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Abstract

The purpose of this study is to investigate the deformation mechanisms in the β-metastable

titanium alloys Ti17 and Ti5553, which exhibit an important fraction of β phase (∼40%). A

mean field model is introduced to depict the effect of microstructure on mechanical properties.

The average behavior of each phase is taken into account: the micromechanical model simulates

for each phase the respective elastic anisotropy and the visco-plastic flow with kinematic and

isotropic hardening. A good agreement has been obtained between numerical simulations and

experiments for several microstructures.
c©2011 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of ICM11
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1. Introduction

Two β-metastable titanium alloys are considered in this study: Ti-5553 and Ti-17. Even

though β-metastable titanium alloys have been used for more than 30 years, few studies have

been carried out and uncleared questions remain, particularly the role of the β phase (∼40%) in

the deformation process. Within this context, different numerical models are developed to sim-

ulate the deformation mechanisms of Ti5553 and Ti17 at various scales. They are calibrated by

means of a large data base of mechanical tests under monotonic loading [pc 1-2]1.

Especially, a mean field mesoscopic model is proposed, involving specific constitutive equations

adapted to each phase. The β phase (BCC), exhibiting many slip systems, is rendered by a von

Mises criterion, whereas crystal plasticity is used for the α (HCP) phase variants. The selected

families of slip systems the in α phase are basal
〈
a
〉
, prismatic

〈
a
〉
, pyramidal π1

〈
a
〉

and pyra-

midal π1

〈
c + a

〉
.
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Both materials are presented in the first part of the paper. In a second part, the multi-phase

elasto-visco-plastic model is described. Comparisons between simulations and experiments are

shown in the last section.

2. Microstructures and properties of β-metastable titanium alloys

The so-called “β-metastable” titanium alloys are those which retain a large volume fraction

(∼ 40%) of β phase at room temperature after heat treatment. The microstructure is composed of

former β-grains, the α phase precipitating within with various morphologies: needles, nodules,

. . . (Fig. 1).

Figure 1: Microstructures of Ti17 (left) and Ti5553 (right) from SEM [pc 2]: β phase is white and α phase is dark.

For each former β-grain, twelve different crystal orientations of the α precipitates (variants)

are available according to the Burgers relationship [1], which links particular crystal directions

and planes of both phases:

< 111 >β // < 1120 >α , (110)β//(0001)α

Consequently, the computation is performed at three different levels: macroscopic, grain and

variant scales. The transition between the three bases is achieved by two rotation matrices:

• The first one rules the transition from the macroscopic specimen basis to the β-grain basis.

The rotation matrix is determined from the grain orientation measurements by EBSD in

SEM [pc 2];

• The second one corresponds to the transition from the β-grain basis to one of the twelve α
variants bases which belong to the same grain.

In the model which will be presented next, the α variants are considered as elliptic cylindrical

inclusions: thus, the associate Eshelby tensor, S∼∼α, will be written as in [2]. However, the βmatrix

will be considered as a spherical inclusion, which leads to an Eshelby tensor S∼∼ β as expressed in

[3].

Furthermore, the elastic behavior of both phases will be linked to their crystallographic struc-

tures: the stiffness tensor of α variants will have a transversely isotropic symmetry because of its

hexagonal structure, whereas the stiffness tensor of the β phase will exhibit a cubic symmetry,

due to its BCC structure.
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3. Model description

In his self-consistent approach for elasto-plasticity behavior in polycrystals, Hill[4] intro-

duced the local behavior of each phase i through a linearly incremental formulation:

σ̇∼ i = L∼∼ i : ε̇∼ i (1)

At the macroscopic scale, the constitutive equation given by Hooke’s law for the elastic case is

extended to the elastic-plastic regime. The tangent stiffness L∼∼
e f f is a fourth-rank operator that

relates stress and strain rates:

Σ̇∼ = L∼∼
e f f : Ė∼ (2)

The stress rate within each phase is uniform and can be expressed as:

σ̇∼ i = Σ̇∼ + L∼∼
�
i : (Ė∼ − ε̇∼ i) (3)

where L∼∼
� is the tangent operator for the phase. It can further be shown that this fourth-rank tensor

depends on L∼∼
e f f and on Eshelby tensor S∼∼ i, which introduced a phase morphology dependence.

One thus has:

L∼∼
�
i = L∼∼

e f f : (S∼∼
−1
i − I∼∼) (4)

Combining the global (2) and local (1) constitutive equations in the previous expression (4) yields

to a direct relation between local stress rate and global strain rate:

σ̇∼ i = L∼∼ i : (L∼∼ i + L∼∼
�
i )−1 : (L∼∼

e f f + L∼∼
�
i ) : Ė∼ (5)

Knowing that the weighted average of the stress of all phases is equal to that of the bulk material:

Σ̇∼ = 〈σ̇∼ i〉, an implicit expression of L∼∼
e f f is obtained:

L∼∼
e f f =

〈
L∼∼ i :
[
L∼∼ i + L∼∼

e f f : (S∼∼
−1
i − I∼∼)

]−1

:
[
L∼∼

e f f : S∼∼
−1
i

]〉
(6)

The differential equations are integrated by means of an explicit algorithm using Runge-Kutha

(RK2) method. For the sake of simplicity, the tangent operator is constant during a time incre-

ment, and its value is estimated from the previous increment. It is worth noting that the present

formulation is a mixture of Hill’s self-consistent formulae and of a time dependent local mode,

so that its self-consistent character is not fully preserved. It is assumed that both global and local

responses remain relevant, due to the low rate dependency in the constitutive equations.

L∼∼
e f f
[t] =

〈
L∼∼ i :
[
L∼∼ i + L∼∼

e f f
[t−Δt] : (S∼∼

−1
i − I∼∼)

]−1

:
[
L∼∼

e f f
[t−Δt] : S∼∼

−1
i

]〉
(7)

The computation of the instantaneous stiffness of each phase is done iteratively, using the incre-

mental expressions of the stress and strain rates:

L∼∼ i =
Δσ∼ i

Δε∼ i
(8)

To determine this relation, the strain rate in the phase i is decomposed into an elastic part and a

visco-plastic part. For both phases, phenomenological models with hardening variables are used
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to described the plastic strain evolution. For the von Mises formulation, the loading function f
is related to the von Mises stress invariant J:

f (σ∼ i,X∼ ,R) = J(σ∼ i − X∼ ) − R with J(σ∼ i − X∼ ) =

√
3

2
(s∼i : s∼i) (9)

where X∼ is the back stress of kinematic hardening, R is the isotropic hardening and s∼i is the

deviatoric part of σ∼ i − X∼ . This loading function is then used to define the cumulated strain and

the hardening parameters evolution:

ṗ =
〈

f
K

〉n
with 〈x〉 = max(x, 0) (10)

X∼ =
2

3
Cα∼ with α̇∼ =

(
n∼ − Dα∼

)
ṗ (11)

R = R0 + bQr with ṙ = (1 − br)ṗ (12)

C and D are material parameters, R0 is the plastic threshold, Q is the hardening capacity and b is

the parameter defining saturation rate. So, total strain rate will be:

ε̇∼ i = ε̇
e
∼ i + ε̇

p
∼ i = C∼∼

−1
i : σ̇∼ i + ṗ n∼ (13)

For crystal plasticity[5], each system s has its own criterion:

f s(τs, xs, rs) =| τs − xs | −rs (14)

and:

υ̇s =

〈
f s

K

〉n
with 〈x〉 = max(x, 0) (15)

xs =
2

3
Cαs with α̇s = (sign(τs − xs) − Dαs) υ̇s (16)

rs = τs
c + Q

∑
r

hsrbρr with ρ̇r = (1 − bρr)υ̇r (17)

where υ̇s is the cumulated shear strain rate in one slip system s, τs
c is the critical resolved shear

stress beyond which the slip system s is activated, hsr represents the interaction matrix between

slip systems, and m∼ s is the Schmid tensor, which relies the local shear stress in one slip system

to the stress tensor: τs = σ∼
s
i : m∼ s. This leads to:

ε̇∼ i = ε̇
e
∼ i + ε̇

p
∼ i = C∼∼

−1
i : σ̇∼ i +

∑
s

υ̇s sign(τs − xs) m∼
s (18)

To reach the expression of L∼∼ i in both cases, we derive from σ̇∼ these expressions and we take

their incremental form. The inversion give us the sought equations. First, for the von Mises

approach:

L∼∼ i =

[
Δε∼ i

Δσ∼ i

]−1

=

⎡⎢⎢⎢⎢⎢⎣C∼∼ −1
i +

n
K

(
J(σ∼ i − X∼ ) − R

K

)n−1

Δt n∼ ⊗ n∼ +
(

J(σ∼ i − X∼ ) − R
K

)n
Δt N∼∼

⎤⎥⎥⎥⎥⎥⎦
−1

(19)
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where N∼∼ is a fourth-rank tensor which depends on the Jacobian tensor J∼∼
which is the link between

a second-rank tensor and its deviator: s∼i = J∼∼
: σ∼ i. Then, N∼∼ can be written as:

N∼∼ =
1

J(σ∼ i)

(
3

2
s∼i ⊗ σ∼ −1

i − n∼ ⊗ n∼

)
(20)

And for crystal plasticity:

L∼∼ i =

⎡⎢⎢⎢⎢⎢⎣C∼∼ −1
i +
∑

s

n
K

( |τs − xs| − rs

K

)n−1

Δt sign(τs − xs) m∼
s ⊗m∼

s

⎤⎥⎥⎥⎥⎥⎦
−1

(21)

Once plastic flow rate has been computed, using visco-plastic flow rules presented above, the

elastic part of the deformation can be deduced from the local plastic strain rate and equation (3):

ε̇e
∼ i = (C∼∼ i + L∼∼

�
i )−1 : (L∼∼

e f f : S∼∼
−1 : Ė∼ − L∼∼

�
i : ε̇p

∼ i) (22)

This will allow us to evaluate the stress in the next step.

4. Results

This model has been implemented as a user material of the ZSet/Zébulon[6]. Some simula-

tions are carried out with 25 β-grains and compared with experimental uniaxial tensile tests [pc

1-2] (Fig.2). Ti17 was supplied by Snecma, whereas Ti5553 was provided by Messier-Dowty.

For each titanium alloy, three different microstructures have been studied: a 100% β polycrys-

tal and two two-phase microstructures with various fractions of α phase. The first one exhibits

coarse α precipitates and a medium α phase volume fraction, while the second one shows a finer

precipitation of α phase and a higher α phase volume fraction. Specimens diameter is 6 mm and

applied strain rate is maintained between 10−3s−1 and 2.10−3s−1.

fα = 70%
fα = 30%

Exp. fα = 0%
fα = 70%
fα = 30%

Model fα = 0%
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σ
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400
200
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)

0.140.120.10.080.060.040.020

1600
1400
1200
1000
800
600
400
200
0

Figure 2: Macroscopic uniaxial tensile tests [pc 1-2] and fitted model predictions for Ti17 microstructures (left) and

Ti5553 ones (right)

Fig.2 shows the macroscopic stress-strain curves for each titanium alloy. The material pa-

rameters for the β phase were first identified thanks to the 100% β microstructure. Then, the
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parameters belonging to the α phase were deduced using the tensile curves of the two-phase mi-

crostructures.

In these simulations, the yield stress R0 of the β phase and the critical resolved shear stress of

the slip systems τs
c in α phase change with the microstructure. This can be justified by the fact

that the increase of α phase volume fraction leads to a higher confinement of dislocations in both

phases, which increases as well the plastic flow resistance. Moreover, the hardening slope, which

is ruled by kinematic hardening, raises with the size of α precipitates because of the increase of

α/β interfaces, which are obstacles to dislocations motion.

It appears that the model predictions are in good agreement with experiment: the specific

elastic moduli has been correctly evaluated in function of the respective volume fractions of each

phase and the plastic flow is well predicted.

5. Concluding remarks and perspectives

A specific multi-phase elasto-visco-plastic model has been developed to predict the mechan-

ical behavior of two titanium alloys, accounting to the respective phase fractions and properties.

Comparisons with experiment have proved that the model is effective at predicting the be-

havior of Ti5553 and Ti17 and, consequently, it will be used in forthcoming frameworks, such as

the simulation of the global and local behavior of a large grain 200 μm thick specimen tested at

the PPRIME laboratory [pc 2].

An explicit representation of the microstructure will be then required: for each β-grains, we

will attribute a real geometry and crystallographic orientation. Both phases will be represented

at the grain level, by means of the model presented in this article. The comparison between

experiment and simulation will be made on global tension curves as well as on a meso-level, by

considering full field measurements of the out-of-plane displacement and of the strain field.
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