € F : 0~'B = B}.

Let h be a measurable function on E such that h(x) > 0 and u(h) = 1. Let P" be a reqular
conditional probability with respect to the probability measure h o and the o-algebra 3 of
O-invariant measurable subsets.

Let T}, be the contraction of LY(E,F, hu), in duality with the operator of composition by
0 acting on L= (E, F, 1), defined by:

d(0(hp))

Tif(@) = 1007 (@) =g s

() =T(hf)(x).

Replacing 0 by 0= we get the inverse operator Th’l.

Proposition 7.4.2 For every f € L'(E,F,hu) and p-a.e. x € E,

Y Tif@)) Y Title) —  EnulfR](2).

n—-+00
k=—n k=—n
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Proof Applying Hurewicz’s ergodic theorem to the contraction 7}, we get that the se-

quence
O T f@)) > T (2))nz
k=0 k=0

converges p-a.e. and the same result holds for the contraction Th_l.

On the conservative part C' the limit in both directions is equal to E; ,[f]3](z), so that
on C,

lim (Y THf/ Y Ti1) = Ep,lfla], p—ae..

n—-+00
k=—n k=—n

On the dissipative part D, the limit is the quotient of the series. For j, k in Z, we have

dhp)  T'f
T )~ T

Tifotd =T f

This implies that on D the quotient of the series is a #-invariant function and that, for
every measurable f-invariant function ¢ which is null on C, we have :

Zeex TS iy —

e / - d(hy)
E ZjeZ Thl keZ Z]EZT 1

/ ZJGZle o @k

keZ

_ /ZM L) = [ 1 dn).
-

kEZ

On D the quotient of the series is therefore equal to Ej, ,[f]3]. o
Lemma 7.4.3 For u-a.e. ¥ € E, the measure OP"(x,-) is absolutely continuous with
respect to P"(z,-) and

AOPY(a,)) _ o) _ hob diop)
dP"(z,") d(h ) h du

(50)
Proof For a positive F-measurable f and a J-measurable positive function ¢, we have :

/Ef09cpd(hu)Z[Ef09w00d(hu)=/Efw%d(hu)'

This shows, p-a.e.,

A0 w) | pn OB 10),

OP)(f) = P'(F 06) = Bl 0 0] = En,lf g

O

For the elements x € F for which (50) holds, T}, is a positive contraction of L'(E, F, P"(z,-)).
We have then:

35



Corollary 7.4.4 Forthe elements x € E for which (50) holds, Ty, is a positive contraction
of L\(E, F, P"(z,-)). For every f € L\(E,F, P"(z,-)) and for P"(x,")-a.e. y € E,

DT D) Tilw)  — EprgnlfBlw).

Theorem 7.4.5 A decomposition of the measure p in ergodic components is given by
(dy) = [ (W) P bla) ). 651)
E

Proof The equality is clear. It remains to prove the ergodicity of the probabilities P"(z, -)
for p-a.e. x € E.

From (51) and Proposition 7.4.2, we have, for every f € LY(E,F,hu) and for p-a.e.
r € F,

YTt/ Y] Tilly) — EnlfRl(y) = P"f(y), for Pz, )—ac. y € E.

n—-+00
k=—n k=—n

The functions g = P"f and ¢g> = (P"f)? are 3-measurable and therefore P'-invariant
p-a.e.: Phg(z) = g(z) and P"g*(x) = ¢*(z), for p-a.e. = € E. By the Cauchy-Schwarz
inequality, this implies g(y) = g(z), for P(z,.)-a.e. y € E.

Let Fy be a countable Boole algebra which generates F. For x € E, let Q" be a regular
conditional probability with respect to the probability P"(z,.) and the o-algebra 3. From
the previous property and Corollary 7.4.4, we obtain, for p-a.e. * € E and P"(z,.)-a.e.
yek,

VA€ Fo, Q(y, A) = P'(z, A)

and consequently, for p-a.e. © € E and P"(x,.)-a.e. y € E, we have the same property
for every A € F.

For every I € 3, we know that

QL (y, I) = Epn(y y[11]3](y) = 11(y), for P(z,.)—ac. y € E
and therefore as above

Q"(y, I) = 1;(x), for P(z,.)—a.e. y € E.

It follows that, for p-a.e. x € F,

VI €3, Pz, I)=Q"y,I)=1;(y), for P(z,.)—ae. y€ E.

This implies the ergodicity of the measures P"(x,.), for p-a.e. z. o
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