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Abstract

This paper presents a Bulk-Synchronous Parallel (BSP) algorithm to
compute the discrete state space of structured models of security protocols.
The BSP model of parallelism avoids concurrency related problems (mainly
deadlocks and non-determinism) and allows us to design an efficient algorithm
that is at the same time simple to express. A prototype implementation has been
developed, allowing to run benchmarks showing the benefits of our algorithm.

1. Introduction

In a world strongly dependent on distributed data com-
munication, the design of secure infrastructures is a crucial
task. At the core of computer security-sensitive applications
are security protocols,i.e., sequences of message exchanges
aiming at distributing data in a cryptographic way to the
intended users and providing security guarantees. This leads
to search for a way to verify whether a system is secure
or not. Enumerative model-checking is well-adapted to this
kind of asynchronous, non-deterministic systems containing
complex data types. In this paper, we consider the problem
of constructing the state space oflabelled transition systems
(LTS) that model security protocols.

Let us recall that the state space construction problem is the
problem of computing the explicit representation of a given
model from the implicit one. This space is constructed by
exploring all the states reachable through a successor function
from an initial state. Generally, during this operation, all the
explored states must be kept in memory in order to avoid
multiple exploration of a same state. Once the state space
is constructed, or during its construction, it can be used as
input for various verification procedures, such as reachability
analysis or model-checking of temporal logic properties.

State space construction may be very consuming both in
terms of memory and execution time: this is the so-called
state explosion problem. The construction of large discrete
state spaces is so a computationally intensive activity with
extreme memory demands, highly irregular behavior, and poor
locality of references. This is especially true when complex
data-structures are used in the model as the knowledge of an
intruder in security protocols. Because this constructioncan
cause memory thrashing on single or multiple processor sys-
tems, it has led to consider exploiting the larger memory space
available in distributed systems [1], [2]. Parallelize thestate

space construction on several machines is thus done in orderto
benefit from all the storage and computing resources of each
machine. This allows to reduce both the amount of memory
needed on each machine and the overall execution time.

Distributed state space construction.One of the main techni-
cal issues in the distributed memory state space construction is
to partition the state space among the participating computers.
Most of approaches to the distributed memory state space
construction use a partitioning mechanism that works at the
level of states which means that each single state is assigned
to a machine. This assignment is made using a function that
partitions the state space into subsets of states. Each sucha
subset is then “owned” by a single machine.

To have efficient parallel algorithms for state space con-
struction, we see two requirements. First, the partition function
must be computed quickly and defined such that a successor
state is likely to be mapped to the same processor as its
predecessor; otherwise the computation will be overwhelmed
by inter-processor communications (the so calledcross tran-
sitions) which obviously implies a drop of the locality of the
computation and thus of the performances. Second, balancing
of the workload is obviously needed [3] because it is necessary
to fully profit from available computational power to achieve
the expected speedup. In the case of state space construction,
the problem is hampered by the fact that future size and
structure of the undiscovered portion of the space space is
unknown and cannot be predicted in general.

While it has been showed that a pure static hashing for the
partition function can effectively balance the workload and
achieve reasonable execution time as well [4], this method
suffers from some obvious drawbacks [5], [6]. First, it causes
too much cross transitions. Second, if ever in the course of the
construction just one processor is so burdened with states that
it exhausts its available main memory, the whole computation
fails or slows too much due swapping.

Verifying Security protocols. Designing security protocols is
complex and often error prone: various attacks are reported
in the literature to protocols thought to be “correct” for many
years. These attacks exploit weaknesses in the protocol that are
due to the complex and unexpected interleavings of different
protocol sessions as well as to the possible interference of
malicious participants,i.e., the attacker.



Furthermore, attacks are not as simple that they appear [7]:
the attacker is powerful enough to perform a number of poten-
tially dangerous actions as intercepting messages or replacing
them by new ones using the knowledge it has previously
gained; or it is able to perform encryption and decryption
using the keys within its knowledge [8]. Consequently the
number of potential attacks generally grows exponentiallywith
the number of exchanged messages.

Formal methods offer a promising approach for automated
security analysis of protocols: the intuitive notions are trans-
lated into formal specifications, which is essential for a careful
design and analysis, and protocol executions can be simulated,
making it easier to verify various security properties. Formally
verifying security protocols is a well established domain that
is still actively developed. Different approaches exist as[9],
[10], [11] and tools are dedicated to this purpose as [12], [13].

Contribution. In this paper, we exploit the well-structured
nature of security protocols and match it to a model of parallel
computation called BSP [14], [15]. This allows us to simplify
the writing of an efficient algorithm for computing the state
space of finite protocol sessions. The structure of the protocols
is exploited to partition the state space and reduce cross
transitions while increasing computation locality. At thesame
time, the BSP model allows to simplify the detection of the
algorithm termination and to load balance the computations.

Outline. First, we briefly review in Section 2 the context of
our work that is the BSP model, models of security protocols
and their state space representation as labelled transitions
systems (LTS). Section 3 is dedicated to the description of
our new algorithm. Then, in Section 4, we briefly describe a
prototype implementation and apply it to some typical protocol
sessions, giving benchmarks to demonstrate the benefits of our
approach. Related works are discussed in Section 5 while a
conclusion and future works are presented in Section 6.

2. Context and general definitions

2.1. The BSP model

In the BSP model, a computer is a set of uniform processor-
memory pairs connected through a communication network
allowing the inter-processor delivery of messages [15], [14].
Supercomputers, clusters of PCs, multi-core and GPUs,etc.,
can be considered as BSP computers.

A BSP program is executed as a sequence ofsuper-steps
(see Fig. 1), each one divided into three successive disjoint
phases: first, each processor only uses its local data to perform
sequential computations and to request data transfers to other
nodes; then, the network delivers the requested data; finally, a
global synchronisation barrier occurs, making the transferred
data available for the next super-step. The execution time
(cost) of a super-step is the sum of the maximum of the local
processing, the data delivery and the barrier times. The cost
of a program is the total sum of the cost of its super-steps.

local computing

p0 p1 p2 p3

communication

synchronisation barrier
next super-step...

...
...

...

Fig. 1. A BSP super-step

On most of cheaper distributed architectures, barriers of-
ten become more expensive when the number of processors
increases. However, dedicated architectures make them much
faster and they have also a number of attractions. In particular,
they dramatically reduce the risks of deadlocks or livelocks,
since barriers do not create circular data dependencies.

The BSP model considers communication actionsen masse.
This is less flexible than asynchronous messages, but easier
to debug since there are many simultaneous communication
actions in a parallel program, and their interactions are usually
complex. Bulk sending also provides better performances since
it is faster to send a block of data rather than individual data
because of less network latency.

2.2. State spaces of protocol models

A labelled transition system(LTS) is an implicit represen-
tation of the state space of a modelled system. It is defined
as a tuple(S, T, ℓ) whereS is the set of states,T ⊆ S2 is
the set of transitions, andℓ is an arbitrary labelling onS ∪T .
Given a model defined by its initial states0 and its successor
functionsucc, the corresponding explicit LTS isLTS(s0, succ),
defined as the smallest LTS(S, T, ℓ) such thats0 in S, and
if s ∈ S then for all s′ ∈ succ(s) we also haves′ ∈ S
and (s, s′) ∈ T . The labelling may be arbitrarily chosen, for
instance to define properties on states and transitions with
respect to which model checking is performed.

In the paper, we consider models of security protocols
involving a set ofagentsand we assume that any state can be
represented by a function from a setL of locationsto an arbi-
trary data domainD. For instance, locations may correspond
to local variables of agents, shared communication buffers, etc.

As a concrete formalism to model protocols, we have used
an algebra of coloured Petri nets[16] allowing for easy
and structured modelling. However, our approach is largely
independent of the chosen formalism and it is enough to
assume that the following properties hold:
(P1) Any state of the system can be described as a function

L → D.
(P2) There exists a subsetLR ⊆ L of reception locations

corresponding to the information learnt (and stored) by
agents from their communication with others.

(P3) Functionsucc can be partitioned into two successor
functionssuccR andsuccL that correspond respectively



to the successors that change states or not on the
locations fromLR.

More precisely: for all states and all s′ ∈ succ(s), if
s′|LR

= s|LR
then s′ ∈ succL(s), elses′ ∈ succR(s); where

s|LR
denotes the states whose domain is restricted to the

locations inLR. Intuitively, succR corresponds to transitions
upon which an agent receives information and stores it. On
concrete models, it is generally easy to distinguish syntacti-
cally the transitions that correspond to a message reception
in the protocol with information storage. Thus, is it easy to
partition succ as above. This is the case in particular for the
algebra of Petri nets that we have used.

In the following, the presented algorithms compute only
S. This is made without loss of generality and it is a trivial
extension to compute alsoT andℓ, assuming for this purpose
that succ(s) returns tuples(t, ℓ(t), s′, ℓ(s′)). This is usually
preferred in order to be able to perform model-checking of
temporal logic properties.

2.2.1. Dolev-Yao attacker.We consider models of protocols
where a Dolev-Yao attacker [8] resides on the network. An ex-
ecution of such a model is thus a series of message exchanges
as follows. (1) An agent sends a message on the network.
(2) This message is captured by the attacker that tries to learn
from it by recursively decomposing the message or decrypting
it when the key to do so is known. Then, the attacker forges
all possible messages from newly as well as previously learnt
information. Finally, these messages (including the original
one) are made available on the network. (3) The agents waiting
for a message reception accept some of the messages forged
by the attacker, according to the protocol rules.

2.2.2. Sequential state space construction.In order to ex-
plain our parallel algorithm, we start with Algorithm 1 that
corresponds to the usual sequential construction of a state
space. The sequential algorithm involves a settodo of states
that is used to hold all the states whose successors have not
been constructed yet; initially, it contains only the initial state
s0. Then, each states from todo is processed in turn and added
to a setknown while its successors are added totodo unless
they are known already. At the end of the computation,known

holds all the states reachable froms0, that is, the state space.

Algorithm 1 Sequential construction

1: todo ← {s0}
2: known ← ∅
3: while todo 6= ∅ do
4: pick s from todo
5: known ← known ∪ {s}
6: for s′ ∈ succ(s) do
7: if s′ /∈ known ∪ todo then
8: todo ← todo ∪ {s′}
9: end if

10: end for
11: end while

3. A BSP algorithm for state space construction

We now show how the sequential algorithm can be par-
allelised in BSP and how several successive improvement
can be introduced. This results in an algorithm that remains
quite simple in its expression but that actually relies on a
precise use of a consistent set of observations and algorithmic
modifications. We will show in the next section that this
algorithm is efficient despite its simplicty.

3.1. A naive BSP version

Algorithm 1 can be naively parallelised by using a partition
function cpu that returns for each state a processor identifier,
i.e., the processor numberedcpu(s) is the owner ofs. Usually,
this function is simply a hash of the considered state modulo
the number of processors in the parallel computer. The idea is
that each process computes the successors for only the states it
owns. This is rendered as Algorithm 2; notice that we assume
that arguments are passed by references so that they may be
modified by sub-programs.

Algorithm 2 Naive BSP construction

1: todo ← ∅
2: total ← 1
3: known ← ∅
4: if cpu(s0) = mypid then
5: todo ← todo ∪ {s0}
6: end if
7: while total > 0 do
8: tosend ← Successor(known, todo)
9: todo, total ← Exchange(known , tosend)

10: end while

Successor(known , todo) :

1: tosend ← ∅
2: while todo 6= ∅ do
3: pick s from todo

4: known ← known ∪ {s}
5: for s′ ∈ succ(s) do
6: if s′ /∈ known ∪ todo then
7: if cpu(s′) = mypid then
8: todo ← todo ∪ {s′}
9: else

10: tosend ← tosend ∪ {(cpu(s′), s′)}
11: end if
12: end if
13: end for
14: end while
15: return tosend

Exchange(known , tosend) :

1: received , total ← BSP EXCHANGE (tosend)
2: return (received \ known), total

This is a SPMD (Single Program, Multiple Data) algorithm
so that each processor executes it. Setsknown and todo are



still used but become local to each processor and thus provide
only a partial view on the ongoing computation. So, in order to
terminate the algorithm, we use an additional variabletotal

in which we count the total number of states waiting to be
proceeded throughout all the processors,i.e., total is the sum
of the sizes of all the setstodo. Initially, only states0 is known
and only its owner puts it in itstodo set. This is performed
in lines 4–6, wheremypid evaluates locally to each processor
to its own identifier.

FunctionSuccessor is then called to compute the successors
of the states intodo. It is essentially the same as the sequential
exploration, except that each processor computes only the
successors for the states it actually owns. Each computed state
that is not owned by the local processor is recorded in a set
tosend together with its owner number. This partitioning of
states is performed in lines 7–11.

Then, functionExchange is responsible for performing
the actual communication between processors. The primitive
BSP EXCHANGE send each states for a pair (i, s) in
tosend to the processori and returns the set of states received
from the other processors, together with the total number of
exchanged states. The routineBSP EXCHANGE performs a
global (collective) synchronisation barrier which makes data
available for the next super-step so that all the processorsare
now synchronised. Then, functionExchange returns the set of
received states that are not yet known locally together withthe
new value oftotal . Notice that, by postponing communication,
this algorithm allows buffered sending and forbids sending
several times the same state.

It can be noted that the value oftotal may be greater than
the intended count of states intodo sets. Indeed, it may happen
that two processors compute a same state owned by a third pro-
cessor, in which case two states are exchanged but then only
one is kept upon reception. Moreover, if this states has been
also computed by its owner, it will be ignored. This not a prob-
lem in practise because in the next super-step, this duplicated
count will disappear. In the worst case, the termination requires
one more super-step during which all the processors will
process an emptytodo, resulting in an empty exchange and
thus total = 0 on every processor, yielding the termination.

3.2. Increasing local computation time

Using Algorithm 2, functioncpu distributes evenly the states
over the processors. However, each super-step is likely to
compute very few states because only few computed suc-
cessors are locally owned. This results in a bad balance of
the time spent in computation with respect to the time spent
in communication. If more states can be computed locally,
this balance improves but also the total communication time
decreases because more states are computed during each call
to functionSuccessor .

To achieve this result, we consider a peculiarity of the
models we are analysing. The learning phase of the attacker
is computationally expensive, in particular when a message
can be actually decomposed, which leads to recompose a lot

of new messages. Among the many forged messages, only
a (usually) small proportion are accepted for a reception by
agents. Each such reception gives rise to a new state.

This whole process can be kept local to one processor.
To do so, we need to design a new partition functioncpuR
such that, for all statess1 and s2, if s1|LR

= s2|LR
then

cpu
R
(s1) = cpu

R
(s2). For instance, this can be obtained by

computing a hash (modulo the number of processors) using
only the locations fromLR.

On this basis, functionSuccessor can be changed as shown
in Algorithm 3.

Algorithm 3 An exploration to improve local computation

Successor(known , todo) :

1: tosend ← ∅
2: while todo 6= ∅ do
3: pick s from todo

4: known ← known ∪ {s}
5: for s′ ∈ succL(s) \ known do
6: todo ← todo ∪ {s′}
7: end for
8: for s′ ∈ succR(s) \ known do
9: tosend ← tosend ∪ {(cpuR(s

′), s′)}
10: end for
11: end while
12: return tosend

The rest is as in Algorithm 2.

With respect to Algorithm 2, this one splits the for loop,
avoiding calls to cpu

R
when they are not required. This

may yield a performance improvement, both becausecpuR
is likely to be faster thatcpu and because we only call it
when necessary. But the main benefits in the use ofcpuR
instead ofcpu is to generate less cross transitions since less
states are need to be send. Notice that in the second loop,
no state fromtodo may be obtained throughsuccR because
of the progression. So we can use\known to replace test
s′ /∈ known∪todo from the previous algorithm. Finally, notice
that, on some states,cpuR may return the number of the local
processor, in which case the computation of the successors for
such states will occur in the next super-step. We show now on
how this can be exploited.

3.3. Decreasing local storage

One can observe that the structure of the computation is
now matching closely the structure of the protocol execution:
each super-step computes the executions of the protocol until
a message is received. As a consequence, from the states
exchanged at the end of a super-step, it is not possible to
reach states computed in any previous super-step. Indeed, the
protocol progression matches the super-steps succession.

This kind of progression in a model execution is the basis of
the sweep-linemethod [17] that aims at reducing the memory
footstep of a state space computation by exploring states inan



order compatible with progression. It thus becomes possible
to regularly dump from the main memory all the states that
cannot be reached anymore. Enforcing such an exploration
order is usually made by defining on states a measure of
progression. In our case, such a measure is not needed because
of the match between the protocol progression and the super-
steps succession. So we can apply the sweep-line method by
making a simple modification of the exploration algorithm, as
shown in Algorithm 4.

Algorithm 4 Sweep-line implementation

Exchange(tosend , known) :

1: dump(known)
2: return BSP EXCHANGE (tosend)

The rest is as in Algorithm 3.

The statementdump(known) resetsknown to an empty set,
possibly saving its content to disk if this is desirable. Therest
of functionExchange is simplified accordingly.

3.4. Balancing the computation

The final optimisation step aims at balancing the workload.
To do so, we exploit the following observation: for all the
protocols we have studied so far, the number of computed
states during a super-step is usually closely related to the
number of states received at the beginning of the super-step.
So, before to exchange the states themselves, we can first
exchange information about how many state each processor
has to send and how they will be spread onto the other
processors. Using this information, we can anticipate and
compensate balancing problems.

To compute the balancing information, we use a new
partition functioncpuB that is equivalent tocpuR but works
for an infinite number of processors,i.e., we havecpuR(s) =
cpuB(s) mod P , whereP is the number of processors. In
practise,cpuB computes a hash using only information from
the locations inLR, and without using a modulo. This function
defines classes of states for whichcpuB returns the same value.
We compute a histogram of these classes on each processor,
which summarises howcpu

R
would dispatch the states. This

information is then globally exchanged, yielding a global
histogram that is exploited to compute on each processor a
better dispatching of the states it has to send. This is made
by placing the classes according to a simple heuristic for
the bin packing problem: the largest class is placed onto the
less charged processor, which is repeated until all the classes
have been placed. It is worth noting that this placement is
computed with respect to the global histogram, but then, each
processor dispatches only the states it actually holds, using this
global placement. Moreover, if several processors computea
same state, these identical states will be in the same class
and so every processor that holds such states will send them
to the same target. So there is no possibility of duplicated
computation because of dynamic states remapping.

Algorithm 5 Balancing strategy

Exchange(tosend , known) :

1: dump(known)
2: return BSP EXCHANGE (Balance(tosend))

Balance(tosend) :

1: histoL← {(i, ♯{(i, s) ∈ tosend})}
2: computehistoG from BSP MULTICAST (histoL)
3: return BinPack (tosend , histoG)

The rest is as in Algorithm 4, usingcpu
B

instead ofcpu
R

.

These operations are detailed in Algorithm 5 where vari-
ableshistoL andhistoG store respectively the local and global
histograms, and functionBinPack implements the dispatching
method described above. In functionBalance , ♯X denotes
the cardinality of setX . FunctionBSP MULTICAST is
used so that each processor sends its local histogram to every
processor and receives in turn their histograms, allowing to
build the global one. Like any BSP communication primitive
it involves a synchronisation barrier.

It may be remarked that the global histogram is not fully
accurate since several processors may have a same state to be
sent. Nor the computed dispatching is optimal since we do not
want to solve a NP-hard bin packing problem. But, as shown
in our benchmarks below, the result is yet fully satisfactory.

Finally, it is worth noting that if a state found in a previous
super-step may be computed again, it would be necessary to
known which processor owns it: this could not be obtained
efficiently when dynamic remapping is used. But that could
not happen thanks to the exploration order enforced in
Section 3.2 and discussed in Section 3.3. Our dynamic states
remapping is thus correct because states classes match the
locality of computation.

4. Experimental results

In order to evaluate our algorithm, we have implemented
a prototype version in Python, using SNAKES [18] for the
Petri net part (which also allowed for a quick modelling of
the protocols, including the inference rules of the Dolev-Yao
attacker) and a Python BSP library [19] for the BSP routines
(which is very close to an MPI “alltoall”). We actually used
the MPI version (with MPICH) of the BSP-Python library.
While largely suboptimal (Python programs are interpretedand
there is no optimisation about the representation of the states
in SNAKES), this prototype nevertheless allows and accurate
comparisonof the various algorithms.

With respect to the presented algorithms, our implemen-
tations differ only on technical details (e.g., value total

returned byBSP EXCHANGE is actually computed by
exchanging also the number of values sent by each processor)
and minor improvements (e.g., we used in-place updating of
sets and avoided multiple computations ofcpu(s) using an
intermediate variable).



The benchmarks presented below have been performed
using a cluster with 20 PCs connected through a 1Gb Ethernet
network. Each PC is equipped with a 2GHz IntelR© PentiumR©
dual core CPU, with 2Gb of physical memory. This allowed
to simulate a BSP computer with 40 processors equipped with
1Gb of memory each.

These experiments are designed to reveal how various as-
pects of the new method contribute to the overall performance.
Our cases study involved the following four protocols:

1) Needham-Schroeder (NS) public key protocol for mutual
authentication.

2) Yahalom (Y) key distribution and mutual authentication
using a trusted third party.

3) Otway-Rees (OR) key sharing using a trusted third party.
4) Kao-Chow (KC) key distribution and authentication.

These protocols and their security issues are documented at
the Security Protocols Open Repository (SPORE) [20].

For each protocol, we have built a modular model allowing
for defining easily various scenarios involving different num-
bers of each kind of agents (but only one attacker, which is
always enough).

4.1. Global performances

Figure 2 shows the execution times for two scenarios for
each protocol; the depicted results are fair witnesses of what
we could observe from the large number of scenarios we have
actually run. In the figure, we have distinguished: the compu-
tation time that essentially corresponds to the computation of
successor states on each processor; the communication time
that corresponds to states exchange; the waiting times that
occur when processors are forced to wait the others before to
enter the communication phase of each super-step.

We can see on these graphs that the overall performance of
our last algorithm (right-most bars) is always very good com-
pared to the naive algorithm (left-most bars). In particular, the
communication and waiting times are always greatly reduced.
This holds for large state spaces as well as for smaller ones.

An important waiting time corresponds to an unbalanced
computation: if some processors spend more time computing
successors, the others will have to wait for them to finish
this computation before every processor enters the communi-
cation phase. In several occurrences, we can observe that, by
increasing the local computation, we have worsen the balance,
which increased the waiting time. This corresponds to graphs
where the middle part in the second column is taller than the
same part in the left column. However, we can observe that
our last optimisation to improve the balance is always very
efficient and results in negligible waiting time in every case.
The variations of observed computation times are similarly
caused by a bad balance because we depicted the maximum
accumulated time among the processors.

Finally, by comparing the left and right columns of results,
we can observe that the overall speedup is generally better
when larger state spaces are computed. This is mainly due
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Fig. 2. Computation times (in seconds) of Algorithms 2,
4 and 5 for the four studied protocols. Top row: two
instances of NS yielding respectively about 8K (left) and
5M states (right). Second row: two instances of Y with
about 400K (left) and 1M states (right). Third row: two
instances of OR with about 12K (left) and 22K states
(right). Bottom row: two instances of KC with about 400
(left) and 2K states (right). Each bar show the maximums
among processors of the accumulated computation times
(black), waiting times (white) and communication time
(gray).

to the fact that the waiting time accumulation becomes more
important on longer runs.

4.2. Memory consumption

By measuring the memory consumption of our various
algorithms, we could confirm the benefits of our sweep-line
implementation when large state spaces are computed. For
instance, in the NS scenario with 5M states, we observed
an improvement of the peak memory usage from 97% to
40% (maximum among all the processors). Similarly, for
the Y scenario with 1M states, the peak decreases from
97% to 60% (states in Y use more memory that states
in NS). We also observed, on very large state spaces, that
the naive implementation exhausts all the available memory
and some processors start to use the swap, which causes
a huge performance drop. This never happened using our



sweep-line implementation. However, notice that, in all the
presented scenarios, no swapping has occurred, which would
have dramatically biased the results.

4.3. Scalability

As a last observation about our algorithm, we would like
to emphasise that we observed a linear speedup with respect
to the number of processors. In general, most parallel algo-
rithms suffer from an amortised speedup when the number
of processors increases. This is almost always caused by the
increasing amount of communication that becomes dominant
over the computation. Because our algorithm is specifically
dedicated to reduce the number of cross transitions, and
thus the amount of communication, this problem is largely
alleviated and we could observe amortised speedup only for
very small models (less than 100 states) for which the degree
of intrinsic parallelism is very reduced but whose state space
is in any way computed very quickly.

5. Related works

Distributed state space construction has been studied in
various contexts. All these approaches share a common idea:
each machine in the network explores a subset of the state
space. This procedure continues until the entire state space is
generated and so no messages are sent anymore [4]. To detect
this situation a termination detection procedure is usually em-
ployed. However, they differ on a number of design principles
and implementation choices such as: the way of partitioning
the state space using either static hash functions or dynamic
ones that allow dynamic load balancing,etc. In this section,
we focus on some of these technics and discuss their problems
and advantages. More references can be found in [5].

In [21], a distributed state space exploration algorithm
derived from the Spin model-checker is implemented using
a master/slave model of computation. Several Spin-specific
partition functions are experimented, the most advantageous
one being a function that takes into account only a fraction of
the state vector. The algorithm performs well on homogeneous
networks of machines, but it does not outperform the standard
implementation except for problems that do not fit into the
main memory of a single machine. Moreover, no clue is
provided about how to correctly choose the fraction of states
to consider for hashing.

In [6] various technics from the literature are extended in
order to avoid sending a state away from the current processor
if its 2nd-generation successors are local. This is comple-
mented with a mechanism that prevents re-sending already sent
states. The idea is to compute the missing states when they
become necessary for model-checking, which can be faster
than sending it. That clearly improves communications but
our method achieves similar goals, in a much simpler way,
without ignoring any state.

There also exist approaches, such as [22], in which par-
allelization is applied to “partial verification”,i.e. state enu-

meration in which some states can be omitted with a low
probability. In our project, we only address exact, exhaustive
verification issues. For completeness, we can also mention
an alternative approach [23] in which symbolic reachability
analysis is distributed over a network of workstations: this
approach does not handle states individually, but sets of states
encoded using BDDs.

For the partition function, different technics have been
used. In [4] authors used of a prime number of virtual
processors and map them to real processor. This improves
load balancing but has no real impact on cross transitions.
In [24], the partition function is computed by a round-robin
on the successor states. This improves the locality of the
computations but can duplicate states. Moreover, it works well
only when network communication is substantially slower than
computation, which is not the case on modern architectures
for explicit model-checking. In [25], an user defined abstract
interpretation is used to reduce the size of the state space and
then it allows to distribute the abstract graph; the concrete
graphs is then computed in parallel for each part of the
distributed abstract graph. In contrast, our distributionmethod
is fully automated and does not require input from the user.

There are many tools dedicated to the modelling and veri-
fication of security protocols as [26], [9], [10], the most well
known is certainly AVISPA [12]. In contrast, our approach
is based on a modelling framework (algebras of Petri nets)
with explicit state space construction, that is not tight toany
particular application domain. Our approach however, relies
on the particular structure of security protocols. We believe
that our observations and the subsequent optimisations are
general enough to be adapted to the tools dedicated to protocol
verification: we worked in a very general setting of LTS,
defined by an initial state and a successor function. Our only
requirements are three simple conditions (P1 ro P3) which can
be easily fulfilled within most concrete modelling formalisms.

6. Conclusion and future works

The critical problem of state space construction is deter-
mining whether a newly generated state has been explored
before. In a serial implementation this question is answered
by organizing known states in a specific data-structure, and
looking for the new states in that structure. As this is a
centralized activity, any parallel or distributed solution must
find an alternative approach. The common method is to assign
states to processors using a static partition function which is
generally a hashing of the states [4]. After a state has been
generated, it is sent to its assigned location, where a local
search determines whether the state already exists. This lead
to two main difficulties. First the number of cross transitions
is too high, leading to a too heavy network use. Second,
memorising all the states in the main memory is impossible
without crashing the whole computation and is not clear when
it is possible to dump some states in disk and if heuristics like
those in [21], [2] would work well for complex protocols.



Our first solution is to use the well-structured nature of
security protocols to choose which part of the state is really
needed for the partition function and to empty the data-
structure in each super-step of the parallel computation. Our
second solution entails automated classification of statesand
dynamic mapping of classes to processors. We find that both
our methods execute significantly faster and achieve better
network use than a classical method. Furthermore, we find
that our method to balance states does indeed achieve better
network use, memory balance and runs faster.

The fundamental message is that for parallel discrete state
space construction, it is essential to exploit characteristics of
the models and to structure the computation accordingly. We
have demonstrated techniques that prove the feasibility ofthis
approach and demonstrate its potential. Key elements to our
success were (1) an automated states classification that reduces
cross transitions and memory footstep, while improving thelo-
cality of computation (2) using global barriers (which is a low-
overhead method) to compute a global remapping of states and
thus improve balancing workload, achieving a good scalability.

Future works will be dedicated to build a real and efficient
implementation from our prototype. It will feature in particular
a temporal logic model-checker, allowing to verify more than
reachability properties. Using this implementation, we would
like to run benchmarks in order to compare our approach with
existing tools. We would like also to test our algorithm on
parallel computer with more processors in order to confirm
the scalability that we could observe on 40 processors.

Moreover, we are working on the formal proof of our
algorithm. Proving a verification algorithm is highly desirable
in order to certify the truth of the diagnostics delivered by
such an algorithm. Such a proof is possible because, thanks to
the BSP model, our algorithm remains simple in its structure.
Finally, we would like to generalise our present results by
extending the application domain. In the security domain,
we will consider more complex protocols with branching and
looping structures, as well as complex data types manipu-
lations. In particular, we will consider protocols for secure
storage distributed through peer-to-peer communication [27].
Another generalisation will be to consider symbolic state space
representations, in particular those based on decision diagrams.
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