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Flow of low pressure gas through dual-porosity media

J. Chastanet - P. Royer - J.-L. Auriault

Abstract Using the theory of homogenization we derive macroscopic models for
describing flow of gas at low pressure in dual-porosity media. The case of a fractured
porous medium is under consideration for the study, and the existence of a repre-
sentative elementary volume that consists of open connected fractures surrounded
by porous matrix blocks is assumed. The local flow is governed by either Klinken-
berg’s law or Knudsen'’s diffusion law in the matrix while either a non-slip flow or
a slip flow occurs in the fractures. Six new models are derived by homogenization,
which are compared to the three models which were obtained for Darcy’s regime in
an earlier work. Each of these nine models is characterized by its macroscopic flow
regime and by the type of macroscopic behavior it describes. Besides Darcy’s and
Klinkenberg’s macroscopic flow regimes, a transition regime between Klinkenberg’s
and Knudsen’s regimes is identified. The types of macroscopic behaviors include a
dual and a single porosity description and an intermediate behavior that describes
a single-porosity behavior, but in which the porosity of the entire fractured porous
medium is accounted for.
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1 Introduction

Darcy’s law may break down for flows of gas at low pressure in porous media: in
low permeable media, the gas permeability Ky of a porous sample can be greater
than its liquid permeability K. This phenomenon is called Klinkenberg’s effect and is
described by the so-called Klinkenberg’s law, which was first formulated by Adzumi
(1937a,1937b), later on by Klinkenberg (1941)

Ky =K (1 + g) , (1.1)

where p is the gas pressure and b > 0 is the Klinkenberg factor which depends on
the medium properties, as well as to a lesser degree, on the nature of gas. Physi-
cally, Klinkenberg’s effect is significant in any situation where the mean free path
of gas molecules A is comparable with the pore size [, which leads to a non-neg-
ligible Knudsen number Kn = A/l, =~ 1. Beyond, i.¢ at pressures for which the
mean free path is much greater than the pore-size (Kn > 1), a diffusive trans-
port proportional to the pressure gradient is observed. The phenomenon is called
Knudsen diffusion. It has firstly been investigated by Knudsen (1909), who con-
sidered the flow of a highly rarefied gas flow in a cylindrical conduct. Later on,
Derjaguin (1946) proposed the following transport equation for its description in a
porous medium

Vv=-—Lvp, (12)

where V denotes the gas filtration velocity and Dy represents the Knudsen diffusion
coefficient, which strongly depends on pore geometry. For the flow of gas at low
pressure in porous media, the flow regime is therefore conditioned by the Knudsen
number and the regimes observed at the sample scale are the consequence of distinct
physics of flow at the pore scale (Table 1). Darcy’s flow regime (Kn < 1) results from
a pore-scale non-slip flow, described by the adherence condition on the fluid-solid
boundary. When Klinkenberg’s effect occurs, then significant molecular collisions are
with the pore wall rather than with other gas molecules. Thus, the molecules on the
fluid/solid boundary are no longer static and a wall-slip flow occurs: the local flow
velocity is a non-vanishing velocity on the pore walls. A tensorial form of Klinken-
berg’s law has been obtained by homogenization in (Skjetne and Auriault 1999),
by starting from a local slip flow. When Knudsen’s effect occurs, the gas is then so
highly rarefied that molecule-molecule collisions become negligible with regard to
molecule-wall collisions. As a result, gas flow at the pore scale can no longer be
described by means of a continuum model. This case is beyond the scope of the pres-
ent work, but we shall anyhow mention the work of Charrier and Dubroca (2003), who

Table 1 Gas flow regimes and their domains of validity

Kn-values Kn 1 Kn~1 Kn>»1

Sample scale regime  Darcy’s law Klinkenberg's effect Knudsen diffusion
Pore scale regime Stokes flow, wall ~ Stokes flow, wallslip flow Knudsen molecular flow,
non-slip flow no continuous description




uspcaled Boltzmann’s equation to obtain a continuum macroscopic diffusion law. The
present work is concerned with the occurrence of Klinkenberg’s or Knudsen’s effects
in dual-porosity media, i.e. in media that consist of two interacting porous systems of
distinctly different fluid transfer properties. The practical applications are important
as accurate predictions of gas flow through dual-porosity media concern many areas:
petroleum engineering, geothermal reservoir engineering, civil engineering and mate-
rial engineering for the forming of paper or other fibrous materials. In the sequel, we
consider the most widely used example of dual-porosity structure, namely that of a
fractured porous medium. It is composed of an interconnected network of fractures
and blocks of porous medium. Basically, the physics of flow in fractured porous media
is such that the fluid preferentially flows in the fractures, while it is mainly stored in
the porous blocks. In the study, we assume that a representative elementary volume
(abbreviated r.e.v.) of the fractured porous medium can be defined. The objective
is to derive mathematical models by upscaling the gas flow description at the r.e.v.
scale. In the present work we consider either Klinkenberg’s or Knudsen'’s local flow
regimes in the porous matrix and we then compare the results with those obtained
in Darcy’s regime by (Royer and Auriault 1994). The method used for upscaling the
local descriptions is the homogenization method for periodic structures—also called
method of multiple scales —that has been introduced by (Bensoussan et al. 1978) and
(Sanchez-Palencia 1980). As any continuum approach, the method of homogeniza-
tion for periodic structures is based upon the fundamental assumption of separation
of scales. The second assumption made is the periodicity of the medium. The advan-
tage of the method is that, thanks to the periodicity, no preliminary assumption is
required on the form of the macroscopic models. It should also be underlined that
the periodicity has no impact on the form of the equivalent macroscopic models. In
the present study, we follow the methodology introduced by (Auriault 1991). The
upscaling process consists of several steps from writing the physical description at the
r.e.v. scale to finding the macroscopic model. The reader may refer to (Auriault 2005)
for a detailed presentation of the methodology and to (Royer et al. 2002) for a brief
introduction. Based on the use of dimensionless numbers, this approach provides a
means for determining the domains of validity of derived models and is particularly
well-adapted for the description of dual-porosity media (Auriault and Boutin 1992,
1993).

The paper is organized as follows. After describing the medium under consideration
for the study, we then present the results obtained in Darcy’s regime by (Royer and
Auriault 1994). Next, we focus on the derivation of the macroscopic models in Klin-
kenberg’s and Knudsen'’s regime. A first paragraph sets out to determine which local
fracture flow regimes should be considered when either Klinkenberg’s or Knudsen’s
effects occur in the porous matrix. The corresponding dimensionless local descrip-
tions are then presented and a magnitude analysis of the dimensionless parameters
is performed. This step allows pointing out any couplings that conduct to different
macroscopic models as well as situations for which the macroscopic model does not
exist. Application of the homogenization procedure leads to the macroscopic models
which are presented and compared to the models obtained in Darcy’s regime. Finally,
we globally analyze the results obtained in Darcy’s, Klinkenberg’s and Knudsen’s
regimes by examining the types of macroscopic behaviors and the macroscopic flow
regimes.



2 Medium under consideration

As any continuum modeling approach, the method of multiple scales is based upon
the fundamental assumption of separation of scales. Furthermore, the method also
requires the condition of periodicity. We thus consider a periodic fractured porous
medium of macroscopic characteristic size L. We further denote the period by Q, its
scale length by /, and we formulate the condition of separation of scales as

!
=— 1. 2.1
£ I < (2.1)

Within the periodic cell, we denote by Qf the fracture’s domain, by 2, the porous
matrix domain and by I' their common boundary, as depicted in Fig. 1. The fractures
are assumed to be connected, whereas the connectivity of the microporous system is
not required.

Using the two characteristic lengths, / and L, and the physical space variable, X,

we define two dimensionless space variables: V= ‘)f and ¥ = { If the condition of
scparauon of scalesis satisfied (¢ < 1), then ¥ and % appear as twoindependentspace
vanables y is the microscopic space variable and describes the local scale, whereas
X is the macroscopic variable. As a consequence, the unknown field quantities being
consxdered (e.g. pressure, velocity, ...) are, a priori, functions of both space variables
¥ and X. Furthermore, invoking the differentiation rule of multiple variables, the
gradient operator with respect to the physical space variable, Vx.is written as

Vx = 'I—Vy + 'ZVx, (2.2)
where _V’y and V, are the gradient operators with respect to Y and ¥, respectively. As
continuum models will be used to describe the fluid filtration in the porous matrix, we
further assume that the pore-scale length, /;, is much smaller than the period size

l
a= T" «1, (2.3)

and we note
a = 0(") with n > 0. (24)

Parameter n is a geometrical parameter of the medium: the greater the value of n, the
smaller the micropore size.

t@ (b)

L !

Fig.1 A periodic fractured porous medium: (a) the macroscopic scale (of characteristic length L), (b)
the periodic cell (of characteristic length /) consists of a porous matrix domain and an open fracture
domain



3 Results in Darcy’s regime

Royer and Auriault (1994) have considered gas flow in the above described medium,
with Darcy’s regime in the matrix and a non-slip flow in the fractures. For simplic-
ity, a gas of linear equation of state has been considered: p = Ap, where p and p
denote the pressure and the density, respectively, and A is a constant. By applying
the homogenization theory, the three following first-order macroscopic models are
obtained

e Model ) (n <1)

ap® Ky,
(¢t + dm (1 — @) ’;—, - Vy -(p“” 7 v p<°>) 0, (3.1)
e Model II} (n=1)

ap® a s &
¢f a +ém (p ( | v,p§°’)=o, (32)
o Model Iy (n > 1)
3p(0) . k -
.a_t;. -— Vx . pt(p) .:ﬁ. prt('O) = O, (3.3)

where indexes ‘f” and ‘m’ refer to the fracture and to the matrix, respectively, ¢
and ¢, denote the porosities and p is the viscosity of gas. In these three models, the
effective permeability is the fracture liquid permeability Kﬁ. The domains of validity
are defined by means of n, which indicates that the macroscopic behavior depends on
the micropore size. The non-linearity of these three models stems from gas compress-
ibility. We firstly note that model IIIj describes the flow in a fractured non-porous
medium and is therefore a single-porosity model. The notable property of Model I1; is
that it is a two-pressure-field model P # p(o)) The Q-periodic matrix pressure field

p satisfies the boundary-value problem that describes the local matrix flow regime

9 . K, ,
P L A (p“”—v p‘°’) =0 in Qm,
pl(::) =pf (0) on I,

where Kp, is the intrinsic permeability of the matrix. The average (p(o)) is defined by

© 4
Pm dS2.
Iﬂl./

Model II; describes a dual-porosity behavior: it characterizes the case of coupled
matrix and fracture flows. Both pressure fields are actually such that pY = F (p@)
where F is a non-linear functional with memory effects. Because of the non-lmean-
ties that stem from gas compressibility, there is no general analytical expression for
functional F. It should also be underlined that model IIj cannot be expressed as a two-
equation model including a matrix-fracture exchange term as in the pioneering work
of (Barenblatt et al. 1960) on dual-porosity modeling. When considering a slightly
compressible fluid, a linearized form of model II, is obtained (Royer and Auriault



1994). An analytical expression of F can then be determined. A model of Barenbl-
att’s type can then provide an approximation in quasi-steady state regime. This latter
issue is also addressed in (Moyne 1997). Finally, in model I}, the pressure fields are
equal: p©@ = p®” = pY. This is a single-porosity model, but in which the effective
permeability is the fracture permeability, while the effective porosity is that of the
whole fractured porous medium. We designate this property by “reservoir effect” to
signify that the porous matrix domain plays the role of a gas reservoir in that case.
The present work is aimed at replacing Darcy’s law at the local scale by Klinkenberg'’s
or Knudsen’s law and then at examining the impact on the above presented models.

4 Derivation of macroscopic models in Klinkenberg’s and Knudsen’s regimes

In this section we present the detailed preliminary local-scale analysis required for
applying the homogenization procedure. We then present the derived macroscopic
models and compare them to those obtained in Darcy’s regime.

4.1 Analysis of local gas flow regimes

The first step consists in determining which types of flows may occur in the fractures
when either Klinkenberg’s or Knudsen’s effects are considered in the porous matrix.
We firstly determine the conditions under which Klinkenberg’s and Knudsen effects
occur in the porous matrix. We then list the appropriate flow regimes in the fractures.
Finally, we identify which fracture flow regimes we consider for each matrix flow.

4.1.1 Flow regimes in the matrix

Gas flow regime in the porous matrix is conditioned by the order of magnitude of the
pore-scale Knudsen number, defined by

Kny =22 (4.1)

in which A, denotes the mean free path at the pore scale. As Kn, is a quantity defined
at the pore scale, the appropriate scale-ratio for estimating its order of magnitude is
a, and we put

Knp = O(a9). (4.2)
In Klinkenberg's regime, the gas permeability km, satisfies Klinkenberg’s law, which
can be expressed as follows (Klinkenberg 1941):

where kp, denotes the matrix liquid permeability and ¢ is a constant whose value is
close to 1. From the above expression, it follows that Klinkenberg’s effect is signifi-
cant within the matrix when 4cy Knp > 1, i.e. when Knp > O(1). As for Knudsen’s
diffusion, it will occur provided that Knp > 1. From the above argument we thus
conclude that the filtration law in the porous matrix is

[ o Klinkenberg’s law when O (2°) < Knp < O (271),

. ) (4.4)
e Knudsen’s diffusion law when Knp > O (e7?).



4.1.2 Flow regimes in the fractures

Let us now analyze the distinct flow regimes that may occur in the fractures. Likewise,
gas flow regime in the fractures is conditioned by the magnitude of the fracture-scale
Knudsen number

Kng =", (45)

where Af represents the mean free path of gas molecules in the fractures. As it is
defined at the period’s scale, Kn; must be evaluated by means of the scale-ratio £. The
possible fracture flow regimes are the following

o Non-slip flow when Kng < O (g),

o Slip flow when O (£) < Kng < O (), (4.6)

o Knudsen’s molecular flow when Kng > O (£°).

Asthere is no continuous pore-scale model for describing a Knudsen’s molecular flow,
we restrict the study to the case

Kng <O (50). 4.7

Now, the magnitudes of both Knudsen numbers are actually linked. Because it can
be assumed that the pressure fields in both domains are of same magnitude, we may
consider that: A, = O (A5). Then, from Equations (4.1) and (4.5), we get

Kng = O(Kny @), (4.8)
which from (4.2) and (2.4) leads to
Kng=0 (e"@“)) . (4.9)

Therefore, the fracture flow regimes under consideration in the study are the follow-
ing:

e Non-slip flow when n > 1 R
g+1 (4.10)
o Slip flow when 0 =n(g+1) <1

4.1.3 Possible combinations between matrix and fracture flow regimes

We are now in position to determine which types of flows we may consider in the
fractures, when either Klinkenberg’s or Knudsen’s effects occur in the porous matrix.
Firstly, from definition (4.9) of Kng magnitude and furthermore because n > 0, it turns
out that the restriction (4.7) on the order of Kn; entails that Knp < O(a~1), which
translates into the condition ¢ > —1. The magnitudes of Knp under consideration in
the study are therefore the following:

Kny, =0 (a‘l) with —1<g <0, (4.11)
and the matrix filtration law is

[ o Klinkenberg’s lawwhen —1 < g <0,

4.
o Knudsen’s diffusion law when g = —1. (412)



From (4.12) and (4.10), it follows that when Klinkenberg’s effect occurs in the matrix
(=1 <= g < 0), the fracture flow is either a non-slip flow (n = 1/g+1), or a slip
flow (n < 1/g+ 1). When Knudsen’s diffusion occurs in the matrix (g = —1), then
Kng = 0% and a slip flow necessarily takes place in the fractures. Therefore, the flow
regime analysis branches off into the three following situations, which are summed
up on a Knp-ea diagram in Fig. 2.

. . A 1
Sntuauon.A.( l<g<Oandn > q_+f)

Klinkenberg's law in the porous matrix
Non-slip flow in the fracture

Situation B: (—1<q<Oandn< q_-}—f) (4.13)

Klinkenberg's law in the porous matrix
Slip flow in the fracture

Situation C: (g=-1
Knudsen's diffusion law in the porous matrix
Slip flow in the fracture

Our objective is thus to determine the macroscopic models in the three above defined
situations and to compare the results with those obtained in Darcy’s regime by Royer
and Auriault (1994), presented in Section 3.

Kn=of, Molecular fiow in the fracture
(no con tinuous de scription) Slip flowin the fracture .
(Situation C) '
Knudsen mlﬂl"a' '/- i
z A H @
] -
» @, Sip flow in the fracture H
3 (Situation B) E
: »
g Non-sfip fiow i the frcture S
g 4, (Stuation A) !
A
z
g Non-slip flow in the fracture -~
? (Royer and Auriault, 1994) P8
] »
a §
v 1
I a : .
e e . £ . , &  a=¢
é E Small micropores Large micropores
£2
= Scale effects

Fig.2 Knp-a diagram of local flow regimes



4.2 Dimensionless local descriptions
4.2.1 Introduction

A local description is the set of the equations that describe the flow within the period
depicted in Section 2. It therefore consists of the flow equations in the porous matrix,
in the fractures and on the matrix/fractures interface. The first step of the homogeni-
zation methodology being used (Auriault 1991) is to write the local description under
consideration in a dimensionless form. Let denote by ® and by £ the dimensionless
counterpart and the characteristic value, respectively, of a quantity ¥; & is given by
® = W /&, Then, replacing W by & & in the dimensional local description leads to
its dimensionless writing. Dimensionless numbers thus appear in the dimensionless
description, which are defined by means of characteristic values. Below, we present the
three dimensionless local descriptions that describe situations A, Band C. Any dimen-
sionless writing of equations requires the arbitrary choice of characteristic length and
time, for the definition of dimensionless space and time derivatives, respectively. We
choose the macroscopic characteristic length L and the macroscopic characteristic
time of flow, 7. With regard to (2.2), the dimensionless gradient operator, V, is thus
given by

V=LVx =6V, + Vs (4.14)

As in (Royer and Auriault 1994), we consider a gas of linear equation of state, ie.
such that p = A p, where p and p denote the pressure and the density, respectively,
and where A is a constant.

4.2.2 In the porous matrix (Qp,)

In the porous matrix, gas flow is governed by a filtration law and a mass-balance equa-
tion. When —1<g<0, gas filtration is governed by Klinkenberg’s law. In dimensional
form it reads

-> km ->
Vm=——VxPn (4.15)
Mo

in which Vp, and Py, are the physical fields of velocity and pressure and pg represents
the viscosity. The gas permeability km, satisfies Klinkenberg's law (4.3). As kn, is
of magnitude /2, we deduce from (4.3) that a characteristic value of km, is given by
Km, = Knpfg. The dimensionless writing of Equation (4.15) is therefore given by

. K, - 2 5P
Vm=—Cm ‘ﬂ'vpm, Om =O(IP'K"1;L—Vm') (4.16)

7

in which Vm = Vi/Vm, Km, = km,/Km,_ . & = po/pc and pm = P /5P are the
dimensionless counterparts f} Vm, km, , po and P, respectively, and where Vi, rep-
resents the characteristic velocity in the porous matrix, p. is the characteristic value
of the viscosity, and §P denotes the characteristic macroscopic pressure drop. When
g = —1, gas flow is described by Knudsen’s diffusion law, which in dimensional form
is expressed as

- d -
Vi =— Pﬂv xPum. (4.17)



The Knudsen diffusion coefficient dr,, can be defined by (Kast and Hohenthanner
2000) dm, = lp¢m/3tm /8Rim/mM, where 1y, denotes the Knudsen tortuosity, R
is the gas constant, fy is the temperature and M is the molecular weight. By con-
sidering the definition of the mean free path given in (Cercignani, 1988), A, =
1o/ Pm /TRIin2ZM, we get the following characteristic value for the Knudsen coeffi-
dent: D,,.!c = O(PmlpAp/po). Consequently, the dimensionless Knudsen’s law reads

Dms
Pm

Vm=—Qm —V Qm=0 ﬁxnﬁ (4.18)
" Prm: B He pLVm '

in which D, = dms/D,,.! denotes the dimensionless Knudsen coefficient. In other
words, dimensionless number Om arises in both dimensionless filtration laws (4.16)
and (4.18). Finally, we may express the filtration law in the porous matrix by

Vm = —Qm BnV Qm=0 Exnpi (4.19)
m = mV/Pm, m = e Vo s .

where

Km! .
—= when —1 < g < 0 (Klinkenberg’s law),
Ba=1{" (4.20)

D,
p—- when g = —1 (Knudsen’s law).
m

The description in the porous matrix must be completed by the dimensionless mass-
balance equation, which reads

d - - L
Sm m% +V PmVm) =0, Sm=0 (Wm) . (4.21)

4.2.3 Inthe fractures ()

Gas flow in the fractures is governed by Stokes equation and the mass-balance equa-
tion. When placed in dimensionless form, they read

uV Ve + (v+ wV(V - V) — Qf Vps = 0,

P’ sp
=0 ——). 4.22
Qf (uc va) (4.22)
&W'{'V'(pfvf) —Os Sf—O(TVf)s (4‘8)

where V¢ and ps denote the dimensionless fields of velocity and pressure in the fracture
domain, respectively, and where Vi is a characteristic value of fracture flow velocity.

4.2.4 Over the matrix/fracture interface (T')

The conditions on I' express the continuity of pressures and of velocities. In dimen-
sionless form, the continuity of pressures simply reads

Pf=Pm. (4.24)



The continuity of velocities depends on the flow regime being considered in the frac-
tures. When a non-slip flow occurs in the fractures (n = 1/g + 1), the dimensionless
continuity of velocities is written as

-> -> V
Ve=y Vm ¥ = o(—"’). (4.25)
Vi
When a slip flow occurs in the fractures (n < 1/g+ 1 or ¢ = —1), we consider

the slippage law used in (Skjetne and Auriault 1999), but adapted to the case of a
dual-porosity medium. In dimensional form, it reads

Vi=Vm—ct A(T1- VxVi- 1) 11, (4.26)

where 71 and 7 are the unit tangential and normal vectors associated with the velocity
and with the interface, and where ¢; is a constant whose value is close to 1. By noticing
that cgAg/L = O(eKng), we get the following dimensionless writing

Vi=y Vm—eKng (f1-VV¢- R) 11 (4.27)
Dimensionless equations (4.25) and (4.27) can be expressed by the following single
equation

— - g V
vi=y vm — eKng vy, y=O(Vl:-), (4.28)

where the slippage velodty Vg, is such that

(4.29)

Vip =

o G whenn > 1/g+1 (non-slip flow),
(fy - Vv~ n)ty whenn < 1/g+ lorg = —1 (slip flow).

4.3 Estimation of dimensionless numbers

The methodology introduced in (Auriault 1991) consists then in estimating all dimen-
sionless numbers with respect to the small parameter &. This step allows identification
of the distinct dimensionless local descriptions, the upscaling of which may lead to
distinct macroscopic models. A dimensionless number Q issaid to be order of & when

Pl « O « P71 (4.30)

Firstly, noticing that Stokes equation in the fracture indicates that the local flow is
generated by a macroscopic pressure gradient we deduce %1 =0 (%’), from which
we get

%=0(s2), Qu=0(:2a?Knpy™). (4.31)

Now, let consider the case of a transient macroscopic regime. In an order-of-mag-
nitude sense and due to fracture flow predominance, this is expressed by T = g
Therefore, both Strouhal numbers are such that

S=0(), Sm=0 (y-l) . (4.32)

The remaining parameter to be estimated is the velocity ratio, y. This parameter
may actually take several orders of magnitude. Its determination requires a specific



analysis, presented in Appendix A. We obtain

O(e) ifn < q_-%—Z’
y=0 (‘3’:) T itn= 2, 4.33)

2.1y 2
O (Knpa £ ) ifn=> rEYE
4.4 Homogenization procedure

According to the above estimates, the dimensionless local description that consists of
equations (4.19), (4.21), (4.22), (4.23), (4.24) and (4.28) may now be written as

Vm=—g"@D2),"1p \7p,,, in Qp, (4.34)

y ! ¢m_. +V - (PmVm) = in Qm, (4.35)
Ve + 0+ V(Y- V) —e 2 Vpr=0 inQy (4.36)
a%‘ +V-(p¥) =0 ingy, (4.37)
pf=pm onT, (4.38)
Vi=y Vm—eKn; Vg, onT (4.39)

in which the dimensionless gradient operator V satisfies (4.14), g is such that —1 <
g <0, and where Bp, y and Vg, are defined by (4.20), (4.33) and (4.29), respectively.
We shall now successively consider situations A, B and C, defined by (4.13). In each
situation, we examine the three possible orders for y (4.33). We then apply the homog-
enization procedure to each local description being thus determined. Itis based on the
fundamental statement that as the scales are well separated (¢ « 1), then the phys-
ical variables (V. Pm, V. Pfs Km , 1) can be looked for in the form of asymptotic
expansions in powers of &:

900, %) =000, D +2 V0. D) +26P 0D + - (4.40)

in which functions ¢® are :V’-periodic and dimensionless. The method consists in
incorporating these asymptotic expansions in the dimensionless local description.
This leads to approximate governing equations and boundary-conditions at the suc-
cessive orders, which together with the condition of periodicity define boundary-value
problems in the periodic cell. Existence of solutions requires that volume averaged
equations be satisfied. These latter actually describe the macroscopic behavior at
successive orders of &.

Below, we present the macroscopic models obtained in situations A, B and C,
defined by (4.13). Details on the derivation of one model are given in Appendix B.

4.5 Macroscopic models
4.5.1 Klinkenberg's law in the matrix and no-slip flow in the fracture (situation A)

It can easily be shown that when —1 < g < Oand n = 1/g+ 1, we necessarily have
n > 2/q +2, which according to (4.33) indicates that only one order of magnitude
for the velocity ratio is possible. The corresponding derived macroscopic model is
identical to single-porosity model III; (3.3). As the effective permeability is the liquid



permeability 1'(5, we thus conclude that Klinkenberg’s effect in the porous matrix at
the local scale has no influence on the macroscopic flow regime in that case.

4.5.2 Klinkenberg's law in the matrix and slip flow in the fracture (situation B)

When —1 <g < 0andn < q_-}—l" the three possible orders for y (4.33) lead to the
three following first-order macroscopic models

* Model I (n < %)

o K

(¢ + ¢m (1 — @) p— -V (p(") u‘ v p<°>) 0, (4.41)

« Model Il (n = q_Z)
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o Model 111, (1 > q—i)

3p(0) - K .
ot —— — Vo | p{” == “ vp” ) =0, (4.43)

In model IIg, p,(,(,)) is the Q-periodic solution to

3 K .
$m—— pm (p );"‘V p(o)) =0 inQn,
pl(g) =pf onT.

Details on the derivation of model Il are given in Appendix B. We note that the three
models are of same types as those derived in Darcy’s regime (see Section 3), with the
difference that in the present situation, the effective permeability is the effective
fracture gas permeability, Ky, which satisfies

Ky =K (7 + Kmé) . (4.44)

where C isa positive tensor (Skjetne and Auriault 1999). Equation (4.44) is the tenso-
rial form of Klinkenberg’s law. Details about its derivation are given in Appendix B
and in (Skjetne and Auriault 1999). The exact definition of K;_is given in Appendix
C. A macroscopic Klinkenberg’s effect therefore occurs in that case and the Klin-
kenberg’s gas permeability constitutes an additional non-linearity in the models. We
note that the domains of validity are defined by means of n and g. Therefore, when
Klinkenberg’s effect occurs locally in the porous matrix, a macroscopic Klinkenberg’s
effect appears at the macroscopic scale and the type of behavior (reservoir effect,
dual-porosity or single-porosity) is subordinate to both the micropore size and the
value of the Knudsen number.



4.5.3 Knudsen'’s law in the matrix and slip flow in the fracture (Situation C)

When g = —1, the three cases defined by (4.33) lead to the three following first-order
macroscopic models

o Model l; (n<2)

p® Kt
(¢ + ém (1 — 1) ’;—, —Vy- (p“’) 7‘ v.p? ) =0, (4.45)
eModel ITg (n =2)
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o Model lll; n=>2)
p® e
o = = e (2”22 V) =0 (4.47)

In model II3, the Q-periodic pressure P satisfies

pl(,(:) = pt(-o) onl.

In these models the effective permeability is a fracture gas permeability, Kf‘s which

does not satisfy Klinkenberg’s law and is characterized by a non-linear relation with
respect to Kny (for details, see Appendix C). The above models are therefore strongly
non-linear. The domains of validity are defined by means of values of n only, which
results from the fact that the local regimes being considered occur only when g = —1.
The above behaviors do not describe neither a macroscopic Klinkenberg’s regime nor
amacroscopic Knudsen’s regime but characterize a transition regime between both.

5 Comments and interpretation
5.1 Introduction

In the present section, we consider the three models presented in Section 3 obtained
in Darcy’s regime by (Royer and Auriault 1994) together with the six new models
derived in Klinkenberg’s and Knudsen’s regimes (see Section 4.5), so as to analyze
globally the behaviors and the notable properties of gas flow in dual-porosity media.
Because of fracture flow predominance, each of these nine models results from the
volume average of fracture flow mass-balance equation and includes or not a term
that reflects the influence of matrix flow. This influence is nonexistent in models III;,
III; and lll; (models of type III), while it is minor in models I, Iy and l; (models of
type I) and it leads to strong memory effects in models I, ITg and II; (models of type
II). Furthermore, the effective permeability of each model is the fracture effective



permeability: Ky in models Ij, Il and 1L, K, in models Iy, II; and III; and Kp,
in models Iy, II and III5. The three effective permeabilities characterize three dis-
tinct macroscopic regimes. Below, we successively examine the types of macroscopic
behaviors (characterized by the types of models) and the types of macroscopic regimes
(given by the effective permeability) described by the models. We then deduce a clear
interpretation of their domains of validity.

5.2 Types of macroscopic behaviors

The nine models reveal the existence of three types of macroscopic behaviors

o Type I: Reservoir effect

* 3p — kf — _
¢ 'E‘ — Vi '(P ';‘ pr) = O(g), (5.1)
o Type II: Dual-porosity behavior
a a - )
o 'aiff‘ +¢m _%n)_ — V- (Pf f prf) = 0(¢), (52)

o Type III: Single-porosity behavior
s - Ks -
oot =V -(pf m vxpf) =0() (53)

in which ¢¢, Ky and pr represent the porosity, the effective permeability and the
pressure in the fractures, respectively. In models of type I, ¢* denotes the porosity
of the entire fractured porous medium (¢* = ¢¢ + dm(1 — ¢¥)) and p is the pressure,
with p = pf = pm. Models of type II are two-pressure field models (pm # pg). The
matrix pressure field satisfies the boundary-value problem that corresponds to the
local matrix flow regime being considered

a . .
%'%l' - Vy . (memVypm) =0 in Qpn,

Pm=ps on T,

where Cn = Ky /i, Km;/p Of Dy, /pm. When the micropores are connected, the
above boundary-value problem is completed with the condition of Q-periodicity of
Pm. Both pressure fields are such that py, = F(pf), where F is non-linear functional
with memory effects. Models of type II cannot be expressed as a two-equation model
with a matrix-fracture exchange term. The domains of validity of these three types
of macroscopic behaviors are reported on a Knp-o diagram in Fig. 3, which reveals
the existence of a dual-porosity curve that divides the whole Knp-a space into two
parts: the “reservoir effect” zone and the single-porosity zone. The shape of the dual-
porosity curve reflects that within the local Darcy’s regime zone, the type of behavior
depends only on the medium geometry, characterized by the value of n, while in the
local Klinkenberg’s regime zone, the type of behavior depends on both n and g, which
indicates that besides depending on the relationship between both scale ratios, the
macroscopic behavior is also conditioned by the Knudsen number in the micropores.
The vertical dashed line drawn on the scheme crosses the three behaviors zones.
This shows that, depending on the local Knudsen number being considered in the
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micropores, any fractured porous medium of geometry characterized by a value of
n ranging from 1 to 2 can have the three types of behaviors. In particular, we note
that a medium with a single-porosity behavior in local Darcy’s regime can have a
dual-porosity behavior in local Klinkenberg’s regime.

5.3 Types of macroscopic regimes

The nine models describe three types of macroscopic regimes, each of which is charac-
terized by a spedific effective permeability. We may firstly underline that, as a result of
fracture flow predominance, these three effective permeabilities are permeabilities of
the fracture network. These three permeabilities are the intrinsic permeability i(g, ,the
Klinkenberg’s gas permeability kfs and a non-linear gas permeability 1'(;s (their defini-
tions are presented in Appendix C) and they characterize three types of macroscopic
regimes, namely, Darcy’s regime (Kj,), Klinkenberg’s regime (kfs) and a transition
regime between Klinkenberg’ and Knudsen’s regimes, characterized by K ;8 Fig 4

shows their domains of validity and reflects the existence of a gas-permeability curve
above which the effective permeability of the fractured porous medium is a gas per-
meability. It also shows that the intrinsic permeability zone is not limited to the local
Darcy’s regime zone. As a result, the microporosity may have a notable influence on
the effective permeability, and therefore on the type of macroscopic regime. In effect,
consider the horizontal dashed line drawn in Fig. 4. We note that it crosses both the
intrinsic permeability zone (Kf,) and the Klinkenberg’s gas permeability zone (1'(%).
This means that on that line, the effective permeability depends on the microporosity
size: the larger the micropore size, the lower the required Knudsen number for getting
amacroscopic Klinkenberg’s effect.

5.4 Domains of validity of macroscopic models

There exist nine combinations between the domains of validity of the types of macro-
scopic behaviors (Fig. 3) and those of the effective permeabilities (Fig. 4). These nine
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combinations correspond to the domains of validity of the nine macroscopic models
and are shown in Fig. 5. Dual-porosity models are located on the dual-porosity curve.
Reservoir effect models are located on the right-hand side of the dual-porosity curve
and correspond to large micropores, while single-porosity models are located on the
left-hand side and correspond to small micropores. Models located above the gas
permeability curve include an effective gas permeability.



6 Conclusions

We have applied homogenization theory so as to derive continuum macroscopic mod-
els that describe flow of gas at low pressure in dual-porosity media. Considering the
case of a fractured porous medium with either Klinkenberg’s or Knudsen’s diffusion
local flow regimes in the porous matrix, we have derived six new macroscopic models
that we have compared to the three models obtained in Darcy’s regime (Royer and
Auriault 1994). Each of these nine models is characterized by its effective permeability
and the type of macroscopic behavior it describes. An important conclusion that may
be drawn from this study is that not only the domains of validity of models depend
on the relative size of pore and fracture scales, but they may even be subordinate to
the pore-scale Knudsen number. It follows that for the flow of low pressure gas in
dual-porosity media, the macroscopic flow regime, i.e. the effective permeability, may
vary with respect to the pore size, and that the type of macroscopic behavior may
change with the local flow regime being considered.

Appendix A: Order-of-magnitude of velocity ratio

The macroscopic sample, of size L, is subjected to a macroscopic pressure drop &py,
which induces a flow of characteristic velocity Vs and of characteristic time 7% in the

fractures, such that
_ ¢§pfl2 . L
Vf—O(ucL), Tf_O(Vf). (A1)

Because the fracture flow is predominant with regard to the matrix flow, T also rep-
resents the macroscopic characteristic time of flow. Let now consider the flow in the
micropores. It results from a pressure drop, §pm, which is applied to the bounds of the
matrix domain. The characteristic gas velocity in the matrix may thus be expressed as

Van = O(Knp %P ’“"I’). (A2)

el

Let denote by py the pressure at a given point within the fracture’s domain and which
is such that pr = O(8ps). Due to the condition of continuity of pressures, we may
consider that the pressure ps is applied on the matrix/fracture interface. Thus, the
pressure drop dpp, is actually due to the space variations of pf over the matrix domain
of size [. Hence, from the mass-balance equation we shall define the characteristic
time of transit in the matrix, 7%, by

Pt PiVm - !
== = - =0|—). A
w=o(*r) o n=o(x) *
Since the preponderant flow is the fracture flow, 7} is necessarily greater or equal
than its counterpart in the fractures, namely 7T
TL = T (A4)

Now, the pressure py exerted on the matrix/fracture boundary is also subjected to
time variations. Let now denote by pp, the pressure at a given point within the matrix



domain, which is such that pp, = O (§pm). The time variations of ps induce time varia-
tions of the local pressure pp. The issue is to determine whether these time variations
of the matrix pressure may occur within the whole matrix domain or not. Let consider
that these time variations occur in a boundary layer of thickness [*, which is such that

r<l (A5)

and let denote by 7% the characteristic time of pressure variation in the matrix. From
the mass-balance equation in the porous matrix we therefore get

Pm _ PmVm _ L
TP = (—,‘ ) oo TE=0 (Vm) . (A.6)
Inregard to the definitions of T; and of 7}, (A.6) and (A.3), we have from (A.5)
T8, = TF, (A7)

whichmeans that the pressure time variations occur instantaneously within the bound-
ary layer. We have thus obtained two estimates for the time variations of pressure
within the matrix domain, p¢/T} and pr/ T;, whence it follows that

Pm P

f’,’,‘ =0 (K) . (A.8)
Let now examine the roles played by the distinct characteristic times. An important
feature of dual-porosity media is that the matrix flow will be visible at the macro-
scopic scale provided that the characteristic time of transit in the matrix is equal to
the macroscopic characteristic time of transit, 75, = Tt. We deduce that if T8, # 7%,
then, as the matrix flow is not visible macroscopically, the pressure time variations
occur within the whole matrix. This happens when /* = [,i.e. when Tt = TE. We thus
deduce that T}, is either equal to T; or to TE:

T(m =T,
or (A9)
L, =TF.

Frominequalities (A.7) and (A.4) together with (A.9), it turns out that three situations
may occur

L T2 <Ti=T}Y
IL T2 =T¢ =T (A.10)
L 7y < TR =T},
As they correspond to three combinations between the characteristic times, we thus
deduce that the three above defined cases lead to three distinct types of macroscopic

behaviors. Let now determine the order of magnitude of 7% /T;. From the definitions
of T; and Ty and by noticing from (A.8) that 8pg/dpm = O(I/I*), we get

Ta 1,-2.2 n
—_ = o~ = —n(g+2)+2 . .
= O(Knpa e) O(e ) (A.11)
Considering (A.10) and (A.11), we are now able to determine the possible orders of
magnitude for y = O(Vi/Vy). When TE, < T (n < 2/q + 2), the result is obtained
by considering the definitions of 7 and of 7%, while taking into account the equality



T; = Tt,. We get y = O(g). When TS > T; (n > 2/q +2), the order of magnitude
of y is deduced from the orders of Vy, and Vi, (A.2) and (A.1), and from estima-
tion (A.8), while considering 75 = T%,. We obtain y = O (Knpa?s~!). Finally, the
order-of-magnitude of the velocity ratio is such that

2
y O(g) if n< Cj:
y = -—l:- = O(E) if n= q—+2-, (AIZ)

Appendix B. Derivation of Model Il

We consider the casen = 2/q +2inthe dtmensxonless local description (4.34)—-(4.39)
and we look for variables pg, V¢, pm. Vm, Kms and 7 in the form (4.40). The method
consists then inintroducing these asymptotic expansionsin the dimensionless descrip-
tion and in identifying at the successive orders of &. Let now determine and solve the
appropriate approximate boundary-value problems. We begin by considering Equa-
tion (4.36) at the order O(s~1): \7,,;}" ) — 0. It leads to p§0) = §°) (%,1). Next we
consider Equations (4.34), (4.35) and (4.39) at the first order

w® o [ oKkms o ,
¢m m Vy’ Pm —M—-Vypm =0 in Qp,

pw =p{’ onT,
pY : ¥-periodic

(B.13)

from which we deduce p&y = pi (¥, %,1). Then, considering Equation (4.36) at the
order O(¢%), Equation (4.37) at the order O(s‘l) and boundary-condition (4.39) at
the order @(£°), we obtain the following boundary-value problem for the first-order
velocity field in the fracture’s domain

#Ay ;0) - Vypf Vzpt(-O) 6 in Qf,

Vy 00 =0 inQy (B.14)

VO = —kn 7O . 9,50 . 7®  onT

in which v“’), p” and 7 are y-periodic. The solution is expressed as v{” =
—K(s [ V,p ), and its average over the period yields

. K, -
(PP)y =2Vl Ky =Kea (B.15)

As in (Skjetne and Auriault 1999), ¥{” and p{" are then looked in the form of
asymptotic expansions of Kns and these expansions are substituted into boundary-
value problem (B 14) By considering the first two leading orders, we obtain that

K(S = Ky + Kn k (Ky, and k(s are defined in Appendix C). We thus deduce that

Ki, = Ky, (1+1<mo where C = (Kg)™! K‘ and where Kl” = (k%)g Let finally
l



consider the first-order mass-balance equations together with the projection on sur-
face normal of boundary-condition (4.39) at the second order

(0)
a - - - - .
++Vy (1) (0)+pr)) 0))+V (p(o) @)— in Q,

0)
¢m§%‘l +9, - PVD)=0 inQm,
_’(l) n= v(o) n onl,

(B.16)

where VD, ) are ¥-periodic. Integrating the above boundary-value problem over
the period while using the divergence theorem yields the macroscopic model

(©)
ap® 3{pm K,
=+ om # ~Ver\p” E V) =0. (B.17)

Appendix C: Definitions of effective permeabilities
C.1 Intrinsic permeability Ky,

Tensor kﬁ in models I, I1j and III; is the effective intrinsic permeability of the fracture
network and is defined by

1
Ky, = ke, ), = el / ey, A2,
Q4
where Kﬁij satisfies
2
a—kfh- - ﬁ +6;;=0 inQy, (C.18)
aHr Ay
3"&,
—=0 i X C.19
o in Q (C.19)
kfl.; = onT, (C.20)
kfl.;"‘% : Q-periodic. (C.21)

It may be shown (Ene and Sanchez-Palencia 1975; Sanchez-Palencia 1980) that i(q is
asymmetrical and positive second-rank tensor.

C.2 Klinkenberg’s gas permeability k‘s

Tensor Ky, in models Iy, II; and Il is such that Ki, = (Ki,)a. where Ky, =

Ky +Kn k}s Tensor Ky is defined above and k}‘ satisfies the boundary—value prob-

lem (C.18)—~(C.21), but in which Equation (C.20) has been replaced by

1 (@ ak} (0)
k‘m‘ =—|n, % —n; n, on r. (C.22)



Consequently, tensor k‘s can be written as
Ky, =K (7+ Kmé) , (C.23)

where C is a positive tensor (Skjetne and Auriault 1999). It is defined by C =
Kg)™! Kflg,whcrchl = fs, ). Equation (C.23)is the tensorial form of Klinkenberg’s

law.

C.3 Non-Linear gas permeability I.(;s

Tensor K‘ in models l‘ ll‘ and lll‘ is such that K‘ = (k‘f“j ). where k* is the

solution to the boundary-value problem (C18)—~(C. 21) but in which Equahon (C.20)
has been replaced by

0, \
* _ )
qu = —Knyg n, 3; n; ’l, onl. (C.24)

Therefore, I.Cf‘ depends on Kny, but the relation between both is non-linear.
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