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1. Introduction

To minimize the structural weight, thin plates are widely used
in many industrial fields such as aeronautic, mechanics and civil
engineering. These structures are often forced into high-amplitude
vibrations, inducing significant geometrical nonlinearity, which is
a source of complex instability phenomena. To reduce the effect
of such problems, a common approach consists in introducing a
damping component into the structure. But the principal difficulty,
in the analysis of such problems, lies in the presence, on the one
hand, of nonlinearity, source of complex phenomena such as bifur-
cations, jumping and chaos, and on the other hand of damping,
which generally leads to complex solutions.

In the literature, most investigations which take damping into
account are limited to linear vibrations, leading to a complex
eigenvalue problem. Only a few works combine both geometrical
nonlinearity and damping: Amabili made an experimental and
numerical study of plates with viscous damping and subjected to
harmonic excitation [1,2]. This author studied also numerically cir-
cular cylindrical panels with viscous damping [3]. Ganapathi et al.
determined the loss factor of a sandwich beam with a viscoelastic
central layer, using the finite element method and an iterative ap-
proach [4]. An amplitude equation, based on an approximated har-
monic balance method and Galerkin’s procedure, was proposed by
mediene).
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Daya et al. [5] to study sandwich beams and plates with central
viscoelastic layers. The same approach was extended to the analy-
sis of circular sandwich rings by Boutyour et al. [6]. Touzé and
Amabili built reduced-order models for damped geometrically
nonlinear systems [7]. They considered a modal viscous damping.
Ribeiro and Petyt [8–10] used the hierarchical finite element meth-
od in an in-depth investigation of the nonlinear response of
clamped rectangular plates. In these last papers, the authors con-
sidered mass proportional hysteretic damping. A similar approach
was used by Ribeiro and Petyt to investigate the forced response of
simply-supported plates with immovable edges [11] and of beams
and plates, by following the thin and thick theories [12]. In these
last articles, the authors considered stiffness proportional
damping.

This paper deals with the nonlinear vibration of damped plates
by an asymptotic numerical method (ANM). In previous works
using this method [13,14] the damping is generally neglected. In
our paper, the damping is taken into account in a simple and clas-
sical manner type Rayleigh. Even if this structural damping is rel-
atively simple, it represents a large part of engineering
applications. The asymptotic numerical method (ANM) is used in
its last efficient version based on a continuation method with use
of Padé approximants [15].

As it is well known, in the investigation of thin plates’ behavior,
one assumes that the rotations are moderate and the use of von
Karman model was validated in several previous referenced works
[1,11,14].



Using this theory, the harmonic balance method and Hamilton’s
principle, the initial governing motion equation is converted into
an operational form.

Coupling a perturbation technique and the finite element meth-
od, the nonlinear problem is transformed into a sequence of alge-
braic linear problems. Padé approximant method was used [15] to
increase the step length and so to reduce computation time. The
aim of this method is to improve the continuation method by
replacing the polynomial approximation by a rational one. The ob-
tained results are compared with the literature and with analytical
approaches. To show the effectiveness of the proposed algorithm,
several examples of rectangular plates, with various boundary con-
ditions and excitations, are presented.

2. Mathematical formulation

Let us consider a thin rectangular plate with a coordinate sys-
tem ðO; x; y; zÞ, the origin O being situated at one corner. The dis-
placement components of the plate’s middle surface are denoted
by u, v and w, where u and v are the in-plane displacements and
w the transverse displacement in the x, y and z directions, respec-
tively. The associated Green–Lagrange strain varies linearly with
respect to the thickness:

e ¼ cþ zk ð1Þ

where c = cl + cnl is the generalized membrane strain which can be
broken down into a linear and nonlinear part, and k is the bending
strain.

The nonlinear strain–displacement relationships associated
with the von-Karman plate theory are given by:

cl ¼
@u=@x

@v=@y
@u=@yþ @v=@x

8><
>:

9>=
>;; cnl ¼ 1

2

ð@w=@xÞ2

ð@w=@yÞ2

2ð@w=@xÞð@w=@yÞ

8><
>:

9>=
>;;

k ¼ �
@2w=@x2

@2w=@y2

2@2w=@x@y

8><
>:

9>=
>; ð2Þ

The strain can be written by an operator notation as follow:

e ¼ Bl þ
1
2

BnlðUÞ
� �

U ð3Þ

where U is the displacement vector given by U = {u, v, w}t; Bl and Bnl

are the linear and nonlinear strain–displacement operators, respec-
tively. In our case: BlU = cl + zk and 1

2 BnlðUÞU ¼ cnl.
The generalized stresses N are related to the strain for homoge-

neous and isotropic material by:

N ¼
Nx

Ny

Nxy

8><
>:

9>=
>; ¼ De ð4Þ

where D is a symmetrical matrix containing material properties.
Neglecting the rotary inertia terms, the kinetic energy is given

by:

T ¼ 1
2

Z
S0

qh _U2 dS ð5Þ

where S0 is the plate’s middle surface, q is a density, h is the plate’s
thickness and the dot is a derivation with respect to the time ‘t’.

Neglecting transverse stress rz under Kirchhoff’s hypotheses,
the elastic strain energy V of a plate is given by:

V ¼ 1
2

Z
S0

NedS ð6Þ
2

Injecting expressions (1)–(4) into (6), taking into account the damp-
ing coefficients and using Hamilton’s principle, the governing equa-
tion is obtained in the following form:R t

S0
½Bl þ BnlðUÞ�N dSþ C _U �M €U ¼ F

N ¼ D Bl þ 1
2 BnlðUÞ

� �
U

(
ð7Þ

where M is the mass matrix, F is the external force vector and C is
the viscous damping matrix of Rayleigh’s type C = aM + bK (a and b
are two parameters and K is a stiffness matrix).

The problem is to solve the system (7) in which the unknowns
are the displacement vectors, the stress vectors and the
frequencies.

3. Harmonic balance method

The considered harmonic excitation is given by:

FðtÞ ¼
XH�1

j¼0

Fj
c cos jxt þ Fj

s sin jxt
� �

ð8Þ

where H is the number of harmonics.
It is assumed that the response of the plate is harmonic and can

be written down in the following form:

UðtÞ ¼
PH�1

j¼0
Uj

c cos jxt þ Uj
s sin jxt

NðtÞ ¼
PH�1

j¼0
Nj

c cos jxt þ Nj
s sin jxt

8>>>><
>>>>:

ð9Þ

New vectors U and N are introduced, containing all the harmonics
and defined by:

U ¼ U0
c ;U

1
c ;U

1
s ; . . . ;Ui

c ;U
i
s; . . . ;UH�1

c ;UH�1
s

h i
N ¼ N0

c ;N
1
c ;N

1
s ; . . . ;Ni

c ;N
i
s; . . . ;NH�1

c ;NH�1
s

h i
8><
>: ð10Þ

where ‘‘c” denotes the co-sinus factor, ‘‘s” the sinus factor and i the
harmonic i = 0, H � 1.

By inserting series (9) and using the harmonic balance method,
the system (7) is rewritten in the following form:R t

S0
½Bl þ BnlðUÞ�N dSþxCU �x2MU ¼ F

N ¼ D Bl þ 1
2 BnlðUÞ

� �
U

(
ð11Þ

where matrices M; C; D; Bl and Bnl are derived from matrices M, C,
D, F, Bl and Bnl, respectively (see Appendix A for a definition). The
vector F is derived from F and written in the form (10).

The last Eq. (11) is cubic with respect to the displacement and
frequency, as our objective is to solve it using an asymptotic
numerical method, it is written in a quadratic form with respect
to an unknown vector (K, x, X):

hLK; dKi �x2hMK; dKi þXhCK; dKi þ hQðK;KÞ; dKi
¼ hF; dKi ð12Þ

where L(�) is a linear operator and Q(�,�) is a quadratic one defined
by the following expressions:

hLK; dKi ¼
Z t

S0

BlN dS

hQðK;KÞ; dKi ¼
Z t

S0

BnlðUÞN dS

K ¼ t ½U;N� is the mixed displacement—stress vector

X ¼ x2



4. Asymptotic numerical method

4.1. Asymptotic expansion

Let us consider a regular solution (K0, x0, X0) of the nonlinear
problem (12), the basic idea of the ANM consists in searching for
the solution path in the vicinity of this point, by power series with
respect to a path parameter ‘a’:

KðaÞ ¼ K0 þ aK1 þ a2K2 þ � � � þ anKn

xðaÞ ¼ x0 þ ax1 þ a2x2 þ � � � þ anxn

XðaÞ ¼ X0 þ aX1 þ a2X2 þ � � � þ anXn

8><
>: ð13Þ

where (Kp, xp, Xp) is the new unknown parameter to be computed.
The path parameter used in the series (13) can be identified as

the projection of the displacement increment ðU � U0Þ, and the fre-
quency increment (x �x0), on the tangent vector ðU1;x1Þ:

a ¼ hU � U0;U1i þ ðx�x0Þx1 ð14Þ

where h�,�i designates the Euclidian scalar product.
Introducing expressions (13) into Eqs. (12) and (14) and equat-

ing like powers of ‘a’, one gets the following set of linear problems:
Order 1

LtðK1Þ ¼ ðX1M �x1CÞK0

hU1;U1i þx2
1 ¼ 1

(
ð15Þ

Order p

LtðKpÞ ¼
Pp�1

i¼0
ðXp�iM �xp�iCÞKi �

Pp�1

i¼1
QðKi;Kp � iÞ

hU1;Upi þx1xp ¼ 0

8><
>: ð16Þ

We have:

Ltð�Þ ¼ Lð�Þ þ 2QðK0; �Þ þx0C �x2
0M ð17Þ
4.2. Discretization by finite element method

As well known, in the literature of ANM, to solve the problems
(15) and (16) by a classical finite element method, one returns to a
displacement formulation using behavior law (11). So, after dis-
cretization, one gets:

Order 1

K0
t

� �
fq1g ¼ x1½2x0M � C�fq0g

hq1; q1i þx2
1 ¼ 1

fN1g ¼ ½D�½Bl þ Bnlðq0Þ�fq1g
X1 ¼ 2x0x1

8>>>><
>>>>:

ð18Þ

Order p

K0
t

� �
fqpg ¼ xp½2x0M � C�fq0g þ Fnl

p

n o
hq1; qpi þx1xp ¼ 0

fNpg ¼ ½D�½Bl þ Bnlðq0Þ�fqpg þ
1
2
½D�
Xp�i

i¼1
½Bnlðqp � iÞ�fqig|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Nnl
p

Xp ¼ 2x0xp þ
Xp�1

i¼1
xixp�i|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

Xnl
p

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð19Þ

where K0
t

� �
denotes the tangent matrix at the starting point

(K0, x0, X0) and {qp} is the discretized form of the displacement
Up and
3

Fnl
p

n o
¼ Xnl

p ½M�fq0g þ
Xp�1

i¼1

½Xp�iM �xp�iC�fqig

�
Z

S0

t½Bl þ Bnlðq0Þ� Nnl
p

n o
þ
Xp�1

i¼1

t½BnlðqiÞ�fNp � ig
 !

dS

Note that the plates are modeled with the classical triangular shell
elements DKT [16], with three nodes and six degrees of freedom per
node (u, v, w, hx, hy, hz).

So, all unknown parameters of the series (13) can be deter-
mined by successively solving Eqs. (18) and (19) at each order p.

4.3. Validity range and Padé approximants

The polynomial solutions (13) coincide almost perfectly within
the convergence radius, but they diverge out of this zone of valid-
ity. This limit can be computed automatically by using the follow-
ing simple criterion proposed by Cochelin et al. [17]:

ams ¼ g
kq1k
kqnk

	 
1=ðn�1Þ

ð20Þ

where g is a small given number.
The polynomial representation (13) can be improved using ra-

tional fractions named Padé approximants [15]:

fqpðaÞg ¼ fq0g þ
Pn�1

i¼1
fiðaÞaifqig

xpðaÞ ¼ x0 þ
Pn�1

i¼1
fiðaÞaixi

8>>><
>>>: ð21Þ

where fi(a) are rational fractions admitting the same denominator.
The validity range of the solution (21) is defined by the maximal

value ‘amp’ of the path parameter ‘‘a”. The relative difference be-
tween the displacements at two consecutive orders must be smal-
ler than a given parameter l, which leads to:

l � kqnðampÞ � qn�1ðampÞk
kqnðampÞ � q0k

ð22Þ

The iterative application of the ANM makes it possible to determine
the whole of a complex nonlinear branch.

5. Numerical results and validation

In this part of our study, different examples of plates with var-
ious excitation types and boundary conditions are presented. Some
of these examples are taken from the literature to validate our
method. The material is aluminum with Young’s modulus
E = 70 � 109 Pa, density q = 2778 kg/m3 and Poisson’s ratio
t = 0.3. The plates are modeled with DKT triangular shell elements
with three nodes and six degrees of freedom per node
(u, v, w, hx, hy, hz). For symmetry reasons, only a quarter of the plate
has been discretized with 121 nodes (i.e. 726 dof for one har-
monic). Based on previous studies, the accuracy parameter
g = 10�4, the truncation order n = 15 [18] and harmonics number
H = 3 [13] are adopted in the beginning for an automatic and opti-
mal computational time. After that, an in-depth study is performed
on the choice of optimal parameters.

5.1. Conservative plate

In order to validate our program, the nonlinear response of an
undamped fully-clamped square plate is considered in Table 1.
The length of the plate is equal to 240 times its thickness, the ap-
plied load is assumed to be non-dimensional with an amplitude
Pd

0 ¼ 0:2. Our results are extremely similar to the ones found in
the literature [9,14,19–21].



Table 1
Frequency ratio x/xl of the nonlinear forced vibration of fully-clamped square plates under a harmonic uniform distributed force (L/h = 240, Pd

0 ¼ 0:2a).

ANM [14] HFEM [9] Other methods [19–21] Present results (ANM)

Wmax
h

x
xl

Wmax
h

x
xl

Wmax
h

x/xl
Wmax

h
x
xl

FEM + LIN Elliptic Perturbation

0.2001 0.2160 0.2000 0.2432 0.2000 0.1033 0.1200 0.1227 0.2008 0.2444
�0.2000 1.4330 �0.2072 1.4275 �0.2000 1.4183 1.4195 1.4195 �0.2062 1.4273

0.4004 0.7532 – – 0.4000 0.7372 0.7483 0.7484 0.4044 0.7532
�0.4001 1.2505 – – �0.4000 1.2426 1.2490 1.2491 �0.4012 1.2487

0.6001 0.8949 0.6008 0.8971 0.6000 0.8746 0.8951 0.8956 0.6078 0.8887
�0.6001 1.2093 �0.5901 1.2120 �0.6000 1.1966 1.2117 1.2119 �0.6006 1.2029

0.8001 0.9912 – – 0.8000 0.9617 0.9941 0.9954 0.8076 0.9773
�0.8001 1.2149 – – �0.8000 1.1938 1.2203 1.2210 �0.8009 1.2036

1.0001 1.0769 1.0013 1.0803 1.000 1.0362 1.0822 1.0845 1.0032 1.0539
�1.0001 1.2457 �0.9952 1.2475 �1.000 1.2140 1.2540 1.2555 �1.0029 1.2287

a From Ref. [19] Pd
0 ¼ c � Pd=qh2x2

l ; c ¼ =
RR

/dx dy=
RR

/2 dxdy ; U: normalized mode shape; Pd: amplitude of external distributed force (N/m2); q is the density, xl is the
linear frequency and h is the thickness.

Table 2
Plates’ characteristics.

Plate
number

Length L
(m)

Width l
(m)

Thickness h
(m)

Damping
coefficients

1 0.6 0.3 0.001 a = 0, b
2 0.3 0.3 0.001 a = 0.065, b = 0
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 0  0.5  1  1.5  2  2.5

W
c 

/ h

ω / ωl

F = 5 N/m2, β = 10-3 [11]

F = 10 N/m2, β = 10-4 [11]

F = 5 N/m2, β = 10-3 MAN

F = 10 N/m2, β = 10-4 MAN

F = 0 N/m2 MAN

Fig. 1. The forced nonlinear vibration of damped rectangular plate no. 1 for various
excitations and damping coefficients.
5.2. Damped plates

In this section, two isotropic homogenous plates are analyzed.
Their geometrical characteristics and the used damping coeffi-
cients are given in Table 2. The first plate is rectangular with sim-
ply-supported boundary conditions and it is subjected to a
vertically-distributed harmonic excitation. The second one is a
square plate subjected to a vertically-distributed harmonic excita-
tion. It is simply-supported with immovable edges [1]:

u ¼ v ¼ w ¼ Mx ¼ 0 at x ¼ 0; L
u ¼ v ¼ w ¼ My ¼ 0 at y ¼ 0; l

�
ð23Þ

where Mx and My are the bending moments per unit length accord-
ing to x and y directions, respectively.

Fig. 1 shows the maximum vibration amplitudes of plate 1, due
to a harmonic distributed force with amplitudes of 5 and 10 N/m2,
and frequencies around the first resonance frequency. Considering
the case of damping coefficients b = 10�3 and b = 10�4, it can be
noted that the present approach gives the same results as those
computed by HFEM and shooting methods [11]. For the second
example, approximate functions [1] are used instead of the finite
elements method to expand the middle surface displacements u,
v and w:

uðx; y; tÞ ¼
Pm
i¼1

Pn
j¼1

u2i;jðtÞ sin 2pi
l x

� 

sin pj

L y
� �

vðx; y; tÞ ¼
Pm
i¼1

Pn
j¼1

v i;2jðtÞ sin pi
l x
� 


sin 2pj
L y

� �

wðx; y; tÞ ¼
P̂m
i¼1

P̂n
j¼1

wi;jðtÞ sin pi
l x
� 


sin pj
L y
� �

8>>>>>>>><
>>>>>>>>:

ð24Þ

The bending moments given in (23) can be written as:

Mx ¼
Eh3

12ð1� m2Þ ð@
2w=@x2 þ m@2w=@y2Þ ¼ 0 at x ¼ 0; L

My ¼
Eh3

12ð1� m2Þ ð@
2w=@y2 þ m@2w=@x2Þ ¼ 0 at y ¼ 0; l

ð25Þ
4

Therefore, the geometric boundary conditions associated to (23)
are exactly satisfied by the expansions of u, v and w given by (24).

The asymptotic numerical method is applied to obtain the var-
iation of displacement with respect to frequency. After that, the
first generalized component of transversal displacement w11 is
compared with that given by previous works (Fig. 2a). It can be
noted that our results coincide perfectly with those found in the
literature [1,22]. On the basis of these analytical results, the trans-
versal displacement of the plate centre is calculated. The plate cen-
tre displacements given by this approach (analytic + ANM) and by
the finite element method (FEM + ANM) are compared in Fig. 2b.

In Figs. 3 and 4, the responses of fully-clamped plates (CC) and
simply-supported plates (SS) are compared. As in the previous sec-
tion, non-dimensional forces are adopted, and the free response is
also computed using the asymptotic numerical method. It appears
clearly that the simply-supported boundary conditions yield a lar-
ger nonlinear response than the clamped ones.

In addition to principal resonances, the present approach makes
it possible to obtain higher harmonics resonances. Fig. 5 presents
the responses of the structures with various harmonics numbers.
In these tests, the adopted ANM parameters are: n = 20, g = 10�4

and l = 10�4 (see Section 5.3 for more details about the choice of
these parameters). It can be noted that with four harmonics, only
one higher harmonic resonance is detected for a frequency
x � 0.3xl, while the use of six harmonics gives two higher har-
monic resonances, the first situated at x � 0.2xl, and the second
at x � 0.3xl. Hence, to have a complete study of the geometrical
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Fig. 2. Forced nonlinear vibration of a damped square plate no. 2: F = 1.74 N, a = 0.065, b = 0.
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Fig. 3. Forced nonlinear vibration of damped square plate no. 1: a = 2 * 0.065 * xl

and b = 0.
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Fig. 4. Forced nonlinear vibration of damped rectangular plate no. 2: L/l = 2,
b = 0.0001 and a = 0.
nonlinear response, more harmonics are required. However, the
computation time increases with the number of harmonics as de-
tailed in the next section.
5

5.3. Evaluation of computational cost

For the first example, several tests were performed with differ-
ent truncation orders, tolerance coefficients and excitation fre-
quencies, so as to choose the adequate parameters. An excitation
amplitude F = 40 N/m2 and a damping factor of b = 10�4 were con-
sidered. The analysis was performed around the first mode
(0 6x 6 2x1). In each test, one parameter was changed to see
its influence on the solution’s quality. The harmonic number
H = 3 was adopted in all these tests. Taking first the tolerance
g = 10�4, and changing truncation order n (Table 3), it can be noted
that with the truncation order n = 20, one gets smallest steps num-
ber and the better final residual. Then, for the second test, taking
the truncation order n = 20 and changing the tolerance g (Table
4), it can be noted that with tolerance g = 10�3, one obtains the
smallest steps number but a bad final residual. This tolerance can
be taken into account and corrective steps added at the end of
the computation. g = 10�4 was finally adopted for our tests.

Based on the results of these test, the following parameters of
ANM are selected: truncation order n = 20 and tolerance g = 10�4.
The results obtained with the rational representation (the Padé
approximants) for several values of the Padé tolerance parameter
(Table 5) are then studied. Without Padé approximants, 67 steps
have to be performed to have the entire curve from x = 0 up to
x = 2xl. Note that with l = 10�3 the steps number is nearly half
of polynomials one. Table 5 shows that the quality of the Padé
approximants with l = 10�4 and l = 10�5 is really better than the
polynomial.

Finally, the relative computational times, for different numbers
of harmonics, are given in Table 6. To obtain representative times,
the considered number of nodes is equal to 435 (i.e. 2610 dof for
one harmonic). This increases the number of terms in the matrix,
and consequently the computational cost. In one step of the
asymptotic numerical method, one has to perform only one matrix
decomposition, to calculate all second members and to apply the
Padé approximant. This last computation step does not require a
great deal of computational time. For the matrix decomposition,
the time increases with the harmonics number because the tan-
gent matrix is constructed from (2 * H � 1)2 blocs. In this study, a
classical Crout’s method is used. The relative CPU times are then
defined as the ratio between the triangulation time of the tangent
operator K0

t in nonlinear problems given in Eqs. (18) and (19), and
the triangulation time of tangent operator K in linear dynamical
problems which contain only one harmonic:
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Fig. 5. Forced nonlinear vibration of damped rectangular plate no. 1: F = 40 N/m2, a = 0, b = 0.001.

Table 3
Step number and final residual of polynomial representation at x = 2x1 with respect
to the truncation number n (g = 10�4, H = 3).

Order n 19 20 21
Step number 70 67 75
Final residual 0.11 0.09 0.11

Table 4
Step number and final residual of polynomial representation at x = 2x1 with respect
to tolerance g (n = 20, H = 3).

Tolerance g 10�3 10�4 10�5

Step number 57 67 83
Final residual 1.045 0.090 0.004

Table 5
Step number and final residual of the Padé representation at x = 2x1 with respect to
the Padé tolerance l (n = 20 and H = 3).

Tolerance l 10�3 10�4 10�5

Step number 36 50 55
Final residual 0.1750 0.0151 0.0006

Table 6
Relative CPU times versus the number of harmonics H.

Harmonics number 2 3 4 5 6
CPUrelative 2.84 12.61 34.81 70.27 127.05
CPUrelative ¼ CPUðK0
t Þ

CPUðKÞ ð26Þ

Table 6 shows that for six harmonics, the time of the nonlinear
matrix decomposition is 127 times that required for the computa-
tion of the solution in a linear problem. This is very large time, but
6

this matrix decomposition must be also done with other methods
(for example the Newton–Raphson). Furthermore, the Newton–
Raphson method requires a great many steps [23] while our meth-
od allows us to obtain a large section of the solution with only one
matrix decomposition.

The right hand side calculus time depends in one hand on the
number of harmonics, and on the other hand of the truncation or-
der. The ratio of the right hand side calculus time, with respect to
the matrix decomposition time, is presented in Fig. 6. It can be
noted that when the harmonics number is increased, the right
hand side calculus time became more negligible compared to the
decomposition time.

6. Conclusion

This paper develops an asymptotic numerical method to solve
nonlinear forced vibration problems, taking into account structural
damping of plates subjected to time-harmonic transversal excita-
tion. A large part of the nonlinear solution is obtained by solving
a sequence of linear problems having the same stiffness matrix.
Iteration of this method, leading to a path-following technique,
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Fig. 6. Second member calculus time by decomposition time with respect to order
number.
made it possible to obtain the nonlinear resonance curves at any
desired range of amplitudes with the limit imposed by the von Kar-
man theory. We reported numerical tests for forced vibrations of
damped rectangular plates subjected to time-harmonic lateral
excitations, and compared to calculations with numerical results
available in the literature. Numerical results for nonlinear fre-
quency and nonlinear displacements were presented and com-
pared for various values of damping coefficients. To illustrate the
value of this method, several applications were described. In addi-
tion to principal resonances, the present approach enables the user
to obtain the higher harmonics resonances while taking into ac-
count a greater number of harmonics. Increasing the number of
harmonics leads to increase the matrix decomposition and the sec-
ond member calculus time. The time required to obtain a large sec-
tion of the solution is also increased, but as a whole, the asymptotic
numerical method takes less computational time than a classical
incremental iterative algorithm [23].

Even if the second member time increases, it is negligible com-
pared to the decomposition time. Then to reduce this computa-
tional time, one can use another linear solver which is well-
adapted to repeated right hand side problems [24], as with the
asymptotic numerical method; reduce the number of steps by
changing the path parameter definition [25] or use reduction
methods to have to decompose a small size matrices [26,27]. These
three approaches will be investigated in future works.

The presented work concerns only plates with moderate rota-
tions, but complex models of plates and shells could be investi-
gated [28] by taking into account large displacements and
rotations. This has already been done in the static case [29,30] by
use of a particular formulation and finite element of type RAMM.
The application of this approach in the dynamic case constitutes
one of our perspectives.
Appendix A

The matrices M; D and Bl used in Eq. (11) are symmetric and
diagonal by blocs. For instance, with three harmonics, one has:

Bl ¼

Bl 0 0 0 0
0 Bl 0 0 0
0 0 Bl 0 0
0 0 0 Bl 0
0 0 0 0 Bl

2
6666664

3
7777775; D ¼

D 0 0 0 0
0 D 0 0 0
0 0 D 0 0
0 0 0 D 0
0 0 0 0 D

2
6666664

3
7777775;
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C ¼

0 0 0 0 0
0 0 C 0 0
0 C 0 0 0
0 0 0 0 2C
0 0 0 �2C 0

2
6666664

3
7777775; M ¼

0 0 0 0 0
0 M 0 0 0
0 0 M 0 0
0 0 0 4M 0
0 0 0 0 4M

2
6666664

3
7777775 ð27Þ

The matrix BnlðUÞ used in Eq. (10) corresponds to the product of two
vectors A and B, written in the form of series given in Eq. (10). For
instance, with H = 3, the product A(t) � B(t) results in:

AB ¼ a0b0 þ 1
2

a1
c b1

c þ a1
s b1

s þ a2
c b2

c þ a2
s b2

s

� �
þ a0b1

c þ a1
c b0 þ 1

2
a1

c b2
c þ a1

s b2
s þ a2

c b1
c þ a2

s b1
s

� �	 

cosðxtÞ

þ a0b1
s þ a1

s b0 þ 1
2

a1
c b2

s � a1
s b2

c � a2
c b1

s þ a2
s b1

c

� �	 

sinðxtÞ

þ a0b2
c þ a2

c b0 þ 1
2

a1
c b1

c � a1
s b1

s

� �	 

cosð2xtÞ

þ a0b2
s þ a2

s b0 þ 1
2

a1
c b1

s þ a1
s b1

c

� �	 

sinð2xtÞ

ð28Þ

The vector B can be put in as a factor, and the last equation can be
written as follows:

AB0

AB1
c

AB1
s

AB2
c

AB2
s

2
66666664

3
77777775
¼

a0 1
2 a1

c
1
2 a1

s
1
2 a2

c
1
2 a2

s

a1
c a0 þ 1

2 a2
c

1
2 a2

s
1
2 a1

c
1
2 a1

s

a1
s

1
2 a2

s a0 � 1
2 a2

c � 1
2 a1

s
1
2 a1

c

a2
c

1
2 a1

c � 1
2 a1

s a0 0
a2

s
1
2 a1

s
1
2 a1

c 0 a0

2
6666664

3
7777775�

b0

b1
c

b1
s

b2
c

b2
s

2
66666664

3
77777775
ð29Þ

Injecting (29) in (7) and applying harmonic balance, one finds, for
H = 3, the matrix BnlðUÞ as follows:

BnlðUÞ ¼

BnlðU0Þ Bnl
1
2 U1

c

� �
Bnl

1
2 U1

s

� �
Bnl

1
2 U2

c

� �
Bnl

1
2 U2

s

� �
Bnl U1

c

� �
Bnl U0 þ 1

2 U2
c

� �
Bnl

1
2 U2

s

� �
Bnl

1
2 U1

c

� �
Bnl

1
2 U1

s

� �
Bnl U1

s

� �
Bnl

1
2 U2

s

� �
Bnl U0 � 1

2 U2
c

� �
Bnl � 1

2 U1
s

� �
Bnl

1
2 U1

c

� �
Bnl U2

c

� �
Bnl

1
2 U1

c

� �
Bnl � 1

2 U1
s

� �
BnlðU0Þ 0

Bnl U2
s

� �
Bnl

1
2 U1

s

� �
Bnl

1
2 U1

c

� �
0 BnlðU0Þ

2
6666666666664

3
7777777777775

Note that BnlðUÞ is not a symmetric matrix; its blocs are functions of
the Bnl(U) defined in (3), it can be computed easily for any number
of harmonics.

Here the unknown vector (10) is arranged according to harmon-
ics blocs i (i = 0, H � 1). In order to reduce the number of elements
stored in the matrices, after discretization, the displacement vector
is organized in the following form:

q ¼ q0
c1;q

1
c1;q

1
s1; . . . ;qi

c1;q
i
s1; . . . ; qH�1

s1 ;q0
c2; . . . ;qH�1

s2 ; . . . ;q0
cj ; . . . ;qH�1

sj|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
t qj

; . . . ;q0
cm; . . . ;qH�1

sm

2
664

3
775

T

where j is the degree of freedom (j = 1, m). This leads, with for in-
stance 726 degrees of freedom and H = 3, to decrease the number
of terms saved in the tangent operator Kt by 80%.
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