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1. Introduction

Simple points in Zn, and especially in Z3 [1], are the
basis of several topology-preserving transformation
methods proposed for image analysis (segmentation,
skeletonisation, . . . ). Most of these methods rely
on the assumption that the - iterative or parallel -
removal of simple points from a discrete object X
necessarily leads to a globally minimal topologically
equivalent sub-object of X (i.e. a subset Y ⊆ X
which is topologically equivalent to X and which
does not strictly include another set Z ⊂ Y topo-
logically equivalent to X). This is however false in
Z3, and more generally in Zn (n ≥ 3). We illus-
trate this fact by presenting some topological mon-
sters, i.e. some objects of Z3 only composed of non-
simple points, but which could however be reduced
without altering their topology.

2. Some topological monsters

2.1 Classical monsters. . .

The most famous example of topological monster is
the Bing’s house with two rooms [2] which corre-
sponds, in Z3, to a class of simply connected ob-
jects which can not be reduced to singletons by it-
erative removal of simple points, since they do not
contain such points. Bing’s houses might be con-
sidered as artificial constructions, which are - gen-
erally - unlikely to appear in real images, because
of their complex shape (quite symmetric, self-bent
configuration), and their size (the smallest one con-
tains more than 130 voxels). However, there exists
a large (actually infinite) class of objects, some of
them being much less complex than Bing’s houses,
presenting similar properties. It has to be noticed
that these objects do not present any specific con-
ditions on their numbers of connected components,
holes and cavities. Some of them are described here-
after.

2.2 . . . and less classical ones
In this subsection, four topological monsters are
described. All of them are considered in a 26-
adjacency framework (although there also exist topo-
logical monsters in 6-adjacency).

They have been chosen for their small size, their
distinct topological properties, and their - relatively
- uncomplex shape, in order to convince the reader
that topological monsters are not necessarily im-
probable and/or easy-to-detect objects, and that
they can frequently appear in applications involving
real images. These four objects, denoted Xi (i = 1
to 4), are illustrated in 3D view in Figure 1, and in
2D view in Figure 2. Their main properties are listed
in Table 1.

As stated previously, all objects X1 to X4 can not
be reduced by removal of 26-simple points, since they
do not contain any such points.

The first object (X1) is composed of 32 voxels,
which are all non-simple, as ∀x ∈ X1, |Cx

6 [N
∗
18(x) ∩

X1]| > 1 (see [1] for notations and 26-simple point
characterisation).

The second object (X2) is composed of 33 voxels.
32 voxels x ∈ X2 are such that |Cx

6 [N
∗
18(x)∩X2]| > 1,

while the last one (and also its two neighbours) ver-
ifies |Cx

26[N
∗
26(x) ∩ X2]| > 1. All of them are then

non-simple. Note that X2 is nearly identical to X1:
there is only one supplemental voxel creating one 6-
hole/26-cycle. This illustrates the fact that a topo-
logical monster can present any topology.

The third (resp. fourth) object (X3) (resp. X4)
has not been obtained from a simply connected topo-
logical monster. 10 (resp. 2) voxels x ∈ X3 (resp.
X4) verify |Cx

6 [N
∗
18(x) ∩X3 (resp. X4) ]| > 1, while

the other 8 (resp. 14) ones verify |Cx
26[N

∗
26(x) ∩X3

(resp. X4) ]| > 1.

3. Discussion

All objects presented in the last subsection are in-
cluded in a 6 voxel-width cubical bounding box, and
are composed of relatively few voxels. Moreover,
their shape is not quite complex. Consequently, the
probability of appearance of such objects (or simi-
lar ones) during a simple point removal process is
not negligible (this assertion is strengthened by the
fact that X1 has been obtained by removing simple
points from a 53 cube in a random order).

From an experimental point of view, the existence
of topological monsters implies the potential inabil-
ity of methods based on simple point removal to com-
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pute globally minimal skeletons, and the appearance
of undesired structures in skeletonisation or, more
generally, reduction procedures based on the same
strategy. These structures could be assimilated to
“topological artifacts”, by similarity to the terminol-
ogy of signal-based image processing methods.

It has been observed that the appearance of such
structures is favoured by the use of monotonic (i.e.
reduction or growth) procedures. Indeed, non-
monotonic procedures can break artifacts, since they
can remove/add voxels which have been previously
added/removed, thus generating new simple points
where there no longer existed any. The appearance
of topological artifacts is also favoured by the use of
sophisticated heuristics for choosing the voxels to re-
move/add. As an example, methods removing vox-
els by successive layers from the object border (as
distance map-based skeletonisation) are unlikely to
generate such artifacts, by opposition to methods
removing voxels according to intensity in grey-level
images [3], and leading to sometime complex shapes.

4. Conclusion

In order to dispose of topological artifacts, especially
in monotonic procedures, a solution could consist in
generalising the notion of simple points to larger sets,
leading to a notion of simple sets. The smallest non-
trivial and non-unitary ones are composed of two
voxels, both being non-simple. It has to be noticed
that all topological monsters presented in this paper
include at least one such simple set, the removal of
which enables to further remove simple points until
obtaining a globally minimal topologically equivalent
sub-object. First results about the characterisation
of such simple sets will be presented soon [4].
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Figure 1. 3D view of four topological monsters Xi (i = 1
to 4).
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(b) X2
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Figure 2. 2D view of Xi (i = 1 to 4).

Xi |Xi| |K(Xi)| b0(Xi) b1(Xi) b2(Xi)

X1 32 1 1 0 0
X2 33 5 1 1 0
X3 18 9 1 2 0
X4 16 14 1 3 0

Table 1. Main properties of Xi (i = 1 to 4). |Xi|: size
(number of voxels) of Xi; |K(Xi)|: size of the smallest
subset(s) topologically equivalent to Xi; b0(Xi) (resp.
b1(Xi), resp. b2(Xi)): number of (26-)connected compo-
nents (resp. (6-)holes, resp. (6-)cavities) of Xi.


