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Abstract. Damage identification in civil engineering structures using vibration measurements 

has become an important area of research. A reliable and cost effective method is required to 

detect and quantify local damage in the structures. The objective of this new proposed method 

is to identify structural damage in real time at a more detailed level directly from the vibration 

measurements. Structural damage is assumed to be associated with a proportional reduction of 

element stiffness matrix. Dynamics characteristics of the structure are calculated by using 

Newmark’s numerical integration method based on measured acceleration data. The change in 

the stiffness matrix caused by structural damage is implemented into the equation of motion of 

the dynamic system. A system of governing equations is derived, where the difference between 

the vibration data of undamaged and damaged structures can be directly adopted. The changes 

in the stiffness matrix are represented by the changes in the coefficients associated with 

element stiffness matrixes. Those coefficients can be used as damage parameters in structural 

damage detection. Both the location and extent of the damage are then determined based on the 

inverse calculations of damage parameters of the individual elements. Finally, a numerical 

example is utilised to demonstrate the effectiveness of the proposed approach for on-line 

structural damage assessment. 

 

1.  Introduction 
 

In recent years, structural damage detection methods based on measured vibration data have been 

widely utilised for assessing engineering structures. The safety of aging infrastructure and the 

economic considerations have been motivating factors for the development of reliable structural 

condition assessment methods which can be used to evaluate deterioration at the earliest stage. 

Objective assessment of structural conditions is not only beneficial for the cost effective maintenance 

strategy but also increases the overall efficiency of operation and life-span of infrastructure. It can also 

reduce the risk of the loss of human lives due to unexpected structural failures. 

Most damage identification methods utilise the fact that any changes in structural stiffness lead to 

changes in modal characteristics of the structure. In structural damage detection, the measured modal 

parameters of the damaged structure are compared to those of the original undamaged one. A number 

of methods based on the measurements of natural frequencies and mode shapes for the damaged 

structure have been developed, such as sensitivity methods [1], modal force error methods [2], modal 

residual methods [3], and techniques based on genetic algorithms and neural networks [4, 5]. The 
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advantage of using the structural natural frequency shifts to detect damage is relatively 

straightforward. However, the change of natural frequency may not provide enough information for 

correct identification of the structural damage location and amount. This is because only limited 

number of frequencies can be measured and are available for structural damage assessment. 

Furthermore, the natural frequency is often not sensitive enough to initial damage in the structure. 

From the test study of I-40 Bridge, Farrar and Core [6] demonstrated that frequency shift is not a 

sensitive damaged indicator as no significant reductions of modal frequencies were observed although 

overall stiffness of the bridge cross section was reduced by 21%. On the other hand, reduction of 

stiffness due to structural damage tends to increase the curvature of the mode shapes in the vicinity of 

the damage. The curvature is inversely proportional to the flexural stiffness of the structure. In theory, 

changes in the mode shapes or mode shape curvatures could be used in damaged detection. However, 

detection of structural damage may not be practical if the change in stiffness is relatively small. 

Some of the above mentioned methods are used to identify changes in the coefficients of the 

stiffness matrix, thus no information on specific damage locations in the structure can be provided. In 

this study, by using change in stiffness associated with element stiffness, damage of the structure can 

be detected at a more detailed level with relatively high accuracy. Here, the damaged stiffness matrix 

is directly implemented into the equation of motion for the damaged structure. The difference between 

the vibration data of damaged and undamaged structures are adopted into the governing equation of 

motion. Change in stiffness of structural elements can be represented by the coefficients associated 

with the stiffness matrices as damage parameters.  Then damage parameters are inversely calculated in 

every time step from the derived equation. The identified damage parameters are then used to give the 

location and extent of the specific damaged elements.  

Finally, a damaged cantilever beam is adopted for a numerical example to demonstrate the 

effectiveness of the new proposed approach. In the example, damage is simulated as a reduction of 

stiffness for the assumed elements. Vibration characteristics of undamaged and damaged states are 

generated numerically by using Newmark’s time step integration method. The results from the 

example show that the proposed technique can correctly identify the specific location and quantity of 

structural damage with relatively high accuracy. 

 

2.  Basic equation for dynamic structures 
 

In a dynamic structural system, the characteristic equation for the undamaged structure is given by 

 

 �� − ������ = 
 (1a) 

 

Similarly, for the damaged structure it is expressed as 

 

 ��� − �������� = 
 (1b) 

 

where � and � are the global stiffness matrix and the global mass matrix of the structure, 

respectively. �� and �� are the i
th
 eigenvalue and eigenvector, respectively. The superscript “d” 

denotes the quantities of the damaged structure. In damage detection, change in stiffness caused by 

structural damage is can be represented by Δ� while the mass matrix is assumed to remain unchanged 

[7]. Consequently, for the damaged structure, �� and �� are expressed by 

 

 �� = �+ Δ� (2a) 

 

 �� = � (2b) 
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The change in the structural stiffness matrix  Δ�  is expressed in a simple form [8]   

 

 

Δ� =���
��

���
�� 

 

(3) 

 

where NE is the total number of structural elements, �� is the contribution of the j
th
 element to the 

global stiffness matrix and �� is the damage parameter for the j
th
 element which ranges from 0 to -1. 

Any change in  �� indicates the location and extent of damage in the j
th
 element. For example, the 

value of �� will be -1 if the j
th
 element is completely damaged. Damaged element stiffness will be 

completely removed in the global structural stiffness. When the j
th
 element is no damage at all,	�� is 

equal to 0 and the contribution to the global structural stiffness remains unchanged. 

Newmark (1959) introduced a time integration method for solving structural dynamic problems [9]. 

Here, Newmark’s method is implemented into the formulation of a new damage detection technique. 

In the new method the time history is divided into a sequence of equal time steps Δ�. A harmonic force 

is considered as loading on both undamaged and damaged structures. The equation of motion for the 

structural dynamics system is written as 

 
 ��� � + 	��� � + ��� = �	sin	�!��� (4a) 

 
 ��� �"� + 	��� �"� + ���"� = �	sin	�!��"�� (4b) 

 
where “i” represents the time step at  �� and “i+1” denotes the next time step �� + ∆�. Time dependent 

variable  �� , �� � and �� �  are nodal displacement, velocity and acceleration, respectively. In the 

Newmark’s method, displacement and velocity for the next time step are given by 

 
 ��"� = �� + ∆��� � + �0.5 − '�∆�(�� � + '∆�(�� �"� (5) 

 
 �� �"� = �� � + ∆�)�1 − +��� � + +�� �"�, (6) 

 

where coefficients are taken as ' = �
-  and  + = �

( . ��"� , �� �"� and �� �"� can be calculated from 

 

 ��"� = �� + ∆�� (7) 

 
 �� �"� = �� � + ∆�� � (8) 

 
 �� �"� = �� � + ∆�� � (9) 

 

where  ∆�� ,	∆�� � and ∆�� � are incremental displacement, velocity and acceleration, respectively. 
Substituting ��"� in equation (7) into equation (5) gives  

 
 ∆�� � = 1

'∆�( ∆�� − 1
'∆� �� � −

1
2'�� � 

 

(10) 

 
Similarly, substituting equation (8) into equation (6) leads to  

 
 ∆�� � = ∆��� � + +∆�∆�� � (11) 
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From ∆�� � in equation (10), equation (11) becomes 

 
 ∆�� � = +

'∆� ∆�� − +
' �� � + ∆��1 − +

2'��� � 
(12) 

 
The difference between equations (4a) and (4b) gives the incremental equilibrium equation of motion 

 

 �∆�� � + 	�∆�� � + �∆�� = ∆�� (13) 

 

From ∆�� � in equation (10) and ∆�� � in equation (12), equation (13) is rewritten as 

 
 �∗∆�� = ��∗ (14) 

where 

 �∗ = 1
'∆�(�+ +

'∆� � + � 
(15) 

 
 ��∗ = ∆�� + 0 12' 	� + ∆� 1 +2' − 12�3�� � + 0 1

'∆�� + +
' �3�� � 

(16) 

 

With the knowledge of system properties, �� � and �� � at the initial time, ∆�� at time step “i” can be 

computed by inverting �∗ in equation (14) as 

 

 ∆�� = [�∗]6���∗ (17) 

 

Once ∆�� is known ∆�� �  and  ∆�� �  can be computed from equations (10) and (12), respectively. 

Similarly, ��"� , �� �"� and �� �"� can also be computed from equations (7), (8) and (9). 

 

3.  Inverse prediction of damage parameters  

 

The equation of motion for the damaged structure which are subjected to the identical harmonic 

loading can be described as 

 

 ��� �� + 	��� �� + ����� = �	sin	�!��� (18) 

 

Substituting damaged stiffness  ��  into equation (18) and assuming unchanged mass and damping for 

the damaged dynamic system lead to   

 
 ��� �� + 	��� �� + �� + ∆����� = �	sin	�!��� (19) 

   
Evidently, the right-hand side equality of equations (4a) and (19) gives 

  
 ��� �� + 	��� �� + �� + ∆����� = ��� � + 	��� � + ��� (20) 

 
Simply, equation (20) can be rewritten in the following form 

 
 ∆���� = ���� � − �� ��� + 	���� � − �� ��� + ���� − ���� (21) 
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From  ∆�  in equation (3), equation (21) becomes 

 
 

�����
��

���
��� = ���� � −�� ��� + 	���� � − �� ��� + ���� −���� 

 

(22) 

 
Only damage parameter �� is an unknown vector in the above equation. Therefore, equation (22) can 

be expressed as a set of linear algebraic equations in the following form 

 
 7� = 8 (23) 

 

in which the known coefficient matrix A and vector b are defined as 

 
 7 = ����� (24a) 

 

 8 = ���� � − �� ��� + 	���� � − �� ��� + ���� − ���� (24b) 

 

 In order to compute �, 7 has to be inverted. However, there are many situations where the inverse of 

7 may not exist since the coefficient matrix A may not be square. In these cases, the inverse will be 

found via the Moore-Penrose pseudoinverse method. From equation (23), the damage parameters can 

be estimated from   

 � = 798 = �7:7�6�7:8 (25) 

 

where 79 is the Moore-Penrose pseudoinverse matrix in a least squares sense, which can be calculated 

from the Singular Value Decomposition method. Consequently, the location and amount of damage 

can be determined by the obtained damage parameters at detailed level. 

 

4.  Numerical example 
 

A cantilever beam with 10 elements is selected to illustrate the example. In order to understand how 

the procedure works, two damage cases are considered.  Only the first element is assumed as 10% 

damage in Case 1. In Case 2, elements 1, 3 and 4 are assumed as 10%, 20% and 30% damage, 

respectively. Additional damage scenario is also considered in Case 2, assuming element 1 unchanged 

and element 3 and 4 damaged with the same amount of 5%.  The undamaged and damaged structures 

are subjected to the same harmonic force. For simplicity, noise is not considered in this example. The 

location and amount of the simulated damage are then determined from the inverse calculations of the 

damage parameter ��. 
 

3.0 m

1 2 3 4 5 6 7 8 9 10

Psin(ωt)

 

Figure 1. Cantilever beam subject to harmonic force with simulated damage Case 1 at element 1. 
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First, the simulated damage Case 1 is considered, as shown in Fig. 1. The proposed approach is 

employed to inversely identify the simulated damage in the structure. Figs. 2 and 3 show the results 

for inverse predictions for the simulated damage. The damaged element 1 with damage amount of 

10% is clearly identified while the other elements are identified as undamaged elements. This gives an 

excellent agreement with the assumed simulation. From the results shown in Figs. 2 and 3, the 

damping of the structure has little influence on the inverse structural damage identification from the 

proposed approach. 
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Figure 2. Inversely identified damage parameters in real time for Case 1 without damping where only 

element 1 damaged by 10%. 
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Figure 3. Inversely identified damage parameters in real time for Case 1 with damping where only 

element 1 damaged by 10%. 

 

Now, the scenario with structural damage at multiple locations in various damage magnitudes is 

considered in simulated Case 2, as shown in Fig. 4. Figs. 5 and 6 indicate the results for inverse 

predictions for the simulated damage Case 2. Again, the proposed approach provides accurate inverse 

predictions of the simulated damage for this complex case, and the obtained results agree well with the 

locations and magnitudes of simulated structural damage. The results also show that the inverse 

predictions for the undamped structure are better and stable, comparing with those for damped 

structure. The damping therefore may affect the structural damage identification in cases with severe 

damage at multiple locations. The results in Fig. 6 also show that the damaged parameter for element 2 

is slightly influenced by the damping with oscillation at the beginning of time steps due to the severe 

damage in the neighbor elements 1, 3 and 4.       
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Figure 4. Cantilever beam subject to harmonic force with simulated damage Case 2 at multiple 

locations, i.e. elements 1, 3 and 4. 
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Figure 5. Inversely identified damage parameters in real time for Case 2 without damping where 

elements 1, 3 and 4 damaged in 10%, 20% and 30%, respectively. 

 

0 5 10 15 20
-40

-30

-20

-10

0

10

other α    ∼ 0 %

α4    ∼  −30 %

α3    ∼  −20 %

 

 

D
a
m

a
g
e
 A

m
o
u
n
t 

(i
n
 %

)

Time Step

 α1

 α2

 α3

 α4

 α5

 α6

 α7

 α8

 α9

 α10

α1    ∼  −10 %

Element Damage Parameter

 
 

Figure 6. Inversely identified damage parameters in real time for Case 2 with damping where 

elements 1, 3 and 4 damaged in 10%, 20% and 30%, respectively. 

 

For the additional damage scenario assuming both elements 3 and 4 damaged at level of 5% in the 

Case 2, the identified damage parameters are presented in Figs. 7 and 8 from the proposed approach 

without and with damping, respectively. It can be seen that the influence of surrounding damaged 

elements on the predictions of damage parameter at element 2 is reduced significantly and stable 

predictions are then obtained for all damage parameters for all elements concerned. 
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Fig. 7 Without Damping Fig. 8 With Damping 

 

Figure 7 and 8. Inversely identified damage parameters in real time for Case 2 where elements 1, 3 

and 4 are damaged in 10%, 5% and 5%, respectively. 

5.  Conclusion 
 

A new method for structural damage detection in real time is presented. In this method, damage 

parameters are inversely calculated from the vibration measurements such as accelerations. They can 

be used for structural damage identification and monitoring in real time. Based on the numerical 

results involving the cantilever beam problems, the following conclusions are noted: (1) The proposed 

new method is capable of successfully detecting the damage in the structure; (2) It can be used in the 

case of initial damage in the structure; (3) Damage can be detected in more detail in terms of location 

and extent in the structure with relatively high accuracy; (4) The new proposed technique performs 

well and produces stable and reliable results for the three numerical examples as illustrated; (5) 

Damping in structures may have effect on structural damage detection if severe damage exist at 

multiple locations. 
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