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Discrete Mathematics
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aIRCCyN, École centrale de Nantes, 1 rue de la Noë, 44321 Nantes, France.
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Abstract

We introduce the notion of a topological fixed point in Boolean Networks: a fixed point of Boolean network F is said
topologic if it is a fixed point of every Boolean network with the same interaction graph as the one of F. Then, we char-
acterize the number of topological fixed points of a Boolean network according to the structure of its interaction graph.

Résumé

Points fixes topologiques dans les réseaux booléens. Nous introduisons la notion de point fixe topologique dans les
réseaux booléens : un point fixe d’un réseau booléen F est dit topologique s’il est un point fixe de tous les réseaux
booléens ayant le même graphe d’interaction que F. Ensuite, nous caractérisons le nombre de points fixes topologiques
d’un réseau booléen en fonction de la structure de son graphe d’interaction.

1. Introduction

We are interested by the relationships between the stable states and the topology of Boolean networks. On one
side, the dynamics of a Boolean network with n components is usually described by the successive iterations of a map
F from {0, 1}n to itself. The stable states of the network then correspond to the fixed points of F. On the other side,
the topology of the network is often described by an interaction graph G that can be deduced from F. The vertices
correspond to the network components, and the edges, which are directed and signed, describe causal relationships in
terms of activations and inhibitions between components.

Boolean networks have been applied in many area, especially for modeling gene networks (see, for instance,
the work of Kauffman [4, 5] and Thomas [7, 8]). The relationships between G and the fixed points of F are of
particular interest in this context: fixed points have often biological meanings (e.g. stable patterns of gene expressions
corresponding to particular cellular functions) [5, 8, 6], and the first reliable informations obtained when biologists
study gene networks are often represented in terms of interaction graphs [3].

In this note, we focus on the fixed points of F that only depend on G, and we says that these are the topological
fixed points of F. Topological fixed points of F can be seen as “robust” fixed points in the sense that they remain
fixed points after any perturbation of F that does affect the interaction graph G of the network. As main result, we
characterize the number of topological fixed points of F according to the structure of G. This characterization uses
and generalizes a theorem of Aracena, Demongeot and Goles [1, 2].

2. Definitions

Interaction graph. An n-interaction graph G is a directed graph on {1, . . . , n} in which each arc ji (from j to i) is
either positive, negative or unsigned. The set of positive, negative and unsigned arcs of G is denoted by G +, G −, and
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G 0, respectively. The set of positive (resp. negative, unsigned) predecessors of a vertex i is G +
i = { j | ji ∈ G +} (resp.

G −i = { j | ji ∈ G −}, G 0
i = { j | ji ∈ G 0}). The set of signed predecessors of i is G +

i ∪ G −i . An undirected path of G is
a sequence of p ≥ 1 vertices i0i1 . . . ip such that ikik+1 or ik+1ik is an arc of G , 0 ≤ k < p. Such a path joins i0 and ip,
and is a cycle if i0 = ip. An undirected path without unsigned arc is signed. A signed undirected path is positive if it
contains an even number of negative arcs, and negative otherwise. G is connected if there exists an undirected path
joining each pair of distinct vertices. A connected component of G is a maximal subset C of vertices with the property
that G has an undirected path joining each pair of distinct vertices taken in C. We denote by G̃ the n-interaction
graph that we obtain by removing the unsigned arcs of G . Formally, G̃ is the n-interaction graph such that G̃ + = G +,
G̃ − = G − and G̃ 0 = ∅.

Topological fixed point. Consider a Boolean map

F = ( f1, . . . , fn) : {0, 1}n → {0, 1}n, x = (x1, . . . , xn) 7→ F(x) = ( f1(x), . . . , fn(x)).

The discrete derivative of fi with respect to the variable x j is the map fi j : {0, 1}n → {−1, 0, 1} defined by:

fi j(x) = fi(x1, . . . , x j−1, 1, x j+1, . . . , xn) − fi(x1, . . . , x j−1, 0, x j+1, . . . , xn) (i, j = 1, . . . , n).

The interaction graph of F is the n-interaction graph G(F) defined by: for i, j = 1, . . . , n, there exists an arc ji if
fi j , 0, and this arc is positive if fi j ≥ 0, negative if fi j ≤ 0, and unsigned otherwise (that is, if fi j is somewhere
positive and somewhere negative). Note that fi j , 0 if and only if the value of fi depends on the value of x j. A point
x ∈ {0, 1}n is a fixed point of F if F(x) = x, and x is a topological fixed point of F if it is a fixed point of every map
H : {0, 1}n → {0, 1}n such that G(H) = G(F).

Admissible interaction graph. We say that an n-interaction graph G is admissible if there exists F : {0, 1}n → {0, 1}n

such that G(F) = G . If G is admissible, we say that x ∈ {0, 1}n is a topological fixed point of G if x is a fixed point
of every map F : {0, 1}n → {0, 1}n such that G(F) = G . So x is a topological fixed point of F if and only if x is a
topological fixed point of G(F).

Boolean operations. We set 0 = σ−(0) = σ+(1) = 1; 1 = σ−(1) = σ+(0) = 0; and x = (x1, x2, . . . , xn). A sum of
Boolean variables is always a Boolean sum (1 + 1 = 1), and the sum modulo 2 is denoted by ⊕. By convention, the
empty product is 1 and the empty sum is 0.

3. Results

Let F be a map from {0, 1}n to itself such that G(F) has no unsigned arc. We say that G(F) has the property P if
G(F) is connected, if each vertex of G(F) has a predecessor, and if G(F) has no undirected negative cycle. Aracena,
Demongeot and Goles [2, 1] proved a theorem that can be stated as follows with our notations:

If G(F) has the property P, then there exists x ∈ {0, 1}n such that x and x are fixed points of F.
An easy unmentioned consequence of their constructive proof (that we use and extend here) is that x and x are
actually topological fixed points of F, and that no other topological fixed point exists. So, given an n-interaction
graph G without unsigned arcs (such a graph is always admissible, cf. Remark 4.2 below), we have the following:

If G has the property P, then G has exactly two topological fixed points, and these are of the form x, x.
In the following, we show that the converse of this slightly stronger version of the theorem of Aracena et al is true:

If G has exactly two topological fixed points, then these are of the form x, x, and G has the property P.
The two above statements are in fact contained in the following theorem, which provides a characterization of the
number of topological fixed points of any admissible interaction graph:

Theorem 3.1. Let G be an admissible n-interaction graph.
(1) Let p be the number of connected components of G̃ . If each vertex of G has a predecessor and at most one

unsigned predecessor, and if G has no undirected negative cycle, then G has exactly 2p topological fixed points.
Otherwise, G has 0 topological fixed point.

(2) If x is a topological fixed point of G , then x is also a topological fixed point of G .
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Remark 3.2. If G has m arcs, then the number of connected components of G̃ can be computed in O(n + m), and the
presence of an undirected negative cycle in G can be checked with the same complexity. So following Theorem 3.1,
the number of topological fixed points of G can be computed in O(n + m).

4. Proof of Theorem 3.1

We begin with a basic lemma on unsigned arcs.

Lemma 4.1. Let G be an n-interaction graph. If G is admissible, then every vertex of G with a unique unsigned
predecessor has at least two signed predecessors.

Proof – Suppose that G is admissible, and that G has a vertex i with a unique unsigned predecessor, say k. Then, for
each F : {0, 1}n → {0, 1}n such that G(F) = G , there exists x, y ∈ {0, 1}n such that:

0 = fi(x1, . . . , xk−1, 0, xk+1, . . . , xn) < fi(x1, . . . , xk−1, 1, xk+1, . . . , xn) = 1,
1 = fi(y1, . . . , yk−1, 0, yk+1, . . . , yn) > fi(y1, . . . , yk−1, 1, yk+1, . . . , yn) = 0.

So the value of fi depends on the value of at least one variable x j, j , k, and it is easy to see that if fi only depends on
xk and x j, then j is another unsigned predecessor of i, a contradiction. �

Remark 4.2. This necessary condition for admissibility is also sufficient. (Indeed, if each vertex of G with a unique
unsigned predecessor has at least two signed predecessors, then it is easy to see that G is the interaction graph
of the map F defined by: (1) for each i without unsigned predecessor, fi(x) =

∑
j∈G +

i
x j +
∑

j∈G −i
x j; (2) for each i

with a unique unsigned predecessor k, fi(x) = xk σ
s1 (xl1 ) + xk σ

s2 (xl2 ) +
∑

j∈G +
i \{l1,l2}

+
∑

j∈G −i \{l1,l2}
x j, where l1 ∈ G s1

i
and l2 ∈ G s2

i are two signed predecessors of i; (3) for each i with p ≥ 2 unsigned predecessors k1, . . . , kp, fi(x) =∑
1≤q<p(xkq ⊕ xkq+1 ) +

∑
j∈G +

i
x j +
∑

j∈G −i
x j.)

The main lemma follows.

Lemma 4.3. Let G be an admissible n-interaction graph. A point α ∈ {0, 1}n is a topological fixed point of G if and
only if (1) every vertex of G has a predecessor and at most one unsigned predecessor, and (2) α j = αi for all ji ∈ G +,
and α j , αi for all ji ∈ G −.

Proof – (Sufficient condition) Let F : {0, 1}n → {0, 1}n be such that G(F) = G , and let us show that α is a fixed point
of F. Suppose, by contradiction, that there exists a vertex i such that fi(α) , αi. If i has no unsigned predecessor,
we set X = {x | fi(x) = αi}; since i has a predecessor, fi is not constant, so X is not empty. If i has a unique unsigned
predecessor, say k, we set X = {x | fi(x) = αi, xk = αk}; since k is an unsigned predecessor of i, for all a, b ∈ {0, 1},
there exists x such that fi(x) = a and xk = b, so X is not empty. Let x be a point of X minimizing the Hamming
distance d(x, α), that is, the number of j ∈ {1, . . . , n} such that x j , α j. Since fi(x) , fi(α), there exists j such that
x j , α j, and, by construction, j is not an unsigned predecessor of i. Consider the point y such that y j = x j = α j and
yl = xl for every vertex l , j. We have d(y, α) = d(x, α) − 1. So y < X, and we deduce that fi(y) , fi(x) = αi. So
fi j(x) > 0 if αi = x j, and fi j(x) < 0 if αi , x j. Since j is not an unsigned predecessor of i, and since x j , α j, we
deduce that either ji ∈ G + and αi , α j, or ji ∈ G − and αi = α j, a contradiction. So fi(α) = αi for all vertex i.

(Necessary condition) Suppose that α is a topological fixed point of G . We will show that conditions (1) and (2) hold
for an arbitrary given vertex i. Let us say that hi : {0, 1}n → {0, 1} is admissible if there exists F : {0, 1}n → {0, 1}n

such that fi = hi and G(F) = G . So if hi is admissible, then hi(α) = αi.
Suppose that i has p ≥ 2 unsigned predecessors k1, . . . , kp. Consider the four following maps from {0, 1}n to {0, 1}:

h1
i (x) =

∏
1≤q<p(xkq ⊕ xkq+1 ) ·

∏
j∈G +

i
x j ·
∏

j∈G −i
x j, h3

i (x) =
∑

1≤q<p(xkq ⊕ xkq+1 ) +
∑

j∈G +
i

x j +
∑

j∈G −i
x j,

h2
i (x) =

∏
1≤q<p(xkq ⊕ xkq+1 ) ·

∏
j∈G +

i
x j ·
∏

j∈G −i
x j, h4

i (x) =
∑

1≤q<p(xkq ⊕ xkq+1 ) +
∑

j∈G +
i

x j +
∑

j∈G −i
x j.

It is easy to see that hr
i is admissible for r = 1, 2, 3, 4. So hr

i (α) = αi for r = 1, 2, 3, 4. But if h1
i (α) = 1 then h2

i (α) = 0,
and if h3

i (α) = 0 then h4
i (α) = 1. We deduce that h1

i (α) , h2
i (α) or h3

i (α) , h4
i (α), a contradiction. So i has at most one

unsigned predecessor. So we have the two following cases.
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Case 1: the vertex i has no unsigned predecessor. Consider the two following maps from {0, 1}n to {0, 1}:

h1
i (x) =

∏
j∈G +

i
x j ·
∏

j∈G −i
x j, h2

i (x) =
∑

j∈G +
i

x j +
∑

j∈G −i
x j.

It is easy to see that h1
i and h2

i are admissible, so h1
i (α) = h2

i (α) = αi. If i has no predecessor, then h1
i (α) = 1 and

h2
i (α) = 0, a contradiction. So i has a predecessor, and condition (1) holds for i. We now prove that the condition (2)

holds too. Suppose that ji ∈ G +. If αi = 1 then h1
i (α) = 1 thus α j = 1, and if αi = 0 then h2

i (α) = 0 thus α j = 0. So in
both cases, α j = αi. We prove similarly that α j , αi for every ji ∈ G −.

Case 2: the vertex i has a unique unsigned predecessor k. It is sufficient to prove that condition (2) holds. By
Lemma 4.1, i has at least two signed predecessors, say l1 ∈ G s1

i and l2 ∈ G s2
i . Consider the four following maps:

h1
i (x) = xk σ

s1 (xl1 ) + xk σ
s2 (xl2 ) +

∑
j∈G +

i \{l1,l2}
x j +
∑

j∈G −i \{l1,l2}
x j,

h2
i (x) = xk σ

s2 (xl2 ) + xk σ
s1 (xl1 ) +

∑
j∈G +

i \{l1,l2}
x j +
∑

j∈G −i \{l1,l2}
x j,

h3
i (x) = (xk + σs1 (xl1 ))(xk + σs2 (xl2 ))

∏
j∈G +

i \{l1,l2}
x j
∏

j∈G −i \{l1,l2}
x j,

h4
i (x) = (xk + σs2 (xl2 ))(xk + σs1 (xl1 ))

∏
j∈G +

i \{l1,l2}
x j
∏

j∈G −i \{l1,l2}
x j.

It is easy to see that hr
i is admissible for r = 1, 2, 3, 4. So hr

i (α) = αi for r = 1, 2, 3, 4. For all j ∈ (G +
i ∪G −i )\ {l1, l2}, we

prove, as in the first case, that α j = αi if ji ∈ G + and α j , αi if ji ∈ G −. Then, if αi = 0 we have h1
i (α) = h2

i (α) = 0, and
we deduce that σs1 (αl1 ) = σs2 (αl2 ) = 0. If αi = 1 then h3

i (α) = h4
i (α) = 1, and we deduce that σs1 (αl1 ) = σs2 (αl2 ) = 1.

So σs1 (αl1 ) = σs2 (αl2 ) = αi in both cases, and so the condition (2) holds for all the signed predecessors of i. �

Remark 4.4. The condition (2) is equivalent to the condition “every undirected path of G̃ joining j and i is positive
if α j = αi, and negative if α j , αi”. As a consequence, if G has a topological fixed point, then G̃ and G have no
undirected negative cycle.

Remark 4.5. We deduce from Lemma 4.3 that if each vertex of G has at most one unsigned predecessor, then α is a
topological fixed point of G if and only if α is a topological fixed point of G̃ .

The second part of Theorem 3.1 is an immediate consequence of Lemma 4.3. To prove the first part, we need a
last lemma.

Lemma 4.6. Let G be an admissible n-interaction graph. If G̃ is connected, if each vertex of G has a predecessor
and at most one unsigned predecessor, and if G has no undirected negative cycle, then G has exactly 2 topological
fixed points.

Proof – For each vertex i , 1, let P1i be an undirected path of G̃ joining 1 and i (G̃ is connected). Let α ∈ {0, 1}n

be defined by: α1 = 0, αi = 0 if P1i is positive, and αi = 1 otherwise (2 ≤ i ≤ n). If ji ∈ G + and α j , αi, then, by
definition, P1 j and P1i have opposite signs. So these paths, together with the positive arc ji, form an undirected
negative cycle, a contradiction. We prove similarly that if ji ∈ G − then α j , αi. Consequently, according to
Lemma 4.3, α and α are topological fixed points of G . Consider a point β , α, α. Then there exists i, j such
that βi = αi and β j , α j. Let P be an undirected path of G̃ joining j and i (G̃ is connected). According to Remark 4.4,
P is positive if and only if α j = αi. So P is positive if and only if β j , βi, and according to the same remark, β is not
a topological fixed point of G . �

Suppose that G̃ has p connected components, and suppose that G has the following property P′: each vertex
of G has a predecessor and at most one unsigned predecessor, and G has no undirected negative cycle. Then, each
connected component of G̃ induces an interaction graph that satisfies the conditions of the previous lemma, and that
has thus exactly two topological fixed points. It is then clear that G̃ has exactly 2p topological fixed points, and we
deduce from Remark 4.5 that G has also 2p topological fixed points. If G does not satisfy the property P′, following
Lemma 4.3 and Remark 4.4, G has 0 topological fixed point. This completes the proof of Theorem 3.1.
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