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ESTIMATE OF THE PRESSURE WHEN ITS GRADIENT
IS THE DIVERGENCE OF A MEASURE. APPLICATIONS

Marc Briane1 and Juan Casado-Dı́az2

Abstract. In this paper, a W−1,N′
estimate of the pressure is derived when its gradient is the

divergence of a matrix-valued measure on R
N , or on a regular bounded open set of R

N . The proof is
based partially on the Strauss inequality [Strauss, Partial Differential Equations: Proc. Symp. Pure
Math. 23 (1973) 207–214] in dimension two, and on a recent result of Bourgain and Brezis [J. Eur.
Math. Soc. 9 (2007) 277–315] in higher dimension. The estimate is used to derive a representation
result for divergence free distributions which read as the divergence of a measure, and to prove an
existence result for the stationary Navier-Stokes equation when the viscosity tensor is only in L1.
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1. Introduction

The estimate of the pressure is crucial for the mathematical analysis of incompressible fluid flow. We refer
to [14,15,17,20,21], for a general study of the problem. In particular, applying the distributional de Rham’s
theorem [10] to the framework of Sobolev spaces, one has the classical result (see, e.g., [20] for the case m = 1,
r = 2, and its extension in [1]):

Theorem 1.1. Let Ω be a bounded Lipschitz-continuous connected open subset of R
N , N ≥ 2, let m be a

nonnegative integer, and let r ∈ (1,∞), with conjugate exponent r′ := r
r−1 . Then, for any distribution F ∈

W−m,r(Ω)N satisfying
〈F,Φ〉 = 0, ∀Φ ∈ C∞

c (Ω)N , with div (Φ) = 0, (1.1)
there exists a unique p ∈ W−m+1,r(Ω)/R such that F = ∇p. Moreover, there exists a constant C > 0 which
only depends on Ω, m, r, such that

‖p‖W−m+1,r(Ω)/R ≤ C ‖∇p‖W−m,r(Ω)N . (1.2)

For instance, the previous estimate is a straightforward consequence of the fact (see, e.g., [3]) that any function
ϕ ∈ Wm−1,r′

0 (Ω) (Lr′
(Ω) if m = 1) with zero Ω-average, is the divergence of a vector-valued function Φ ∈
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Wm,r′
0 (Ω)N satisfying

‖Φ‖
W m,r′

0 (Ω)N ≤ C ‖ϕ‖W m−1,r′ (Ω). (1.3)

These estimates are strongly connected to the Calderón-Zygmund inequality (see Thm. 1.2) which only holds
for r ∈ (1,∞). Then, the natural question is to know if estimate (1.2) remains valid for r = 1. In this critical
case, the (badly defined) space W−1,1(Ω)N has to be regarded as the set of the divergence of the matrix-valued
Radon measures on Ω.

This question is motivated by the study of the pressure for the Stokes or Navier-Stokes equation (see Sect. 3),
respectively for the incompressible elasticity, in a multi-fluid with high-contrast viscosity μ, respectively in a
multi-phase material with high-contrast rigidity, which is assumed to be only in L1. Under this assumption the
stress tensor (i.e. the product of μ by the strain tensor) also belongs to L1, which makes delicate the estimate
of the pressure since its gradient is expressed as the divergence of the stress tensor. Note that in the framework
of homogenization theory the heterogeneous media with high-contrast phases may have various degenerate
macroscopic behaviors (see, e.g., [2,8,9,13,16,18] and the references therein). For example, the homogenization
of the Stokes problem [7] is partly based on a pressure estimate for a very specific bi-fluid arranged along very
thin cylinders with high viscosity, which leads to an effective nonlocal Brinkman law.

In a more general context our purpose is to give an estimate of the pressure p when ∇p is the divergence
of a matrix-valued measure μ ∈ M(Ω)N×N . To this end, taking the Curl operator to eliminate the pressure p
we are led to estimate the measure μ assuming that its divergence is curl free. We then obtain an estimate
of the measure μ − 1

N tr (μ) IN in the space W−1,N ′
(Ω)N×N . This provides an estimate of ∇ (p− 1

N tr (μ)
)

in W−2,N ′
(Ω)N . Therefore, using the classical estimate (1.2) with r = N ′, we get an estimate of the pressure

p− 1
N tr (μ) in W−1,N ′

(Ω).
First, the estimate of the pressure is obtained in the whole space R

N (see Thm. 2.1). Then, interior estimates
are derived in the case of a bounded open set of R

N (see Thm. 2.7). Finally, boundary estimates are proved
in the case of a regular bounded open Ω of R

N (see Thm. 2.8). Contrary to the classical estimate (1.2) which
holds if Ω is only Lipschitz-continuous, here we need a C3-regularity of Ω, due to the change of variables we use
in the second-order operator Curl (Div) around the boundary ∂Ω (see Lem. 2.11 whose proof is thereby rather
delicate).

The proof of the pressure estimate in the whole space is very sensitive to the dimension. In dimension two the
key ingredient is the Strauss inequality [19] which permits to bound the LN ′

-norm of a vector-valued function
by the L1-norm of its symmetrized gradient. However, since the algebra of the kernel of Curl (Div) is much
more complicated in dimension three, we use an alternative approach which avoids partially tedious algebraic
computations. This approach is based on a result due to Bourgain and Brezis [4], which states that there exists
a constant CN only depending on N , such that any divergence free vector-valued function f ∈ L1(RN )N satisfies

‖D (Γ ∗ f) ‖LN′(RN )N×N ≤ CN ‖f‖L1(RN )N , (1.4)

where Γ is the fundamental solution of the Laplace operator in R
N . Estimate (1.4) and various extensions [6,22]

have remarkable applications to linear elliptic pde’s. In particular, they allow to obtain generalizations of the
Strauss inequality (see [4], Thm. 25), which establishes a connection with our two-dimensional approach of the
pressure estimate. In higher dimension we use another extension of estimate (1.4) (see inequality (2.19)).

Therefore, the previous analysis can be regarded as a new application of [4] for dimension greater than
two, the two-dimensional case being treated by a more elementary approach. As a consequence of the pressure
estimate we can also answer to the starting question. Indeed, we obtain an extension of the classical Theorem 1.1
to r = 1, m = 1. More precisely, we prove a representation result for any distribution F ∈ D′(Ω)N which is
the divergence of a measure μ ∈ M(Ω)N×N , and satisfies (1.1) (see Thm. 2.2 if Ω = R

N , and Thm. 2.9 if Ω
is a regular bounded open set of R

N ). Actually, the representative pressure p such that F = ∇p, splits into a
distribution in W−1,N ′

(Ω) and a measure in M(Ω), the norm of each one of the two components being bounded
by the norm of μ.
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Finally, we give an application of the W−1, N ′
pressure estimate to fluid mechanics. We prove the existence

of a solution of the Navier-Stokes equation in a C3-regular bounded open set Ω of R
N , when the symmetric

tensor-valued viscosity only belongs to L1(Ω)N2×N2
. Moreover, we get an estimate of the stress tensor in the

space W−1,N ′
(Ω)N×N (see Thm. 3.1).

Notations and recalls

• (e1, . . . , eN ) denotes the canonic basis of R
N , N ≥ 2.

• B(0, r) denotes the ball in R
N centered at the origin and of radius r, and |B(0, r)| its Lebesgue measure.

• IN denotes the unit matrix of R
N×N , and tr denotes the trace of a matrix in R

N×N .
• The first-order derivative with respect to the variable xi is denoted ∂i, and the second-order derivative

with respect to the variables xi, xj is denoted ∂2
ij .

• For any u : R
N −→ R

n, u = (u1, . . . , un), Du := (∂jui)1≤i≤n,1≤j≤N , E(u) := 1
2

(
Du+DuT

)
, D2u =(

∂2
jkui

)
1≤i≤n,1≤j,k≤N

, and for n = N , Curl (u) := DuT −Du.

• For any μ : R
N −→ R

N×N , Div (μ) :=
(∑N

j=1 ∂jμij

)
1≤i≤N

.

• For any integer k ≥ 1 and any r ∈ (1,∞), Ŵ−k,r(RN ) denotes the subspace of the dual space
W−k,r(RN ) =

(
W k,r′

(RN )
)′, consisting in sums of partial derivatives of order k of functions in Lr(RN ),

and endowed with the norm

‖f‖Ŵ−k,r(RN ) := inf
{∣∣〈f, ϕ〉∣∣ : ϕ ∈ C∞

c (RN ), with ‖Dkϕ‖Lr′(RN )Nk = 1
}
.

Note that for a bounded open set Ω of R
N , the corresponding space Ŵ−k,r(Ω) and W−k,r(Ω) agree as

a consequence of the Poincaré inequality (see, e.g., [5], Chap. 9).
• c denotes a positive constant which may vary from line to line.

Along the paper we will use convolutions with the fundamental solution of the Laplace equation Γ defined by

Γ(x) :=

⎧⎪⎪⎨
⎪⎪⎩

−1
N(N − 2) |B(0, 1)| |x|N−2

if N > 2

log |x|
2π

if N = 2,
for x ∈ R

N \ {0}. (1.5)

First of all, recall the Calderón-Zygmund inequality (see, e.g., [11], Thm. 9.9):

Theorem 1.2 (Calderón-Zygmund inequality). Let Ω be a bounded open set of R
N , and let r ∈ (1,∞). Then,

for any f ∈ Lr(RN ), with compact support in Ω, there exist two constants CΩ > 0 and C > 0, such that Γ ∗ f
belongs to W 2,r(Ω), with

‖Γ ∗ f‖W 2,r(Ω) ≤ CΩ ‖f‖Lr(RN ) and ‖D2Γ ∗ f‖Lr(RN )N×N ≤ C ‖f‖Lr(RN ), (1.6)

and C does not depend on Ω.

From the second inequality of (1.6) (the so-called Calderón-Zygmund inequality), we deduce that for any
f ∈ Lr(RN ), with r ∈ (1,∞), and any sequence fn with compact support and strongly converging to f in
Lr(RN ), the convolution D2Γ ∗ f is well defined by the limit

D2Γ ∗ f := lim
n→∞D2Γ ∗ fn strongly in Lr(RN )N×N , (1.7)
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which is independent of the sequence fn. In particular we have ΔΓ ∗ f = f . The definition (1.7) combined
again with the Calderón-Zygmund inequality provides the following Calderón-Zygmund estimates in the spaces
Ŵ−k,r(RN ):

Corollary 1.3 (Calderón-Zygmund estimates). Let k be a nonnegative integer and let r ∈ (1,∞). Then, there
exists a constant C > 0 such that the following estimates hold

∀ f ∈ Ŵ−k,r(RN ),

⎧⎪⎪⎨
⎪⎪⎩

‖D2Γ ∗ f‖Ŵ−k,r(RN )N×N ≤ C ‖f‖Ŵ−k,r(RN ) if k ≥ 0,

‖DΓ ∗ f‖Ŵ−k+1,r(RN )N ≤ C ‖f‖Ŵ−k,r(RN ) if k ≥ 1,

‖Γ ∗ f‖Ŵ−k+2,r(RN ) ≤ C ‖f‖Ŵ−k,r(RN ) if k ≥ 2.

(1.8)

Actually, estimates (1.8) will be used for distributions f with compact support (see the proofs of Lem. 2.5
and Thm. 2.7) so that the equalities DΓ ∗ f = Γ ∗Df = D (Γ ∗ f) hold.

2. The main results

2.1. The case of the whole space

In this section we prove that any matrix-valued measure on R
N , with zero trace, the divergence of which is

curl free belongs actually to Ŵ−1,N (RN )N×N . This result has an interesting consequence on the representation
of vector-valued distributions which vanish on the set of divergence free functions of C∞

c (RN )N . The main
result is the following:

Theorem 2.1. Let μ be a matrix-valued measure in M(RN )N×N which satisfies

Curl
(
Div (μ)

)
= 0 in D′(RN )N×N . (2.1)

Then, there exists a constant CN > 0 only depending on N , such that μ − 1
N tr (μ) IN belongs to Ŵ−1,N(RN )

and ∥∥μ− 1
N tr (μ) IN

∥∥
Ŵ−1,N′ (RN )N×N ≤ CN ‖μ‖M(RN )N×N . (2.2)

As a consequence of Theorem 2.1 we obtain the following result which can be used in fluid mechanics to
prove the existence of the pressure when the viscosity term is known to be the divergence of a measure.

Theorem 2.2. Consider a distribution F ∈ D′(RN )N such that

〈F, ϕ〉 = 0, ∀ϕ ∈ C∞
c (RN )N , with div (ϕ) = 0, (2.3)

and such that there exists M > 0 satisfying

〈F, ϕ〉 ≤M ‖Dϕ‖L∞(RN )N×N , ∀ϕ ∈ C∞
c (RN )N . (2.4)

Then, there exist a distribution p ∈ Ŵ−1,N ′
(RN ), a measure q ∈ M(RN ) and a constant C > 0 such that

F = ∇(p+ q) in D′(RN )N , (2.5)

‖p‖Ŵ−1,N′(RN ) + ‖q‖M(RN) ≤ CM. (2.6)
Moreover, if F satisfies

〈F, ϕ〉 ≤M inf
{‖Dϕ− h IN‖L∞(RN ) : h ∈ C0

0 (RN )
}
, ∀ϕ ∈ C∞

c (RN ), (2.7)

then we can take q = 0.
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Corollary 2.3. There exists a constant C > 0 such that for any distribution g ∈ D′(RN ) satisfying ∇g = Div (μ)
in D′(RN ), with μ ∈ M(RN )N×N , there exists a constant R ∈ R such that

g − 1
N tr (μ) −R ∈ Ŵ−1,N ′

(RN ), with
∥∥g − 1

N tr (μ) −R
∥∥

Ŵ−1,N′(RN )
≤ C ‖μ‖M(RN)N×N . (2.8)

Proof of Theorem 2.1. Using a regularization argument we can assume that μ belongs to C∞(RN )N×N . We
distinguish the case N = 2 from the case N > 2.

The case N = 2. By (2.1) there exists p ∈ C∞(R2) defined up to an additive constant, such that

Div
(
μ− 1

2 tr (μ) I2 − p I2
)

= 0.

Therefore, there exists a current function z = (z1, z2) ∈ C∞(R2)2 such that

μ− 1
2 tr (μ) I2 − p I2 = Dz J, where J :=

(
0 −1
1 0

)
, (2.9)

which can read as ⎧⎪⎪⎨
⎪⎪⎩

μ11 − 1
2 tr (μ) − p = ∂2z1

μ12 = − ∂1z1
μ21 = ∂2z2

μ22 − 1
2 tr (μ) − p = − ∂1z2,

or equivalently,

E(z) =
( −μ12

1
2 (μ11 − μ22)

1
2 (μ11 − μ22) μ21

)
and p =

1
2

(∂1z2 − ∂2z1) . (2.10)

The matrix-valued E(z) belongs to L1(R2)2×2 and its norm is bounded by that of μ. Hence, by the extension
of the Korn inequality due to Strauss [19] there exist a constant c > 0 independent of z and a z-dependent rigid
motion r(x) = αJx+ a, with α ∈ R and a ∈ R

2, such that

‖z − r‖L2(R2)2 ≤ c ‖E(z)‖L1(R2)2×2 ≤ C ‖μ‖L1(R2)2×2 . (2.11)

On the other hand, since Dr J = −α I2, we have by (2.10)

p I2 +Dz J = 1
2

(
∂1(z − r)2 − ∂2(z − r)1

)
I2 +D(z − r)J.

This combined with (2.9) implies that

μ− 1
2 tr (μ) I2 = 1

2

(
∂1(z − r)2 − ∂2(z − r)1

)
I2 +D(z − r)J. (2.12)

Finally, (2.12) and (2.11) yield the desired estimate (2.2) for N = N ′ = 2.

The case N > 2. Assumption (2.1) can read as

∀ i, j ∈ {1, . . . , N}, ∂j

(
N∑

k=1

∂k μik

)
− ∂i

(
N∑

k=1

∂k μjk

)
= 0 in D′(RN ),

or equivalently,
∀ i, j ∈ {1, . . . , N}, div

[
(∂j μik − ∂i μjk)1≤k≤N

]
= 0 in D′(RN ). (2.13)

At this point we need the following result which is a simple adaptation to second-order derivatives of an estimate
due to Van Schaftingen [23] (Thm. 1.5). For the reader’s convenience it is proved in Appendix A.1.
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Lemma 2.4. Let g ∈ L1(RN )N×N the first column of which is zero, i.e. gi1 = 0 for any i = 1, . . . , N , and
define the distribution f := Div (g). Assume that f is divergence free. Then, there exists a constant C > 0 only
depending on N , such that

∀u1 ∈ W 2,N (RN ),
∣∣∣∣
∫

RN

f1 u1 dx
∣∣∣∣ ≤ C ‖g‖L1(RN )N×N ‖D2u1‖LN(RN )N×N . (2.14)

Let i, j, k0 be three distinct elements of {1, . . . , N}. Define g = (g1, . . . , gN) ∈ L1(RN )N×N by gk :=
μik ej − μjk ei, and f = (f1, . . . , fN ) by fk := div (gk) = ∂j μik − ∂i μjk, for k = 1, . . . , N . We have gkk0 = 0
for any k = 1, . . . , N , and by (2.13) div (f) = 0. Hence by Lemma 2.4 (replacing 1 by k0) fk0 belongs to
Ŵ−2,N ′

(RN ), and there exists a constant c > 0 only depending on N , such that

‖fk0‖Ŵ−2,N′(RN ) ≤ c ‖μ‖L1(RN )N×N .

Since fk0 = div (gk0) with gk0 ∈ L1(RN )N×N , we deduce from Theorem 4’ of [4] that there exists a constant
c > 0 only depending on N , such that

‖gk0‖Ŵ−1,N′(RN )N ≤ c
(
‖gk0‖L1(RN )N + ‖fk0‖Ŵ−2,N′(RN )

)
≤ c ‖μ‖L1(RN )N×N .

Recall that gk0 = μik0 ej − μjk0 ei, the integers i, j, k0 being distinct. Then, noting that (since N ≥ 3) for any
indices i = k there exists an index j which is different from i and k, the previous estimate implies that there
exists a constant C > 0 only depending on N , such that

∀ i = k ∈ {1, . . . , N}, ‖μik‖Ŵ−1,N′(RN )N ≤ C ‖μ‖L1(RN )N×N . (2.15)

Now, let us estimate μii − μjj for i = j. By (2.1) we have

0 =
N∑

k=1

∂k (∂j μik − ∂i μjk)

= ∂i (∂j μii − ∂i μji) + ∂j (∂j μij − ∂i μjj) +
N∑

k �=i,j

∂k (∂j μik − ∂i μjk)

= ∂2
ij (μii − μjj) + ∂2

jj μij − ∂2
ii μji +

N∑
k �=i,j

(
∂2

jk μik − ∂2
ik μjk

)
.

This combined with the estimate (2.15) satisfied by μkl for any k = l, implies that there exists a constant c > 0
only depending on N , such that∥∥ ∂2

ij (μii − μjj)
∥∥

Ŵ−3,N′ (RN )
≤ c ‖μ‖L1(RN )N×N . (2.16)

On the other hand, making the change of variables

μ′(x′) := μ(x), with

⎧⎨
⎩

x′i := xi + xj

x′j := xi − xj

x′k := xk if k = i, j,

and ∂′i denoting the derivative with respect to the variable x′i, we obtain that

∂2
ij (μii − μjj) = ∂′ii

(
μ′

ii − μ′
jj

)− ∂′jj

(
μ′

ii − μ′
jj

)
=

N∑
k=1

∂′kk u
′
kk, (2.17)
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where ⎧⎨
⎩

u′i := μ′
ii − μ′

jj

u′j := μ′
jj − μ′

ii

u′k := 0 if k = i, j.
(2.18)

By (2.18), (2.17), (2.16) we have u′ = (u′1, . . . , u
′
N) ∈ L1(RN )N and

∑N
k=1 ∂

′
kk u

′
k ∈ Ŵ−3,N ′

(RN ). Then, by
virtue of the Corollary 24’ of [4] there exists a constant c > 0 only depending on N , such that

‖u′‖Ŵ−1,N′(RN )N ≤ c

(
‖u′‖L1(RN )N +

∥∥∥∑N
k=1 ∂

′
kk u

′
k

∥∥∥
Ŵ−3,N′ (RN )

)
, (2.19)

which combined with (2.16) and (2.17) gives

‖u′‖Ŵ−1,N′(RN )N ≤ c ‖μ‖L1(RN )N×N .

Therefore, taking into account the definition (2.18) of u′ the previous estimate implies that there exists a
constant C > 0 only depending on N , such that

∀ i, j ∈ {1, . . . , N}, ‖μii − μjj‖Ŵ−1,N′(RN )N ≤ C ‖μ‖L1(RN )N×N . (2.20)

Finally, noting that

μii − 1
N

tr (μ) =
1
N

N∑
j=1

(μii − μjj) ,

estimates (2.15) and (2.20) yield the desired result (2.2) �

Proof of Theorem 2.2. If F = (F1, . . . , FN ) is a distribution which satisfies (2.4), then an easy application of
the Hahn-Banach theorem shows that there exists μ ∈ M(RN)N×N such that

F = Div (μ) in D′(RN )N , with ‖μ‖M(RN )N×N ≤M. (2.21)

If F also satisfies (2.3), then for any ϕ ∈ C∞(RN ) and any i, j ∈ {1, . . . , N}, we have

〈(
Curl (F )

)
ij
, ϕ
〉

= 〈F,Φ〉 = 0,

where Φ = (Φ1, . . . ,ΦN ) ∈ C∞
c (RN )N is the divergence free function defined by

Φi := ∂jϕ, Φj := − ∂iϕ, Φk := 0 if k = i, j.

Thus, condition (2.3) implies that Curl (F ) = 0. Moreover, by (2.21) we get that

Curl
(
Div (μ)

)
= 0 in D′(RN )N×N .

Therefore, applying Theorem 2.1 it follows that ν := μ− 1
N tr (μ) IN belongs to Ŵ−1,N ′

(RN ) and satisfies

‖ν‖Ŵ−1,N′(RN ) ≤ c ‖μ‖M(RN)N×N . (2.22)

On the other hand, taking into account that

Div (ν) = Div (μ) −∇ ( 1
N tr (μ)

)
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we get that, analogously to μ, ν satisfies

Curl
(
Div (ν)

)
= 0 in D′(RN )N×N . (2.23)

We need the following result which is proved at the end of the section:

Lemma 2.5. Let k be a positive integer and let r ∈ (1,∞). Then, there exists a constant C > 0 which only
depends on k, r and N , such that any distribution F ∈ Ŵ−k,r(RN )N can be decomposed as

F = ∇p+G in D′(RN )N , (2.24)

where p ∈ Ŵ−k+1,r(RN ) and G ∈ Ŵ−k,r(RN )N satisfy

div (G) = 0 in D′(RN ), (2.25){ ‖p‖Ŵ−k+1,r(RN )N ≤ C ‖div (F ) ‖Ŵ−k−1,r(RN )

‖G‖Ŵ−k,r(RN )N ≤ C ‖Curl (F ) ‖Ŵ−k−1,r(RN )N×N .
(2.26)

Applying Lemma 2.5 to F := Div (ν) ∈ Ŵ−2,N ′
(RN ), by (2.23), (2.22) there exists a distribution p ∈

Ŵ−1,N ′
(RN ) such that

∇p = Div (ν) in D′(RN )N , with ‖p‖Ŵ−1,N′(RN ) ≤ c ‖ν‖Ŵ−1,N′(RN ) ≤ C ‖μ‖M(RN )N×N .

Then, using that

F = Div (μ) = Div (ν) + ∇ ( 1
N tr (μ)

)
= ∇ (p+ 1

N tr (μ)
)

in D′(RN )N ,

and by (2.21) ∥∥ 1
N tr (μ)

∥∥
M(RN )

≤ ‖μ‖M(RN)N×N ≤M,

we obtain (2.6) just taking q := 1
N tr (μ).

In order to conclude the proof of Theorem 2.2, we remark that condition (2.7) is equivalent to say that the
functional

F̃ :
{
Dϕ : ϕ ∈ C∞

c (RN )N
}
/
{
hIN : h ∈ C0

0 (RN )
} −→ R

defined by
F̃ [Dϕ] := 〈F, ϕ〉, ∀ϕ ∈ C∞

c (RN ),
(where [Dϕ] denotes the class corresponding toDϕ) is well defined and it is continuous with

{
Dϕ :ϕ∈C∞

c (RN )N
}

endowed with the uniform topology. By the Hahn-Banach theorem F̃ can be extended to a continuous functional
defined in

C0
0 (RN )N×N/

{
hIN : h ∈ C0

0 (RN )
}
,

still denoted by F̃ . Then, the functional defined by

ϕ ∈ C0
0 (RN )N×N �−→ F̃ [ϕ],

is a continuous linear mapping which vanishes on the space
{
hIN : h ∈ C0

0 (RN )
}
. Hence, there exists μ ∈

M(RN )N×N , with tr (μ) = 0, such that

〈F̃ , u〉 =
∫

RN

u : dμ, ∀u ∈ C0
0 (RN )N×N ,

which, by construction of F̃ , implies that F = −Div (μ). Now, applying the first part of the proof and taking
into account that tr (μ) = 0, we get that q = 0, which concludes the proof of Theorem 2.2. �
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Proof of Corollary 2.3. It is enough to remark that the equality ∇g = Div (μ) implies that the distribution
F = Div (μ) satisfies the conditions of Theorem 2.2. The proof of the theorem then shows that there exists
p ∈ Ŵ−1,N ′

(RN ) such that

∇ (p+ 1
N tr (μ)

)
= Div (μ) in D′(RN ), with ‖p‖Ŵ−1,N′(RN ) ≤ C ‖μ‖M(RM)N×N . (2.27)

On the other hand, the equality
∇ (p+ 1

N tr (μ)
)

= ∇g in D′(RN )N ,

implies the existence of a constant R ∈ R such that

p+ 1
N tr (μ) = g +R. (2.28)

From (2.27) and (2.28) we deduce (2.8). �

Remark 2.6. Lemma 2.5 proves in particular that a distribution F ∈ Ŵ−1,r(RN )N such that Curl (F ) = 0 in
D′(RN )N×N (this holds if F satisfies (2.3)) is the gradient of a function in Lr(RN ). This classical representation
permits to estimate the pressure in fluid mechanics. Theorem 2.2 extends this result to the case r = 1. The
proof of Lemma 2.5 below shows how the classical result is derived from the Calderón-Zygmund estimate, which
does not hold for r = 1. Some of the computations of this proof will be used in the next section.

Proof of Lemma 2.5. Let F be a distribution in Ŵ−k,r(RN )N . By definition (see Sect. 1) F read as

F =
∑

I∈{1,...,N}k

∂k
I fI , with fI ∈ Lr(RN )N .

Consider a sequence of functions ϕR ∈ C∞
c (RN ) such that ϕR = 1 in B(0, R), ϕR = 0 outside B(0, 2R) and

‖DjϕR‖L∞(RN )Nj ≤ Cj

Rj
, ∀ j ≥ 0, ∀R > 1.

Then, the distribution FR defined by

FR :=
∑

I∈{1,...,N}k

∂k
I

(
ϕRfI

)
,

has support in B(0, 2R) and strongly converges to F in Ŵ−k,r(RN )N as R tends to infinity.
Define the distribution pR by

pR := Γ ∗ div
(
FR
)

=
N∑

j=1

∂j

(
Γ ∗ FR

j

)
, (2.29)

where Γ is the fundamental solution of the Laplace operator defined by (1.5). Then, since Δ
(
Γ ∗ FR

)
= FR,

the vector-valued distribution GR := FR −∇pR satisfies

GR
i =

N∑
j=1

(
∂2

jj

(
Γ ∗ FR

i

)− ∂2
ij

(
Γ ∗ FR

j

) )

= −
N∑

j=1

∂jΓ ∗ (Curl
(
FR
) )

ij
, 1 ≤ i ≤ N.

(2.30)
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Hence, by the Calderón-Zygmund estimates (1.8) we get

{ ‖pR‖Ŵ−k+1,r(RN )N ≤ C ‖div
(
FR
) ‖Ŵ−k−1,r(RN )

‖GR‖Ŵ−k,r(RN )N ≤ C ‖Curl
(
FR
) ‖Ŵ−k−1,r(RN )N×N .

(2.31)

Moreover, by linearity the strong convergence of FR to F in Ŵ−k,r(RN )N ensures the existence of the limit p
of pR in Ŵ−k+1,r(RN ) and the limit G of GR in Ŵ−k,r(RN )N , which satisfy (2.24) and (2.26). Finally, it is
easy to deduce from the first equality of (2.30) that GR is divergence free, and hence that G satisfies (2.25). �

2.2. The case of a bounded open set

In this section we consider the case of a bounded open subset Ω of R
N . Thanks to the results of the previous

section we will prove local and global estimates for a measure μ ∈ M(Ω)N×N satisfying Curl
(
Div (μ)

)
= 0 in

D′(Ω)N×N . The corresponding results are given by the following theorems:

Theorem 2.7. Consider two bounded open sets ω, Ω of R
N , such that ω̄ ⊂ Ω. Then, there exists a constant

C > 0 which only depends on ω and Ω, such that any matrix-valued measure μ ∈ M(Ω)N×N , with
Curl

(
Div (μ)

)
= 0 in D′(Ω)N×N , satisfies

μ− 1
N tr (μ) IN ∈ W−1,N ′

(ω)N×N ,

with ∥∥μ− 1
N tr (μ) IN

∥∥
W−1,N′ (ω)N×N ≤ C ‖μ‖M(Ω)N×N . (2.32)

Theorem 2.8. Consider a bounded open set Ω of R
N , of class C3. Then, there exists a constant C > 0 such

that any matrix-valued measure μ ∈ M(Ω)N×N , with Curl
(
Div (μ)

)
= 0 in D′(Ω)N×N , satisfies

μ− 1
N tr (μ) IN ∈W−1,N ′

(Ω)N×N ,

with ∥∥μ− 1
N tr (μ) IN

∥∥
W−1,N′(Ω)N×N ≤ C ‖μ‖M(Ω)N×N . (2.33)

Theorems 2.7 and 2.8 imply the following local versions of Theorem 2.2 and Corollary 2.3, which provide
estimates for a distribution whose gradient is the divergence of a matrix-valued measure. For the sake of
simplicity we just state the global estimates which hold for a smooth open set. Local estimates are quite
similar. Since the proofs of the corresponding results follow the same ideas as the ones of the whole space case,
we do not give them. In particular, we use the classical result of Theorem 1.1 for r = N ′, which can be also
deduced from Lemma 2.5.

Theorem 2.9. Let Ω be a bounded connected open subset of R
N , of class C3. Consider a distribution F in

D′(Ω)N such that
〈F, ϕ〉 = 0, ∀ϕ ∈ C∞

c (Ω)N , with div (ϕ) = 0, (2.34)
and such that there exists a constant M > 0 satisfying

〈F, ϕ〉 ≤M ‖Dϕ‖L∞(Ω)N×N , ∀ϕ ∈ C∞
c (Ω)N . (2.35)

Then, there exist a distribution p ∈W−1,N ′
(Ω), a measure q ∈ M(Ω), and a constant C > 0 such that

F = ∇(p+ q) in D′(Ω)N , (2.36)

‖p‖W−1,N′(Ω) + ‖q‖M(Ω) ≤ CM. (2.37)
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Moreover, if F satisfies

〈F, ϕ〉 ≤M inf
{‖Dϕ− hI‖L∞(Ω) : h ∈ C0

0 (Ω)
}
, ∀ϕ ∈ C∞

c (Ω), (2.38)

then we can take q = 0.

Corollary 2.10. Let Ω be a bounded connected open subset of R
N , of class C3. There exists C > 0 such that

for any g ∈ D′(Ω) satisfying ∇g = Div (μ) in D′(Ω)N , with μ ∈ M(Ω)N×N , there exists a constant R ∈ R such
that

g − 1
N tr (μ) −R ∈ W−1,N ′

(Ω), with
∥∥g − 1

N tr (μ) −R
∥∥

W−1,N′(Ω)
≤ C ‖μ‖M(Ω)N×N .

Proof of Theorem 2.7. Along the proof we denote by C > 0 a generic constant which can change from line to
line and which only depends on ω and Ω.

Take two functions Φ,Ψ ∈ C∞
c (Ω) such that

Φ = Ψ = 1 in ω,
∫

Ω

Φ dx = 0,
∫

Ω

Ψ dx = 0. (2.39)

Let μ ∈ M(Ω)N×N under the assumptions of the theorem, and set

μ̄ :=

∫
Ω

Φ dμ∫
Ω

Φ dx
and μ̃ := Φ (μ− μ̄) + Ψ μ̄. (2.40)

We can assume that the matrix-valued measure μ̃ is defined in the whole space R
N , by taking μ̃ = 0 in R

N \Ω.
Then, we have

|μ̃| (RN \ Ω) = 0, μ̃ = μ in ω, ‖μ̃‖M(RN)N×N ≤ C ‖μ‖M(Ω)N×N , μ̃(Ω) = 0. (2.41)

Moreover, taking into account that Curl
(
Div (μ)

)
= 0, a direct computation yields

Curl
(
Div (μ̃)

)
= Curl

(
(μ− μ̄)∇Φ

)
+ ∇Φ ⊗ Div (μ) − Div (μ) ⊗∇Φ + ∇2Ψ μ̄T − μ̄∇2Ψ. (2.42)

Since M(Ω) is continuously embedded in W−1,r(Ω) for r ∈ (1, N), we deduce from (2.42) that Curl
(
Div (μ̃)

)
belongs to W−2,r(RN )N×N . More precisely, thanks to (2.41) it is easy to check that there exists a constant
C > 0 such that for any ϕ ∈ W 2,r′

(RN )N×N ,

〈
Curl

(
Div (μ̃)

)
, ϕ
〉 ≤ C ‖μ‖M(Ω)N×N ‖ϕ‖W 2,r′ (Ω)N×N

≤ C ‖μ‖M(Ω)N×N

(
‖ϕ‖Lr′(Ω)N×N + ‖D2ϕ‖Lr′ (Ω)N4

)
.

This implies that

Curl
(
Div (μ̃)

)
= g + h, with

{
g ∈ Lr(RN )N×N supp (g) ⊂ Ω̄ ⊂ U

h ∈ Ŵ−2,r(RN )N×N supp (h) ⊂ Ω̄ ⊂ U,
(2.43)

where U is a ball in R
N centered at the origin such that Ω̄ ⊂ U , and the norms of g and h are bounded by

‖μ‖M(Ω)N×N .
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Now, using that Γ is the fundamental solution of the Laplace operator we can check that the distribution p
and the vector-valued distribution u defined by

p :=
N∑

j=1

∂jΓ ∗ (Div (μ̃)
)
j

=
N∑

j,k=1

∂2
jkΓ ∗ μ̃jk, and (2.44)

ui :=
N∑

j=1

∂j (Γ ∗ Γ) ∗ (Curl
(
Div (μ̃)

))
ij
, 1 ≤ i ≤ N, (2.45)

are solutions of the Stokes problem

{
−Δu+ ∇p = Div (μ̃) in R

N

div (u) = 0 in R
N .

(2.46)

Taking the Curl operator in (2.46) we get that Du satisfies

Curl
(
Div (Du+ μ̃)

)
= 0 in D′(RN )N×N . (2.47)

Moreover, we deduce from (2.45) that

∂kui =
N∑

j=1

∂2
kj (Γ ∗ Γ) ∗ (Curl

(
Div (μ̃)

))
ij
. (2.48)

Therefore, by the inequality (2.43) combined with the Calderón-Zygmund estimates (1.6) (for g) and (1.8)
(for h), we obtain that Du belongs to Lr(U)N×N , with

‖Du‖Lr(U)N×N ≤ C ‖μ‖M(Ω)N×N . (2.49)

On the other hand, since Γ is a radial function, so is Γ∗Γ. Then, using the definition (1.5) of Γ and the Laplace
operator in cylindrical coordinates, we can solve the equation Δ (Γ ∗ Γ) = Γ in R

N as a first-order ordinary
differential equation of the variable |x|, which leads us to the following explicit formula for Γ ∗ Γ:

(Γ ∗ Γ) (x) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2N(N − 2)(N − 4) |B(0, 1)||x|N−4

if N = 2, 4

|x|2
8π

(log |x| − 1) if N = 2

−1
16 |B(0, 1)| log |x| if N = 4.

for x ∈ R
N \ {0} (2.50)

The expression (2.50) of Γ ∗ Γ allows us to derive the inequality

∣∣D5(Γ ∗ Γ)(x)
∣∣ ≤
⎧⎪⎪⎨
⎪⎪⎩

C

|x|N+1
if N > 2

C

|x|3 (1 + log |x|) if N = 2,
for x ∈ R

N \ {0}. (2.51)
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This combined with the first, third and fourth assertions in (2.41), implies that for any x /∈ U ,

∣∣ (∂4
ijkl (Γ ∗ Γ) ∗ μ̃mn

)
(x)
∣∣ =

∣∣∣∣
∫

Ω

(
∂4

ijkl (Γ ∗ Γ) (x− y) − ∂4
ijkl (Γ ∗ Γ) (x)

)
μ̃mn(y) dy

∣∣∣∣

≤

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C ‖μ‖M(Ω)N×N

(1 + |x|)N+1
if N > 2

C ‖μ‖M(Ω)N×N

(1 + |x|)3 log (2 + |x|) if N = 2.

(2.52)

Therefore, by (2.49) and by applying (2.52) to the expression (2.48) of Du, we get that Du belongs to
L1(RN )N×N , and

‖Du‖L1(RN )N×N ≤ C ‖μ‖M(Ω)N×N . (2.53)

By virtue of (2.47), the third assertion in (2.41) and (2.53), we can apply Theorem 2.1, which gives

Du+ μ̃− 1
N tr (Du+ μ̃) IN ∈ Ŵ−1,N ′

(RN )N×N ,

with ∥∥Du+ μ̃− 1
N tr (Du+ μ̃) IN

∥∥
Ŵ−1,N′(RN )N×N ≤ C ‖μ‖M(Ω)N×N .

This combined with μ̃ = μ in ω, (2.49) and the inequality (recall that 1 < r < N ′)

‖Du‖Ŵ−1,N′(Ω)N×N ≤ C ‖Du‖Lr(Ω)N×N ,

yields finally (2.32). �

Proof of Theorem 2.8. It is a simple consequence of Theorem 2.7 and the following result which provides esti-
mates near the boundary:

Lemma 2.11. Let Ω a bounded open set of R
N and let x0 ∈ ∂Ω. Assume that there exist r > 0, an open set Θ

of R
N , with x0 ∈ Θ, and a C3-diffeomorphism ψ from a neighborhood of B̄(0, r) onto an neighborhood of Θ̄

such that
ψ(0) = x0, ψ(B(0, r)) = Θ, ψ(B(0, r)+) = Θ ∩ Ω def= Θ+,

where B(0, r)+ denotes the upper half ball. Then, denoting Θ̃+ := ψ(B(0, r/2)+), there exists a constant C > 0
such that for any μ in M(Θ+)N×N , with Curl

(
Div (μ)

)
= 0 in Θ+, we have

μ− 1
N tr (μ) IN ∈ W−1,N ′

(Θ̃+), with
∥∥μ− 1

N tr (μ) IN
∥∥

W−1,N′(Θ̃+)
≤ C ‖μ‖M(Θ+)N . (2.54)

The proof of Lemma 2.11 which is rather technical is given in Appendix A.2. �

3. The Navier-Stokes equation with a viscosity in L1

In the section we consider a C3-regular bounded connected open subset Ω of R
N , and a fourth-order tensor-

valued function A ∈ L1(Ω)N4
such that for a.e. x ∈ Ω, A(x) maps the set of symmetric matrices R

N×N
s into

itself, it is symmetric, α-coercive for a given α > 0, and preserves the set of zero trace matrices, i.e.

∀ ξ, η ∈ R
N×N
s ,

{
A(x) ξ : η = A(x) η : ξ

A(x)ξ : ξ ≥ α |ξ|2, tr (ξ) = 0 ⇒ tr
(
A(x) ξ

)
= 0, a.e. x ∈ Ω. (3.1)
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Then, we have the following result:

Theorem 3.1. Let f ∈ H−1(Ω)N , N ≤ 4. Then, there exist a velocity u ∈ H1
0 (Ω)N , with

∫
Ω

AE(u) : E(u) dx <∞, AE(u) ∈W−1,N ′
(Ω)N×N ∩ L1(Ω)N×N , (3.2)

and a pressure p ∈ W−1,N ′
(Ω)/R (defined up to an additive constant) solutions of the Navier-Stokes equation

in the distributions sense {
−Div

(
AE(u)

)
+ (u · ∇)u+ ∇p = f in Ω

div (u) = 0 in Ω.
(3.3)

Moreover, there exists a constant CΩ > 0 only depending on Ω, such that the pressure p and the viscosity term
AE(u) satisfy the estimate

‖p‖W−1,N′(Ω)/R
+ ‖AE(u)‖W−1,N′(Ω)N×N ≤ CΩ ‖f‖H−1(Ω)N

(
α− 1

2 ‖A‖ 1
2

L1(Ω)N4 + α−2 ‖f‖H−1(Ω)N + 1
)
. (3.4)

Proof of Theorem 3.1. The proof is divided into three steps.

First step: Existence of the velocity. Let H be the functional space defined by

H :=
{
v ∈ H1

0 (Ω)N : div (v) = 0 in D′(Ω) and
∫

Ω

AE(v) : E(v) dx <∞
}
, (3.5)

endowed with the norm

‖v‖H :=
(∫

Ω

AE(v) : E(v) dx
) 1

2

, for v ∈ H. (3.6)

Let us prove that (H, ‖ · ‖
H

) is a Hilbert space. It is enough to check that H is complete for its norm. Let vn

be a Cauchy sequence in (H, ‖ · ‖
H

). Then, for any ε > 0, there exists Nε ∈ N such that

∀m,n ≥ Nε,

∫
Ω

A
(
E(vm) − E(vn)

)
:
(
E(vm) − E(vn)

)
dx < ε. (3.7)

Thanks to the α-coercivity of A (3.1) combined with the Korn inequality the sequence vn strongly converges
to some divergence free function v in H1

0 (Ω)N . This implies in particular that for any fixed m ∈ N, there
exists a subsequence of n still denoted by n, such that A (E(vm) − E(vn)) : (E(vm) − E(vn)) converges to
A (E(vm) − E(v)) : (E(vm) − E(v)) a.e. in Ω. Since this sequence is nonnegative, from Fatou’s lemma we
deduce that ∫

Ω

A
(
E(vm) − E(v)

)
:
(
E(vm) − E(v)

)
dx

≤ lim inf
n→∞

∫
Ω

A
(
E(vm) − E(vn)

)
:
(
E(vm) − E(vn)

)
dx ≤ ε, ∀m ≥ Nε.

(3.8)

Due to the arbitrariness of ε estimate (3.8) implies that both v ∈ H and the sequence vn converges to v in H .
Since the set of divergence free functions in C∞

c (Ω)N is clearly contained in the space H , the closure V of
this set in H :

V :=
{
v ∈ C∞

c (Ω)N : div (v) = 0 in D′(Ω)
}H

, (3.9)

also defines a Hilbert space.



1080 M. BRIANE AND J. CASADO-DÍAZ

Now, replacing the usual space of divergence free functions in H1
0 (Ω)N by the new Hilbert space V (3.9), we

can easily repeat the classical construction of a solution of the Navier-Stokes equation thanks to the Galerkin
method (see [12,14,15,20,21]) to obtain a velocity u ∈ V satisfying the variational formulation∫

Ω

(
AE(u) : E(ϕ) + (u · ∇) u · ϕ) dx = 〈f, ϕ〉H−1(Ω)N ,H1

0 (Ω)N , ∀ϕ ∈ V. (3.10)

More precisely, the function u is the weak limit in H of a divergence free sequence un in C∞
c (Ω)N which by

virtue of the Galerkin construction satisfies∫
Ω

AE(un) : E(un) dx = 〈f, un〉H−1(Ω)N ,H1
0 (Ω)N .

This combined with the lower semi-continuity of the Hilbert norm ‖ · ‖
H

in H , yields∫
Ω

AE(u) : E(u) dx ≤ 〈f, u〉H−1(Ω)N ,H1
0 (Ω)N . (3.11)

Moreover, since the symmetric bilinear form

(ξ, η) ∈ (R2×2
s )2 �−→ Aξ : η

is associated with a nonnegative quadratic form, the Cauchy-Schwarz inequality implies that for any symmetric
matrix ξ ∈ R

2×2
s , with |ξ| = 1,

|AE(u) : ξ| ≤ (Aξ : ξ)
1
2
(
AE(u) : E(u)

) 1
2 a.e. in Ω.

This combined with the inequality Aξ : ξ ≤ |A| |ξ|2, yields

|AE(u)| = sup
{ξ∈R

2×2
s : |ξ|=1}

|AE(u) : ξ| ≤ |A| 12 (AE(u) : E(u)
) 1

2 a.e. in Ω.

Now, using the Cauchy-Schwarz inequality for the integral and (3.11) we get

∫
Ω

|AE(u)| dx ≤
(∫

Ω

|A| dx
) 1

2
(∫

Ω

AE(u) : E(u) dx
) 1

2

<∞, (3.12)

hence AE(u) ∈ L1(Ω)N×N .

Second step: Estimate of the pressure. We take z ∈ H1
0 (Ω) solution of Δz = f in Ω. By Theorem 2.9 and

div (u) = 0 in Ω, there exists r ∈W−1,N ′
(Ω) + M(Ω) such that

Div (AE(u) − u⊗ u+Dz) = Div (AE(u)) − (u · ∇) u+ f = ∇r in D′(Ω)N . (3.13)

Moreover, since the assumptions on A and the fact that div (u) = 0 imply that tr (AE(u)) = 0, we can apply
Corollary 2.10 to deduce the existence of a constant c > 0 only depending on Ω and a constant R > 0 such that∥∥r + 1

N

(|u|2 − div (z)
)−R

∥∥
W−1,N′(Ω)

≤ c ‖AE(u) − u⊗ u+Dz‖L1(Ω)N×N . (3.14)

On the other hand, by (3.11), (3.12), the α-coerciveness of A, the Korn inequality, and the Sobolev embedding
of L2(Ω) into W−1,N ′

(Ω) and of H1
0 (Ω) into L4(Ω) (recall that N ≤ 4), we have for another constant c
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which only depends on Ω,

‖div (z) ‖W−1,N′(Ω) + ‖Dz‖L1(Ω)N×N ≤ c ‖f‖H−1(Ω)N , (3.15)

‖|u|2‖W−1,N′(Ω) + ‖u⊗ u‖L2(Ω)N×N ≤ c α−2 ‖f‖2
H−1(Ω)N , (3.16)

‖AE(u)‖L1(Ω)N×N ≤ c α− 1
2 ‖A‖ 1

2

L1(Ω)N4 ‖f‖H−1(Ω)N . (3.17)

Then, taking p := r − R, we get that (3.3) is satisfied and that

‖p‖W−1,N′(Ω) ≤ CΩ ‖f‖H−1(Ω)N

(
α− 1

2 ‖A‖ 1
2

L1(Ω)N4 + α−2 ‖f‖H−1(Ω)N + 1
)
. (3.18)

Third step: Estimate of AE(u). A straightforward consequence of (3.13) is that

Curl
(
Div (AE(u) − u⊗ u+Dz)

)
= 0 in D′(Ω)N×N .

Therefore, by virtue of Theorem 2.8 combined with estimates (3.15)–(3.18) we obtain (3.4), which concludes
the proof. �

A. Appendix

A.1. Proof of Lemma 2.4

The proof is based on the one of Theorem 1.5 in [23] (see also [22] for related results).
Using a regularization argument we can assume that g = (g1, . . . , gN) ∈ C∞

c (RN )N×N , where gj denotes the
j-th column of the matrix-valued g.

Let u = (u1, . . . , uN ) ∈ C∞
c (RN )N . We have∫
RN

f1(x)u1(x) dx =
∫

R

∫
RN−1

f1(x1, x
′)u1(x1, x

′) dx′dx1.

Consider ρ ∈ C∞
c

(
B(0, 1) ∩ R

N−1
)
, and define the mollifier ρε in R

N−1 by

ρε(x′) = ε1−N ρ

(
x′

ε

)
, for x′ = (x2, . . . , xN ) ∈ R

N−1, (A.1)

where the parameter ε > 0 will be chosen later as a function of the variable x1.
We have for a fixed x1 ∈ R, ∫

RN−1
f1(x1, x

′)u1(x1, x
′) dx′ = A1 +A2, (A.2)

where
A1 :=

∫
RN−1

f1(x1, x
′) (ρε ∗ u1)(x1, x

′) dx′,

A2 :=
∫

RN−1
f1(x1, x

′)
(
u1(x1, x

′) − (ρε ∗ u1)(x1, x
′)
)
dx′.

(A.3)

In order to estimate A1, note that for any x1 ∈ R, we have

0 =
N∑

j=2

∫
RN−1

∫ x1

−∞
∂j

(
gj(t, x′) · (ρε ∗ ∇x′u1)(x1, x

′)
)
dx′ = B1 +B2,
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where

B1 :=
N∑

j=2

∫
RN−1

∫ x1

−∞
∂j gj(t, x′) · (ρε ∗ ∇x′u1)(x1, x

′) dx′,

B2 :=
N∑

j=2

∫
RN−1

∫ x1

−∞
gj(t, x′) · ∂j (ρε ∗ ∇x′u1) (x1, x

′) dx′.

(A.4)

Let us estimate B1. Integrating by parts, and using that fj = div (gj) = divx′ (gj), we have

B1 =
N∑

j=2

∫
RN−1

∫ x1

−∞
∂j gj(t, x′) · ∇x′(ρε ∗ u1)(x1, x

′) dx′

= −
N∑

j=2

∫
RN−1

∫ x1

−∞
∂j

(
divx′ (gj)

)
(t, x′)(ρε ∗ u1)(x1, x

′) dx′

= −
N∑

j=2

∫
RN−1

∫ x1

−∞
∂j fj(t, x′) (ρε ∗ u1)(x1, x

′) dx′,

and since f is divergence free, we get

B1 =
∫

RN−1

∫ x1

−∞
∂1 f1(t, x′) (ρε ∗ u1)(x1, x

′) dx′

=
∫

RN−1
f1(x1, x

′) (ρε ∗ u1)(x1, x
′) dx′.

(A.5)

Let us now estimate B2. By using the Hölder inequality in R
N−1 with the exponents N,N ′, we have for any

j = 2, . . . , N ,

∣∣∣∣
∫

RN−1

∫ x1

−∞
gj(t, x′) · ∂j (ρε ∗ ∇x′u1) (x1, x

′) dt dx′
∣∣∣∣

≤
∫

RN−1

∫ x1

−∞
|gj(t, x′)| dt dx′ ‖∂j (ρε ∗ ∇x′u1)(x1, ·)‖L∞(RN−1)N−1

≤ c ε
1−N

N ‖gj‖L1(RN )N ‖D2
x′u1(x1, ·)‖LN (RN−1)(N−1)×(N−1) . (A.6)

This combined with (A.4) implies that

|B2| ≤ c ε
1−N

N

N∑
j=2

‖gj‖L1(RN )N×N‖D2
x′u1(x1, ·) ‖LN(RN−1)(N−1)×(N−1) . (A.7)

Since B1 +B2 = 0, and A1 = B1 by (A.5), we deduce from (A.7) the following estimate for A1

|A1| ≤
∣∣∣∣
∫

RN−1
f1(x1, x

′) (ρε ∗ u1)(x1, x
′) dx′

∣∣∣∣ ≤ c ε
1−N

N ‖g‖L1(RN )N×N ‖D2
x′u1(x1, ·)‖LN (RN−1)(N−1)×(N−1) . (A.8)



ESTIMATE OF THE PRESSURE WHOSE GRADIENT IS THE DIVERGENCE OF A MEASURE 1083

It remains to estimate A2. To this end, by the Morrey-Sobolev embedding in R
N−1 with Hölder exponent 1/N ,

we have

|A2| =
∣∣∣∣
∫

RN−1

(
divx′ (g1)

)
(x1, x

′)
(
u1(x1, x

′) − (ρε ∗ u1)(x1, x
′)
)
dx′
∣∣∣∣

=
∣∣∣∣
∫

RN−1
g1(x1, x

′) · (∇x′u1(x1, x
′) − (ρε ∗ ∇x′u1)(x1, x

′)
)
dx′
∣∣∣∣

≤ c ε
1
N ‖g1(x1, ·)‖L1(RN−1)N ‖D2

x′u1(x1, ·)‖LN (RN−1)(N−1)×(N−1) .

(A.9)

Taking into account (A.2), (A.8), (A.9), we have thus proved that for any x1 ∈ R,

∣∣∣∣
∫

RN−1
f1(x1, x

′)u1(x1, x
′) dx′

∣∣∣∣
≤ c
(
ε

1−N
N ‖g‖L1(RN )N + ε

1
N ‖g1(x1, ·)‖L1(RN−1)N

)
‖D2

x′u1(x1, ·)‖LN(RN−1)(N−1)×(N−1) . (A.10)

If ‖g1(x1, ·)‖L1(RN−1)N = 0, we take

ε :=
‖g‖L1(RN )N

‖g1(x1, ·)‖L1(RN−1)N

· (A.11)

Hence, we deduce from (A.10) that for any x1 ∈ R,

∣∣∣∣
∫

RN−1
f1(x1, x

′)u1(x1, x
′) dx′

∣∣∣∣ ≤ c ‖g‖ 1
N

L1(RN )N×N ‖g1(x1, ·)‖
1

N′
L1(RN−1)N ‖D2

x′u1(x1, ·)‖LN(RN−1)(N−1)×(N−1) .

(A.12)
Otherwise, we have ‖g1(x1, ·)‖L1(RN−1)N = 0. Then, making ε tend to infinity in (A.10) we obtain that (A.12)
still holds true.

Therefore, integrating (A.12) with respect to x1 and using Hölder’s inequality in R with exponents N ′, N , it
follows that ∣∣∣∣

∫
RN

f1 u1 dx
∣∣∣∣ ≤ C ‖g‖L1(RN )N×N ‖D2u1‖LN(RN )N×N , (A.13)

which concludes the proof.

A.2. Proof of Lemma 2.11

In the sequel any point of R
N reads as x = (x′, xN ), with x′ ∈ R

N−1 and xN ∈ R. The proof is divided into
three steps:

First step: Extensions by reflection. Consider a tensor-valued μ ∈ C∞(B̄(0, r)+)N×N such that

(
Curl

(
Div (μ)

))
ij

=
N∑

k,l=1

∂2
kl gijkl, in D′(B(0, r)+),

where the fourth-order tensor-valued function g is defined by

gijkl ∈ C∞(B̄(0, r)+
)
, gijkl = − gjikl, for i, j, k, l ∈ {1, . . . , N}.

We now extend μ and g to B̄(0, r) thanks to reflections so that the transmission conditions hold through the
boundary of B(0, r)+. This needs to define the extended values to B(0, r)− by a three-points interpolation
(here, xN/3, xN/2, xN ) of the values in B(0, r)+. A tedious computation we omit leads us to the following
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expressions of the extensions of μ and g for (x′, xN ) ∈ B(0, r)− and 1 ≤ i, j, k, l ≤ N − 1,

μij(x′, xN ) := 3μij(x′,−xN/3) − 8μij(x′,−xN/2) + 6μij(x′,−xN),

μiN (x′, xN ) := −9μiN (x′,−xN/3) + 16μiN (x′,−xN/2) − 6μiN (x′,−xN )
μNj(x′, xN ) := −μNj(x′,−xN/3) + 4μNj(x′,−xN/2) − 6μNj(x′,−xN )

μNN(x′, xN ) := 3μNN(x′,−xN/3) − 8μNN(x′,−xN/2) + 6μNN(x′,−xN )

gijkl(x′, xN ) := 3 gijkl(x′,−xN/3) − 8 gijkl(x′,−xN/2) + 6 gijkl(x′,−xN )
gijNl(x′, xN ) := − 9 gijNl(x′,−xN/3) + 16 gijNl(x′,−xN/2) − 6 gijNl(x′,−xN)

gijkN (x′, xN ) := −9 gijkN (x′,−xN/3) + 16 gijkN (x′,−xN/2) − 6gijkN (x′,−xN )

gijNN (x′, xN ) := 27 gijNl(x′,−xN/3) − 32 gijNl(x′,−xN/2) + 6 gijNl(x′,−xN )
giNkl(x′, xN ) := − giNkl(x′,−xN/3) + 4 giNkl(x′,−xN/2) − 6 giNkl(x′,−xN )

giNNl(x′, xN ) := 3 giNNl(x′,−xN/3) − 8 giNNl(x′,−xN/2) + 6 giNNl(x′,−xN)
giNkN (x′, xN ) := 3 giNkN (x′,−xN/3) − 8 giNkN (x′,−xN/2) + 6 giNkN (x′,−xN )

giNNN (x′, xN ) := − 9 giNNN(x′,−xN/3) + 16 giNNN(x′,−xN/2) − 6 giNNN(x′,−xN ).
Then, the matrix-valued measure μ and the functions gijkl satisfy

(
Curl

(
Div (μ)

))
ij

=
N∑

k,l=1

∂2
kl gijkl in D′(B(0, r)).

Second step: A W−1,N ′
-estimate in the upper half ball. Let us prove that for any s > 1 and any

r > 0, there exists a constant C > 0 such that for any μ ∈ M(B(0, r)+)N×N satisfying Curl
(
Div (μ)

) ∈
W−2,s(B(0, r)+), we have

μ− 1
N tr (μ) IN ∈W−1,N ′

(B(0, r/2)+)N×N ,

with ∥∥μ− 1
N tr (μ) IN

∥∥
W−1,N′(B(0,r/2)+)

≤ C
(‖μ‖M(B(0,r)+)N×N + ‖Curl

(
Div (μ)

)‖W−2,s(B(0,r)+)

)
. (A.14)

To this end, given μ ∈ M(B(0, r)+)N×N , with Curl
(
Div (μ)

) ∈ W−2,s(B(0, r)+)N×N , we consider functions
gijkl ∈ Ls(B(0, r)+), 1 ≤ i, j, k, l ≤ N , such that

gijkl = − gjikl in D′(B(0, r)+),

(
Curl

(
Div (μ)

))
ij

=
N∑

k,l=1

∂2
kl gijkl in D′(B(0, r)+),

⎛
⎝ N∑

k,l=1

‖gijkl‖s
Ls(B(0,r)+)

⎞
⎠

1
s

=
∥∥∥(Curl

(
Div (μ)

))
ij

∥∥∥
W−2,s(B(0,r)+)

.

For 0 < h < r/8, define the regularizations μh and gh
ijkl in C∞(B̄(0, 3r/4)+) of μ and gijkl, by

μh(x) :=
1
hN

∫
B((x′,xN+h),h)

ρ

(
x′ − y′

h
,
xN − yN + h

h

)
dμ(y), for x ∈ B̄(0, 3r/4)+,

gh
ijkl(x) =

1
hN

∫
B((x′,xN+h),h)

ρ

(
x′ − y′

h
,
xN − yN + h

h

)
gijkl(y) dy, for x ∈ B̄(0, 3r/4)+,
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where ρ denotes a mollifier in C∞
c (B(0, 1)), with integral 1. Then, μh and the functions gh

ijkl are related by the
equality (

Curl
(
Div
(
μh
)) )

ij
=

N∑
k,l=1

∂2
kl g

h
ijkl in D′(B(0, 3r/4)+).

Using the first step with r replaced by 3r/4, we can construct extensions of μh and gh
ijkl to B(0, 3r/4), still

denoted by μh and gh
ijkl, such that

‖μh‖M(B(0,3r/4)) ≤ C ‖μh‖M(B(0,3r/4)+) ≤ C ‖μ‖M(B(0,r)+),

‖gh
ijkl‖Ls(B(0,3r/4)) ≤ C ‖gh

ijkl‖Ls(B(0,3r/4)+) ≤ C ‖gijkl‖Ls(B(0,r)+),

(
Curl

(
Div
(
μh
)) )

ij
=

N∑
k,l=1

∂2
kl g

h
ijkl in D′(B(0, 3r/4)).

Using the linearity and the continuity of the regularization and of the extension operators, we obtain extensions
of μ and gijkl to B(0, 3r/4), still denoted by μ and gijkl, such that

‖μ‖M(B(0,3r/4)) ≤ C ‖μ‖M(B(0,r)+), ‖gijkl‖Ls(B(0,3r/4)) ≤ C ‖gijkl‖Ls(B(0,r)+),

(
Curl

(
Div (μ)

))
ij

=
N∑

k,l=1

∂2
kl gijkl in D′(B(0, 3r/4)).

Now, consider ϕ ∈ C∞
c (B(0, 3r/4)) such that ϕ = 1 in B(0, r/2). Given t ∈ (1, N ′) with t ≤ s, the matrix-

valued function ϕμ satisfies Curl (Div (ϕμ)) ∈W−2,t(B(0, 3r/4))N×N , with

‖Curl (Div (ϕμ)) ‖W−2,t(B(0,3r/4))N×N ≤ C
(‖μ‖M(B(0,r)+)N×N + ‖Curl

(
Div (μ)

)‖W−2,s(B(0,r)+)N×N

)
. (A.15)

On the other hand, consider the solutions u and p of the Stokes problem{
−Δu+ ∇p = −Div (ϕμ) in R

N

div (u) = 0 in R
N ,

which are given by

p = −
N∑

j,k=1

∂2
jkΓ ∗ (ϕμjk), ui =

N∑
j=1

∂j (Γ ∗ Γ) ∗ (Curl (Div (ϕμ))
)
ij
, for i ∈ {1, . . . , N}.

Then, proceeding as in the proof of Theorem 2.7 for deriving (2.49) thanks to the Calderón-Zygmund esti-
mates (1.6) and (1.8), and using (A.15) it follows that Du is in Lt(B(0, 3r/4))N×N , with

‖Du‖Lt(B(0,3r/4))N×N ≤ C ‖Curl (Div (ϕμ)) ‖W−2,t(B(0,3r/4))N×N

≤ C
(‖μ‖M(B(0,r)+)N×N + ‖Curl

(
Div (μ)

)‖W−2,s(B(0,r)+)N×N

)
. (A.16)

Moreover, by the Stokes equation ϕμ−Du clearly satisfies

Curl (Div (ϕμ−Du)) = 0 in D′(B(0, 3r/4))N×N .

Therefore, applying Theorem 2.7 with the open sets Ω := B(0, 3r/4) and ω := B(0, r/2), and using that ϕ = 1 in
B(0, r/2), tr (Du) = div (u) = 0 and (A.16), we get that μ−Du− 1

N tr (μ) IN belongs to W−1,N ′
(B(0, r/2))N×N ,
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with∥∥μ−Du− 1
N tr (μ) IN

∥∥
W−1,N′ (B(0,r/2))N×N ≤ C ‖ϕμ−Du‖M(B(0,3r/4))N×N

≤ C
(‖μ‖M(B(0,r)+)N×N + ‖Curl

(
Div (μ)

)‖W−2,s(B(0,r)+)N×N

)
.

Finally, using the embedding of Lt(B(0, r)) into W−1,N ′
(B(0, r)) (t < N ′), we deduce estimate (A.14) from the

last inequality again with (A.16).

Third step: Proof of Lemma 2.11. Let μ be in M(Θ+)N , with Curl
(
Div (μ)

)
= 0 in D′(Θ+)N×N . Denoting

by μi, 1 ≤ i ≤ N , the rows of μ, consider the matrix-valued measure μ̂ ∈ M(B(0, r)+) with rows μ̂i, defined by

∫
B(0,r)+

Φ̂(y) · dμ̂i(y) =
N∑

j=1

∫
Θ+

Φ̂(ψ−1(x)) · ∂yiψj(ψ−1(x))
(
D(ψ−1)(x)

)T
det
(
D(ψ−1)(x)

)
dμj(x), (A.17)

for any Φ̂ ∈ C0
0 (B(0, r)+)N . Note that if μ ∈ L1(Θ+), we simply have

μ̂i(y) =
N∑

j=1

∂yiψj(y)
(
(Dψ)−1(y)

)T
μj(ψ(y)), a.e. y ∈ B(0, r)+.

Thanks to the C3-regularity of ψ and to the assumption on μ, an easy computation leads to

Curl (Div (μ̂)) = A(y) μ̂+B(y)Dμ̂,

where A ∈ C0(B̄(0, r)+)N2×N2
and B ∈ C1(B̄(0, r)+)N2×N3

. Therefore, for any s ∈ (1, N ′), Curl (Div (μ̂))
belongs to W−2,s(B(0, r)+), with

‖Curl (Div (μ̂)) ‖W−2,s(B(0,r)+)N×N ≤ C ‖μ̂‖M(B(0,r)+)N×N .

Then, from the second step we deduce that μ̂− 1
N tr (μ̂) IN belongs to W−1,N ′

(B(0, r/2)+), with

∥∥μ̂− 1
N tr (μ̂) IN

∥∥
W−1,N′ (B(0,r/2)+)N×N ≤ C ‖μ̂‖M(B(0,r)+)N×N . (A.18)

Finally, similarly to (A.17) we have

∫
Θ̃+

Φ(x) · d (μi − 1
N μiiei

)
(x)

=
N∑

j=1

∫
B(0,r/2)+

Φ(ψ(y)) · ∂xi(ψ
−1)j(ψ(y))

(
Dψ(y)

)T det (Dψ(y)) d
(
μ̂j − 1

N μ̂jjej

)
(y),

for any Φ ∈ C0
0 (Θ̃+)N . This combined with (A.18) implies that μ − 1

N tr (μ) IN belongs to W−1,N ′
(Θ̃+)N×N

and that (2.54) holds. �
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