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Abstract. In this paper, for a class of weak bilevel programming problems
we provide sufficient conditions guaranteeing the existence of global solutions.
These conditions are based on the use of reverse convex and convex maximiza-
tion problems.

1. Introduction. We consider the following weak nonlinear bilevel optimization
problem (weak in the sense of [8])

(S) min
x∈X

sup
y∈M(x)

F (x, y)

called weak Stackelberg problem, where M(x) denotes the set of solutions to the
lower level problem

P(x) min
y∈Y

f(x, y)

with F, f : Rp × R
q → R, X and Y be two subsets of Rp and R

q respectively.
The formulation of the problem that we consider, called the pessimistic formu-

lation, corresponds to a static uncooperative two player game in which one of the
players has the leadership and full information about the second player. Player 1
(the leader) with the objective function F firstly announces a strategy x in X, and
after, the player 2 (the follower) with the objective function f reacts optimally by
selecting a strategy y(x) ∈ Y . Assume that the solution set M(x) is not always
a singleton and the leader can not influence the choice of the follower. Then, the
leader provides himself against the possible worst follower’s choice by minimizing

2000 Mathematics Subject Classification. 91A65, 90C26, 52A41.
Key words and phrases. Two-level optimization, convex analysis, reverse convex programs, d.c.

programs.
This article was finished during the visit of A. Aboussoror to the university of Limoges (July

2010).

1

http://dx.doi.org/10.3934/jimo.2011.7.XX


2 ABDELMALEK ABOUSSOROR, SAMIR ADLY AND VINCENT JALBY

the marginal function supy∈M(x) F (x, y). The presence in the first level of the im-

plicit constraint set M(x), which is an output of the problem P(x), makes the
problem (S) difficult to solve, which in general is not differentiable and not convex,
and hence belongs to the class of nondifferentiable global optimization problems.
The difficulty encountered in the investigation of weak nonlinear bilevel problems
remains in finding suitable conditions which are not strong and depend only on the
problem’s data. In contrast, the strong Stackelberg problem

min
x∈X

inf
y∈M(x)

F (x, y)

which corresponds to the optimistic formulation, presents less difficulties and hence
is more considered in the literature than the weak Stackelberg problem. It corre-
sponds for example to the case where the leader can influence the follower in his
choice of the strategies in M(x). Another interesting formulation of the leader’s
problem corresponds to the case where the leader evaluates the performance of
the follower by his optimal value (see for example [6],[21] and [26]). For different
applications of bilevel optimization problems, we refer to [9] and [20].

It is well-known that the existence of solutions for weak bilevel programming
problems is a difficult task. So, our investigation in this paper, which is a contin-
uation of previous works [1]–[4] dealing with the same subject, is to give sufficient
conditions ensuring the existence of solutions to weak nonlinear bilevel optimization
problems. For this purpose, we will establish some relationships between problem
(S) and some other well-known global optimization problems. More precisely, under
certain assumptions, firstly, we show that the existence of solutions to appropriate
parameterized reverse convex and convex maximization problems imply the exis-
tence of solutions to (S). Similar results using d.c. problems are given in [4]. We
note that these relationships between weak bilevel programming problems and such
well-known global optimization problems that we provide in this paper are new
in the literature. Relating to the same subject, we note that an interesting class
of weak nonlinear bilevel optimization problems which admit solutions is given in
[17]. On the other hand, reverse convex and convex maximization problems have
received a great interest by several authors. Nowadays there exists a great number
of interesting theoretical and numerical results for such problems. For papers deal-
ing with reverse convex and convex maximization problems, we refer for example
respectively to [5], [16], [23]–[25], [27]–[29] and [10]–[14], [22]. We also refer to the
interesting books of global optimization [15] and [30] and references therein.

The paper is organized as follows. In Section 2, we recall some results related
to convex analysis and reverse convex problems. In Section 3, under appropriate
assumptions, we show the existence of solutions for problem (S) using reverse convex
and convex maximization problems.

Throughout the paper, we assume that X and Y are compact and compact
convex subsets of Rp and R

q, respectively. For a given optimization problem, we
will use the term solution to mean global solution.

2. Background of convex analysis and reverse convex problems. In this
section, we recall some definitions and fundamental results related to convex analysis
and reverse convex problems that we will use in the sequel.

Let g : Rn → R ∪ {+∞} be a convex function. The set dom(g) defined by

dom(g) =

{

y ∈ R
n/ g(y) < +∞

}
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is called the effective domain of g. The function g is said to be proper if dom(g) 6= ∅.
A vector y∗ ∈ R

n is said to be a subgradient of g at ȳ ∈ dom(g), if

g(y) ≥ g(ȳ) + 〈y∗, y − ȳ〉, ∀y ∈ R
n.

The set of all subgradients of g at ȳ is called the subdifferential of g at ȳ, and is
denoted by ∂g(ȳ).

Let A be a nonempty closed and convex subset of Rn.

1. The indicator function of A denoted by ψA, is the function defined on R
n by

ψA(y) :=

{

0 if y ∈ A,
+∞ if y 6∈ A.

2. Let a ∈ A. The normal cone to A at a is the set denoted by NA(a) and
defined by

NA(a) =















{

x∗ ∈ R
n/ 〈x∗, x− a〉 ≤ 0, ∀x ∈ A,

}

if a ∈ A,

∅ if a 6∈ A.

3. Let a ∈ R
n, and set (see [27])

N ∗
A(a) =

{

x∗ ∈ R
n/ 〈x∗, x− a〉 ≤ 0, ∀x ∈ A

}

.

If a ∈ A, then N ∗
A(a) = NA(a).

For illustration, we consider the following example.

Example 1. Let A = [1, 2] × [1, 2] ⊂ R
2, and a = (3, 3)T . Then, since a 6∈ A, we

have NA(a) = ∅, and it is easy to verify that

N ∗
A(a) =

{

(u∗, v∗)T ∈ R
2/

〈(

u∗

v∗

)

,

(

x

y

)

−

(

3

3

)〉

≤ 0, ∀x, y ∈
[

1, 2
]

}

=

{

(u∗, v∗)T ∈ R
2/ 2u∗ + v∗ ≥ 0

}

⋂

{

(u∗, v∗)T ∈ R
2/ u∗ + 2v∗ ≥ 0

}

which is nonempty contrarily to NA(a).

We recall the following results on subdifferential calculus and optimality condi-
tions (see for example [7] and [19])

Theorem 2.1. Let h1, h2 : R
n → R ∪ {+∞} be two proper convex functions.

Assume that there exists a point in dom(h1) at which h2 is continuous. Then, for
any y ∈ R

n, we have

∂(h1 + h2)(y) = ∂h1(y) + ∂h2(y).

Theorem 2.2. Let g : Rn → R be a convex function and Z be a nonempty closed
convex subset of Rn. Then, we have

• ȳ minimizes g over R
n if and only if 0 ∈ ∂g(ȳ),

• z̄ minimizes g over Z if and only if 0 ∈ ∂g(z̄) +NZ(z̄).

Now, let us recall some properties and results concerning reverse convex prob-
lems.



4 ABDELMALEK ABOUSSOROR, SAMIR ADLY AND VINCENT JALBY

Let f̂ , ĝ : Rn → R be two convex functions and D̂ be a nonempty convex subset
of Rn. Let us consider the following optimization problem

(P) min
x∈D̂

ĝ(x)≥0

f̂(x).

We will make the following assumption.

(2.1) There exists x̂ ∈ D̂, such that

f̂(x̂) < inf
x∈D̂

ĝ(x)≥0

f̂(x).

When this property is satisfied, we say that the reverse convex constraint ĝ(x) ≥ 0
is essential, and (P) is called a reverse convex problem. Otherwise, the problem
(P) is equivalent to an ordinary convex programming problem.

Remark 1. [28] Assumptions (2.1) implies that if x̄ is a solution of (P), then
ĝ(x̄) = 0. Indeed, let x̄ be a solution of (P), and suppose that ĝ(x̄) > 0. There

exists x̂ ∈ D̂, such that

f̂(x̂) < inf
x∈D̂

ĝ(x)≥0

f̂(x).

Hence, ĝ(x̂) < 0. It follows from the continuity of ĝ that there exists t ∈ ]0, 1[ and
x∗ = tx̄+ (1− t)x̂, such that ĝ(x∗) = 0. Then, we have

f̂(x∗) ≤ tf̂(x̄) + (1− t)f̂(x̂) < tf̂(x̄) + (1− t)f̂(x̄) = f̂(x̄)

with x∗ ∈ D̂, which contradicts the optimality of x̄. Hence the problem (P) is
equivalent to the following

min
x∈D̂

ĝ(x)=0

f̂(x).

Then, any candidate x ∈ D̂, for the optimality to problem (S) must satisfy the
condition ĝ(x) = 0.

For x̄ ∈ R
n, consider the level set of f̂ relative to D̂, and passing by x̄

S(f̂ , x̄) =

{

x ∈ x ∈ D̂/ f̂(x) ≤ f̂(x̄)

}

.

Theorem 2.3. [27] Let z be a feasible point of (P) verifying ĝ(z) = 0, and 0 6∈ ∂ĝ(z).
Assume that assumption (2.1) and the following condition are satisfied

(2.2) ∀y ∈ D̂ verifying ĝ(y) = 0, ∃ y∗ ∈ ∂ĝ(y), ∃u ∈ D̂, such that 〈y∗, u− y〉 > 0.

Then, z is a solution of (P) if and only if z satisfies the following condition

∀ y ∈ R
n such that ĝ(y) = 0 we have ∂ĝ(y) ∩N ∗

S(f̂ ,z)
(y) 6= ∅. (C1)

Remark 2. We note that in [27], the compactness of D̂ is mentioned among the
hypotheses, but not used in the corresponding proof. So, we have not included this
property in Theorem 2.3.

3. Existence of solutions to problem (S). In this section, we will give some
sufficient conditions ensuring the existence of solutions to problem (S) via other well-
known global optimization problems in the literature. More precisely, under certain
assumptions, we show that the existence of solutions to appropriate parameterized
reverse convex and convex maximization problems implies the existence of solutions
to problem (S). Sufficient conditions for (S) using d.c. problems are studied in [4].
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3.1. Preliminary results. First, let us introduce the following notations. For
x ∈ R

p and (y, t) ∈ R
q × R, set

F̂x(.) = −Fx(.) = −F (x, .) fx(.) = f(x, .)

gx(y, t) = F̂x(y)− t hx(y, t) = fx(y)− t.

We will use the following assumptions.

(3.1) For any x ∈ X, there exists (ŷx, t̂x) ∈ Y × R, such that

gx(ŷx, t̂x) < inf
(y,t)∈Y ×R

hx(y,t)≥0

gx(y, t),

(3.2) For any x ∈ X, the function fx is convex on R
q,

(3.3) For any x ∈ X, the function Fx is concave R
q.

Recall that the sets X and Y are compact and compact convex subsets of Rp and
R

q, respectively. Let assumptions (3.1)–(3.3) hold. For x ∈ X, consider respectively
the following parameterized d.c. and reverse convex problems

DCP(x) min
y∈Y

(F̂x − fx)(y) RCP(x) min
(y,t)∈Y ×R

hx(y,t)≥0

gx(y, t).

Remark 3. The following remarks are obvious.

1) For any (x, y) ∈ X × Y , we have hx(y, fx(y)) = 0, and hence
{

(y, t) ∈ Y × R/ hx(y, t) = 0

}

6= ∅.

2) Let assumptions (3.1)–(3.3) hold. Then,
i) From assumption (3.1), the reverse convex constraint hx(y, t) ≥ 0 is es-

sential.
ii) the problem RCP(x) is equivalent to the following (see Remark 1)

min
(y,t)∈Y ×R

hx(y,t)=0

gx(y, t)

that is, the search of solutions can be restricted to the constraint set
{

(y, t) ∈ Y × R/ hx(y, t) = 0

}

.

Note that the use of assumption (3.1) in the rest of the paper will be implicit.
Otherwise, the problem RCP(x) will be equivalent to a convex programming prob-
lem.

Let x ∈ X. Then, we have the following relationship between the problems
RCP(x) and DCP(x).

Proposition 1. Let assumptions (3.1)–(3.3) hold. Let x ∈ X. Then, we have

i) if ȳx ∈ Y solves DCP(x), then, (ȳx, fx(ȳx)) solves RCP(x),
ii) if (ȳx, t̄x) ∈ Y × R solves RCP(x), then, ȳx solves DCP(x).

Proof. Let x ∈ X.

i) Assume that ȳx ∈ Y solves DCP(x). Then,

F̂x(ȳx)− fx(ȳx) ≤ F̂x(y)− fx(y) ∀y ∈ Y.

Let (y, t) ∈ Y × R, such that hx(y, t) ≥ 0, i.e., fx(y) ≥ t. Then,

gx(ȳx, fx(ȳx)) = F̂x(ȳx)− fx(ȳx) ≤ F̂x(y)− fx(y) ≤ F̂x(y)− t = gx(y, t).
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Since (ȳx, fx(ȳx)) is a feasible point of RCP(x), it follows that (ȳx, fx(ȳx)) solves
RCP(x).

ii) Assume that (ȳx, t̄x) ∈ Y ×R, solves RCP(x). Then, fx(ȳx) ≥ t̄x. Let y ∈ Y .
Since fx(y) is a finite real number, let t ∈ R such that fx(y) ≥ t. Then, we have

F̂x(ȳx)− t̄x ≤ F̂x(y)− t.

Hence

F̂x(ȳx)− fx(ȳx) ≤ F̂x(ȳx)− t̄x ≤ F̂x(y)− fx(y) ∀y ∈ Y.

That is ȳx solves DCP(x).

For x ∈ X, let the following parameterized convex maximization problem

CMP(x) max
(y,t)∈Y ×R

F̂x(y)−t≤0

(fx(y)− t)

Then, as above, we have the following relationship between the problems CMP(x)
and DCP(x).

Proposition 2. Let assumptions (3.2) and (3.3) hold. Let x ∈ X. Then, we have

i) if ȳx ∈ Y solves DCP(x), then, (ȳx, F̂x(ȳx)) solves CMP(x),
ii) if (ȳx, t̄x) ∈ Y × R solves CMP(x), then, ȳx solves DCP(x).

Proof. Let x ∈ X.

i) Let ȳx be a solution of DCP(x). Then, ȳx is a solution of the problem

max
y∈Y

(fx(y)− F̂x(y))

and hence,

fx(ȳx)− F̂x(ȳx) ≥ fx(y)− F̂x(y) ∀ y ∈ Y.

Let (y, t) ∈ Y × R such that t ≥ F̂x(y). Then,

fx(ȳx)− F̂x(ȳx) ≥ fx(y)− F̂x(y) ≥ fx(y)− t.

It follows from the feasibility of (ȳx, F̂x(ȳx)) to CMP(x) that (ȳx, F̂x(ȳx)) is a
solution of CMP(x).

ii) Let (ȳx, t̄x) ∈ Y ×R be a solution of the problem CMP(x). Let y ∈ Y . Then,

(y, F̂x(y)) is a feasible point of CMP(x). Hence,

f(ȳx)− t̄x ≥ fx(y)− F̂x(y).

On the other hand, since (ȳx, t̄x) solves CMP(x), if follows that F̂x(ȳx) ≤ t̄x. Then,
we get

fx(ȳx)− F̂x(ȳx) ≥ fx(ȳx)− t̄x ≥ fx(y)− F̂x(y).

So

F̂x(ȳx)− fx(ȳx) ≤ fx(y)− F̂x(y)

which means that ȳx solves the problem DCP(x).
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3.2. Existence of solutions to (S) via reverse convex and convex maxi-
mization problems. In this subsection, we give sufficient conditions ensuring the
existence of solutions to (S) via reverse convex and convex maximization problems.
First, we recall some results from [2] and [4].

Theorem 3.1. [2] Assume that assumptions (3.2), (3.3) and the following assump-
tions are satisfied

(3.4) For any (x, y) ∈ X × Y , and any sequence (xn) converging to x in X, there
exists a sequence (yn) converging to y in Y , such that

lim sup
n→+∞

f(xn, yn) ≤ f(x, y),

(3.5) The function f is lower semicontinuous on X × Y ,
(3.6) The function F is continuous on X × Y .

If moreover, the following condition is satisfied

(C2) For any x ∈ X, there exists a common solution to the following problems

min
y∈Y

fx(y) and max
y∈Y

Fx(y)

then, the problem (S) has at least one solution.

Remark 4. Since the function Fx(.) is concave, the problem maxy∈Y Fx(y) is equiv-
alent to a convex programming problem.

Definition 3.2. A multifunction N : X−→
−→2Y is said to be lower semicontinuous

on X, if for any x ∈ X, and any sequence (xn) converging to x in X, we have

N (x) ⊂ lim inf
n→+∞

N (xn)

where

lim inf
n→+∞

N (xn) =

{

y ∈ Y/ ∃ yn ∈ Y, lim
n→+∞

yn = y, and yn ∈ N (xn), ∀n ∈ N

}

.

Remark 5. As it is well-known, under some mild assumptions, and if moreover, the
multifunctionM(.) : X−→

−→2Y associated to the solution set of the lower level problem
is lower semicontinuous on X, the solution set of (S) is nonempty. However, such
a property is strong and rarely satisfied. It is shown in [4], that the property (C2)
and the lower semicontinuity of M(.) are independent from each other. Therefore,
the property (C2) can be considered as an alternative condition which ensures the
existence of solutions to problem (S).

For y ∈ R
q, we denote by ∂fx(y) the subdifferential of the function fx(.) at y.

Then, we have the following result which gives sufficient conditions for the existence
of solutions to problem (S) via d.c. problems.

Theorem 3.3. [4] Assume that assumptions (3.2)–(3.6) and the following condition
are satisfied

(3.7) For any x ∈ X, there exists ȳx ∈ Y , such that
i) ȳx is a local solution of the problem DCP(x),
ii) 0 ∈ ∂fx(ȳx).

Then, the problem (S) has at least one solution.

For the convenience of the reader we give the proof.
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Proof. Let x ∈ X be arbitrarily chosen. First, note that by ii) of assumption (3.7),
the point ȳx minimizes the function fx over R

q, and hence over the set Y (since
ȳx ∈ Y ). Let NY (ȳx) denote the normal cone to Y at ȳx. Writing problem DCP(x)
in its equivalent form

min
y∈Rq

(F̂x + ψY − fx)(y),

and since ȳx is a local solution of problem DCP(x), it follows from [18] that

∂fx(ȳx) ⊂ ∂(F̂x + ψY )(ȳx). On the other hand, since Y is a nonempty convex
set, then the function ψY is proper and convex (see for example [19]). Moreover,

we have dom(ψY ) = Y , and F̂x is continuous on R
q and hence in particular on Y .

Then, by using Theorem 2.1, we get

∂(F̂x + ψY )(ȳx) = ∂F̂x(ȳx) +NY (ȳx).

Hence, ∂fx(ȳx) ⊂ ∂F̂x(ȳx) + NY (ȳx), and from ii) of assumption (3.7), it follows

that 0 ∈ ∂F̂x(ȳx) +NY (ȳx). Therefore, by Theorem 2.2 ȳx minimizes the function

F̂x over the set Y , and hence it is a common solution of the following convex
minimization problems

min
y∈Y

fx(y) and min
y∈Y

F̂x(y).

So, it is a common solution to the problems (since F̂x = −Fx)

min
y∈Y

fx(y) and max
y∈Y

Fx(y).

Finally, using the result of Theorem 3.1, we deduce that the problem (S) has at
least one solution.

Theorem 3.4. Assume that assumptions (3.1)–(3.6) and the following assumption
are satisfied

(3.8) For any x ∈ X, there exists (ȳx, t̄x) ∈ Y × R, such that
i) (ȳx, t̄x) is a solution of the problem RCP(x),
ii) 0 ∈ ∂fx(ȳx).

Then, the problem (S) has at least one solution.

Proof. Let x ∈ X be arbitrarily chosen. From assumption (3.8) there exists (ȳx, t̄x) ∈
Y ×R which solves RCP(x). It follows from Proposition 1 that ȳx solves the prob-
lem DCP(x). Then, using the fact that 0 ∈ ∂fx(ȳx), and Theorem 3.3, we deduce
the existence of solutions to (S).

Remark 6. In the case of problem RCP(x), the assumption (2.2) in Theorem 2.3
becomes

∀ (y, t) ∈ Y × R verifying hx(y, t) = 0, ∃ (y∗, t∗)T ∈ ∂hx(y, t), ∃(ū, t̄) ∈ Y × R,
such that

〈(

y∗

t∗

)

,

(

ū

t̄

)

−

(

y

t

)〉

> 0. (C3)

For (ȳ, t̄) ∈ Y × R, recall the following notation that we will use in the sequel

S(gx, (ȳ, t̄)) =

{

(y, t) ∈ Y × R/ gx(y, t) ≤ gx(ȳ, t̄)

}

.

Then, we have the following result.

Theorem 3.5. Assume that assumptions (3.1)–(3.6) and the following condition
are satisfied
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(3.9) For any x ∈ X,
i) there exists ȳx ∈ Y , such that for any y ∈ Y , we have

[

∂fx(y)× {−1}

]

⋂

N ∗

S(gx,(ȳx,fx(ȳx))
(y, fx(y)) 6= ∅,

ii) 0 ∈ ∂fx(ȳx).

Then, the problem (S) has at least one solution.

Proof. Let x ∈ X be arbitrarily chosen. First, let us verify that property (C3)
is satisfied for problem RCP(x) (see Remark 6). Let (y, t) ∈ Y × R, such that

hx(y, t) = 0, i.e., fx(y) = t. Let y∗ ∈ ∂fx(y). Then,

(

y∗

−1

)

∈ ∂hx(y, t). Let ū ∈ Y ,

ǫ > 0, and t̄ = 〈y∗, ū− y〉+ fx(y)− ǫ. Then
〈(

y∗

−1

)

,

(

ū

t̄

)

−

(

y

t

)〉

= 〈y∗, ū− y〉+ t− t̄ = 〈y∗, ū− y〉+ fx(y)− t̄ = ǫ > 0.

Hence, property (C3) is satisfied. Let x ∈ X, and t̄x = fx(ȳx), where ȳx is the point
given in i) of assumption (3.9). Let us show that the condition (C1) in Theorem 2.3
is satisfied for (ȳx, t̄x). Let (y, t) ∈ R

q × R, such that hx(y, t) = 0, i.e., t = fx(y).
We have

∂hx(y, fx(y)) = ∂fx(y)× {−1}.

So, from i) of assumption (3.9), we get

∂hx(y, fx(y))
⋂

N ∗

S(gx,(ȳx,fx(ȳx))
(y, fx(y)) 6= ∅.

Hence, the condition (C1) in Theorem 2.3 is satisfied. Moreover, we have hx(ȳx, t̄x) =
0 and 0 6∈ ∂hx(ȳx, t̄x). Therefore, from Theorem 2.3, we deduce that (ȳx, t̄x) is a
solution to problem RCP(x). The rest of the proof is identical to the proof of
Theorem 3.4

Let us consider the following example where all assumptions of Theorems 3.5 are
satisfied.

Example 2. Let X = [0, 1], Y = [0, 1], f, F : R2 → R be the functions defined by

f(x, y) = x+
1

2
y2 and F (x, y) = x2 + 2x− y.

Let x ∈ X, and set (ŷx, t̂x) = (0, x+ 1). We have

gx(ŷx, t̂x) = −x2 − 3x− 1 < inf
(y,t)∈Y ×R

hx(y,t)≥0

gx(y, t) = −x2 − 3x.

Hence, assumption (3.1) is satisfied. We easily verify that assumptions (3.2)–(3.6)
are also satisfied. Let us check that assumption (3.9) is fulfilled.

Let x ∈ X. Take ȳx = 0, and let y ∈ Y . Then, ∂fx(y) = {y}, and fx(ȳx) = x.
On the other hand, we have

S(gx, (ȳx, fx(ȳx)) = S(gx, (0, x)) =

{

(y, t) ∈ [0, 1]× R/ x+ y ≤ t

}

.

Let

(

y∗

t∗

)

∈ ∂fx(y)×{−1} = {y}×{−1}. Let

(

u

v

)

∈ S(gx, (0, x)). Then, u+x ≤ v,

and
〈(

y∗

t∗

)

,

(

u

v

)

−

(

y

fx(y)

)〉

= −
1

2
y2 + uy + x− v.
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Since − 1
2y

2 + uy + x ≤ u+ x, it follows that
〈(

y∗

t∗

)

,

(

u

v

)

−

(

y

fx(y)

)〉

≤ 0.

Therefore,

(

y∗

t∗

)

∈ N ∗

S(gx,(ȳx,f̄x(ȳx)))
(y, fx(y)). Consequently,

[

∂fx(y)× {−1}

]

⋂

N ∗

S(gx,(ȳx,fx(ȳx)))
(y, fx(y)) 6= ∅.

Moreover, we have 0 ∈ ∂fx(ȳx) = {0}, which shows that assumption (3.9) is satis-
fied.

In the following theorem, we consider a class of problems where the objective
functions of the leader and the follower are linked by the following inequality

(3.10) For any (x, y) ∈ X × Y , we have F (x, y) + f(x, y) ≤ 0.

Theorem 3.6. Assume that assumptions (3.1)–(3.6), (3.10) and the following as-
sumption are satisfied

(3.11) For any x ∈ X, there exists ȳx ∈ Y , such that such that
i) fx(ȳx) + Fx(ȳx) = 0,
ii) 0 ∈ ∂fx(ȳx).

Then, the problem (S) has at least one solution.

Proof. Let x ∈ X be arbitrarily chosen and y ∈ R
q. Let us show that

∂fx(y)× {−1} ⊂ N ∗

S(gx,(ȳx,fx(ȳx))
(y, fx(y)).

Let

(

y∗

t∗

)

∈ ∂fx(y) × {−1}. Then, y∗ ∈ ∂fx(y) and t∗ = −1. For

(

u

v

)

∈

S(gx, (ȳx, fx(ȳx))), we have

−F (x, u)− v ≤ −F (x, ȳx)− f(x, ȳx) = 0,

where the last equality follows from i) of assumption (3.11). Thus,

−F (x, u)− v ≤ 0. (1)

Since y∗ ∈ ∂fx(y), it follows that

fx(z) ≥ fx(y) + 〈y∗, z − y〉 ∀ z ∈ R
q,

and hence
fx(u) ≥ fx(y) + 〈y∗, u− y〉. (2)

On the other hand, we have
〈(

y∗

t∗

)

,

(

u

v

)

−

(

y

fx(y)

)〉

= 〈y∗, u− y〉+ fx(y)− v.

Using (2), we get
〈(

y∗

t∗

)

,

(

u

v

)

−

(

y

fx(y)

)〉

≤ fx(u)− v ≤ −Fx(u)− v ≤ 0,

where the first and the last inequalities follow from (2) and (1) respectively. That is

∂fx(y)× {−1} ⊂ N ∗

S(gx,(ȳx,fx(ȳx)))
(y, fx(y)),

and hence assumption (3.9) is satisfied. By the same arguments as in Theorem 3.5,
we verify that condition (C3) is satisfied. The nonemptiness of the solution set of
problem (S) follows from the same theorem.
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Remark 7. Remark that

1) if for any x ∈ X, the function fx is differentiable on R
q, then the point ȳx given

in assumption (3.11) is a solution of the following system of q + 1 equations











∂fx
∂yi

(ȳx) = 0, i = 1, ..., q

fx(ȳx) + Fx(ȳx) = 0.

2) assumption (3.11) implies that the function fx(.) is bounded from bellow by
−Fx(ȳx).

In the following example, we check that all assumptions of Theorem 3.6 are
satisfied.

Example 3. Let X = [0, 1], Y = [0, 1], f and F be the functions defined on
R× R, by

f(x, y) = −2x2 + y2 and F (x, y) = 2x2 + (x− 4)y2.

We easily verify that assumptions (3.2)–(3.6) are satisfied. Moreover, we have

F (x, y) + f(x, y) = (x− 3)y2 ≤ 0, ∀ (x, y) ∈ X × Y,

that is assumption (3.10) is satisfied. Let us verify assumptions (3.1) and (3.11).
Let x ∈ X and set (ŷx, t̂x) = (0, 1). Then,

gx(ŷx, t̂x) = −2x2 − 1 < inf
(y,t)∈Y ×R

hx(y,t)≥0

gx(y, t) = 0,

that is assumption (3.1) is satisfied. For verifying assumption (3.11), let x ∈ X and
take ȳx = 0. We have

fx(0) = −2x2 and Fx(0) = 2x2.

Hence, fx(0) + Fx(0) = 0. Moreover, 0 ∈ ∂fx(0). Hence assumption (3.11) is
satisfied.

Finally, we have the following theorem which gives sufficient conditions for the
existence of solutions to (S) via parameterized convex maximization problems.

Theorem 3.7. Assume that assumptions (3.2) and (3.3) and the following property
are satisfied

(3.12) For any x ∈ X, there exists (ȳx, t̄x) ∈ Y × R, such that
i) (ȳx, t̄x) is a solution of the problem CMP(x),
ii) 0 ∈ ∂fx(ȳx).

Then, problem (S) has at least one solution.

Proof. Let x ∈ X be arbitrarily chosen. The condition i) of assumption (3.12)
and Proposition 2 imply that ȳx solves the problem DCP(x). By using the fact
that 0 ∈ ∂fx(ȳx), we deduce from Theorem 3.3, that problem (S) has at least one
solution.
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4. Conclusions. Due to their complex formulation, weak nonlinear bilevel pro-
gramming problems are known to be difficult in both the theoretical and numerical
aspects. For this reason, such problems are rarely studied in the literature in spite
of their importance. In the present paper, and in order to contribute to the re-
duction of such difficulties, we have derived some relationships between a class of
weak nonlinear bilevel optimization problems and some well-known other global
optimization problems. Therefore, the established results allow us to get the exis-
tence of solutions to (S) via reverse convex and convex maximization problems. If
the theoretical study of weak bilevel programming problems has known some de-
velopment, the numerical one is still in its infancy. We note that finding numerical
algorithms for solving this class of problems is of major importance. This is out of
the scope of the present paper and will be the subject of a forthcoming work.
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