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A strategy for multi-robot navigation

Lotfi Beji, Mohamed ElKamel and Azgal Abichou

Abstract— The paper addresses the problem of trajectory
regulation of driftless systems such that a stabilizing control
input is assumed exists. The perturbed trajectory depends
on a regulation control-input which must be designed such
that the system’s stability is preserved and some undesirable
sets belonging to navigation area must be avoided. For the
stability and regulation of a multi-robot system a converging
attractive set around the target is constructed and a repulsive
set around obstacles is emphasized. Taking into account a
communication algorithm agents-agents to agents-target, we
prove that the proposed regulation control-input preserves the
navigation area invariance property and the system’s stability.
Simulation results illustrate the effectiveness of he proposed
control algorithm.

I. INTRODUCTION

Research in the field of modelling and control of multi-

vehicle formations has made tremendous strides during the

past few decades. Interest in multi-vehicle formations and

their control has increased because of the many possible

applications in military as well as civil fields. The study

of robot formation control, inspired from swarm evolution

in nature, began from the industry and military worlds

with the idea of using multiple small vehicles instead of

one big one. Teams of inexpensive robots, performing co-

operative tasks, may prove to be more cost and energy-

effective than a single one. They are, in addition, capable

of achieving a mission more efficiently. Using formations

of robots includes other advantages such as increased fea-

sibility, accuracy, robustness, flexibility and probability of

success. Many studies have focused on the subject, based on

different approaches and using different strategies, such as

flexible/rigid virtual structure, behavioral approach, leader-

follower approach, consensus algorithms and swarm intelli-

gence. Each approach has its advantages and disadvantages,

and is used to achieve a specific goal: the rendezvous

problem and alignment for wheeled mobile robot formation

[7] [20], the cooperative monitoring/surveillance for multiple

UAVs formation [10] [24], the delivery time for vehicles

in an industrial environment [22] [23]. Such a consensus

is designed so that the vehicles update the value of their

information states based on those of their neighbors, and the

control law is designed so that the information states of all of

the vehicles in the formation converge to common objective

[1] [14]. The consensuses of navigation are designed to be

distributed, assuming only neighbor-to-neighbor interaction
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between vehicles [13]. In this area, a special edition which

regroups recent results in the field was proposed by Beji

and Abichou [19] under the title Modelling and/or Control

of Multi-Robot Formations. We resume these contributions:

in sharing modelling approaches and control algorithms, the

presented results permit to coordinate industrial Automatic

Guided Vehicles (AGVs) [23], formation vector control of

groups of non-holonomic mobile robots [20], organize inter-

space vehicles in platoons, success pattern transformations

in swarm systems, recover Micro Air Vehicles (MAVs) in

flight [21], move flexible virtual structure shape based on

co-leaders [8], and render automatic the short distance in a

platoon of vehicles (see [19] and the papers edited in).

In this paper, the regulation control problem for driftless

systems is addressed with the consideration of a motivating

example for the unicycle like model given in [17]. Using

this control model, the time-varying control law can be

augmented by a function which preserves the system stability

and used to solve the regulation problem. In order to illustrate

our main idea, let us note that the trajectories, as solutions of

the system in closed-loop, don’t take into account restriction

caused by obstacles belonging to the robot navigation area.

As we try to preserve the system stability, any additional in-

put could just modify solutions in presence of a perturbation.

Hence, this additional term will be called regulation control

input.

The contents of the paper is as following: in section II we

prove the theoretical results for the regulation control-input

of driftless systems. The system’s trajectory avoiding a set of

undesirable points is shown in section III . The multi-robot

navigation avoiding a set of obstacles is the subjective of

section IV . Section V shows the communication algorithm

between agents and the target and the analysis of results.

Finally, some comments will conclude the paper.

II. REGULATION CONTROL-INPUT FOR

DRIFTLESS SYSTEMS

Driftless systems are linear in control and take this general

form:

q̇ =

m
∑

i=1

fi(q)ui (1)

where q ∈ R
n and u = (u1, u2, u3, ..., um)T ∈ R

m, denote

the state and the control input of the system, respectively.

One considers the matrix P such that their columns are

formed by the function fi. The system (1) is then written

in compact form:

q̇ = P (q)u (2)
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In the literature, the stabilization problem of (2) has been

studied extensively, including the results of Pomet [17].

Consequently, if the vectors f1(0), f2(0), f3(0), ..., fm(0) are

linearly independent, then (2) failed the Brokett’s necessary

conditions [16]. Hence the system cannot be stabilized by

a stationary feedback law depending only on the system’s

states. As an alternative, a time varying control law may

guarantee the stability of the system at the origin (see also

[18] for a system with drift). For the unicycle like model

starting from the fact that a time-varying stabilization law

exists and adding a regulation control input, the main result

is given in the following theorem.

Theorem 2.1: Let D ⊂ R
n a set that contains the equi-

librium. One considers q a solution of system (2) and V :
R

n × [0,+∞[→ R the Lyapunov function associated to

ua(q, t) ∈ R
m, satisfying the following :

α1(q) ≤ V (q, t) ≤ α2(q)

∂V

∂t
+
∂V

∂q
P (q)ua(q, t) ≤ −α3(q)

(3)

Such that for (q, t) ∈ D × [0,+∞[, α1, α2 and α3 are

continuous and positive definite functions in D. For all given

function ν : Rn → R continuous in D, the control law

u = ua(q, t) + ν[[(
∂V

∂q
)tP (q)]t]⊥ (4)

led to the uniform asymptotic stability of (2) toward a given

target.

�

Proof. As the Lyapunov function V verifies the conditions

(3), hence, the control input ua for system q̇ = P (q)ua(q, t)
implies its uniform asymptotic stability. Using the same

function V for (2) with the control law (4), under the

hypothesis that the inverse of P (q)PT (q) exists for q ∈ R
n,

we get :

V̇ =
∂V

∂t
+ (

∂V

∂q
)TP (q)u

=
∂V

∂t
+ (

∂V

∂q
)TP (q)[ua + ν[[(

∂V

∂q
)TP (q)]T ]⊥]

=
∂V

∂t
+
∂V

∂q
P (q)ua

(5)

which leads to the inequalities in (3). Consequently, for q
solution of (2) under the control input (4), the proposed

function V verifies (3). As a result, (2) combined with (4)

lead to uniform asymptotic stability results.

�

If a stationary feedback law exists for (2), we could

propose a result similar to Theorem 2.1. In this case, the

stabilizing control input takes this form : u = ua +

ν[[(
∂V

∂q
)TP (q)]T ]⊥.

In order to avoid some undesirable set O taking the system

initial conditions in R
n\O, the function ν is emphasized

int the following closed loop form From the literature, the

stability results consists to give the adequate form of ua, this

enures the system’s stability around fixed positions or trajec-

tories. Here we assume that ua exists, hence, the equilibrium

stability of the unperturbed system is asserted. However, to

ensure that the solutions of the controlled system avoid some

undesirable set O, some conditions on the regulating control

input ν will be defined taking the system initial conditions

in R
n\O. The general form of a system in closed loop is

reduced to (Theorem 2.1) :

q̇ = P (q)[ua(q) + ν[[(
∂V

∂q
)tP (q)]t]⊥]

, X (q, ν)
(6)

where q ∈ R
n and ν is the regulation control-input.

Note that for the time-varying case, X is function of

(q, ν, t). We must achieve the same result to a system with

a drift term.

III. AVOIDING A SET OF POINTS

In order to constraint the system’s trajectory in closed loop

(6), we evoke conditions on X (.) in avoiding a set of points.

Proposition 3.1: Considering system (6) which evolves in

R
n. For a continuous ϕ : E ∈ R

n → F ∈ R and A as a

compact set, one defines the set of points to be avoided :

O = {c(c1, c1, ..., cn) ⊂ R
n/ ϕ(c) ⊂ A} = ϕ−1(A)

Let N a submanifold in R
n\O, surrounding O (i.e. if U is

in neighborhood of a point of ∂O, then N ∩U 6= ∅). If there

exists a function ν(q) such that

ϕ(q + τX (q, ν)) ∈ CFA (7)

for all τ ∈ [0, 1] and q ∈ N , we have the following,

1) the integral curve of X (q, ν) from q0 = q(t0) ∈ N is

included in N for t small enough.

2) If further X is locally Lipschitzian for q ∈ N , then the

integral curve of X (q, ν) from q0 = q(t0) ∈ R
n\O do

not leave R
n\O.

�

Proof. As R
n\O is an open of Rn, then R

n\O is a variety,

and N is a subvariety of R
n\O enveloping O. Then there

exists a function ν such that the vector field X (q, ν) implies

∀τ ∈ [0, 1] and ∀q ∈ N

q − c(q) 6= −τX (q, ν)

then

c(q) 6= (1− τ)q + τ(X (q, ν) + q)

Hence, c(q) does not belong to the segment connecting q
to (X (q, ν) + q). The fact that

(X (q, ν) + q)− q = X (q, ν)

it implies that the vector field X (q, ν) resulting from q ∈ N
do not interfere the set O. If further ∀q ∈ N , X (q, ν) ∈ TqN
then the integral curve X (q, ν) with q0 ∈ N is continuous

and is included in N for t small enough.
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Now, if further the vector field X (q, ν) is locally Lipschitzian

in N , the theorem of Cauchy-Lipschitz guarantees that the

solution is unique in N . Hence, if an integral curve γ(t)
of X (q, ν), from q(t0) ∈ R

n\O, interfere N , then γ(t),
restricted to N , will be confused at one of curves resulting

from N . Thus γ(t), for t small enough, remains in N and

return after that in R
n\O, without crossing O (as O is

enveloped by N ).

�

IV. AVOIDING A SET OF OBSTACLES

In this section, we generalize the problem of navigation

with a environment nonempty of obstacles. Further, it is

assumed that these obstacles are sufficiently spaced so that

vehicles can pass through them. Recall that each ith obstacle

is surrounded by a circumscribed circle, and let Oi denotes

its ith center with p the number of obstacles in the navigation

space. Li will design the line joining the center of the target

C and Oi where we assume that a fixed reference is attached

to the target.

Fig. 1. A robot in front of an obstacle.

We introduce the function ϕi as following:

ϕi : E = R
n 7→ F = [0,+∞[

c → ‖c−Oi‖
Consider the ith set to be avoided

Oi = ϕ−1
i (A = [0; ri[)

ri = ‖−−−→OiOqi‖. In avoiding a set of obstacles, our main

results are summarized in the following theorem.

Theorem 4.1: For system (6), under the regulation control

input:

ν =

p
∑

i=1

ψ([y − Li(x)][Oix − Cx])

‖q −Oiq‖
(8)

with ψ(p) =
p

|p|+ 1
for all p ∈ R, the solution q obeys to

two properties:

1) ‖q −Oi‖ > ri, ∀ q0 ∈ R
n\⋃i Oi with i ∈ {1, .., p}.

2) q converges asymptotically to an attractive set centered

in C.

�

In order to achieve the result of Theorem 4.1, we construct

the following two lemmas.

Lemma 4.2: Referring to system (6) with the associated

function V =
1

2
‖q‖2. Let β the angle between X (q, ν) and

q⊥, we get
ν√

1 + ν2
= cos(β) (9)

�

Proof. For (6) such that V =
1

2
‖q‖2, we obtain

q̇ = −q + νq⊥ = X (q, ν) (10)

ν is given by (8). From

‖X (q, ν)‖ =
√

1 + ν2‖q‖ (11)

and the fact that

〈X (q, ν)/q⊥〉
‖q‖2 = ν

⇔ ‖X (q, ν)‖
‖q‖ cosβ = ν

(12)

where β is the angle defined by X (q, ν) and q⊥. Conse-

quently, from (11) and (12), the following equality holds:

ν√
1 + ν2

= cos(β) (13)

�

Lemma 4.3: For system (6) with V =
1

2
‖q‖2 and β as

defined above. There exits a set N surrounding Oi such that

∀q ∈ N ,

- if 〈q/O⊥
i 〉 > 0 then X (q, ν) ∼ ̟(q)q⊥

- if 〈q/O⊥
i 〉 < 0 then X (q, ν) ∼ −̟(q)q⊥

with

̟(q) =
√

1 + ν2 (14)

�

Proof. Closely to the ith obstacle, we get:

lim
‖q−Oi‖→ri

ν = lim
‖q−Oi‖→ri

p
∑

j=1

ψ(〈q/O⊥
j 〉)

‖q −Ojq‖

= lim
‖q−Oi‖→ri

p
∑

j 6=i

ψ(〈q/O⊥
j 〉)

‖q −Ojq‖

+ lim
‖q−Oi‖→ri

ψ(〈q/O⊥
i 〉)

‖q −Oiq‖
The following investigation emphasizes three study cases

which depend on each vehicle’s initial position with respect

to the line defined by Li. Hence,

• if for ‖q −Oi‖ → ri we have 〈q/O⊥
i 〉 > 0 then

lim
‖q−Oi‖→ri

ν =

lim
‖q−Oi‖→ri

ψ(〈q/O⊥
i 〉) lim

‖q−Oi‖→ri

1

‖q −Oiq‖
As a result,

lim
‖q−Oi‖→ri

ν = +∞ (15)
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From Lemma 4.2, it implies that

lim
‖q−Oi‖→ri

cos(β) = lim
‖q−Oi‖→ri

ν√
1 + ν2

= 1

Consequently,

lim
‖q−Oi‖→ri

β = 2kπ ∀k ∈ Z

which permits to write the following:

∀ε > 0 ∃η1 > 0/‖q −Oi‖ − ri| < η1 and |β − 2kπ| < ǫ

and the existence of

N1 = {p ∈ R
2/ri < ‖q −Oi‖ < ri + η1}

Now, as from the definition of β, there exists a real positive

function ̟ such that

lim
‖q−Oi‖→ri

‖X (q, ν)−̟(q)q⊥‖ = 0

Determining the function ̟.

lim‖q−Oi‖→ri ‖X (q, ν)−̟(q)q⊥‖2 = 0
⇔ lim‖q−Oi‖→ri ‖X (q, ν)‖2 +̟(q)2‖q⊥‖2

−2̟(q)‖q⊥‖‖X (q, ν)‖ cos β = 0
⇔ lim‖q−Oi‖→ri [(1 + ν2) +̟(q)2

−2̟(q)
√
1 + ν2]‖q‖2 = 0

⇔ lim‖q−Oi‖→ri(̟(q)−
√
1 + ν2)‖q‖2 = 0

As q ∈ N1, it is obvious that ̟(q) =
√
1 + ν2, meaning

that ∀q ∈ N1,

X (q, ν) ∼ ̟(q)q⊥

• Now, if ‖q − Oi‖ → ri, we have 〈q/O⊥
i 〉 < 0, in the

following the same procedure as shown above,

lim
‖q−Oi‖→ri

cos(β) = lim
‖q−Oi‖→ri

ν√
1 + ν2

= −1

hence,

lim
‖q−Oi‖→ri

β = (2k + 1)π ∀k ∈ Z

Thus, there exits η2 > 0 such that ∀q ∈ N2 = {p ∈
R

2\O/ri < ‖q −Oi‖ < ri + η2}, we have the following

X (q, ν) ∼ −̟(q)q⊥

• If for ‖q −Oi‖ → ri the case 〈q/O⊥
i 〉 = 0 holds, then

lim
‖q−Oi‖→ri

ν = lim
‖q−Oi‖→ri

p
∑

j 6=i

ψ(〈q/O⊥
j 〉)

‖q −Ojq‖

+ lim
‖q−Oi‖→ri

ψ(〈q/O⊥
i 〉)

‖q −Oiq‖

= lim
‖q−Oi‖→ri

p
∑

j 6=i

ψ(〈q/O⊥
j 〉)

‖q −Ojq‖

which implies that the domain that surrounds the obstacle

Oi is such that N = {p ∈ R
2\ri < ‖q − Oi‖ < ri +

min(η1, η2)}.

�

The proof of Theorem 4.1 is achieved in the following step.

Proof. Recall the system (16) with the associated Lya-

punov function V =
1

2
‖q‖2,

q̇ = u (16)

q ∈ R
2n and u ∈ R

2n. Further we assume that q ∈ N where

N is the set defined in Lemma 4.3.

One distinguishes the following two cases.

• If 〈q/O⊥
i 〉 > 0 then from Lemma 4.3

X (q, ν) ∼ ̟(q)q⊥

As q ∈ N then instead of X we consider ̟(q)q⊥.

Let τ ∈ [0, 1[, then

ϕ(q + τ̟(q)q⊥)2 = ‖q −Oi + τ̟(q)q⊥‖2
= ‖q −Oi‖2 + τ2̟(q)2‖q‖2
+2τ̟(q)〈q −Oi/q

⊥〉
= ‖q −Oi‖2 + τ2̟(q)2‖q‖2
+2τ̟(q)〈O⊥

i /q〉
which implies that ϕ(q + τ̟(q)q⊥)2 > r2i because

τ̟(q)〈O⊥
i /q〉 > 0. As a result

ϕ(q + τ̟(q)q⊥) ∈ CFA = [r,+∞[

From proposition 3.1, ∀q ∈ N and 〈q/O⊥
i 〉 > 0 q avoid all

the Oi.

• If 〈q/O⊥
i 〉 < 0, then form Lemma 4.3

X (q, ν) ∼ −̟(q)q⊥

As q ∈ N then instead of X we consider −̟(q)q⊥.

Let consider τ ∈ [0, 1[, then

ϕ(q − τ̟(q)q⊥)2 = ‖q −Oi − τ̟(q)q⊥‖2
= ‖q −Oi‖2 + τ2̟(q)2‖q‖2
−2τ̟(q)〈q −Oi/q

⊥〉
= ‖q −Oi‖2 + τ2̟(q)2‖q‖2
−2τ̟(q)〈O⊥

i /q〉
which implies that ϕ(q + τ̟(q)q⊥)2 > r2i because

−2τ̟(q)〈O⊥
i /q〉 > 0. Consequently

ϕ(q + τ̟(q)q⊥) ∈ CFA =]ri,+∞[

for all q ∈ N and 〈q/O⊥
i 〉 < 0.

As a result ∀q ∈ N and 〈q/O⊥
i 〉 ∈ R

∗, from Proposition

3.1, q avoid all the Oi.

�

V. COMMUNICATION AGENTS-TARGET

In order to reach a shared objective which materializes the

target and to avoid collisions, we solve the communication

problem between agents through the graph theory. A depth

analysis of the algebraic graph theory was studied in [1] [2].

For problems related to multi-agent networked systems with

close ties to consensus problems, this includes subjects such

as consensus [3][4] [14], collective behavior of flocks and

swarms [5] [6] [9], formation control for multi-robot systems

[7] [8] [10] [13], optimization-based cooperative control [11]

[12], etc. In this paper and from control point of view, the
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communication’s consensus is considered as a perturbation to

the stabilizing decentralized controller. Further, the position

of the target is augmented to the multi-robot vector of states

with the appropriate strength.

Let G(η, ǫ) a direct graph which admits a unit depth with

one sink [2] where η = {1, ..., n, r} is the set of nodes and

ε = {(i, j) ∈ η × η/i ∈ Nj} denotes the edges. Let L
the Laplacian matrix associated to Gand L is the quantity

L⊗I2 with ⊗ is the Kronecker product. Further, we consider

P (G) denotes the Disagreement matrix and defines the graph

Laplacian of the mirror graph Ĝ : P (G) = 1
2 (L(G)−L(G̃))

where the digraph G̃ is the inverse of G (more details are in

[2]). Note that the matrix P (G) is positive semidefinite.

The main result is summarized in the following theorem.

Theorem 5.1: We consider the following kinematics asso-

ciated to agents

˙̃q = ũ (17)

with q̃ = [q1, q2, ..., qn, qr] ∈ R
2(n+1) is the agent posi-

tions including the target position qr. Let the vector k =
(k1, k2, .., kn, 0) such that kij = ki − kj is related to the

(i, j) configuration qi − qj , and the strength zero is affected

to the target.

The control law

ũi = −L(q̃ − k)−









ν1 0 . . .

0
. . .

... 0 νr









⊗I2

















(

(P (G)⊗ I2(q̃ − k))x1

(P (G)⊗ I2(q̃ − k))y1

)⊥

...
(

(P (G)⊗ I2(q̃ − k))xr

(P (G)⊗ I2(q̃ − k))yr

)⊥

















(18)

with νi =
sign([yi0 − Li(xi0)][Cix −Ox])

‖q̃i −Oq̃i‖
leads to the

convergence of the formation’s states toward the target C
while avoiding Oqi . I2 is the identity matrix ∈ M2×2(R).

�

To prove this theorem we introduce the following results.

One considers the kinematic system under the conditions of

Theorem 5.1 such that

˙̃q = −L(G)(q̃ − k) (19)

The subdivision into two parts of (19) leads to

˙̃qx = L(q̃x − kx); ˙̃qy = L(q̃y − ky) (20)

where q̃x = (x1, x2, ..., xn, xr) , q̃y = (y1, y2, ..., yn, yr) ,

kx = (kx1
, kx2

, ..., kxn
, 0) and kx = (ky1

, ky2
, ..., kyn

, 0).

Proposition 5.2: Let

V = (q̃ − k)tP (G)⊗ I2(q̃ − k) (21)

The solutions of (19) converge toward the largest invariant

set

E = {q̃ ∈ R
2(n+1)/V̇ = 0}

= {q̃ ∈ R
2(n+1)/L(G)(q̃ − k) = 0} (22)

�

Proof. As the matrix P (G) is positive semidefinite, from the

definition of V , we can write

V = (q̃x − kx)
tP (G)(q̃x − kx)

+(q̃y − ky)
tP (G)(q̃y − ky)

= Vx + Vy

It is easy to show that the time derivative of Vx leads to

V̇x = −‖L(G)(q̃x − kx)‖2 ≤ 0 (23)

taking into account the property [2], L(G)tL(G̃) = 0, then

V̇ = −‖L(G)(q̃x − kx)‖2 − ‖L(G)(q̃y − ky)‖2 ≤ 0 (24)

which implies 0 ≤ V (q̃) ≤ V (q̃0), meaning that that the set

Ω = {q̃ ∈ R
2(n+1)/V (q̃) ≤ V (q̃0)} (25)

is the largest invariant set for system (19). Following to the

LaSalle’s theorem [15], the solutions of (19) converge toward

the largest invariant set defined by (q̃ ∈ R
2(n+1))

E(q̃) = {V̇ = 0}
= {‖L(q̃x − kx)‖2 = ‖L(q̃y − ky)‖2 = 0}
= {L(q̃ − k) = 0}

(26)

�

Now, suppose that the directed graph G admits a unit depth

with one sink, hence the Laplacian matrix L(G) associated to

G has a simple zero eigenvalue with an associated eigenvec-

tor 1n and all of the other eigenvalues have positive real parts.

1n is a n× 1 column vector of all ones, and its polynomial

characteristic is as R(λ) = −λ(1 − λ)n−1. Hence, zero

is a simple eigenvalue. The eigenvector X = (X1, .., Xn)
associated to 0 verifies LX = 0. Meaning that X1 = . . . =
Xn = Xj , consequently 1n is the eigenvector associated to

0. From the topology of L and as it was shown that the

system converge to E = {q̃ ∈ R
2(n+1)/L(q̃ − k) = 0},

consequently L(q̃x − kx) = 0 and L(q̃y − ky) = 0 with the

guarantee that (q̃x − kx) and (q̃y − ky) are the eigenvectors

of L associated to 0 which implies that they are generated

by {1n}. As a result,

q̃i = cst ∀i and q̃i − q̃j = kij ∀j ∈ Ni (27)

and q̃ = [q̃1, ..., q̃n, q̃r] converge toward the desired topology.

In other hand, the control law from (18) leads to

q̇r = 0 ⇔ qr = qr0

and

q̇i = −
(

xi − xr − (kxi
− kxr

)
yi − yr − (kyi

− kyr
)

)

− νi







(
∂V

∂q
)xi

(
∂V

∂q
)yi







⊥
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where from V ,

∂V

∂q̃
= P (G)⊗ I2(q̃ − k) (28)

Thus, from Proposition 3.1 it is straightforward to show that

qi avoids Oqi .

�

A. Analysis of results

The proposed control schema including the proposed

regulation control-input and a communication topology are

simulated with Matlab. A group of multi-robot with 6 agents,

where the target coordinate is considered known and as

the 7th agent (figure 2). Further an obstacle is considered

fixe with an appropriate repulsive circle to avoid this. So

a minimum of distance should be maintained between the

center of the obstacle and the agents while an attractive set

is constructed around the target. The effectiveness of the

regulation control-input ν is validated which preserves the

system’s invariance with respect to this set. Far from the

obstacle, the regulation ν vanishes and does not affect the

formation’s stability.

Fig. 2. Communication strategy toward a linear configuration.

VI. CONCLUSION

For a formation composed of multi-mobile agents, a new

control methodology has been developed. We proposed an

extension of the stabilizing controller that brings together the

multi-agent formation toward a desired set. The controller

incorporates an additive scalar functions of which there are

agents in the group. This regulation control-input allows

agents to avoid obstacles and collisions between them. To

perform further tasks, other forms of navigation strategies

and constraints could be integrated. As application, a decen-

tralized navigation are performed, and where the agents of

the group are rendered to an attractive circle surrounding

the target. The proposed regulation control scheme can be

extended to systems with drift with holonomic and nonholo-

nomic kinematic constraints.
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