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A 2D X-FEM/LATIN numerical model (eXtended Finite Element Method/Large Time Increment method) is
proposed in this paper for the analysis of fretting fatigue problems and the simulation of the crack prop-
agation under such loadings. The half-analytical two-body contact analysis allows to capture accurately
the pressure and the cyclic tractions exerted at the interface that induce non-proportional multi-axial
loading. These distributions are then used as input data for determining critical location for crack initia-
tion and crack inclination based on Dang Van’s criterion. The frictional contact conditions of the fretting
fatigue cracks have an important impact on the crack behaviour. In this respect, contact with friction
between the crack faces is finely modeled within the X-FEM frame. The obtained results are compared
and validated with a half-analytical reference model. The numerical simulations reveal the robustness
and the efficiency of the proposed approach for a wide range of fretting loadings and friction coefficients
values along crack faces. The crack growth directions are then predicted accurately based on the use of
criteria adapted to multi-axial non-proportional fatigue. Four cases dealing with crack propagation are
then presented. It is shown how the crack length, the tangential loading modify the crack path during
the propagation process.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Fretting has long been recognized as a source of wear and pre-
mature fatigue failure within mechanical parts. Fretting damage
may occur whenever a junction between contacting parts is sub-
jected to cyclic sliding micro-motions, whose characteristic ampli-
tudes are much less than the size of the contact. Such a contact
loading can be induced either by vibrations or by the application
of bulk fatigue stresses to one or both of the contacting parts.
The main initial damage (wear or cracking) is closely linked to
the nature of the contact conditions between the contacting
bodies, which depends on the contact loading, the material’s bulk
mechanical properties and the frictional response of the contact
interface. Cracks may initiate at a very early stage and most of
the component life incorporates crack growth. A considerable
attention has been devoted both experimentally and numerically
to predict crack behaviour and propose palliatives to extend the fa-
tigue life.

Identifying the possibility of tribological fatigue at a design
stage and integrate it in a predictive approach requires a multi-dis-
ciplinary phenomenological understanding which encompasses
ll rights reserved.
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the interdependency of solid and contact mechanics, fatigue, mate-
rial, wear and fretting mechanisms. The problem is further strongly
multi-scale. Dimensions ranging from the meter (characteristic
size of a component), to the mm (two-body contact patch between
contacting components, the crack itself) down to the lm (frictional
contact zone at the crack interface) are encountered. Moreover 3D
cracks located in the contact zone vicinity are submitted to multi-
axial non-proportional cyclic loadings and severe stress gradients.
Cracks undergo sequences of opening–closure–sticking and sliding
contact conditions at interface, governing crack mixity, branching,
self-arrest and propagation.

Many models and methods have been proposed to achieve the
prediction of fretting crack lifetime. This involves four different
steps: (1) the cyclic stress–strain field computation within the safe
component, accounting for the structural influence (boundary con-
ditions, etc.) but also the contact conditions arising at the compo-
nent interface, (2) the prediction of crack initiation locations and
angles according to criteria, (3) the crack modeling and (4) the
crack growth. The numerical simulation of each of these four steps
can be achieved based on different techniques. Step 1 is easily tack-
led using 2D and 3D finite element techniques as long as the struc-
tural problem is relevant. Dealing with the contacting interface
where the fretting cracks initiate and requiring thus accurate con-
tact problem solution between the contacting two bodies is not so
straightforward. Half-analytical and numerical techniques have
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been long preferred as they capture accurately and for a negligible
computing effort the multi-axial stress and strain fields with se-
vere gradients in the two-body vicinity. This implies to consider
simplified geometries like cylinders, spheres and planes. Contact
mechanic formulations then coupled with frictional contact algo-
rithms have allowed rapid progress in the understanding of crack
occurrence. Step 2 is concerned with multi-axial fatigue criteria
either based on the concept of the critical plane like Ruiz et al.
(1984) or Dang Van’s criterion (1993) or on the concept of equiva-
lent stress, strain or energy based-fracture criterion. Ruiz criterion
reliably predicts the location of crack nucleation along the fretting
interface but does not give any information about the orientation
of the initial crack while Dang Van’s criterion predicts both. Con-
cerning steps (3) and (4), methods based on distributed disloca-
tions techniques pioneered by Comninou (1977), Hills and
Comninou (1985) and Dubourg and Villechaise (1989) have al-
lowed to account for contact and frictional effects at crack interface
which govern the crack behaviour and crack path. Dubourg and
Villechaise (1992) have combined this technique with unilateral
contact algorithm with friction to deal automatically with complex
cyclic fretting loading conditions and multiple crack interactions.
These models have been developed within the linear elastic frac-
ture mechanics framework and 2D assumptions. These methods
address contact fatigue problems at a local scale, dedicated to
the interface between the two bodies in contact and the cracks sit-
uated in the near vicinity. Methods based on finite element tech-
niques are able to capture the global scale of the structure
(complex geometry, more realistic boundary conditions, etc.) but
are not accurate enough at the local scale. Further the crack growth
simulation is prohibitively computer time and memory consuming
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as it requires re-meshing (Carter et al., 2000; Neto et al., 2001;
Dhondt, 1998). The eXtended Finite Element Method (X-FEM) al-
lows to deal with crack propagation without those drawbacks
thanks to significant improvements in crack modeling. X-FEM is
a numerical method developed within the standard finite element
method framework. Its key properties are due to the partition-of-
unity method developed by Babuska and Melenk (1997) combined
by Moës et al. (1999) with special enriched functions added locally
to finite element approximation. These enriched functions capture
the asymptotic near-crack-tip and the discontinuous displacement
fields. The initial mesh does not need to conform to the crack
geometry, no explicit crack mesh is required and furthermore no
re-meshing is necessary as the crack evolves during fatigue crack
propagation. This method allows to deal with 3D contact problems
and to simulate the crack growth. The following references Suku-
mar et al. (2008) and Gravouil et al. (2002) are dedicated to the
application of X-FEM to 3D crack growth with a level set modeling
of the crack with possible multi-scale effects (Rannou et al., 2008).
Furthermore, some recent papers give also some details on the
implementation of contact and friction with X-FEM (Dolbow
et al., 2001; Elguedj et al., 2007; Vitali and Benson, 2008; Liu and
Borja, 2008; Géniaut et al., 2007; Béchet et al., 2008). In particular,
references Ribeaucourt et al. (2007) and Giner et al. (2008) concern
the accurate modeling of tribological fatigue with X-FEM, when
possible non-proportional or multi-axial loading occurs in the
cracked area.

A methodology to predict fretting fatigue is proposed dealing
with the four steps listed above and summarized in the flow chart
in Fig. 1. Section 2 presents typical fretting fatigue problems, the
corresponding modeling and the two-body contact solution giving
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rise to cyclic pressure and tractions distributions. Then the crack
nucleation damage induced by such small-amplitude oscillatory
displacements is predicted in Section 2.2 using Dang Van’s crite-
rion (Dang Van and Maitournam, 2000) both in terms of critical
zones and crack orientations. These results are used as input data
for the fretting crack analysis performed with the reference crack
model based on distributed dislocation theory and unilateral con-
tact analysis and with the X-FEM model. In the latter case, the
pressure and cyclic traction distributions are transferred to the
X-FEM model as presented in Section 2.3. Section 3 briefly recalls
the X-FEM fundamentals and presents the developments enabling
a quasi-static incremental description of cyclic fretting fatigue
problems accounting for non-linear frictional unilateral contact
along crack faces. The methods used for the computation of the
stress intensity factors with the X-FEM model and the reference
model are also recalled.

2D crack propagation direction criteria adapted to the simula-
tion of crack growth under non-proportional loading such as fret-
ting fatigue are presented in Section 4. Section 5 introduces the
fretting simulation and discusses the comparison between previ-
ous numerical results, the X-FEM ones and the experimental ones.
A parametric study is performed in Section 6 to identify the influ-
ence of the friction coefficient between the crack faces and of an
additional global pre-stress on the stress intensity factors (SIF) val-
ues during the fretting cycle and furthermore on the crack path. Fi-
nally in Section 7 crack propagation under fretting loading is
realized. The X-FEM based model ability is demonstrated. Some
concluding remarks and points for further research are given in
Section 8.
node i -1

Cell (i -1) pi

Fig. 2. Uniform pressure cells representing the pressure distribution over the
contact area CC discretized with n cells of length Dx and n nodes.
2. Fretting fatigue problems

Fretting occurs whenever a junction between components is
subjected to cyclic loading, with small relative displacements at
interface of contacting surfaces typically of 5–50 lm in amplitude.
Further cyclic bulk stresses may be superimposed to one or both
components. Material degradation responses such as both wear
and cracking are induced and, as a consequence, may cause
changes in the coefficient of friction. The identification of these
changes is of primary importance to set up the boundary condi-
tions for the contact mechanics modeling of the stress field in rela-
tion to crack development. A methodology based on a coupled
experimental and theoretical approach has been developed to cap-
ture the fretting complexity. Controlled devices have been devel-
oped to monitor accurately the displacement amplitude between
the specimens, to record the frictional forces versus the cycles
and to analyze the degradation either with in situ continuous or
post-mortem observation. Vincent et al. (1992) have proposed
the fretting map concept to rationalize the main degradation re-
sponse (non-degradation, cracking, particle detachment) and the
local fretting regime (sticking, partial slip, gross slip) for normal
load–displacement pairings. A close link has been established be-
tween the initial dominant degradation response and the contact
sliding regime. Crack nucleation is the dominant degradation re-
sponse under very small displacement amplitude at two-body
interface, associated to both partial slip regime and mixed fretting
regime.

In this paper, normal load–displacement pairings leading to
partial slip regime have been selected. Cracking is thus the main
degradation response. Further those loading conditions induce
very small wear debris at the surface and as a consequence varia-
tions in interfacial coefficient of friction and roughness of the con-
tacting surfaces are negligible during the loading cycles. Monotonic
constant amplitude loading conditions are hence supposed.
2.1. Contact conditions at two-body interface – fretting tests

Dealing simultaneously with the structural analysis and the
contact problem at interface components requires a global–lo-
cal-multi-scale approach. Finite element analysis is devoted to
the first one due to its great generality. Obviously domains of fi-
nite dimensions and complex shapes may be considered. It has to
be emphasized that if a finite element mesh is designed at the
scales of the structure and of the component, it is not designed
at the scale of the contact zone between the components. There-
fore the contact solution is conducted in this case with very few
elements located in the zone of interest whereas a very refined
mesh is required to describe accurately contact problems at the
interface components. The essence of the problem is to deter-
mine the distributions of normal and cyclic tangential tractions
over the contact area and the stick/slip repartition whose size
and shape are unknown.

The strategy employed here is to combine different numerical
methods to use their respective advantages. The assumption that
the contacting bodies may be approximated by elastic half-spaces
(Kalker, 1990) is retained (the interfacial contact area is small
compared to a characteristic dimension of the non-conformal
components and the surface slopes are small). The elastic field
in the contact part can be determined by replacing the body lo-
cally by a half-space. The boundary conditions are those of the
real body, the elasticity equations are solved for the half-space.
The zone of interest, C, encompassing the actual contact area,
CC and its surrounding, is divided into a number of discrete
cells, and the pressure and tractions acting on each element are
approximated by a chosen function, here a stepwise. In that
case, displacements, stresses and strains in a two-dimensional
half-plane due to a constant surface traction applied over an ele-
mentary cell D xi (cf. Fig. 2) are expressed using the Boussinesq–
Cerruti relations (Johnson, 1985). They satisfy automatically
equilibrium equations, elastic behaviour and small strain
assumptions. The use of the Boussinesq–Cerruti relations relating
loads and displacements at the surface leads to the system of
Eq. (2.1):

uz;i ¼
Pn
j¼1

aijpj þ
Pn
j¼1

bijqj

ux;i ¼
Pn
j¼1

cijqj þ
Pn
j¼1

dijpj

8>>><
>>>:

)
simplification

decoupling

uz;i ¼
Pn
j¼1

aijpj

ux;i ¼
Pn
j¼1

cijqj

8>>><
>>>:

ð2:1Þ

where aij and bij (respectively, dij and cij) are the influence coeffi-
cients that express the displacement along the z (respectively, x)
direction at a cell centered at point i due to a unit pressure and
shear traction element centered at point j (Hills and Nowell,
1994). The effect upon the normal pressure of the tangential trac-
tion is generally neglected and vice-versa. This simplification im-
plies only a very small loss of precision for small values of
Dundurs’ constant b, where b is a measure of the difference in the
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elastic constants of the two contacting bodies. The two bodies being
here elastically similar, simplified expressions are thus used. The
actual distributions of normal and tangential tractions can thus rep-
resented by adjacent cells of uniform normal and tangential trac-
tions giving rise to a stepwise distribution. Depending on the
number of cells, the approximation to the actual distribution of nor-
mal and tangential tractions is quite good. This numerical technique
is widely referred as the influence function method (Hills and
Nowell, 1994).

The magnitude of these tractions are then adjusted to satisfy
the appropriate normal (relationships (2.3), (2.4), (2.5)) and tan-
gential (relationships (2.6), (2.7), (2.8)) boundary conditions in-
side and outside the a priori unknown contact area CC with the
stick–slip repartition by solving the unilateral frictional contact
problem.

The normal gap d between two corresponding surface points is
defined by Eq. (2.2), where hI is the initial distance between the
bodies, uz the resulting normal displacement and h0 the normal
displacement due to rigid body motions.

d ¼ hI þ uz � h0 ð2:2Þ
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Fig. 4. Error on P0 and a, numerical contact parameters and theoretical ones
according to relationship (2-9). E1 ¼ E2 ¼ 73;000 MPa;m1 ¼ m2 ¼ 0:3, R = 57.69 mm,
where di and st are, respectively, the normal gap and the compo-
nent of slip, f the corresponding friction coefficient and do is the
tangential rigid displacement. For n segments of length D xi,
2n + 1 equations are written (2n boundary conditions and Eq.
(2.5) expressing the loading conservation) for (2n + 1) unknowns
(pi, qi and d) (Fig. 3).

This frictional contact problem is solved for each load step
according to Kombi contact algorithm developed by Kalker
 c-c-a a

σs σs

P

P

x

z

Q

Q

Fig. 3. Normal and tangential loading. Notations.
(1990) and adapted to both quasi-static fretting and interfacial
frictional crack problems (Dubourg and Kalker, 1993). The solution
accuracy is dependent on the mesh size, the cell length Dxi and
thus on the cell number. A region of interest C of length 2.5 mm
was considered here. The difference between the actual numerical
values of the half-contact area a and the maximum hertzian pres-
sure P0 with respect to well known Hertz values whose expressions
are given by Eq. (2.9) (Johnson, 1985) for the cylinder–plane con-
figuration is therefore plotted in Fig. 4 as a function of the cell
number. Errors smaller than 0.5% and 0.002% for the values of
the contact size and the maximum hertzian pressure are obtained
as soon as the cell number is equal to 250.

a ¼ 4PR
pE

� �1
2

; P0 ¼
2P
pa

ð2:9Þ

Dealing with fretting cycles implies to tackle cyclic variation of
the tangential force. Frictional problems being history dependent,
the problem is formulated in an incremental manner. A fretting cy-
cle is divided into four periods, each one being itself described with
NLS load steps (cf. Fig. 5). At the initial point of unloading
ðQ ¼ QmaxÞ, a symmetrical slip zone located at the contact edges
is observed where qðxÞ ¼ f � pðxÞ (cf. Fig. 6). As soon as unloading
starts, the negative increment in tangential traction generates a re-
versed slip zone satisfying qðxÞ ¼ �f � pðxÞ that grows inwardly
from the circumference ðQ ¼ 0Þ until it reaches the initial size of
the slip annulus ðQ ¼ �QmaxÞ while it sticks everywhere else in
the contact. The loading stage is the reversal of this event. The tan-
gential traction distributions with the stick/slip evolution are com-
puted for each load step.

The determination of the corresponding interior stress field
being performed, the next step is to be able to assess the crack risk.
P = 1570 N/mm.

0 50 100 150

load steps

1 fretting cycle 

Qmax 

- Qmax 

0

Fig. 5. Variation of the tangential load Q applied on the two-body contact surface.
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2.2. Crack risk assessment

In order to assess the fatigue strength of the material submitted
to a cyclic fretting loading, Dang Van’s stress-based criterion (Dang
Van, 1993) has been chosen since it allows the determination of a
time loading path, for t varying over a cycle, imposed on a local vol-
ume which supports multi-axial fatigue. The critical damage accu-
mulation is based on a combination of the shear stress sðtÞ acting
on the plane of normal n along with the hydrostatic stress rHðtÞ.
The reader is referred to Fouvry et al. (1996) for further details.
The characteristic relationship of this critical plane approach is
then:

max
n
fmax

t
fsðn; tÞ þ arHðtÞgg ¼ b ð2:10Þ

where a and b are:

a ¼ 6t�1 � 3f�1

f�1
ð2:11Þ

b ¼ 2t�1 ð2:12Þ

and f�1 and t�1 being the plain fatigue and torsion fatigue limits for
a R ratio equal to �1. To observe the fatigue resistance, the couple
ðs;rHÞ needs to be calculated during the loading cycle on each point
for each plane direction, defined by its normal n (and orientation hÞ.
This process is very long and laborious and has been simplified
(Dang Van, 1993) assuming Tresca’s law is valid

max
n
ðsðn; tÞÞ ¼ TrescaðtÞ ð2:13Þ

and one obtains the cracking risk parameter d.

d ¼max
t

sup
i;j

riðtÞ�rjðtÞ
2

n o

b� arHðtÞ

2
664

3
775 ð2:14Þ

where ri and rj are the principal stresses.
It is then possible to plot the crack risk distribution d through

the depth of the domain. For d greater than 1, fatigue failure occurs.
The couples ðs;rÞ verifying d > 1 are time defined and associated
with a specific plane orientation corresponding to a direction b of
crack initiation on each point.

2.3. Multi-model coupling

The normal and the cyclic tangential traction distribution
occurring over a load cycle on the contact surface obtained in Sec-
tion 2.1 must be transferred accurately to the X-FEM model. The
cell discretization of the two-body contact solution is very fine to
capture accurately the complex loading variations. The X-FEM
mesh is obviously coarser in this area of interest. In the X-FEM
model, sets of nodes of the surface called ‘‘load-sets” are defined
by the user, where uniform pressures are applied. Those two cell/
load-set discretizations do not necessary match together. Thus, a
specific algorithm was developed to integrate the normal and tan-
gential pressure fields and generate equivalent pressure distribu-
tions on the load sets, as illustrated in Fig. 7. The pressure Pj on
each load set is given by:

DXj � Pj ¼
Z Xiþ1

Xi

pðxÞdx ð2:15Þ

Furthermore, these new pressure and traction distributions are
converted into generalized nodal forces on the contacting surface.
This allows a rigorous definition of the fretting loading at each load
step into the X-FEM model at a prescribed accuracy.

3. Contacting and frictional fatigue crack models

Advanced numerical methods such as the eXtended Finite Ele-
ment Method allow to deal with crack modeling without consum-
ing prohibitive computer time and memory. X-FEM is further able
to capture both scales of the crack and the structure at a given level
of accuracy. The aim here is to illustrate the ability of the proposed
X-FEM model to perform complex frictional contact analysis at the
crack interface. A model based on the method of continuous distri-
butions (Dubourg and Villechaise, 1989, 1992) of dislocations and
unilateral frictional contact analysis and developed for fretting and
rolling problems is used for the validation of the X-FEM model.

3.1. X-FEM discretization for 2D contacting frictional crack modeling

The eXtended Finite Element Method is an extension of the fi-
nite element method to handle physical surfaces (cracks, inter-
faces, etc.) which are not meshed and can be introduced inside
the elements by appropriate enrichment functions using a local
partition-of-unity (Babuska and Melenk, 1997; Moës et al., 1999).
When contact or/and friction occurs in the X-FEM framework,
some recent works reveal the need to treat carefully the prescribed
Dirichlet boundary conditions due to possible contact along the
crack faces. Indeed, from the pioneer works of Dolbow et al.
(2001), improvements were done in many directions. Contact or/
and friction with X-FEM for static or quasi-static formulation were
developed with LATIN or Augmented Lagrangian non-linear solvers
(Elguedj et al., 2007; Vitali and Benson, 2008; Liu and Borja, 2008;
Ladevèze, 1998). Furthermore, improvements of ‘‘naive” formula-
tions based on Lagrange multipliers were proposed in order to
avoid numerical oscillations (locking due to a locally too rich La-
grange multiplier space) (Géniaut et al., 2007; Béchet et al.,
2008). A three-field weak formulation has also been proposed for
3D crack growth with contact within the X-FEM framework



Fig. 7. Interpolation of the pressure fields on the contact surface from the half-analytical cell discretization to the X-FEM load-set distribution.

Fig. 8. Crack located on a regular mesh. Enriched nodes: squares for the local
asymptotic enrichment and circles for the discontinuous local enrichment.

1410 M.C. Baietto et al. / International Journal of Solids and Structures 47 (2010) 1405–1423
(Pierres et al., 2010). It allows an intrinsic definition of the crack
with its own primal and dual variables, and its own discretization
at a given scale. Furthermore, the link between the bulk and the
crack primal and dual variables is prescribed in a weak sense and
seems a key point in order to have a fine modeling of the possible
complex contact state along the crack faces (Ribeaucourt et al.,
2007; Pierres et al., 2010) (independently on the bulk discretiza-
tion). Indeed, for instance for rolling contact fatigue, Ribeaucourt
et al. (2007) clearly show the need of a quasi-static formulation
with a fine discretization along the crack faces, and a specific local
error indicator both for the normal and tangential fields in order to
obtain accurate interface fields and stress intensity factors in
mixed modes.

We consider here a quasi-static (incremental) three-field weak
formulation dedicated to crack growth with contact and friction in
the X-FEM framework with the LATIN non-linear solver. The previ-
ous local error indicator is used (Ribeaucourt et al., 2007) and
stress intensity factors K I and K II are calculated with the interac-
tion integral and its extension to possible contact and friction along
the crack faces (Ribeaucourt et al., 2007) (see definitions (3.10),
(3.11), (3.12)).

Consider an elastic body X subject to constraints and an exter-
nal cyclic loading along its boundary. Let u, r and e be, respectively,
the displacement, stress and strain fields within X for a given load
step. Let Cc be the crack surface and n its corresponding normal,
with w and t, respectively, the interface displacement and force
fields.

The underlying concept of the X-FEM lies in dividing a problem
into two parts: the mesh generation for the geometric domain
without meshing explicitly the crack faces, and the enrichment
of the finite element approximation by additional functions for
crack modeling within the framework of the partition-of-unity.

Thus, a discontinuous function and the two-dimensional
asymptotic crack tip displacement fields are added to the finite ele-
ment approximation to account for the crack presence. The X-FEM
displacement field approximation uh leads to:

uhðx; tÞ ¼
X

i2Nnodes

uiðtÞUiðxÞ þ HðxÞ
X

j2Ncrack

ajðtÞ/jðxÞ

þ
X4

l¼1

Bl

X
k2Nfront

blkðtÞ/kðxÞ ð3:1Þ

where the first, second and third terms are, respectively, the stan-
dard finite element approximation, the crack discontinuity enrich-
ment and the crack front enrichment, see Fig. 8 (Dolbow et al.,
2001). One can notice here that the considered asymptotic enrich-
ments are not necessary the ‘‘exact” ones. Indeed, the order of the
singularity on the crack tip can be either 0.5 or 0.0 according to
possible contact or/and friction along the crack faces. However, pre-
vious numerical experiments (Elguedj et al., 2007; Ribeaucourt
et al., 2007) have clearly shown that LEFM enrichment is sufficient
to obtain a local accurate solution (even in the elastic/plastic case
(Elguedj et al., 2007) where no exact asymptotic enrichment is
available in the general case). Indeed, it can be pointed out that
the X-FEM is not necessary a way to introduce the ‘‘analytical” or
‘‘exact” solution in the displacement field, but only a ‘‘pragmatic”
approach to introduce in the displacement field new shapes func-
tions with a strong mechanical content able to ‘‘capture” the solu-
tion with a good approximation (in other words with rather
coarse meshes compared to the FEM).

Furthermore, this fracture problem is divided in a global prob-
lem (linked to the structure) and a local crack problem (Pierres
et al., 2010). These two problems are defined by their own set of
equations and their own primal and dual variables. On the one
hand, the global problem is associated to the quantities ðu; rÞ. It
satisfies the equilibrium equation in the bulk and obeys a constitu-
tive law, possibly non-linear. The solution must also fulfill the
Dirichlet and Neumann boundary conditions both on u and r. On
the other hand, the local crack problem is associated to the quan-
tities (w,t). It obeys an interfacial constitutive law (unilateral con-
tact, frictional contact, etc.) between the crack faces CCþ and CC�.
Finally, one builds the following quasi-static three-field weak for-
mulation of the fracture problem (Pierres et al., 2010) at a given
time t:

0 ¼ �
R

X Tr½rðtÞeðu�Þ�dXþ
R

CC
kðtÞ � u� dS

þ
R

CC
½tðtÞ � kðtÞ� �w� dS

þ
R

CC
½uðtÞ �wðtÞ� � k� dS

8>><
>>:

ð3:2Þ

8u� 2 U�0; 8w� 2W�; 8k� 2 K�; 8t 2 ½0; T�
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where U�0;W
�;K� are virtual functional spaces with the good prop-

erties of regularity (Béchet et al., 2008; Pierres et al., 2010). This
three-field weak formulation is the basis for the X-FEM discretized
formulation. Its main specificity resides in the weak link between
the primal and dual variables of the bulk and the crack, ensured
by the introduction of the Lagrange multipliers field k. In this study,
the stress–strain law in the bulk between u and r is assumed to be
elastic, linear, homogeneous, and isotropic. Furthermore, expression
(3.1) is used for the displacement fields u and u�. It can be noticed
that the enriched displacement field is defined on the nodes of the
mesh of the structure. Concerning the w and t interface fields, spe-
cific Gauss points are introduced along the crack faces (Dolbow
et al., 2001; Elguedj et al., 2007; Ribeaucourt et al., 2007; Pierres
et al., 2010). In this respect, interface elements (cf. Fig. 9) are cre-
ated at the intersection between the crack geometry and the finite
element mesh to deal with the frictional contact along the interface.
The integration Gauss points ðGþi ;G

�
i Þ are defined on each interface

element on both faces of the crack. These Gauss points are the sup-
port of the contact force field t and the interface displacement field
w. The a priori unknown contact conditions, dependent on the sta-
tus of the point, are expressed as follows:

Let nC and nT be, respectively, the unit outward normal and tan-
gential vectors to CþC . The contact force tþ and the displacement wþ

along CþC are expressed in the local frame attached to the crack
(respectively, t� and w� along C�C ) as follows:

w ¼ wNnC þwT nT and t ¼ tNnC þ tT nT ð3:3Þ

The opening and slip (relative displacements) at crack interface
are defined as the evolution of the displacements at a pair of Gauss
points during the load incremental process from one step to the
next:

½wN� ¼ wþN �w�N and ½wT � ¼ wþT �w�T ð3:4Þ

The contact with friction conditions for x 2 CC at a given time t
are formulated with the Coulomb’s friction law:

contact zone ½wNðx; tÞ� ¼ 0 and tþNðx; tÞ ¼ �t�Nðx; tÞ 6 0;

tþT ðx; tÞ ¼ �t�T ðx; tÞ ð3:5Þ
open zone ½wNðx; tÞ� > 0 and tþðx; tÞ ¼ t�ðx; tÞ ¼ 0 ð3:6Þ
stick zone ktTðx; tÞk < lCktNðx; tÞk ) D½wTðx; tÞ� ¼ 0 ð3:7Þ
slip zone ktTðx; tÞk ¼ lCktNðx; tÞk

) 9k > 0=D½wTðx; tÞ� ¼ �ktþT ðx; tÞ ð3:8Þ

where D corresponds to an increment of the considered quantity
between two successive time steps and lC the friction coefficient
along the crack faces. Indeed, the considered time interval equiva-
lent to one fretting cycle is discretized in successive time steps
according to the oscillating fretting load during one cycle (fine time
scale). It can be noticed here that no crack propagation is assumed
on the fine time scale before the end of the cycle.
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Fig. 9. Enriched finite element intersected by the crack. Two specific Interface
elements along crack profile with two Gauss points each.
Finally, one can obtain the following set of equations (from the
weak formulation (3.2)):

8U� ) Fint � UðtÞ ¼ Fext � UðtÞ þ LTKðtÞ
8W� ) TðtÞ � KðtÞ ¼ 0
8K� ) M1UðtÞ �M2WðtÞ ¼ 0

8><
>: ð3:9Þ

where U, W, T and K correspond to the discretized fields of u, w, t
and k, respectively; M1 and M2 are equivalent to ‘‘mortar” operators,
which ensure the weak relation between U and W; they are notably
used for non-matching finite element meshes or multi-grid mesh
applications (Rannou et al., 2008).

In this paper, the Large Time Increment method (LATIN) intro-
duced by Ladevèze (1998) is used in order to solve the non-linear
X-FEM contact with friction formulation. A first attempt to apply
the LATIN method to such a problem can be found in Dolbow
et al. (2001). In the same context, an improved formulation cou-
pled with a specific local error indicator was proposed by Ribeau-
court et al. (2007) in order to ensure the local convergence on the
normal problem and the tangential problem both on the crack dis-
placement field w and the load field t. Then, an improved three-
field weak formulation was developed by Pierres et al. (2010) with
the same error indicator for 3D crack simulations with X-FEM and
possible contact/friction along the crack faces. In this work both
the LATIN and the Augmented Lagrangian non-linear solvers were
implemented. A convergence study was realized and their respec-
tive performances compared. Similar convergence rates were ob-
tained and it was shown that the search direction of the LATIN
method has a very similar numerical behaviour to the penalty term
of the Augmented Lagrangian non-linear solver (Pierres et al.,
2010). Indeed, it can be shown that this parameter allows optimiz-
ing the convergence rate of the non-linear solver (see also Elguedj
et al., 2007). In practice, the optimal search direction is very close
to the value of the Young modulus divided by a characteristic
length linked to the crack.

From the previous X-FEM calculation of the cracked model,
stress intensity factors can be obtained in a post-processing step
as an input data for the fatigue crack growth law. In this respect,
a 2D domain integral is used to compute the energy release rate
at the crack tip and a so-called interaction integral is used to sep-
arately compute mode I and mode II stress intensity factors. A gen-
eral discussion of crack-tip contour integrals and their associated
domain integral representations is given in reference Moran and
Shih (1987). In this paper, specific domain integrals (J-integral
and interaction integral) are used in order to account for possible
contact and friction along the crack faces (Fig. 10).

In this context, according to references Ribeaucourt et al. (2007)
and Dolbow et al., 2001, the following expressions are used to cal-
culate the energy release rate G, the interaction integral Ih and the
stress intensity factors K I and K II in the X-FEM model:

G ¼ �
Z

D

1
2
rh

ije
h
ijd1j � rh

ij
@uh

i

@x1

� �
@q
@xj

dS

þ th
1 � B

þðuh
1 � B

� � uh
1 � B

þÞ ð3:10Þ

Ih ¼ �
Z

D
rh

ije
aux
ij d1j � rh

ij
@uaux

i

@x1
� raux

ij
@uh

i

@x1

� �
@q
@xj

dS

�
Z
½AþBþ�[½B�A��

rh
i2
@uaux

i

@x1
þ raux

i2
@uh

i

@x1

� �
qn2 dC ð3:11Þ

Kh ¼
E

2ð1� t2Þ � Ih ð3:12Þ

where exponents h and aux correspond, respectively, to X-FEM
numerical quantities and auxiliary fields according to asymptotic
Westergaard analytical solutions for pure mode I and pure mode
II. Furthermore, the virtual extension field q is assumed to be a suf-
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Fig. 10. Contours and domains used in the J-integral and the interaction integral.
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ficiently smooth weighting function which takes a value of unity on
an open set containing the crack tip and vanishes on the outer con-
tour C (see Moran and Shih, 1987; Ribeaucourt et al., 2007; Dest-
uynder et al., 1983; Yau et al., 1980). In this respect, h = 1
corresponds to K I with the pure mode I analytical auxiliary fields,
and h = 2 corresponds to K II with the pure mode II analytical auxil-
iary fields, see Ribeaucourt et al. (2007) and Dolbow et al., 2001. In a
general point of view, the use of domain energy integrals in the fi-
nite element framework provides high accuracy while keeping the
implementation rather simple as shown in reference Destuynder
et al. (1983).
3.2. Reference crack model with contact and friction

The contacting frictional fatigue crack model called here the ref-
erence model (Dubourg and Villechaise, 1989, 1992) has been pre-
sented in details elsewhere and only the main points are recalled
here. It is based on the crack modeling with continuous distribu-
tions of dislocations with arbitrary Burgers vectors bx and by. This
technique was initially employed by Comninou (1977), Hills and
Comninou (1985) and others. It is based on the elastic stress field
induced by the dislocations provided by the Dundurs and Mura
solution (Dundurs and Mura, 1964), the use of powerful numerical
quadratures to solve integral equations and the calculation of the
stress intensity factors (Krenk, 1975). Dubourg and Villechaise
(1989) have proposed a modified model for the crack modeling
in terms of the dislocation theory in order to combine it with an
algorithm of unilateral and frictional contact solution at the crack
interface. Thus the state of cracks is determined with no a priori
assumptions, the dislocations densities are calculated. The high le-
vel of accuracy of this model enables the computation of the SIF K I

and K II directly from the opening and slip displacements at the
interface. For a quasi-static loading, an incremental description of
the tangential loading is used to account for hysteresis phenom-
ena. Nominal values of DK I and DK II are determined corresponding
to the slip and opening increments associated to the loading incre-
ment and added to the values obtained at the previous load step.

In this respect, the reference model is able to determine and ac-
count for interaction between cracks (Dubourg et al., 1992), as well
as the closure–opening–locking–sliding sequences along the faces
of the cracks during the multi-axial non-proportional loading cy-
cles (fretting fatigue, rolling contact fatigue). Furthermore, this ref-
erence model has been validated through the comparison with
experimental results conducted under both fretting (Dubourg
et al., 2002) and rolling contact conditions (Dubourg and Lamacq,
2002). It can be noticed that such an approach can be extended
to the 3D case only with specific geometries and linear behaviour
in the bulk. Then, X-FEM can be seen as an alternative method to
account for 2D or 3D complex geometries and non-linear behav-
iour both in the bulk or at the interfaces, or multi-scale effects spe-
cific to fatigue crack growth (coupling between boundary effects,
crack, confined plasticity, etc.).
4. 2D crack growth simulation

As a general rule, a crack kinks under mixed mode at an angle h
to the plane of the pre-crack. Under proportional loading, the crack
path determination is usually performed using either the MTS
maximum tangential stress criterion (Dubourg et al., 2002) the
maximum strain energy density (Erdogan and Sih, 1963; Sih,
1974) or the maximum energy rate criterion. A little difference is
found between the predictions performed with the different crite-
ria (Suresh, 1998). Under non-proportional loading, the direction
where the maximum is reached is time dependent contrary to
the proportional loading case. Therefore different extensions of
the MTS criterion have been proposed. Hourlier et al. (1985) as-
sumed that crack bifurcates in a direction h where the mode I
stress intensity factor on the branched crack k�1 is maximum, or
in the direction where Dk�1 is maximum, or in the direction where
the crack growth rate da/dN is maximum. They considered the
state of stress induced by an infinitesimal kinked crack emanating
from the existing crack in a given direction (Amestoy et al., 1979).
The former being an extension of a criterion for monotonic loading
is expected to be applicable only at very high growth rates
approaching final rupture, the second does not take into account
the effect of mean stress which is known to influence the fatigue
crack behaviour, the latter requires the crack growth rates estab-
lished under mixed mode loading. Dubourg and Lamacq (2000)
proposed also an extension of the MTS criterion. It is assumed that
the crack extension angle is linked to the maximum effective
amplitude of the tangential stress at crack tip over a load cycle
Dr�hh;max. Bower (1988) assumes that the branching of the crack is
towards the direction that maximizes Kr ¼ rhh

ffiffiffiffiffiffiffiffiffi
2pr
p

or its ampli-
tude DKr, where rh# ¼ 1=

ffiffiffiffiffiffiffiffiffi
2pr
p

cos h=2 K I cos2 h
2� 3

2 K II sin h
� �

; h is
the angle between the original crack and the branch crack and r
is the distance from the crack tip.

The Dk�1 and Dr�hh;max criteria predict crack path in agreement
with experimental observations carried on fretting tests on 7075
aluminum alloy under partial slip regime (Dubourg et al., 2002).
5. Numerical simulation of fretting fatigue experiments

Experimental and theoretical work has been undertaken to im-
prove our knowledge of crack initiation and propagation under
fretting conditions. Tests were conducted on 7075 aluminum alloy
under partial slip regime and mixed fretting regimes to obtain
experimental data on crack behaviour (Dubourg and Lamacq,
2000). Modeling of those tests have been performed with the con-
tact and fatigue crack models developed previously (Dubourg and
Villechaise, 1992) called here the reference model. The aim here is
to conduct this simulation using the X-FEM model. This compari-
son is used to demonstrate the ability of the X-FEM based model
to capture a sequence of complex contact configurations along
the crack faces and accurately compute the SIFs.

A spherical indenter is pressed against a planar specimen by a
constant normal force and submitted to a reciprocating movement
of given amplitude with a constant speed, at a given frequency. The
bulk load is fixed during testing. The magnitude of the tangential
force Q as a function of the displacement is recorded for each cycle.
The evolution of the frictional force is important as it governs the
material degradation response and the boundary conditions for
the modeling of the experiment. Normal load and displacement
amplitude pairings are determined in such a way that (1) linear
elasticity assumptions are satisfied, (2) the material degradation
response is cracking with no concomitant wear, (3) assumptions
of smooth surfaces and constant coefficient of friction are valid
during the loading test. The assumed value of local friction coeffi-
cient is determined based either on the experimental in situ con-
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tinuous observation of stick/slip distribution within the contact
area or the observation at the end of the test. The material consid-
ered for both indenter and specimen is an aluminum alloy 7075.
The mechanical properties are displayed in Table 1.

Under those chosen experimental conditions, it was observed
experimentally that multiple cracks initiate in the annulus mi-
cro-sliding zone at the edges of the contact area. Some cracks inter-
sect with other cracks, leading to spall detachment, while most of
the other self-arrest. Two main cracks propagate from this net-
work, along a semi-elliptical trajectory at the two-specimen inter-
face while below the surface they followed a direction ranging
from 15� to 35� to the surface before branching along a direction
of 65� with respect to the contact surface.

The cracking behaviour is analyzed in the meridian plane y = 0.
An equivalent cylinder on plane problem is defined. As crack initi-
ation is critically linked to the contact patch dimension (Nowell
and Hills, 1990), the line contact parameters (normal and tangen-
tial loads per unit length, cylinder radius) are defined in order that
3D and 2D contact area size and maximum hertzian pressure P0,
are identical (Hills and Nowell, 1994). Thus the normal and tangen-
tial line loading considered are 420 N/mm and the cylinder radius
is 239 mm. The mechanical properties are displayed in Table 1. The
fatigue properties and the experimental fretting conditions are
specified in Table 2.
Table 1
Mechanical properties of Al 7075.

E
(GPa)

t Ultimate
tensile
strength
(MPa)

Fatigue
limit
(MPa)

Hardness
Hv

f�1 (MPa)
(Wittkowsky
et al., 2000)

t�1 (MPa)
(Wittkowsky
et al., 2000)

73 0.3 540 230 160 175 101

Table 2
Experimental fretting conditions.

Normal
load

Tangential
load

Frequency Cylindrical
radius (m)

Friction
coefficient
ltb

Stick/
slip
ratio

420 N/
mm

±420 N/
mm

5 Hz 0.239 1.2 0.408
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Fig. 11. Representation of the distribution of the tangential traction q (MPa) along the t
steps are shown here).
The numerical simulation of this fretting test is organized as de-
scribed in Fig. 1:

� Step 1: Interface component analysis with dedicated contact
models.

The two-body cyclic frictional contact problem is numerically
solved using the models described in Section 2. The plane spec-
imen is thus assumed to be a half-space. The dimensions of the
potential surface, where the contact solution is computed, is
2l = 4.515 mm, discretized with 301 identical cells whose length
is 15 lm. Two hundred and one loading steps are considered to
capture accurately the hysteresis effect induced by friction. P0 is
equal to 150 MPa and 2a = 3.57 mm. The traction distributions
at some representative load steps are depicted in Fig. 11. Note
that those calculations are inexpensive in computer time.

This cyclic loading is then applied as input data to the X-FEM
model according to the methodology described in Section 2.3.
The transfer is illustrated in Fig. 12 for the tangential distribu-
tion obtained at the loading step numbered 16. Three hundred
and one cells with mesh size of 15 lm, from x = �2.25 mm to
x = 2.25 mm are considered for the reference model and 100
load sets ranging from X1 ¼ �2:1 mm to X100þ1 ¼ 2:1 mm for
the X-FEM model.

� Step 2: Criteria for crack initiation and location.
Dang Van multi-axial stress-based criterion is then computed.

The crack risk distribution d on the surface but also within the
depth of the domain and the direction h of crack initiation are
plotted in Fig. 13 as a function of (x/a) and (z/a). The greatest risk
is located in the two slip zones. Maximum values held symmet-
rically within zones spanning from x/a = 1.12 to 0.7 and from
�1.12 to �0.7. At the surface and at x/a = ±1.12 where the risk
is the highest and where the crack may initiate, the crack initi-
ation angle h is about 45�. It decreases gradually towards the
stick limit. Note that the evolution of h with the depth gives
an idea of the crack path. Further, this indication is limited for
a small depth as the existing crack will modify the stress field
and the predicted crack path.

� Step 3: SIF computation at crack tips.
The 7075 specimen is a rectangle elastic domain. The zone

corresponding to the maximum risk for crack initiation spans
from x/a = �1.12 to �0.7 and x/a = 0.7 to 1.12, corresponding
0,5 1 1,5

x/a

0  (+ Qmax)
10
20  (Q = 0)
30
40  (- Qmax)
50
60  (Q = 0)
70
80 (+ Qmax)
µ.p(x)

wo-body contact surface for a complete fretting cycle (only nine out of the 80 load
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to x ranges from �1.992 to �1.2495 mm and from 1.2495 to
1.992 mm. Cracks labeled 1 and 2 are located symmetrically
with respect to the indenter center, at x1 ¼ �1:65 mm (i.e. x/
a = �92) and x2 ¼ 1:65 mm (i.e. x/a = 0.92) see Fig. 14. They are
inclined at b1 and b2 equal, respectively, to �29� and 29� with
respect to the free surface (counted positive in the trigonometric
direction) and are 88 lm long. This size is of the order of several
grains for this material, a required condition for the LEFM appli-
cability. These data have been chosen in order to be in agree-
ment with experimental observations (Dubourg and Lamacq,
2000) and are in agreement with the results obtained according
to the Dang Van stress based multi-axial fatigue criterion cf.
Fig. 13. Firstly, a friction coefficient lC ¼ 0:2 is assumed at the
crack interface.
Fig. 12. Interpolation of the tangential traction distribution ob

x/a 

z/
a 

-1.12 -0.84 -0.56 -0.28 0.0 0.28
0.0

0.28

0.56

x/a 

z/
a 

0.0

0.28

0.56

-1.12 -0.84 -0.56 -0.28 0.0 0.28

Fig. 13. Crack risk distribution d and crack initiation angle
– For the reference model, the 7075 specimen is assumed to be a
half-plane. The reference model being based on the theory of
continuous distributed dislocations, N discretization points Mi

distributed along each crack with unknown Burgers values bxi

and byi are used to describe the relative displacements at the
crack interface. In this case, N = 77 has been chosen.

– For the X-FEM model, the 7075 rectangle elastic domain is
100 mm width and 50 mm long, cf. Fig. 15. These dimensions
have been determined to fulfill the half-space behaviour
inherent to the reference model. The specimen is meshed
using 3-nodes linear triangular elements. A local refinement
of the mesh is done in the vicinity of the two-body contact
surface, the crack and the crack tip, cf. Fig. 16. The smallest
element size is 0.5 lm. This ensures (i) to capture the steep
tained at the load step 16: 301 cells; 100 load sets.
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Fig. 14. Geometry of cracks 1 and 2 under fretting loading for the considered
application.
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Fig. 15. Geometry of the rectangle elastic domain used in the X-FEM model, with
associated boundary conditions used for the fretting simulation.
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stress and strain gradient in the near surface of the contact
area and of the stick/slip boundary and (ii) to carry out the
complex contact solution along the crack faces with a suffi-
cient accuracy as the number of the interface elements along
the crack faces result from the sub-cutting of the elements.
Here, each crack is discretized using 122 interface elements
with 1 G point each. The computation is done at a level of
accuracy for the local convergence criterion of 10�4 and the
radius of the integration domain around the crack tips for
the computation of the SIFs is 5 lm.

The variations of mode I stress intensity factors obtained
according to the X-FEM and the reference model at crack tips 1
and 2 are displayed versus Q values during the fretting cycle in
Fig. 17. The variations of mode II SIFs obtained according to both
models are shown in Fig. 18 for crack 1 and in Fig. 19 for crack 2.
Note that the fretting cycle has been described with 201 load
Fig. 16. Four different views of the mesh of the 2D rect
steps for the reference model while only 81 load steps have used
for the X-FEM model.

The agreement between the results is very good. A difference
must nevertheless be underlined. A quite difference in SIF values
is obtained for load steps corresponding to frictional locking (or
sticking) at crack interface. This occurs for crack 1 at the begin-
ning of the reloading phase when Q ¼ �Qmax and for crack 2 at
the beginning of the unloading when Q ¼ Q max. The complex con-
tact states determined at crack 1 and 2 interfaces are the same
according to both models.

The determination of the stress intensity factor (see Sections 3.1
and 3.2) for both models rest on different approaches:

� In the reference model, the stress intensity factors are obtained
directly from the relative displacement at crack tip whose values
are extrapolated from relative displacement values along the
crack faces. In case of frictional locking between two load steps,
no slip increment and consequently a nil DK II is computed. K II is
thus constant from one step to the next.

� In the X-FEM model, K II computation involves stress and relative
displacement at the crack interface (Eqs. (3.10) and (3.11)). A
stick condition from one step to the next does not involve a nil
range for K II.

Therefore, the comparison between K II values for crack 1 ob-
tained according to both models is very good up to Q value for
which the interface locking occurs. The gap in K II value is then kept
till the end of the fretting cycle. For crack 2, a difference in K II value
occurs from the beginning of the fretting cycle as the interface
locking occurs right from the start.

These figures highlight two points:

� Different phases occur during the fretting cycle. Crack 1 experi-
ences mixed mode I and II, then pure mode II and again mixed
mode I and II loading conditions while crack 2 experiences pure
mode II, then mixed mode I and II and again pure mode II load-
ing conditions. This is illustrated in Fig. 20 where the evolution
of the single phase angle wM during the fretting cycle is plotted
for both cracks. wM characterizes the near-tip mode mixity (Sur-
esh, 1998) (5.1). wM ¼ 0 means pure mode I and wM ¼ p=2
means pure mode II.

wM ¼ arctan
K II

K I

� �����
���� ð5:1Þ
angular specimen used for the fretting simulation.



Fig. 17. Mode I stress intensity factors computed for both cracks with the reference model and the X-FEM model.

Fig. 18. Mode II stress intensity factor computed for crack 1 at each load step of one cycle.
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� Further wM variation during the loading cycle indicates that both
cracks are subjected to non-proportional mixed mode loading.

� Step 4: Crack propagation.
The crack extension prediction is performed according to cri-

teria dedicated to proportional and non-proportional loadings
as presented in Section 4. These crack growth criteria are based
on the evolution of stress intensity factors DK I and DK II range
during a complete fretting cycle. Subsequently, the crack
growth speed and direction (angle h here between the original
crack and its extension, positive in the trigonometric direction)
are computed for each crack at the end of each fretting cycle,
corresponding to a ‘‘coarse” time scale.
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Crack growth directions after 3 propagation steps (crack exten-
sion = 2 lm) using different criteria are summarized in Table 3.
Hourlier’s criterion ðDk�1Þmax experimentally revealed to be the
most appropriated to the simulation of fretting fatigue crack
growth (Dubourg et al., 2002) is chosen here.

The X-FEM model for contacting frictional fatigue crack is vali-
dated. It succeeds in capturing the complex frictional contact evo-
lution at the interface of cracks submitted to combined mode I and
mode II multi-axial non-proportional loading. It can be recalled
here (see Section 3.1) that a specific error indicator coupled with
the LATIN non-linear solver is used in order to ensure the local con-
Fig. 19. Mode II stress intensity factor compute
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Fig. 20. Variation of the mixity ratio wM ¼ jat
vergence on the normal problem and the tangential problem both
on the crack displacement field w and the load field t all along the
crack interface. Indeed, in case of complex contact states along the
crack faces, an efficient error indicator both on the normal and tan-
gential problem has to be used (Ribeaucourt et al., 2007). The com-
parison between X-FEM results and the ones obtained according to
the reference model shows an excellent agreement. Differences in
K II values are linked to a different approach, either displacement or
stress-displacement based.

Two parameters having a strong influence on the near tip mix-
ity of a crack submitted to contact loading are analyzed in the next
d for crack 2 at each load step of one cycle.

0 200 300 400 500

 (N/mm)

Crack 1
Crack 2

Pure Mode II 

Pure Mode I 

anðK II=K IÞj for a complete fretting cycle.



Table 3
Branching angle h corresponding to different criteria.

ðk�1Þmax ðDk�1Þmax ðrhhÞmax

Crack 1 �60� �49� �64�
Crack 2 55� 45� 58�
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section. First, the influence of the crack interface friction coefficient
is emphasized as it governs DK II ranges and hence crack growth
rates and crack path directions. Further the influence of a static
bulk stress superimposed to the two-body contact loading is ana-
lyzed. This bulk stress favours a transition between the two-body
contact influence zone and a plain fatigue zone.

6. Parametric studies

In the two next sections, crack simulations are performed with
different values of the coefficient of friction between the crack
faces lC and with an additional bulk stress rS. The fretting loading
conditions are unchanged and are those defined in Table 2. The X-
FEM mesh of the rectangular domain is also unchanged. The aim is
to analyze the influence of those parameters on the mixity of the
cracking modes, and furthermore the crack growth path.

6.1. The coefficient of friction between the crack faces

lC ranges from 0.2 to 1.2. K II variations over the whole fretting
cycle for the different lC values are plotted in Figs. 21 and 22.

Fig. 22 for cracks 1 and 2, respectively. The crack opening being
independent on lC ;K I variations are not presented. Note that no
convergence problem is encountered whatever the value of the
friction coefficient at crack interface.
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Fig. 21. Mode II stress intensity factor computed for crack 1 at each load step of one
lC ¼ 0:2; lC ¼ 0:4; lC ¼ 0:6; lC ¼ 0:8; lC ¼ 1:0; lC ¼ 1:2.
The following results were obtained from this analysis:

� DK II ¼ K II;max � K II;min decreases for both cracks as lC increases.
More precisely:
– For crack 1, K II;max is constant versus lC while K II;min

decreases with increasing lC . K II;max at Q ¼ Q max is
unchanged as the crack is completely opened and thus the
friction coefficient has no influence on the interfacial contact
state, neither the normal and tangential stresses nor the
opening and slip displacements. As soon as the crack flanks
are contacting, their rubbing is dependent on lC and an
increase in lC implies the drop of the slip and hence a drop
in K II.

– For crack 2, K II;min is constant versus lC while K II;max

decreases with increasing lC .

� The near-tip mode mixity wM ¼ j arctanðK II=K IjÞ is independent

on lC . Indeed the value of K II is quasi unchanged when K I is
not nil. Though, mode II predominance is decreasing. Indeed
the ratio DK I=DK II ranges from 0.42 to 0.89 as lC varies from
0.2 to 1.2. The crack path is influenced by crack face contact
mixed mode. One recalls that the crack growth path is deter-
mined according to the Dk�1 max criterion, assuming that the crack
advances in the direction in which this value reaches its maxi-
mum, Dk�1 ¼ Dk�1 max. As a consequence, the increase in lC causes
a slight increase for crack 2 in the propagation angle h. It ranges
100 200 300 400 500

l load Q (N/mm)

KII crack1 µ = 0,2
KII crack1 µ = 0,4
KII crack1 µ = 0,6
KII crack1 µ = 0,8
KII crack1 µ = 1,0
KII crack1 µ = 1,2

cycle for six different values of the friction coefficient between the crack faces:
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from 45� for lC ¼ 0:2 to 55� for lC ¼ 1:2 relatively to the initial
crack orientation (29� from the surface) after three propagation
steps, as depicted in Fig. 23 (similar results are obtained for
crack 1 and are not presented).
6.2. The bulk stress effect

In this section, the effect of an additional constant compressive
or tensile bulk stress along the x-axis rS is studied. The contact
loading and the bulk stress have a different influence on the cracks:

� The former produces the fatigue part of the loading and its
action decreases with the depth. The driving force for crack
growth decreases too. Then, the crack has to branch along a
new direction.
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Fig. 23. Prediction of combined mode I–mode I
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Fig. 22. Mode II stress intensity factor computed for crack 2 at each load step of one
lC ¼ 0:2; lC ¼ 0:4; lC ¼ 0:6; lC ¼ 0:8; lC ¼ 1:0; lC ¼ 1:2.
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Fig. 24. Prediction of combined mode I–mode I
� The latter is constant and extends and strengthens the action of
the contact at the crack tips. If the crack is long enough to be out
of the contact zone influence, the action of the bulk stress pre-
vents the crack self-arrest. Relative slips along the crack faces
due to the contact loading are then passed on at the branched
open tip of the crack, leading to a varying crack opening.

The friction coefficient between the crack faces is assumed to be
lC ¼ 1;2. rS ranges from �rD=2 to þrD=2, where rD ¼ 230 MPa is
the fatigue limit of the considered material Al7075.

The crack growth angle h; K I and K II and mixity ratio
wM ¼ j arctanðK II=K IÞj variations over the whole fretting cycle for
four different rS values are plotted in Figs. 24–27 for cracks 1 (sim-
ilar results are obtained for crack 2 and are not plotted for brevity).
The results from this analysis are:
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Crack 
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I crack path for crack 2: angle h versus lC .
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cycle for six different values of the friction coefficient between the crack faces:

β

θ

Pre-existing
crack

Crack 
extension

115

ulk stress (Mpa)

I crack path for crack 2: angle a versus rS .



1420 M.C. Baietto et al. / International Journal of Solids and Structures 47 (2010) 1405–1423
� DK I ¼ K I;max � K I;min increases for both cracks with increasing rS.
The cracks are not completely open during the whole loading
cycle. They are still located in the contact influence zone. Never-
theless, mode I phase increases with increasing rS.

� K II;max increases for both cracks as rS increases. Indeed, the ten-
sile bulk stress amplifies the opening of both cracks, favours slip
between the crack faces as it is not hindered by the compressive
stresses acting normally on crack faces. But as an average sliding
is added along crack faces, DK II ¼ K II;max � K II;min is independent
on rS.

� The ratio DK I=DK II ranges from 0.52 to 1.22 as rS varies from
�115 MPa ð�rD=2Þ to 115 MPa ðþrD=2Þ. Mode II predominance
drops when a tensile bulk stress is applied, see Fig. 27. As a con-
sequence, the crack growth angle after 3 propagation steps rel-
atively to the initial crack orientation increases from 49� for
rS ¼ �115 MPa to 59� (almost perpendicular to the contact sur-
face) for rS ¼ 115 MPa (see Fig. 24).
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Fig. 26. Mode II stress intensity factor computed for crack 1 at each load st
This parametric study enhanced the dependency of the fret-
ting cracking mixity and furthermore the crack growth path on
the tangential contact state and on an additional bulk stress. As
a consequence, the crack propagation under fretting fatigue load-
ing can be governed mainly either by the contact loading or by
the bulk stress or both. In the following section, crack growth
simulation is performed to enhance these phenomena along the
crack path.
7. Crack growth simulation

In this section, crack growth simulation is performed with the
proposed X-FEM model. A special attention is devoted here to the
direction of the crack growth during the propagation process in
relation with the mechanical conditions such as the evolution
of the in-depth stress–strain state due to the contact loading
100 200 300 400 500

l load Q (N/mm)

ep of a fretting cycle for four different values of additional bulk stress.

100 200 300 400 500

oad Q (N/mm)

KII crack 1  SigmaD = -115 MPa
KII crack 1  SigmaD = 0 MPa
KII crack 1  SigmaD = 57,5 MPa
KII crack 1  SigmaD = 115 MPa

ep of a fretting cycle for four different values of additional bulk stress.
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itself. The fretting conditions are unchanged and are those de-
fined in Table 2. Two cracks are considered as defined in Sec-
tion 5. Note that the friction coefficient between the crack faces
is assumed to be equal to lC ¼ 1:2. As concluded in Section 6.1,
this value induces the highest branching angle equal to 55�. Fur-
ther a tensile bulk stress rS ¼ 115 MPa is superimposed. For this
value (see Section 6.2) the cracks are still located within the con-
tact influence zone as the crack tips are not completely open dur-
ing the whole loading cycle. Crack growth is performed starting
from the given crack geometry and a crack increment of a given
length is considered. Four cases are presented. Case A is the ref-
erence simulation. The initial crack is 88 lm long with an angle
of 29� and the crack extension is 2 lm long. The influence of
parameters such as the crack length lC , (case B: a longer initial
crack 150 lm is considered); the tangential loading Q (case C:
the tangential fretting load is equal to Q = 210 MPa instead of
420 MPa) are considered. Finally case D, all the mechanical
parameters are identical to those considered in case A except that
the length of the crack extension is 5 lm.

Hourlier’s non-proportional crack growth direction criterion
Dk�1 max is used. Recall that kI is calculated at the tip of an infinites-
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Fig. 28. Crack growth mechanisms occurring successively with respec
imal segment inclined at an angle h of the primary crack and is ex-
pressed versus K I and K II. This criterion accounts therefore for the
mode II influence.

As specified previously, neither re-meshing nor field interpola-
tion are needed during the crack growth simulation. The results are
presented for crack 2 only.

� Case A: Six propagation steps (2 lm each) are performed.
Fig. 29(a) shows the propagation path resulting from the X-
FEM simulation for crack 2. The crack growth angle ranges from
59� to 5� during the propagation (almost coplanar with the ini-
tial crack) relatively to the initial crack orientation. The crack is
still submitted to the influence of the contact loading and expe-
riences shear at its interface.

� Case B: The length of the initial crack is now lC ¼ 150 lm (crack
tip at y ¼ �73 lm). Six propagation steps (2 lm each) are per-
formed. Fig. 29(b) shows the propagation path resulting from
the computation. The crack is growing away from the surface,
almost perpendicularly to the surface (h ranges from 55� to
60� relatively to the initial crack orientation) and is mostly gov-
erned by tensile forces. The crack path is thus different from the
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Fig. 29. Computed crack growth path for different load configuration, initial crack length and crack growth step length.
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one computed for case A for a shorter crack. The crack bends out
of the subsurface region influenced by the two-body contact.
These phenomena are illustrated in Fig. 28 (Miller, 1993).

� Case C: The tangential loading is reduced Q = 210 MPa. Six prop-
agation steps (2 lm each) are performed. The crack grows with
an angle of 60� relatively to its initial orientation, bending per-
pendicularly to the surface. It is governed mainly by a tensile
growth mechanism. The crack growth path is similar to the
one obtained in case B (see Fig. 29(c)).

� Case D: The data are identical to those considered for case A. The
crack growth extension is here considered equal to 5 lm. Four
propagation steps are performed (see Fig. 29(d)). Considering a
increment size 2.5 times greater has not modified the crack path
as compared to the one obtained in case A.

The steep varying stress–strain state under the contact region
induces a reorientation of the growing crack. The crack growth
direction is thus dependent on the crack length. Further the inten-
sity of the tangential loading, the superimposition of a bulk stress
modify the extent of the zones under the contact where shear or
tensile mechanisms are predominant and have also a great influ-
ence on the crack path.
8. Conclusion

In this paper one proposes a global methodology dedicated to
frictional fatigue crack analysis submitted to non-proportional cyc-
lic loading. Many components suffer indeed from 3D complex load-
ing combined with contact loading like fretting at their interface.
Crack initiation and propagation under fretting loading influence
strongly the lifetime of components and it is important to be able
to quantify and predict their behaviour.

For that purpose, a first accurate half-analytical model dedi-
cated to the identification of the normal and tangential tractions
at the interface of two components, approximated here as half-
planes, where cyclic fretting occurs has been briefly presented.
Then a second model is devoted to the determination of the crack
initiation based on Dang Van’s criterion. Finally, these normal and
tangential external cyclic loads are introduced in a two-dimen-
sional robust and efficient X-FEM/LATIN numerical model dedi-
cated to frictional fatigue cracks. Recall that this finite element
based model is thus able to account for complex component geom-
etry and boundary conditions. Mixed mode crack propagation is
then simulated and the crack growth path is determined using cri-
teria adapted to multi-axial non-proportional loading conditions.

Compared to standard finite elements approaches, the following
improvements are obtained: a rather coarse mesh can be used and
is not required to match the crack; neither re-meshing nor field
interpolation is required during crack growth; accurate frictional
contact solutions are obtained for a wide range of friction coeffi-
cient values (from 0.2 to 1.2) based on an adapted local error indi-
cator; the quasi-static formulation of the crack problem allows to
account for the history of the contact solution, notably the tangen-
tial tractions between the crack faces; finally, robust path indepen-
dent integrals allow accurate calculation of stress intensity factors.

Validation of the X-FEM model has been performed. A very good
agreement is obtained between the results obtained using the X-
FEM numerical model and the ones computed according to the ref-
erence model. Parametric studies on the influence of the friction
coefficient between the crack faces have been conducted. It influ-
ences not only the value of the stress intensity factor in mode II
but also the crack growth. Finally, crack propagation simulation
has been conducted and four different cases performed in order
to study the influence of mechanical parameters on the crack prop-
agation path.

Work on 3D crack modeling is in progress. It concerns confined
plasticity at crack tip, frictional contact. Experimental tests are also
under way to provide additional data for 2D and 3D crack propaga-
tion under fretting conditions.
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