

Investigation into an improved

modular rule-based testing framework

for business rules

Jodie Wetherall

For the award of

Doctor of Philosophy

for which the thesis is submitted in partial fulfilment

of its requirements

University of Greenwich

October 2010

 ii

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

Declaration

I certify that this work has not been accepted in substance for any degree, and

is not concurrently being submitted for any degree other than that of Doctor of

Philosophy being studied at the University of Greenwich. I also declare that

this work is the result of my own investigations except where otherwise

identified by references and that I have not plagiarised another‟s work

Student: JODIE WETHERALL

Signature:

Date:

Supervisor: Dr Steve Woodhead

Signature:

Date:

 iii

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

Acknowledgments

First and foremost I would like to express my deepest gratitude to my

supervisor, Dr Steve Woodhead, for firstly agreeing to supervise a PhD of this

nature but most importantly for providing the encouragement and space to

work through this process over the nine long years that it has taken. In

particular I would like to thank Steve for his work in proof reading the thesis

which resulted in a document to be proud of.

My academic career has evolved significantly over the duration of the PhD. As

a Senior Lecturer at the School of Engineering, University of Greenwich, I

have been privileged to work with a number of very supportive colleagues who

have offered encouragement and advice along the way. Thank you in particular

to David Israel, Mike Sharp, David Armour-Chelu, Ndy Ekere and Alan Reed.

There have been many changes to my academic role over the years, from

developing new programmes and courses to the engineering of software

systems to support the School, each of these things has provided the

opportunity for personal development which has contributed toward the

success of my PhD. Not forgetting the countless students who I have had the

pleasure of supporting graduate during this time. In particular the class of 2009

who provided me with the inspiration to push forward and complete when

enthusiasm was running dry. Thank you all.

A lot has happened over the course of this PhD which makes tackling it part-

time a particular challenge. Firstly I got married and my wife and I bought a

new house, two of the most stressful things to do in life, within the same year.

We then became foster carers for several years before deciding to expand our

own family from 3 to 6 members. Whilst my hair is yet to recede, the gray is

now showing. For the most enjoyable rollercoaster ride and the perfect

distraction I would like to thank my wife, Jocasta, and our 4 children, Jacob,

Sophie, Mae and Elena.

 iv

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

Abstract

Rule testing in scheduling applications is a complex and potentially costly

business problem. This thesis reports the outcome of research undertaken to

develop a system to describe and test scheduling rules against a set of

scheduling data. The overall intention of the research was to reduce

commercial scheduling costs by minimizing human domain expert interaction

within the scheduling process.

This thesis reports the outcome of research initiated following a consultancy

project to develop a system to test driver schedules against the legal driving

rules in force in the UK and the EU. One of the greatest challenges faced was

interpreting the driving rules and translating them into the chosen

programming language. This part of the project took considerable effort to

complete the programming, testing and debugging processes. A potential

problem then arises if the Department of Transport or the European Union

alter or change the driving rules. Considerable software development is likely

to be required to support the new rule set.

The approach considered takes into account the need for a modular software

component that can be used in not just transport scheduling systems which

look at legal driving rules but may also be integrated into other systems that

have the need to test temporal rules. The integration of the rule testing

component into existing systems is key to making the proposed solution

reusable.

The research outcome proposes an alternative approach to rule definition,

similar to that of RuleML, but with the addition of rule metadata to provide the

ability of describing rules of a temporal nature. The rules can be serialised and

deserialised between XML (eXtensible Markup Language) and objects within

an object oriented environment (in this case .NET with C#), to provide a

means of transmission of the rules over a communication infrastructure. The

rule objects can then be compiled into an executable software library, allowing

the rules to be tested more rapidly than traditional interpreted rules. Additional

 v

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

support functionality is also defined to provide a means of effectively

integrating the rule testing engine into existing applications.

Following the construction of a rule testing engine that has been designed to

meet the given requirements, a series of tests were undertaken to determine the

effectiveness of the proposed approach. This lead to the implementation of

improvements in the caching of constructed work plans to further improve

performance. Tests were also carried out into the application of the proposed

solution within alternative scheduling domains and to analyse the difference in

computational performance and memory usage across system architectures,

software frameworks and operating systems, with the support of Mono.

Future work that is expected to follow on from this thesis will likely reside in

investigations into the development of graphical design tools for the creation

of the rules, improvements in the work plan construction algorithm,

parallelisation of elements of the process to take better advantage of multi-core

processors and off-loading of the rule testing process onto dedicated or generic

computational processors.

 vi

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

Table of Contents

1 Introduction .. 1

1.1 Background .. 1

1.2 Objectives .. 4

1.3 Domain Boundary .. 4

1.4 Contribution ... 5

1.5 Document Structure ... 6

1.6 Summary .. 7

2 Literature Review ... 9

2.1 Introduction ... 9

2.2 Genetic Algorithms .. 11

2.2.1 Genetic Algorithms In Relation To GAS 11

2.2.2 Other Genetic Algorithm Approaches .. 14

2.2.3 Summary .. 14

2.3 Transport Scheduling ... 15

2.3.1 Summary .. 17

2.4 Generic Scheduling .. 17

2.4.1 Summary .. 20

2.5 Rule-Based Systems .. 20

2.5.1 Summary .. 25

2.6 Dynamic Compilation / Scripting / Interfacing 25

2.6.1 Summary .. 28

2.7 Conclusion ... 29

2.8 Summary .. 31

3 Requirements .. 32

3.1 Modular ... 32

3.2 Rule Definition .. 34

3.2.1 XML ... 35

3.2.1.1 Serialisation ... 36

3.3 Compilation Over Interpretation ... 37

3.3.1 Compilation Approaches .. 38

 vii

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

3.4 Support Functionality .. 40

3.5 Domain Boundary .. 40

3.6 Design Methodology ... 42

3.6.1 Rational Unified Process .. 43

3.6.2 Unified Modelling Language ... 45

3.6.3 Design Methodology Summary ... 45

3.7 Summary .. 46

4 Inception and Elaboration .. 47

4.1 Use Cases ... 47

4.2 Design .. 51

4.2.1 Rule Support ... 52

4.2.2 Rule Definition ... 53

4.2.3 Work Plan Organisation ... 56

4.3 Implementation .. 58

4.4 Feasibility .. 60

4.5 Summary .. 60

5 Construction ... 61

5.1 Rule Definition .. 62

5.1.1 Compiler ... 62

5.1.2 Period ... 64

5.1.3 Comparitor ... 67

5.1.4 AndCondition ... 68

5.1.5 OrCondition .. 69

5.1.6 ComparisonOperation .. 69

5.1.7 Comparison .. 70

5.1.8 ValueType .. 72

5.1.9 Value .. 73

5.1.10 MathOperation ... 75

5.1.11 Math ... 76

5.2 Rule Support .. 77

5.2.1 IPeriodElement ... 78

5.2.2 ITestable ... 78

5.2.3 Period ... 79

5.2.4 WorkPeriod .. 79

 viii

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

5.2.5 RestPeriod .. 80

5.2.6 Specialised Classes ... 80

5.3 Rule Testing ... 81

5.3.1 WorkPatternCollection ... 82

5.3.2 Tester .. 82

5.4 Summary .. 86

6 Testing .. 87

6.1 Test Programme ... 88

6.1.1 Test Scenario .. 89

6.1.1.1 Ruleset ... 89

6.1.1.2 Dataset ... 90

6.1.2 Test Plan ... 92

6.2 Test Bench ... 93

6.2.1 Test Bench Logic ... 96

6.3 Summary .. 103

7 Initial Results .. 104

7.1 Test Results .. 105

7.1.1 Test Results – Computational Performance 106

7.1.2 Test Results – Memory Performance 108

7.1.3 Additional Improvement to Computational Performance 109

7.1.3.1 Incremental Work Plan Construction 109

7.2 Alternate Metrics ... 112

7.2.1 Measurable Organisational Value .. 112

7.2.2 Compiled Execution ... 113

7.3 Summary .. 115

8 Further Results ... 116

8.1 Additional Test Scenario ... 116

8.2 Rule Description Problems .. 117

8.2.1 Rule Debugging .. 118

8.2.2 Comparison of Debuggable and Normal Rule Compilation 122

8.3 Additional Testing Process .. 124

8.3.1 Test Plan ... 124

8.4 Comparison of Driving Rules and Teaching Rules 126

8.5 Comparison of Common Language Infrastructures 129

 ix

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

8.6 Comparison Across Operating Systems .. 131

8.7 Summary .. 134

9 Conclusion .. 136

9.1 Process ... 136

9.2 Testing ... 136

9.3 Justification of Contributions .. 138

9.4 Impact .. 141

9.5 Future Work ... 141

9.5.1 Improved Algorithm for Work Plan construction 142

9.5.2 Graphical Interface for Rule Generation 142

9.5.3 Multi-threaded Approach ... 143

9.5.4 Hardware Acceleration ... 143

9.5.5 Validation Checking ... 144

9.5.6 Integration with Existing Scheduling Systems 144

9.6 Summary .. 144

10 References .. 145

11 Appendices ... 150

11.1 Object Serialisation Example ... 151

11.2 Class Diagrams .. 153

11.3 Code Listing ... 156

11.3.1 RuleCompiler Namespace .. 157

11.3.1.1 Compiler Class .. 157

11.3.1.2 DebugSupport Class .. 159

11.3.1.3 RuleCompilerException Class .. 165

11.3.1.4 TypeMap Class ... 166

11.3.2 RuleDefinitionLanguage Namespace 167

11.3.2.1 AndCondition Class .. 167

11.3.2.2 Comparison Class ... 168

11.3.2.3 Comparitor Class .. 172

11.3.2.4 Contain Class .. 173

11.3.2.5 Math Class .. 174

11.3.2.6 OrCondition Class ... 176

11.3.2.7 Period Class .. 178

11.3.2.8 PeriodDescription Class .. 181

 x

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

11.3.2.9 Periods Class ... 185

11.3.2.10 PrePost Class ... 189

11.3.2.11 RP Class ... 190

11.3.2.12 Value Class .. 191

11.3.2.13 WP Class .. 196

11.3.3 RuleSupport Namespace .. 198

11.3.3.1 Contains Class ... 198

11.3.3.2 DirtyList Class .. 200

11.3.3.3 IPeriodElement Class .. 203

11.3.3.4 ITestable Class .. 204

11.3.3.5 Period Class .. 205

11.3.3.6 PeriodDescriptionAttribute Class 211

11.3.3.7 PrePost Class ... 212

11.3.3.8 RestPeriod Class ... 213

11.3.3.9 TimeSpan Class .. 215

11.3.3.10 Types Class .. 218

11.3.3.11 WorkPattern Class ... 222

11.3.3.12 WorkPeriod Class .. 226

11.3.4 RuleTesting Namespace ... 229

11.3.4.1 Tester Class ... 229

11.3.5 RuleCompilerTestbench Namespace 238

11.3.5.1 StopWatch Class ... 238

11.3.5.2 GraphImage Class ... 244

11.3.5.3 Appointment Class .. 247

11.3.5.4 TestBench Class .. 248

11.4 Statistical Results ... 270

11.4.1 Non-Optimized Computational Performance Comparison

between Different Systems Types .. 270

11.4.2 Non-Optimized Memory Usage Comparison between Different

System Types ... 271

11.4.3 Optimized Computational Performance Comparison between

Different Systems Types .. 272

11.4.4 Optimized Memory Usage Comparison between Different

System Types ... 273

 xi

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

11.4.5 Computational Performance Comparison between Original and

Incremental Testing Approaches .. 274

11.4.6 Memory Comparison between Original and Incremental Testing

Approaches ... 275

11.5 Additional Statistical Results ... 276

11.5.1 Debugging Comparison Data ... 276

11.5.2 Driving and Teaching Comparison Data 277

11.5.3 .NET Framework and Mono Comparison 278

11.5.4 Mono Cross Platform Comparison ... 279

11.6 Charts ... 280

11.6.1 Computational Performance Comparison of the Non-Optimised

Method 281

11.6.2 Memory Usage Comparison of the Non-Optimised Method ... 282

11.6.3 Computational Performance Comparison Between Both

Optimised and Non-Optimised Methods .. 283

11.6.4 Memory Usage Comparison Between Both Optimised and Non-

Optimised Methods .. 284

11.7 Rule Descriptions ... 285

11.7.1 Driving Rules ... 285

11.7.2 Teaching Rules ... 287

 xii

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

Table of Figures

Figure 1-1 - A diagram illustrating the problem with embedding the rule

testing algorithm within the scheduling process. 2

Figure 2-1 – Gene Structure ... 11

Figure 2-2 – Chromosome Structure .. 12

Figure 2-3 – Genetic Algorithm Process .. 13

Figure 2-4 - Simple RuleML example describing the rules involved in the

relationship between a buyer and a seller ... 23

Figure 2-5 - The two approaches, required by TAKE using Java and

alternatively using the CLI ... 27

Figure 3-1 – Example of the need for a flexible interface for host system

integration ... 33

Figure 3-2 – Example of the complexity in the organisation of temporal rule

data ... 35

Figure 3-3 – A visual representation of the research‟s domain boundary........ 42

Figure 3-4 – Visual representation of the stages and flow of the waterfall

process .. 43

Figure 3-5 - Visual representation of the iterative nature of the Rational

Unified Process .. 44

Figure 4-1 – Use Case scenario of a human scheduler using transport

scheduling system .. 48

Figure 4-2 – Use Case identifying the components of an automated scheduling

system requiring rule testing .. 50

Figure 4-3 – Class diagram illustrating an example Appointment class which

inherits from a generic IPeriodElement interface..................................... 52

Figure 4-4 – Class Diagram describing the concept of a Period and its

subclasses, WP (Work Period) and RP (Rest Period) 53

Figure 4-5 – Class Diagram illustrating the various types of rule 55

Figure 4-6 - Value and Math Operations ... 56

Figure 4-7 - Period Description Class .. 57

Figure 4-8 – An example of a Work Period object serialised into XML 59

 xiii

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

Figure 5-1 - Code snippet illustrating the process of constructing a new rule

assembly ... 64

Figure 5-2 – Code snippet illustrating the creation process of a new class 65

Figure 5-3 – Code snippet demonstrating how the period description is

included with the compiled rule, as attributes to the rules class 66

Figure 5-4 – Code snippet illustrating the creation of the Boolean returning

Test method .. 66

Figure 5-5 – Code snippet illustrating the abstract base class, Comparitor, and

its Compile method .. 67

Figure 5-6 - Code snippet illustrating the compilation process of the And class

 .. 68

Figure 5-7 - Code snippet illustrating the compilation process of the Or class 69

Figure 5-8 - Code snippet illustrating the definition of the comparison

operations ... 70

Figure 5-9 - Code snippet illustrating the compilation process of the

Comparison class .. 71

Figure 5-10 - Code snippet illustrating the types of value that can be used by

the Value class, as stored in the ValueType enum 73

Figure 5-11 - Code snippet illustrating the declaration and association of a

simple numeric value, stored in a double data type 74

Figure 5-12 - Code snippet illustrating the declaration and association of a

number of days, stored in a double data type ... 74

Figure 5-13 - Code snippet illustrating the declaration and obtainment of a

Parameter value then stored in a double data type 75

Figure 5-14 - Code snippet illustrating the math operations permitted for use

with the Math class. .. 76

Figure 5-15 - Code snippet illustrating the compilation process of the Math

class .. 77

Figure 5-16 – Flowchart illustrating Stage 1 of the automated Testing process

 .. 84

Figure 5-17 – Flowchart illustrating Stage 2 of the automated Testing process

 .. 85

Figure 6-1 – Illustration showing the four testing rules together with their

supporting metadata ... 90

 xiv

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

Figure 6-2 – One Week Appointment Dataset ... 91

Figure 6-3 – One Week Dataset Represented Graphically............................... 91

Figure 6-4 – The three week driver schedule dataset represented graphically 92

Figure 6-5 - Computer Specifications Used In Testing 93

Figure 6-6 – Screen capture of the test bench .. 94

Figure 6-7 - Screen capture of the test bench after rule compilation has

occurred .. 95

Figure 6-8 - Screen capture of the test bench during the testing process 96

Figure 6-9 - Screen capture of the test bench after the testing process has

finished ... 97

Figure 6-10 - Code snippet showing how the Daily Work Period rule was

defined within the testing bench ... 98

Figure 6-11 - Code snippet showing how the Weekly Work Period rule was

defined within the testing bench ... 98

Figure 6-12 – Code snippet showing how the Weekly Rest Period rule was

defined within the testing bench ... 99

Figure 6-13 - Code snippet showing how the Daily Rest Period rule was

defined within the testing bench ... 99

Figure 6-14 – The XML rule representation of the daily and weekly work and

rest periods after serialisation ... 102

Figure 7-1 - Computer Specifications Used In Testing 105

Figure 7-2 - Chart illustrating the computation performance comparison

between different system types .. 106

Figure 7-3 - Chart illustrating the memory usage comparison between different

system types ... 108

Figure 7-4 - Chart illustrating the computational performance comparison

between the original and the incremental testing approaches 110

Figure 7-5 - Chart illustrating the memory usage comparison between the

original and the incremental testing approaches 111

Figure 8-1 - Illustration showing the six testing rules together with their

supporting metadata for the additional test scenario 117

Figure 8-2 – Screen shot illustrating the break in execution of the rule engine

prior to the test method ... 119

 xv

INVESTIGATION INTO AN IMPROVED MODULAR RULE-BASED

TESTING FRAMEWORK FOR BUSINESS RULES

Figure 8-3 - Screen shot illustrating the “step-through” debugging of the XML

rules .. 120

Figure 8-4 - Screen shot illustrating the Locals and Call Stack windows

containing the debugged rules variables .. 121

Figure 8-5 - Chart illustrating the computational performance comparison

between rules compiled with and without debugging information 122

Figure 8-6 - Chart illustrating the memory usage comparison between rules

compiled with and without debugging information 123

Figure 8-7 – A single week of the sample teaching dataset represented

graphically .. 125

Figure 8-8 - Screen shot illustrating the modification to the test bench to

include the testing of Teaching rules .. 126

Figure 8-9 - Chart illustrating the computation performance comparison

between driving and teaching rules .. 127

Figure 8-10 - Chart illustrating the per rule computation performance

comparison between driving and teaching rules 128

Figure 8-11 - Chart illustrating the memory usage comparison between driving

and teaching rules ... 129

Figure 8-12 - Chart illustrating the computation performance comparison

between .NET and Mono ... 130

Figure 8-13 - Chart illustrating the memory usage comparison between .NET

and Mono .. 131

Figure 8-14 – Screen capture illustrating the test bench appearance when

executed on the Mac OSX operating system ... 132

Figure 8-15 - Chart illustrating the computation performance comparison

between operating systems ... 133

Figure 8-16 - Chart illustrating the memory usage comparison between

operating systems ... 134

Figure 11-1 - XML Serialisation Example A ... 151

Figure 11-2 - XML Serialisation Example B ... 151

Figure 11-3 - XML Serialisation Example C ... 152

 1

1 INTRODUCTION

1 INTRODUCTION

This thesis has been constructed to summarise the results of research into a

rule based testing system for use in scheduling applications. The document

will begin by looking at the current research areas that fall into or around this

research domain in order to define the state of the art in this area and identify

the target original contributions for the thesis.

1.1 Background

The problem domain which this research tackles was spawned from a

consultancy project undertaken with Kings Ferry Coaches Ltd (KFC)

(Wetherall, 2002), a local award winning Coach Company. Where possible

KFC try to implement technology to automate processes within its

organisation with the long-term view of reducing the overall cost of running

the business whilst maintaining a high quality level of service to their

customers.

One area of the company‟s business which they have had the most difficulty in

automating is the scheduling of the vehicles and drivers to their appointments.

The company employ a relatively highly paid domain expert to carry out the

scheduling process whilst taking into account the legal driving rules

(Transport, 1998) which all drivers of domestic passenger journeys are legally

bound by. The cost of doing this is fairly substantial with a high turnover of

experts in short periods of time.

The company have conducted their own investigations into existing solutions

for automating this scheduling process but have found that nothing exists to

schedule the drivers and vehicles to appointments whilst, at the same time,

taking into consideration the legal driving rules. This is mainly because the

legal driving rules are a complex set of detailed and varied rules which have to

take into consideration multiple sets of temporal data.

 2

1 INTRODUCTION

The initial project took on the approach of using a Genetic Algorithm (GA) to

carry out the scheduling process. GA‟s are renowned for their ability to

schedule timed data in an efficient way and, at that time of the consultancy

project, research identified this to be the most appropriate way forward. The

system was called the Genetic Allocation System (GAS) relating to the

scheduling algorithm used.

One of the greatest challenges faced during the project was taking the rules, as

described by the Department of Transport (Transport, 1998), and

implementing them in Visual Basic 6 (the language previously chosen for

prototyping the solution for the consultancy project). During the scheduling

process, these rules are called upon to ensure the legal driving rules have been

adhered to. This part of the project took a long time to complete and required a

considerable amount of testing in order to prove the implementation met the

rules both without bugs and to the correct interpretation of the legal rules.

Figure 1-1 - A diagram illustrating the problem with embedding the rule testing

algorithm within the scheduling process.

 3

1 INTRODUCTION

As illustrated in Figure 1-1, the problem now comes when the Department of

Transport decide to alter the legal driving rules or change them completely to

an alternative scheme. This will require further months of work for a software

developer to implement a new set of driving rules in code which, for a coach

company, will significantly compromise the business case for the software

investment.

The outcome of this research has been designed to solve this problem. By

proposing a solution which will allow either the Department of Transport or

the company itself to describe the rules in a human readable form and let the

translation of the rules equate to computer executable code for fast testing.

Solutions exist to do similar types of things to that proposed, but none are

suitable in bridging the gap between rule-based testing and scheduling.

The outcome of this research is not specifically focused on scheduling, but

rather, rule-testing in scheduling. Part of the problem in the separation of the

two problem domains is that rule-testing rarely considers the continuous nature

of scheduling and the fact that events are timed and need to be aligned in a

multi-dimensional way. More often rule testing looks at rules in a simplistic

sense of the data and the rule to apply and does not consider the time sensitive

nature of scheduling in its approach.

For clarity, this thesis looks at business rules. (Ambler, 2004) states that a

business rules “defines or constrains one aspect of your business that is

intended to assert business structure or influence the behaviour of your

business”, such as the legal driving rules within the transport scheduling

scenario. Some example business rules provided by (Ambler, 2004) include:

 Tenured professors may administer student grades.

 Teaching assistants who have been granted authority by a tenured

professor may administer student grades.

 All master‟s degree programs must include the development of a thesis.

 4

1 INTRODUCTION

One of the main issues when looking at rule-engines, is that a rule engine tends

to require a considerable amount of additional logic in order to understand how

to deal with the rules and data being tested with it. For some applications this

approach can be fairly complex, especially where the rule provider is not an

expert in software development, which defeats the idea of using an

„automated‟ system for scheduling and rule testing. This thesis considers the

need for a simple modular approach when defining a rule engine in order that

the proposed solution can easily be integrated within a range of host systems

without the need for a large quantity of integration logic.

1.2 Objectives

The objectives of this thesis are to:

 investigate the existing domains within which the topic of this thesis spans

to help identify the requirements for a rule testing system for use within a

scheduling environment.

 propose a mechanism by which rules can be changed within a scheduling

process without the need for the redevelopment of the scheduling

algorithm or the redevelopment of further software.

 identify a means of improving the computational performance of the rule

testing process by compiling rules into executable code.

 identify the required metadata to associate with a set of rules to support the

process of organising a set of data into a work plan.

 define a simple interface to support the integration of the proposed solution

within existing or future scheduling systems by designing the solution to

be modular.

These objectives are looked at in greater detail within the Requirements

chapter.

1.3 Domain Boundary

 5

1 INTRODUCTION

To summarise the scope of the problem it is important to identify the domain

boundary which allows the research topic to restrict the areas of investigation.

To refresh, the research is titled “Investigation into an improved modular rule-

based testing framework for business rules”. The output of the research aims

to be relatively generic and adaptable to fit into a number of different systems

hence the need to make it Modular. This project aims to look specifically at

rule testing for scheduling applications. Many research areas (see Section 0)

have previously looked at generic rule testing approaches but this research

takes into account temporal data used in scheduling along with the need for a

high computational performance for a continuous scheduling process.

1.4 Contribution

This research is considered to provide a number of contributions within its

field. The following bullet points summarise the research contributions:

 This research will bridge the gap between rule testing and scheduling

systems providing a solution where previously an appropriate solution has

not existed.

 It will describe a potential new rule testing definition language that has

been designed around the need for describing rules which relate to

temporal problem domains such as scheduling.

 It will demonstrate a high performance approach to rule testing by

compiling rules to optimise the speed for frequent testing scenarios such as

scheduling.

 It will provide an example approach to modularising the rule testing engine

in a way which will allow it to be fully integrated with existing systems.

 6

1 INTRODUCTION

 It will define a method of benchmarking the resulting solution in order that

further improvements to future developments have a means of comparison.

1.5 Document Structure

This thesis has been divided into a number of sections to aid in its readability.

Literature Review

The Literature Review illustrates the extensive research undertaken within the

various distinct research areas surrounding the domain of this research. The

purpose of this section is to establish where existing research has been

undertaken and to then identify the target original contributions for the work

reported in this thesis.

Requirements

The Requirements chapter unpacks and defines the problem for which this

research aims to provide a solution. It set outs to clearly identify the boundary

of the problem domain with the aid of user and system requirements.

Inception & Elaboration

The Inception & Elaboration chapter shows the outcome of the first two phases

of the Rational Unified Process (RUP), the methodology used to help solve

this research problem. This chapter shows the evolution of the requirements as

they develop into elements of software that can be use to demonstrate sections

of the overall solution.

Construction

The Construction chapter looks at the construction phase of the RUP,

illustrating how the outcome of the inception and elaboration phases are

brought together and a working prototype of the candidate solution is realised.

Testing

 7

1 INTRODUCTION

The Testing chapter looks at the overall testing process for the candidate

solution as well as the design of an automated test harness designed for

carrying out the testing process.

Initial Results

The Initial Results chapter provides some discussion of the results obtained

from the initial testing process, considering the computational performance

and memory usage of the prototype solution as well as its measurable

organisational value.

Further Results

The Further Results chapter expands on the previous Testing and Initial Result

chapters by testing the performance of the proposed solution within an

alternate rule testing domain. It also considers the solutions performance under

various conditions such as across multiple platforms and execution runtimes.

The Further Results chapter also demonstrates the ability to debug rules to

eliminate rule definition errors.

Conclusion

The Conclusion chapter draws together and summarises the results obtained

throughout the testing process, comparing the outcome with the contributions

outlined in this Introduction.

References and Appendices

The References chapter provides a list of citations made throughout the thesis

and the Appendices provide a range of additional information from a set of

code listings through to the raw data obtained during testing.

1.6 Summary

This introduction has attempted to summarise the purpose of this research,

providing a background to the problem domain and giving context to the target

original contributions.

 8

1 INTRODUCTION

Most importantly, the introduction has outlined the original contributions made

by this research. The goal for the rest of this document is to demonstrate that

these contributions are novel, to show how the contributions have been made

and to suggest ways of moving forward other research within this field.

 9

2 LITERATURE REVIEW

2 LITERATURE REVIEW

2.1 Introduction

As discussed in Section 1.1, the problem the research in this thesis endeavours

to present a solution for originated from a consultancy project (Wetherall,

2002). This project required the scheduling of drivers and vehicles to

appointments within a transport scheduling environment. The client had,

themselves, searched for an existing system but resorted to academic support

when a solution could not be found.

The problem the client had was not that a scheduling system could not be

sourced to support their activity, but the scheduling process undertaken by the

existing scheduling systems (specifically the PHC system already in use at

Kings Ferry) were not able to take into account the legal driving rules.

Similarly, the client was able to source rule testing systems to support the

testing of drivers schedules against the legal driving rules (Transport, 1998),

however, these system were unable to perform the required scheduling task

and were not designed with the kind of optimisation required for an already

computational expensive scheduling process.

The initial project resulted in the implementation of a Genetic Algorithm (GA)

for carrying out the scheduling activity whilst the legal driving rules were

carefully interpreted directly into the code of the application. This approach

was fine, at first, until changes were made to the driving rules resulting in a

need for significant further development time.

It was at this point that the research reported in this thesis began, in order to

look at a method that would limit the amount of additional development

required each time a set of rules were to change. The first step in this research

was the completion of the literature survey described in this chapter.

 10

2 LITERATURE REVIEW

This literature review has been conducted to determine the current state of

research in a numbers of areas which fall within the problem domain. It is not

until the current state of research is better understood that it is possible to look

at alternative approaches to solving the rule testing problem in transport

scheduling environments.

The literature review has been divided into a number of different sections as

the topic of interest incorporates a number of distinct areas.

 The research starts by breaking down the scheduling process currently

used within the solution developed for the consultancy project,

specifically looking at the GA, in order to understand the importance of

testing the scheduling rules at optimal speeds.

 The second area investigated looks at the field of transport scheduling;

the domain which best seems to contain the problem this research

attempts to solve.

 The third area expands the investigation into the more general field of

scheduling by looking at the current state of generic scheduling

research, not specific to transport scheduling.

 The fourth area investigates the field of rule-based testing in order to

determine current approaches to testing rules, in an attempt to identify

an approach suitable for the transport scheduling domain.

 The fifth area investigates the field of software execution, in terms of

dynamic compilation, scripting and interfacing, to determine current

practices of gaining optimal performance of execution with a view to

optimising the performance of a rule-based testing solution for use in

transport scheduling.

 11

2 LITERATURE REVIEW

2.2 Genetic Algorithms

As previously stated the consultancy project from which this research has

spawned used a GA as its scheduling mechanism. A GA is “a computational

model of biological evolution” (Forrest, 1996). Such algorithms get their

name from the theory of manipulating the genetic makeup of a being to

produce a superior version of that being. In this specific application, if there

were a number of work schedules the GA will take these and try to combine

and manipulate them to produce a better, more fitting work schedule. By

continually manipulating a set of work schedules with each other it is possible

to improve the final result.

2.2.1 Genetic Algorithms In Relation To GAS

This sub-section describes how the GA was used as part of the scheduling

process in the Genetic Allocation System identified in Section 1.1. Detail

provided in section 2.2.1 has been derived from (Wetherall, 2002).

A gene describes an individual element of a work schedule, in this case, an

appointment and its driver and vehicle allocations. Figure 2-1 illustrates the

elements of a gene. It shows that a gene represents a single appointment and

the appointment has drivers and vehicles associated with it.

Figure 2-1 – Gene Structure

A chromosome describes a daily work schedule and is a collection of all of the

Genes for any given day. Figure 2-2 shows the layout of a chromosome.

Appointment

Drivers

Vehicles

 12

2 LITERATURE REVIEW

Figure 2-2 – Chromosome Structure

One of the key elements to the GA is the use of fitness functions as a tool to

measure a work schedule in order to determine its suitability. Once a

chromosome has been produced its fitness is measured in order to make a

comparison against other chromosomes developed for a given day, to

determine which is the most suitable. This level of fitness is based upon

predetermined criteria and, in this example, there are 7 factors that contribute

to the level of fitness of a chromosome.

The way the GA sequence works is by continuously performing a sequence of

operations to try and improve upon the previous best schedule. Figure 2-3

shows the sequence undertaken in order to achieve this.

Initial number of chromosomes to generate (A) = 50

Working chromosome set size (B) = 10

Mutating frequency (C) = 20%

Step 1

Generate (A) pre-evolved chromosomes and evolve them into allocated

chromosomes.

Step 2

Test all chromosomes for their fitness values.

Step 3

Remove the lowest fitness chromosomes so that the best (B) remain.

Step 4

Enter a loop to begin a repetitive cycle of actions.

Step 5

Keep the best chromosome to one side, in case we cannot find anything better

than this.

Step 6

Perform a genetic cross-over on pairs 1-2, 3-4, 5-6, 7-8, 9-10 by randomly

chopping the chromosomes into two at a random location and attach the first

 13

2 LITERATURE REVIEW

chromosomes beginning with the second chromosomes end, and the second

chromosomes beginning with the first chromosomes end to produce 2 new

chromosomes. If the cross-over fails (i.e. produces an invalid chromosome) for

any pair of individual chromosomes, generate new evolved chromosomes to replace

them. Add the resulting 10 crossed-over chromosomes to the best chromosome kept

from the previous cycle.

Step 7

Every (C) of the cycles of the loop, at a random point, mutate elements of the

chromosome, for example, changing a driver for a different driver. This will

cause a mutation that could be a positive or a negative reaction. If the

mutation fails, put the element that was altered back to the way it was before

we tried mutating.

Step 8

Test all chromosomes for their fitness values and remove the lowest fitness

chromosomes, leaving (B) to continue to manipulate.

Step 9

Loop back to Step 4 until the user decides that they do not wish to continue

(by seeing no improvement over time in the level of fitness).

Figure 2-3 – Genetic Algorithm Process

The approach described throughout section 2.2.1 works efficiently in many

applications and situations, but the challenge comes when there is little or no

slack in the process. For example part of the problem identified in using this

approach in the consultancy project was that there were not enough drivers to

choose from, i.e. all of the drivers were busy with an appointment at some

point throughout a scheduled day. Trying to operate a scheduling system with

tight restrictions such as these is very challenging.

It is also important to note at this point that the rules requiring testing are not

related to the fitness functions. These fitness functions are simply used to

determine, during the scheduling process and after rule testing has confirmed

that a schedule meets the legal driving rules, which is the best work schedule

from those produced.

 14

2 LITERATURE REVIEW

2.2.2 Other Genetic Algorithm Approaches

Although GA‟s are not the core of this research it is the application which

takes advantage of such scheduling approaches that may benefit the most from

having a rule-testing mechanism geared toward it‟s application area.

(Tongchim & Chongstitvatana, 2002) describes an approach in optimising the

performance of a parallel GA by altering its parameters based upon its

observed performance. With an algorithm such as this which is working hard

to improve the overall performance of the scheduling system there would be

substantial benefit to have an accompanying rule testing mechanism that was

also optimised for speed, understand the temporal nature of scheduling tasks

and with the flexibility for integration.

There are a number of papers that look at using distributed GA‟s to improve

the computational performance of the scheduling process but if any of these

approaches also require the need for rule testing as part of the scheduling cycle

then that too would need optimising. These research papers include (Alba &

Troya, 2002), (Pavel, Ivan, & Jan, 1996), (Pinto., Monterio, & Rosa, 1999) and

(Goncalves, Mendes, & Resende, 2008).

2.2.3 Summary

GA‟s are a common and often used tool for carrying out the scheduling

process in various problem domains. Research is continually being undertaken

to get more from these algorithms and specifically improve their performance.

It is clear from reading these papers that performance is a key issues and

something that a rule-testing solution, that is embedded into a scheduling

process, needs to take into consideration.

 15

2 LITERATURE REVIEW

2.3 Transport Scheduling

Whilst transport scheduling was the domain in which this research spawned,

the aim of this research is not only limited to this domain. There are a variety

of applications areas which can benefit from rule testing in scheduling such as

timetable scheduling for educational institutions which have to consider

contractual teaching rules.

The area of transport scheduling is vast and covers a wide range of activity

areas including the management of the transport infrastructure (for example

roads, railways, airways, waterways, canals, pipelines, airports, railway

stations, bus stations and seaports), vehicles (for example automobiles,

bicycles, buses, trains and airplanes) and operations (for example traffics

signals, ramp meters, railroad switches, air traffic control, tolls and gasoline

taxes).

At first glance, one paper which appears to be fairly close to this research topic

is (Weerdt, 1999). This paper takes a mathematical look at approaches to

resolving a transport scheduling problem. The specific problem examined in

the paper, however, is based upon the movement of a product from Point A to

Point B as opposed to the movement of passengers and vehicles which has a

significantly different set of governing regulations, although both require the

consideration of driving rules. Surprisingly the paper does not discuss how the

legal driving regulations for the driver of the goods vehicle impacts on the

process. Instead it focuses on the specific algorithmic scheduling method

which could be used for this type of scenario.

One of the most relevant papers to this research topic is the paper (Wren,

Fores, Kwan, Kwan, Parker, & Proll, 2002), which summarises the process of

scheduling drivers to bus and train jobs by means of shift patterns. According

to the paper the research group has many years of experience in driver

scheduling for bus and train shifts but it does not discuss the approach taken to

manage the labour rules, although they are highlighted as part of the problem.

 16

2 LITERATURE REVIEW

Instead the group‟s research focuses on scheduling using shift patterns and the

bus and train scenarios and the rules which accompany the scheduling process

they use are a secondary issue. (Kwan, Kwan, & Wren, 2001) and (Fores &

Proll, 1998) explain a number of approaches the research group have looked at

in optimising the scheduling algorithms used which include Integer Linear

Programming (ILP) and Relief Chains. The majority of approaches considered

are variants of the ILP concept which, similar to the problem previous

highlighted, tend to embed the specific rules into the scheduling algorithm

which would eventually cause issues if the rules themselves were to later

change.

In the paper (Freling, Huisman, & Wagelmans, Models and Algorithms for

Integration of Vehicle and Crew Scheduling, 2003), the authors take a look at

combining the overall scheduling process for the vehicle and crew and propose

a mechanism for scheduling these together as opposed to the independent

scheduling of one followed by the assignment of the other. Whilst this is an

interesting papers that does consider many of the potential transport scheduling

issues it is admitted that the rules which govern driver scheduling have not

been considered as they provide additional complication to the overall

scheduling process. This is the type of research which highlights the need for a

modularised rule-testing solution that will integrate with existing systems.

Another paper to come from this research group is (Freling, Huisman, &

Wagelmans, Applying an Integrated Approach to Vehicle and Crew

Scheduling in Practice, 2000), which provides further details regarding the

approach taken in looking at the rule testing side of the driver scheduling

problem. The approach taken in the paper is to consider the legal driving rules

as part of the algorithmic process of producing the scheduling which leads to a

number of restrictions. Firstly the rules cannot be updated without also

considering the redesign of the overall scheduling process so that if the rule

issuing authority changed the legal driving rules the system would no longer

be valid; secondly the rule testing process cannot be detached from the specific

driver scheduling algorithm and reused in an alternative scheduling system,

 17

2 LITERATURE REVIEW

which also requires rule testing for temporal style rules. This helps to identify

the challenges to be addressed.

Another paper which looks at transport scheduling problems is (Fischetti,

Lodi, Martello, & Toth, 2001). This paper takes a look at alternative

mathematical approaches used in describing simplified parts of transport

scheduling and, as with many of the other papers discussed, does not tend to

look at the rule testing element in any detail.

This review of recent transport scheduling research identifies an obvious gap

between rule testing and transport scheduling. Many more research papers can

be identified that continue toward a solution to transport scheduling problems,

all without the specific objective of optimising the rule testing element of the

scheduling problem. Examples of other papers include (Martijn, van der

Heijden, & van Harten, 2007), (Peters, de Matta, & Boe, 2007) and (Malachy

& Crawford, 2007).

2.3.1 Summary

The research currently being undertaken within the transport scheduling field

illustrates an ideal opportunity for a new potential solution to fill this gap, with

a method of dealing with rules in a scheduling system. There may, however, be

existing solutions available outside of the transport scheduling domain,

therefore, the scope of research needs expanding to consider other areas of

scheduling.

2.4 Generic Scheduling

The scheduling problem is not specific to a particular industry but can be seen

as an issue for project managers in allocating tasks to personnel and plant

through to the creation of timetables for bus, train and coach scheduling, which

is the direction from which this work is being driven.

 18

2 LITERATURE REVIEW

(Burke & Petrovic, 2002) presented a summary of the state of the art in

timetabling research providing a useful grounding in the field of timetabling.

Wide ranges of scheduling approaches were discussed providing numerous

potential alternatives to the use of GA‟s used within the prior consultancy

work. The approaches summarised in this paper focus on the algorithmic

process of timetabling, leaving enough scope for the integration of a rule-

testing system into a range of the algorithms discussed (if appropriate). It may

be the case, such as with the constraint-based scheduling, metaheuristics and

objective functions, that the rules themselves form part of the scheduling

algorithm and are not separately distinguishable. In these cases an external rule

testing component may not be appropriate. However, the flaw with these types

of approaches, where the rules themselves are embedded within the algorithm,

is that if the rules were to change, an expert in defining a new algorithm for the

new rules will need to be employed, at a relatively high cost to an organisation,

in order to bring the new set of rules into the scheduling process.

Real-time scheduling is an advancement made in real-time computation

technology allowing more processes per second and, in turn, the ability to

schedule in real-time. A recent paper (Lu, Stankovic, Tao, & Son, 2001) looks

at a means of mathematically modelling a real-time scheduling process, taking

feedback during the various stages and feeding it back in to the process.

Another progressing form of technology is Grid computing (Dail, 2002) which

looks at taking advantage of large-scale parallel computing to carry out tasks at

greater speeds. One of the main challenges with this type of approach is the

need for a specialist distributed computing configuration which would not

work for a normal organisation with standard computing equipment.

One approach, which was considered early in the literature review, looked at

an alternative mathematical means of identifying the solutions to scheduling

problems (Beck & Fox, 1998). It took the approach of using constraints to

narrow down the scope of possible solutions. Whilst extremely useful, this

would provide an alternative to the GA as opposed to providing a solution to

 19

2 LITERATURE REVIEW

the problem of changing rulesets in the rule testing phase of the scheduling

process.

Following on from this, another constraint-based scheduling paper (Liebowitz,

1997) looked at a prototype system developed using the constraint based

approach to scheduling. The work carried out is now a little out of date but it

would be a useful starting point to build on if scheduling were to be part of this

research.

One research group (Subramanian, Katz, & Franklin, 2000) looks at ways of

grouping together common types in the scheduling process. Their work aims to

show that, by aggregating the scheduling tasks in this way, they can improve

the throughput of scheduling tasks. After some investigation into the results it

seems that this technique, although interesting, mainly applies to scheduling

activities which need to be carried out immediately, like the scheduling of

processes in a computer system or the control of bandwidth in large-scale

network systems.

On investigation into existing scheduling research, looking specifically at

systems which carry out the scheduling process, (Bartak, 2003) was of

particular interest as it discussed a solution which used constraint based

scheduling (Beck & Fox, 1998) to carry out the scheduling process. One of the

elements missing from this research was identified as the testing of business

rules as part of the scheduling process.

It is not uncommon for scheduling systems to be developed for a specific

industrial sector. The paper (Cesta, Oddi, & Susi, 2000) describes a scheduling

system produced called OO-scar whose purpose is to schedule tasks for the

Italian Space Agency. This paper helps identify the need for specialist

scheduling systems amongst specific industrial sectors.

The article (Green, 2001) contained a list of twenty scheduling systems which

meet part of the requirements of a scheduling system but, as found in many of

the research papers, the systems tend to be designed for a specific task and are

 20

2 LITERATURE REVIEW

not adaptable for scheduling different sets of activities and they do not offer

the flexibility to incorporate fast rule based testing into their processes.

A specific example that identifies a need for rule testing in its scheduling

process is identified in (Abramson & Adela, 1991). The school timetabling

problem has to take into consideration the rules set by the school themselves in

terms of the time periods for the beginning and end of the teaching session and

the lunch breaks but also the union agreed teaching loads for teachers. These

rules are complex, and without a dedicated mechanism of updating these in an

automated system, when the rules are changed, the system cannot properly

perform the scheduling process.

2.4.1 Summary

Whilst looking at the field of generic scheduling approaches, it was clear that

there was a divide between the approaches taken to manage and solve the

scheduling problem and the ability to test rules as part of this process. Even in

the paper (Proth, 2007), which attempts to summarise the current state of

research in the field of scheduling, the application of rules to this process isn‟t

taken into consideration.

It may be that in many cases the testing of business rules as part of the process

isn‟t a bottleneck or the rules used do not require regular change. This does

identify scope for this research to undertake further investigation.

2.5 Rule-Based Systems

The rule testing problem has been extensively researched in the past with

contributions still being highlighted in a variety of areas. Rule testing engines

have been developed that provide the opportunity for software developers to

incorporate the testing of rules into a number of different application areas to

solve the rule testing problem.

 21

2 LITERATURE REVIEW

The concept of the rule testing engine has moved from research to commercial

product status with a number of leading companies offering competitive rule

testing engines which either come fully integrated within their applications

(such as the E-mail rules component of Microsoft Outlook) or are ready for

integration with host applications (such as Oracle Business Rules).

The contributions identified in this area are not in the development of a new

rule testing engine although the means of describing temporal rules for the

benefit of scheduling systems and a mechanism of testing temporal rules with

a temporally aware rule testing engine that is flexible enough to integrate with

existing systems is necessary in order to solve the problems outlined in Section

1.4.

(Hayes-Roth, 1985) provides a good introductory starting point for

understanding rule based systems although it does tend to look at inference

rules, with an if-then approach, such as if the condition is met then perform an

action as a result. This approach differs from the idea of rule testing as

required by the legal driving rules (Transport, 1998) as these rules require no

action; if the driving rules are broken then the driver cannot drive with the

allocated schedule. Within the driver scheduling domain there is no feedback

process for the rules or any process by means of actions occurring. The idea

behind this research is that driver schedules may be produced by means of, for

example, GA‟s, and then they must be tested against the legal driving rules in

order to determine if the schedule is legal or not. This is not to say that the rule

test occurs at the end of the scheduling process as it may occur as part of the

process in determining if it is possible to allocate a driver to a given job.

The other thing that the paper does not look at is the concept of temporal rules

where one appointment is followed by another which then may be followed by

rest time. Without this consideration the rule testing process for scheduling

applications becomes complex for the scheduling algorithm developer who has

to take on board a rule testing engine and provide additional functionality to

cater for those temporal style rules.

 22

2 LITERATURE REVIEW

(Mak & Blanning, 2003) provides a mechanism for understanding how to

interpret the business rules used within the business process in order to

determine what the rules are that may need automation. The process would be

appropriate for a Systems Developer who may take on board the process of

developing a scheduling system that uses the rule testing approach described in

this research in better understanding what the initial business rules are.

A closely related research area to the one being proposed is the area of

RuleML. RuleML is a markup language used to describe rules for rule testing

systems. RuleML is substantially supported by the research community in

defining a shared Rule Markup Language with a large number of papers

published that support its overall goal (RuleML). It was spawned as the result

of the movement toward the Semantic Web (Shadbolt, Berners-Lee, & Hall,

2006), the concept that allows data to be shared and reused across applications,

enterprise and community boundaries. The underlying technology that has

made RuleML possible is the eXtensible Markup Language (XML) (Bray,

Paoli, Sperberg-McQueen, & Maler, 2000), a flexible technology for

describing data.

RuleML provides the strong basis for rule description permitting both forward

(bottom-up) and backward (top-down) rules in XML. It is based on the XML

standard resulting in rules which are transportable over the Internet and are in

a nearly human readable format.

<?xml version="1.0" encoding="UTF-8"?>

<RuleML

xmlns="http://www.ruleml.org/1.0/xsd"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.ruleml.org/1.0/xsd

http://www.ruleml.org/1.0/xsd/datalog.xsd"

>

 <Assert mapClosure="universal">

 <!-- This example rulebase contains four rules. The first and second rules

 are implications; the third and fourth ones are facts. -->

 <!-- The first rule implies that a person owns an object if that person

 buys the object from a merchant and the person keeps the object. -->

 <Implies>

 23

2 LITERATURE REVIEW

 <if>

 <!-- explicit 'And' -->

 <And>

 <Atom>

 <op><Rel>buy</Rel></op>

 <Var>person</Var>

 <Var>merchant</Var>

 <Var>object</Var>

 </Atom>

 <Atom>

 <op><Rel>keep</Rel></op>

 <Var>person</Var>

 <Var>object</Var>

 </Atom>

 </And>

 </if>

 <then>

 <Atom>

 <op><Rel>own</Rel></op>

 <Var>person</Var>

 <Var>object</Var>

 </Atom>

 </then>

 </Implies>

 <!-- The second rule implies that a person buys an object from a merchant

 if the merchant sells the object to the person. -->

 <Implies>

 <if>

 <Atom>

 <op><Rel>sell</Rel></op>

 <Var>merchant</Var>

 <Var>person</Var>

 <Var>object</Var>

 </Atom>

 </if>

 <then>

 <Atom>

 <op><Rel>buy</Rel></op>

 <Var>person</Var>

 <Var>merchant</Var>

 <Var>object</Var>

 </Atom>

 </then>

 </Implies>

 <!-- The third rule is a fact that asserts that John sells XMLBible to

 Mary. -->

 <Atom>

 <op><Rel>sell</Rel></op>

 <Ind>John</Ind>

 <Ind>Mary</Ind>

 <Ind>XMLBible</Ind>

 </Atom>

 <!-- The fourth rule is a fact that asserts that Mary keeps XMLBible. -->

 <Atom>

 <op><Rel>keep</Rel></op>

 <Ind>Mary</Ind>

 <Ind>XMLBible</Ind>

 </Atom>

 </Assert>

</RuleML>

Figure 2-4 - Simple RuleML example describing the rules involved in the relationship

between a buyer and a seller

 24

2 LITERATURE REVIEW

The example RuleML (Boley, Paschke, Tabet, & Grosof, 2010) presented in

Figure 2-4 demonstrates a set of 4 rules that describe the relationship between

a merchant (the seller) and a person (the buyer). The first 2 rules are

implications that help to describe the relationship between the merchant and

the person and the last 2 rules are the fact, or data, that can be validated

against. The example RuleML can be validated, using a schema validator

(Thompson, Tobin, & Connolly, 2005), to determine whether the rules can be

broken, without the need for an inference engine, however simple tests show

that this approach can be slow.

One of the major benefits provided in using XML as a foundation for a rule

description language is its simple integration with modern programming

languages like Java and C#. Objects in these modern languages can have their

data serialised into XML for transportation across networks or saving to a text

based file. This means that the rule provider, for example the Department of

Transport, can describe the driving rules and serialise the rules ready for

distribution across the Internet. A transport companies‟ rule testing system can

then automatically pick up a copy of the serialised rules and deserialise them

back into rule objects ready for testing. This saves the software developer the

effort of writing additional code to read in textual data and interpret it into a

format the software understands.

One of the contributors to RuleML, in their paper (Pan, 2005), describes three

important elements which a Semantic Web rule language should have (a

decidable language, support for datatype predicates and support for weights).

These proposed features provide a useful base foundation from which a rule

markup language can be derived and are visible within RuleML as a result.

Some of the most prominent publications to be made from the RuleML

initiative include (Wagner, 2002), (Boley, The Rule Markup Language: RDF-

XML Data Model, XML Schema Hierarchy, and XSL Transformations, 2001),

(Boley, Tabet, & Wagner, Design Rationale of RuleML: A Markup Language

for Semantic Web Rules, 2001) and (Lee & Sohn, 2003).

 25

2 LITERATURE REVIEW

The research papers (Chen, Wetherall, & Doncheva, Performance optimisation

of rule-based testing in scheduling within a distributed processing environment

(A), 2005) and (Chen, Wetherall, & Doncheva, Performance optimisation of

rule-based testing in scheduling within a distributed processing environment

(B), 2005), are the product of a research area spawned from the same original

problem domain as this research. Rather than tackling the problem of rule

description and execution of rules as this research considers, those papers look

at a means of distributing rules across a corporate network in order to further

increase the computational performance of the rule testing process. Their

research uses an existing rule testing engine as described in (Dietrich J. ,

2003), to carry out the testing of the rules although this rule testing engine

does not have support for temporal rules and is designed specifically for

systems developed with the Java programming language.

2.5.1 Summary

The field of rule-testing is one that is expanding with the continued drive

towards the development of artificially intelligent, automated systems. The

RuleML initiative has set out some important foundations in the area of rule

definition with the aid of XML, however the work undertaken here does not

provide the ability to describe temporal style rules leaving a substantial

amount of work for a scheduling applications software developer to try and

retro fit this solution into their application.

This research has identified some good practice in the way RuleML describes

rules which can be taken on board although it also identifies a gap in the

description of rules for use within a scheduling domain.

2.6 Dynamic Compilation / Scripting / Interfacing

The need for a performance optimised rule-testing solution that can be

integrated into an existing scheduling system has been identified following the

 26

2 LITERATURE REVIEW

investigation of the scheduling and rule-testing domains. Section 2.3.1

identified the need for this research to offer a solution that can be integrated

into existing systems whilst Section 2.2.3 identifies the need for a performance

optimised solution.

Many rule testing engines take the rules as their input and interpret them rather

than compiling rules into some form of executable code. This, in some ways, is

comparable to the approach of scripting programming languages against

compiled programming languages. The compiled approach in programming

languages results in an increase in computational performance, reducing

execution times, over the scripted approach. This same philosophy can apply

to rule testing.

An active research group within the RuleML initiative have developed a

system called TAKE (Dietrich, Hiller, & Schenke, 2007) which demonstrates a

means of rule compilation. Their results demonstrate the advantages of

improved speed and rule verification by compilation.

The TAKE projects utilises the JSR199 standard (JSR-199) which provides a

compiler API for scenarios such as JSP pages, where on the fly compilation is

desirable (although limited to the Java platform). One of the considerable

limitations of the approach taken by TAKE to rule compilation is that during

its compilation process, the compiler emits Java source code in order that the

source can then be compiled into Java bytecode for execution. This additional

step in the compilation process potentially hinders the computational

performance of the TAKE solution compared to a more direct compilation

approach. There are alternative methods that are not part of the standard Java

base classes, such as the BCEL (Byte Code Engineering Library) which would

support the direct compilation of RuleML into Java byte code but the two

approaches have not yet been combined.

Equivalent compilation features to that of BCEL exist built-in to other

languages and software frameworks, such as the Reflection.Emit capabilities

encapsulated within the Common Language Infrastructure (ISO/IEC23271,

 27

2 LITERATURE REVIEW

2006). This feature provides the ability to avoid the intermediate compilation

phase altogether by compiling rules from a rule markup language directly into

the bytecode equivalent in ISO/IEC 23271, the Common Intermediate

Language (CIL). Additional benefits of compiling rules from a rule markup

language into CIL include the ability to use the compiled rules from a large

range of programming languages and, like Java, across multiple platforms with

the aid of projects such as Mono (de Icaza & Jepson, 2002).

Figure 2-5 - The two approaches, required by TAKE using Java and alternatively using

the CLI

(Krintz, Grove, Lieber, Sarkar, & Calder, 2001) discusses the different

approaches of carrying out the compilation, in a programming language

environment, not a rule testing environment, although the same concepts can

apply to both. This paper looks at the different approaches of compilation and

the most appropriate means of compiling Java programs from Java byte code

into machine executable code.

Some important statements to support the idea that compiled code is faster

than interpreted are presented in (Kerningham & Van Wyk, 1998). It states

“Compiled code usually runs faster than interpreted code: the more a program

Bytecode / CIL

Compiled Rules

Rule Markup

Langauge

Source Code

Compilation

CIL

Compilation

Rules

Represented

As Source

Code

Bytecode

Compilation

 28

2 LITERATURE REVIEW

has been „compiled‟ before it is executed, the faster it will run”. Taking this

into account, a software framework such as the CLI provides two levels of

compilation (firstly into CIL and secondly into machine code), potentially

reducing the overall execution time.

Additionally, the thesis (Newhall, 1999) presents a method for measuring the

differences between interpreted, dynamically compiled and JIT (Just-In-Time)

compiled execution of software. This thesis looks at the Java language

specifically; however, the theoretical concepts described apply to any language

and support the view that compilation provides greater performance.

An important aspect that may need consideration is the provision of a clear

application programming interface (API) to provide external systems with the

ability to consume a rule engines functionality. (JSR-94), the Java Rule Engine

API, provides an interface for rule engines to integrate into Java based

applications in a standardised way although is not itself a rule engine. This

common interface is, however, a good example of a standardised integration

interface. (Whaley, Martin, & Lam, 2002) discusses mechanisms of automatic

abstractions of object oriented component interfaces and (Ammons, Bodik, &

Larus, 2002) looks at a mechanism for data mining for the generation of

specifications.

2.6.1 Summary

This investigation into the various software execution processes has led to the

belief that compilation of rules will provide the greatest performance,

previously identified as a requirement in Section 2.2.3. The TAKE project

provides the closest example of rule compilation for rule testing however the

need for the additional step of emitting Java source code for compilation is

clearly a performance hindrance whereas the use of the CLI would eliminate

that step from the compilation process.

 29

2 LITERATURE REVIEW

2.7 Conclusion

The literature review has outlined an important area of further research that

falls across two distinct areas, rule-based testing and scheduling. A number of

papers looked at under the transport scheduling area touched briefly on the

rule-testing parts of the process; however, overall, there were no papers which

effectively spanned both scheduling and rule-testing.

As a result of the literature review it is possible to identify a number of key

contributions that this thesis aims to address.

 This research will bridge the gap between rule testing and scheduling

systems providing a solution where previously an appropriate solution

hasn‟t existed.

The research papers in Section 2.5 which discuss RuleML have helped to

identify good practice in representing rules in a human readable format.

The approach taken by (Boley, The Rule Markup Language: RDF-XML

Data Model, XML Schema Hierarchy, and XSL Transformations, 2001),

can be extended further to represent temporal rules.

 It will aim to develop a potential rule testing definition language (see

Section 3.2) that has been designed around the need for describing rules

which relate to temporal problem domains such as scheduling.

The research in Section 2.2 into GA‟s has helped to identify scheduling

algorithms which require continuous rule testing iterations placing an

increased burden on a rule testing engine where existing research in

Section 2.6, such as the TAKE project, hasn‟t focused specifically on the

efficiency of the rule execution.

 30

2 LITERATURE REVIEW

 It will seek to develop a high performance approach to rule testing by

compiling rules (see Section 3.3) to optimise the speed for frequent rule

testing scenarios such as scheduling.

The literature research conducted into existing scheduling systems in

Sections 2.3 and 2.4 has helped to identify a need for a generic method for

handling temporal rules in a solution which can be integrated into a

number of systems, not just the one it was originally designed for, as other

systems can clearly benefit from this type of approach.

 It will provide an example approach to modularising the rule testing engine

(see Section 3.1) in a way in which would allow it to fully integrate with

existing and new systems.

Approaches looked at within Section 2.6, such as (JSR-94) and (Dietrich,

Hiller, & Schenke, 2007), have helped to identify some good practice in

the area of API‟s and modularised software integration techniques that can

be considered in potential solutions to this research problem.

 It will define a method of benchmarking the resulting solution (see Section

6.1) in order that further improvements to future developments have a

means of comparison.

One of the key limitations of the existing research is the lack of an

appropriate rule testing solution for interchangeable rules within a

scheduling environment. As a result of this limitation no appropriate test

scenarios exists which can be used as a basis for comparison of a new

solution.

The bullet points outlined above have highlighted the areas of contribution this

thesis will continue onward to identify a potential solution for.

 31

2 LITERATURE REVIEW

2.8 Summary

This literature review has looked at a broad range of research areas in and

around the domain for which this problem resides. With the aid of many

references to existing publications from the various fields it has been possible

to draw on the existing state of the art research in identifying both the

originality of the problem domain and also potential areas of research which

can support and provide the basis for identifying a solution.

The next step is to identify the specific requirements, as can be discovered

during the Analysis stage of a software engineering process. Once the problem

is better understood, it is possible to progress forward into identifying a means

of solving the problem.

 32

3 REQUIREMENTS

3 REQUIREMENTS

The context of the research reported in this thesis has now been identified and

an extensive literature review has been carried out to clearly identify the areas

in which an original contribution can be made and how this relates to existing

research areas. This chapter of the thesis aims to identify, more clearly, the

requirements that must be met, in order that an original contribution can be

demonstrated.

A number of different approaches could have been taken to design a system

which would demonstrate the contributions set out in Section 1.4 but it was

considered helpful to start by looking at the various requirements first.

There are two types of requirement that need to be considered prior to the

design of a potential solution (Sommerville, 2006).

1. The user requirements describe the services the system is expected to

provide and the constraints under which it must operate.

2. The system requirements set out the system‟s functions, services and

operational constraints in detail.

This chapter will mainly focus on system requirements as the research

outcome is more of a component that requires integration with existing

systems rather than something which will be used directly by an end user.

However, Section 3.1 will take a brief look at user requirements from the

perspective of a host system being the user.

3.1 Modular

The solution must be able to work with existing systems and not just those

systems for which it is developed. As such it is important that the solution is a

modular framework with a clear interface as opposed to a closed solution

which does not require any additional integration with alternative systems.

 33

3 REQUIREMENTS

In order to move closer to a solution it is important to look at a model which

would be able to fit into various size holes in existing systems. Figure 3-1

depicts the concepts of each system that may wish to use a means of rule based

testing requiring different methods of integration with the solution.

Figure 3-1 – Example of the need for a flexible interface for host system integration

The important thing about the integration of the rule testing system with the

scheduling system is that it needs to provide the additional functionality

without a performance decrease as a result of poor integration.

There are various integration technologies which can be used to connect

systems together such as the use of standard object oriented methods for

inheritance and polymorphism, although this often only works for software

written in common technologies such as .NET to .NET integration or Java to

Java. Alternatively the Common Object Model (COM) approach provides for

cross technology integration, although this is often only useful for applications

designed for Microsoft operating systems.

One of the main advantages with using the .NET technology for

implementation over the Java solution is that .NET developers tend to have a

wider choice of languages within which to write their software. If a Visual

Basic developer wished to integrate with a rule testing system developed in C#

(ISO/IEC23270, 2006), the .NET Framework provides the common object

Key

Host System Rule Testing System

 34

3 REQUIREMENTS

model with the flexibility of making this possible. Also, the .NET technology

has a shared source implementation known as Rotor (Stutz, Neward, &

Shilling, 2003) which has been designed to work on multiple operating

systems and is based on the Common Language Infrastructure standard

(ISO/IEC23271, 2006).

3.2 Rule Definition

Whilst rule definition is not the specific focus of this research it is essential to

consider it in order to work towards a method of rule testing which works with

temporal rules. Solutions exist to represent rules, such as RuleML (Mak &

Blanning, 2003) although the main problem with these existing solutions is

that they do not consider the testing of temporal events.

Temporal rules need a number of custom attributes which may not be found

with rules that aren‟t of this nature. For example, in the driver scheduling

system (Wetherall, 2002), consider a weekly work period which describes the

rules governing a driver‟s work schedule for a week. The weekly work period

is dependent upon a number of daily work periods and daily rest periods which

contribute to the composition of the weekly work period. The daily work

period is a composition of appointments which describe the drivers work

pattern. Figure 3-2 shows a graphical representation of this.

Each of the dependent work and rest periods have their own rules associated so

it is easy to see that the testing of rules of this nature can quickly become very

complex.

With a complex temporal problem such as this, standard rule definition

languages are insufficiently rich to provide the mechanism to represent these

rules. Part of the challenge would be to organise the raw data into some form

of work plan in order that the data is sorted and managed in time order and

then the rule testing engine would need an understanding of the breakdown of

the different types of periods each having their own sets of rules.

 35

3 REQUIREMENTS

Figure 3-2 – Example of the complexity in the organisation of temporal rule data

If the rule testing engine is not built to be aware of temporal data, the client

application hosting the rule testing system would have to implement the

functionality to organise the data and prepare it for testing, thus making the

solution less efficient. There are a number of different application areas which

require the use of a temporally aware rule testing engine and without a rule

testing system that is aware of the challenges posed with temporal data, each

would have to implement its own individual approach.

3.2.1 XML

The use of the eXtensible Markup Language (XML) (Bray, Paoli, Sperberg-

McQueen, & Maler, 2000) has become widespread and is quickly becoming

the standard format for representing any type of data in the computer industry.

Its primary purpose is to facilitate the sharing of data across different

information systems, particularly via the Internet, which certainly meets the

goals of this research, for the sharing of rules.

Daily Work Period Daily Rest Period

Weekly Work Period

Appointment

Daily Work Period

 36

3 REQUIREMENTS

There are a number of advantages to using XML as the underlining rule

definition technology. One of the most important reasons is that it is both

human readable and computer readable at the same time. This provides the

ability for the rules to be defined by both an automated rule designing tool as

well as a providing the ability for the rules to be created manually using a

simple text editor.

Additionally XML is a free open standard and as such makes the task of

defining the structures of the rule transmission data much simpler than if a

proprietary language were defined to represent this information. Additionally

other consumers of the rule definition data such as alternate rule testing

engines can easily understand the structure of the data as it adheres to a

standard whereas if a proprietary standard, such as a binary representation,

were used, specification documents of the rule definition format would need to

be defined and the task of consuming the rule definition data would become

far more complex.

There are disadvantages in the use of XML as a rule representation

technology. The most significant disadvantage is that the syntax contains

redundant information and can become large when compared to a binary

representation of the same data. This redundancy would result in greater

transmission costs when sending the data over a network as well as additional

processing costs in reading and writing the XML.

RuleML (Wagner, 2002) uses XML effectively to represent rules. As

previously stated, the main problem with the RuleML approach is that it does

not support the representation of temporal rules; rules which are dependent

upon data to be structured in a timed manor.

3.2.1.1 Serialisation

As far as serialisation technologies in computer languages are concerned,

XML provides a standard method for converting data stored in modern object

 37

3 REQUIREMENTS

oriented programming languages memory to something which can be saved to

disk or transported across networks. It has become common place in the

development of technologies such as the Service Oriented Architecture (SOA)

and specifically Web Services to use XML to represent information

transported from one system to another.

In the latest generation programming technologies including .NET and Java,

there is built-in support for using XML and the serialisation of object data to

XML. By designing the software correctly, a rule definition language for

temporal rules can fall out of the bottom of the class design process.

The serialisation of data from the software object notation to XML is quite

popular in modern languages. Each language tends to be supported by its own

implementation of the XML standard parser as well as the functionality for

serialising and deserialising between XML and objects. (Hericko et al., 2003)

discusses object serialisation and carries out an analysis between the two

current main software development technologies, .NET and Java.

An example of object serialisation can be found in Appendix 11.1.

3.3 Compilation Over Interpretation

Unlike many other rule testing systems, computational performance is one of

the primary concerns for the requirements of this research. Existing rule testing

systems are designed to allow for the one-off testing of a set of business rules

whereas the rule testing process required in a scheduling application requires a

high volume of rule testing iterations to occur.

Various technologies exist to permit the execution of rules within a system

however existing solutions generally look towards the interpretation of rules

using a rule testing engine to control the overall process. The interpretation of

these rules adds an additional speed implication to testing which does not work

towards an increase in computational performance.

 38

3 REQUIREMENTS

In order to gain the maximum performance from the testing process it is

necessary to look at alternative methods. Software development technologies

offer a number of potential opportunities to solve this problem. If software is

compiled then execution time is much faster than found with an interpreted

language and, in fact, compiled software cannot run any faster as it is in

machine code and is running directly on the processor itself. Looking at the

problem from this angle it is possible to conceptualise that compiling business

rules to executable code offers a number of potential speed increases.

Whilst compiling rules provides an opportunity for a greater improvement in

rule testing performance, the process of compilation provides an additional

overhead. A solution to this problem is presented when considering the use of

caching the compiled rules and only recompiling if the rule set changes. Using

an approach such as this provides the benefits of faster performance execution

whilst only requiring recompilation when rules change, which in the majority

of applications is not frequent. In the testing of driving rules (DoT, 1998), the

rules do not change from one year to the next and, in examples such as this, the

benefit of caching is self evident.

3.3.1 Compilation Approaches

There are a number of methods available for compiling rules into executable

code. The first is to use a language compiler that matches the destination

language of the rule testing engine. This would require the generation of code

targeted for a specific programming language that conforms to the necessary

language syntax and semantics and then to call on the compiler to compile the

code into executable code. This approach would work although isn‟t very

flexible or portable since it would require code generators for a variety of

languages and the accompaniment of the compiler and its relevant dependency

files along with the rule testing engine.

 39

3 REQUIREMENTS

An alternative could be to target machine specific code and to look at creating

an executable file directly. This, in itself, would result in a whole range of

issues such as the need to ensure that the processor to which the executable

code is being targeted is supported by the custom compiler and does not allow

for much machine interoperability or future proofing.

A more desirable solution is to use the approach provided by the .NET

Framework. The framework provides a standardised common language

infrastructure and runtime supporting the development of software in any

number of different languages. Executables compiled for the .NET Framework

are not compiled into machine code but into an Intermediate Language (IL)

which is Just-In-Time (JIT) compiled into processor specific machine code

either in advance or on demand of its execution.

Another benefit to using the .NET Framework approach is that a set of classes

are provided using a technology called Reflection which allows for the

generation of an executable assembly from within a program written for the

.NET Framework. This works by emitting OpCodes (IL instructions similar to

that of assembly language) for the various types of operations being carried

out.

An additional advantage to this approach is that common functionality which

may be useful to varying temporal rule testing applications can be provided as

a set of classes in a class library compiled for the .NET Framework which can

be linked to by the generated executable.

For clarity, the term executable that has been used in this section refers to a file

that contains executable binary code. This may include an executable file with

a “.exe” extension as well as other files such as dynamic link libraries with a

“.dll” extension, found on Microsoft platforms. .NET uses the term Assembly

to define a file containing the executable code.

 40

3 REQUIREMENTS

3.4 Support Functionality

There will most likely be the need to provide some additional support

functionality in addition to the rule testing engine and rule representation

language. For example, when looking at the driver scheduling problem

(Wetherall, 2002), there are common entities which require functionality that

may best be provided by the rule testing engine as opposed to the host

application, such as the description of a Work Period and a Rest Period.

Also, when looking at the organisation of the raw data such as the

appointments in Figure 2-1, rather than the host application having to provide

the functionality to organise sets of complex data into a work plan, it may be

appropriate to provide a generic method of carrying out this functionality for

all host applications. By factoring such needs in from the start an optimal

solution can be designed.

If this type of common functionality is not included in the rule testing engine it

means that every system which requires the use of the functionality would

have to provide its own means of handling these sorts of processes which

would require additional development time for the developer of the host

application and the potential of additional bugs occurring in the overlap

between the host and the rule testing engine.

3.5 Domain Boundary

Existing scheduling systems and approaches provide the ability to schedule

with the use of optimised algorithms such as GA‟s. The requirements therefore

do not need to include the design of a scheduling system, although what is

essential is that the design takes into account that the solution will need to

integrate with other systems in order to provide the additional functionality

that it will have to offer. This means that a clearly defined application

 41

3 REQUIREMENTS

programming interface (API) is essential in order to provide integration with

other systems.

The space within the domain boundary will need to include the design of a rule

representation language such as RuleML in order to represent temporal rules.

Also, and more importantly, included within the domain, there will need to be

a temporally aware compiled rule testing engine designed for use with

scheduling applications.

The rule representation language is required in order that a rule provider has a

means of distributing rules electronically to client systems. The rules

themselves have to contain the breakdown of temporal datasets as described in

the original rules (for example it is the Department of Transport, 2002, which

define a Daily Work Period and a Daily Rest Period, and this definition could

change along with the rules).

A compiled rule testing engine is required in order to convert the rule

representation language into executed code, capable of executing the rules as

at greater speeds. This resulting computational performance improvement

would benefit a range of application areas including scheduling applications

that use, for example, the GA, where rule testing takes place frequently.

Finally, a set of support functionality should be included to provide some of

the basic repetitive functionality that may be common in a number of different

rule testing scheduling applications. The need for this has already been

explained but, in summary, this provides a means of supporting the host

application by providing more efficient integration overall.

An area which would be desirable to include within the domain boundary

would be a method of graphically describing the rules prior to them being

saved into the rule representation language. This would provide a much

simpler means for an end user or non-IT professional to create the rules for

themselves. Considering the already large scope of the domain boundary this

will need to be something that is considered for further research although the

 42

3 REQUIREMENTS

design of a simple rule editor may be needed for the benefit of developing test

rules.

The diagram in Figure 3-3 provides a graphical representation of the domain

boundary of the research, to aid its description.

Figure 3-3 – A visual representation of the research’s domain boundary

It is worthy of note at this point that the principle original contribution of the

research reported in this thesis is not considered to be in the development of a

rule testing engine, the compilation of rules, the representation of rules in a

markup language or the additional rule support functionality. The principle

original contribution is considered to be in combining all of the various areas

into a single problem domain and taking into account the temporal nature of

the data in scheduling systems, with a view to improving the performance of

the overall system.

3.6 Design Methodology

The design methodology which has been chosen to tackle this problem is the

Rational Unified Process (RUP) (Bittner K. , 2006). There are a number of

Rule Testing Engine

Rule Representation

Language

Rule Support Functionality

Generic Scheduling

System

Research Domain Boundary

 43

3 REQUIREMENTS

substantial reasons for taking this approach to work towards the development

of a solution and these are outlined in some detail in this section of this thesis.

3.6.1 Rational Unified Process

In many traditional software engineering projects, the waterfall model, or a

derivative, is used to manage the overall project process. In the waterfall

process a number of disciplined stages exist, which tend to be followed

serially. Figure 3-4 illustrates the stages involved in a waterfall managed

software project. This clearly provides a structured approach to managing the

overall software development effort.

Figure 3-4 – Visual representation of the stages and flow of the waterfall process

The waterfall process works well in cases of software development where little

or no innovation is required, as the level of risk is less than, for example, a

research project where there is a greater amount of unknown and, as such, the

level of risk is much higher. In instances such as this, the waterfall process

isn‟t the most appropriate method to take and the RUP provides a software

development model that is better suited for this type of development.

The RUP proposes an iterative development model where many of the phases

used in the waterfall process occur within each iteration of the software

R

D

C

I

T

Requirements

Design

Code

Integration

Test

 44

3 REQUIREMENTS

development lifecycle. Figure 3-5 provides a graphical representation of the

RUP at a high level, illustrating that there can be many phases to the software

development process.

Figure 3-5 - Visual representation of the iterative nature of the Rational Unified Process

One of the main purposes of the RUP is to eliminate risks within a software

project. These risks can occur at all stages of the project lifecycle and therefore

the RUP works toward attacking the risks at each stage, as soon as possible, as

opposed to the waterfall process which does not work towards risk elimination

explicitly and therefore problems can be found at the Integration or Testing

stages which would have been better dealt with much earlier in the projects

lifecycle.

The RUP divides a project into four main phases:

 Inception – This stage deals with identifying the projects scope and

objectives and brings the business risks under control.

 Elaboration – This stage looks at stabilizing the product plans and

brings the architectural and technological risks under control.

 Construction – This stage deals with building the product whilst

keeping the logistical and project execution risks under control.

 Transition – This stage looks at delivering the product keeping the roll-

out risks under control.

Iteration 1 Iteration 2 Iteration 3 Iteration 4

 45

3 REQUIREMENTS

3.6.2 Unified Modelling Language

As identified earlier in this chapter, a modern programming language with the

ability to emit executable code would be appropriate as a means of

implementing the desired solution. The two main contenders for this

implementation would be Java and most of the .NET Framework supported

languages. Both of these approaches are object oriented and, as such, an object

oriented modelling language would be highly suitable to help in designing an

appropriate solution.

The use of the Unified Modelling Language (UML) for the research reported

in this thesis is important as this design methodology provides a mechanism

for unpacking the various areas of the problem domain and a means of

progressing them on toward a working solution.

The research reported in this thesis has benefited from an important research

paper that helps describe UML as it was meant to be. (Rumbaugh, Jacobson, &

Booch, 2004) introduces the idea of Use Cases and Class Diagrams which are

essentially design methods for Object Oriented (OO) software development.

3.6.3 Design Methodology Summary

In summary, the chosen method for managing the process of this research is

the Rational Unified Process (RUP) with the aid of the Unified Modelling

Language (UML) as a method of documenting the designs in a standardised

way.

The research reported in this thesis uses the Inception and Elaboration phases

of the RUP to continue the Analysis phase of the project, whilst, at the same

time, some work can continue in implementing various elements of a potential

solution in order to reduce technological risks at a later stage. The main

purpose being to ensure that when a solution has been designed and is ready to

implement, many of the various technical risks of the implementation have

 46

3 REQUIREMENTS

already been resolved. This should reduce the potential for progress being

hindered by technical challenges and provide a means of continually moving

forward.

3.7 Summary

This chapter of the thesis has gone into some detail in an attempt to better

define the requirements for the problem. A number of distinct areas have been

identified and their complexities unpacked in an attempt to provide a clearer

picture as to the solution which will need to be designed. It has also gone some

way towards identifying an appropriate design methodology to be used to help

progress the research forward.

The next section of this thesis moves into the outcome of the Inception and

Elaboration phases of the project where the feasibility and business risks are

identified and the architectural and technological risks are brought under

control. It begins to consider various elements of the system‟s architectural

design and some of the technical challenges of its implementation.

 47

4 INCEPTION AND ELABORATION

4 INCEPTION AND ELABORATION

The preceding chapters of this thesis have attempted to provide an extensive

literature review in order to clearly identify a set of contributions that the

reported research can make. In addition with these chapters the requirements

of the problem have been better identified and a suitable design methodology

has been chosen.

The inception and elaboration stages, documented in this chapter, focus on the

feasibility of the project and the need to assess the business risks and bring the

architectural and technological risks under control.

4.1 Use Cases

A Use Case is a technique for capturing the functional requirements of systems

and systems-of-systems. Use Cases avoid the jargon of technology and tend

towards using terminology understood by the end user or domain expert

(Bittner K. &., 2002).

Figure 4-1 shows a Use Case scenario for a human scheduler working in a

transport scheduling environment (Wetherall, 2002), using an automated

scheduling system to carry out the scheduling process. This example attempts

to clearly identify the processes involved in the automated scheduling system

and how the previously identified domain boundary falls outside of that

process, whilst adding additional value. This example includes the need for

testing the Legal Driving Rules (Transport, 1998) as part of the scheduling

process of allocating drivers to appointments.

For clarity, the vehicle scheduling constraints shown within Figure 4-1 are not

considered part of this research domain as the vehicle constraints relate to the

appropriateness of vehicle in terms of seating capacity and amenities, and not

temporal constraints which this thesis focuses on.

 48

4 INCEPTION AND ELABORATION

H
u

m
a

n
 S

h
e

d
u

le
r

S
h

e
d

u
le

s
 w

o
rk

 p
la

n

S
h

e
d

u
le

s
 l
a

te

c
h

a
n

g
e

s

S
c
h

e
d

u
le

A
d

d
it
io

n
a

l
A

p
p

o
in

tm
e

n
ts

R
e

s
c
h

e
d

u
le

U
n

a
v
a

ila
b

le
 D

ri
v
e

rs
 o

r
V

e
h

ic
le

s

A
llo

c
a

te
 D

ri
v
e

rs

A
llo

c
a

te
 V

e
h

ic
le

s

A
llo

c
a

te
 R

e
s
o

u
rc

e
s

A
u

to
m

a
te

d
 S

c
h

e
d

u
li
n

g
 S

y
s

te
m

T
h

is

R
e

s
e

a
rc

h

«uses»

«uses»

«uses»

«uses»

«uses»

«uses»«uses»

«uses»

T
e

s
t
D

ri
v
e

r

S
c
h

e
d

u
lin

g
 C

o
n

s
tr

a
in

ts

«uses»

T
e

s
t
V

e
h

ic
le

S
c
h

e
d

u
lin

g
 C

o
n

s
tr

a
in

ts

«uses»

L
e

g
a

l
D

ri
v
in

g

R
u

le
s
 T

e
s
t

«uses» «uses»

Figure 4-1 – Use Case scenario of a human scheduler using transport scheduling system

 49

4 INCEPTION AND ELABORATION

In a scenario where a GA is used for carrying out the scheduling process, the

rule testing element would need to be carried out frequently in order to test a

large range of possible combinations of a driver‟s schedule. Speeding up the

rule testing element of the system will, in turn, improve the overall

computational performance of the scheduling process.

Figure 4-2 illustrates a Use Case to show how an automated rule testing

process would work within a scheduling system. There are a number of

separate parts involved within the overall process.

To start with there is the Rule Provider who has the responsibility for

providing the rules themselves. In the example used the Rule Provider is the

Department of Transport. At this stage it is envisaged that the rules would not

only be provided as a human readable document (Transport, 1998) but also

provided in a description language which can be used within a rule testing

system, in order to test the rules automatically.

The scheduling system would need some form of awareness of the need for

rules in order for the user to be able to specify a location for the system to

automatically access them, so they can be downloaded and passed on to the

rule testing engine for processing. Clearly this is not something that can be

hard-coded into the rule testing engine as the engine needs to be able to test

generic rules from many different Rule Providers and, as such, wouldn‟t be

aware of the application that it is integrated into, only that it processes the

rules provided to it.

The systems integration section is vital to the overall process as it would

ensure that the engine can be fully integrated with existing or future scheduling

systems and therefore must be fairly dynamic to cater for a large range of

integration requirements. This section would need to be clearly defined and

documented for systems designers and integrators.

 50

4 INCEPTION AND ELABORATION

A
u

to
m

a
te

d
 S

c
h

e
d

u
le

r

P
ro

v
id

e
s
 L

e
g

a
l

D
ri
v
in

g
 R

u
le

s

P
ro

v
id

e
s
 D

ri
v
e

rs

W
o

rk
 S

c
h

e
d

u
le

C
o

m
p

ile
s
 R

u
le

s

O
rg

a
n

is
e

 W
o

rk
 S

c
h

e
d

u
le

In
to

 W
o

rk
 P

a
tt
e

rn
 R

e
la

te
d

 T
o

R
u

le
s

«uses»

S
y

s
te

m

In
te

g
ra

ti
o

n

R
u

le
 T

e
s

ti
n

g

E
n

g
in

e

S
c

h
e

d
u

li
n

g
 S

y
s

te
m

T
e

s
t
L

e
g

a
l
D

ri
v
in

g

R
u

le
s

R
u

le
 P

ro
v

id
e

r

D
e

p
a

rt
m

e
n

t
o

f
T

ra
n

s
p

o
rt

P
ro

v
id

e
s
 R

u
le

s

«uses»

G
e

ts
 R

u
le

s
 F

ro
m

P
ro

v
id

e
r

«uses»

D
e

s
c
ri
b

e
s
 R

u
le

D
e

fi
n

it
io

n
 L

a
n

g
u

a
g

e

«uses»

«uses»

«uses»

«uses»

«uses» «uses»

«uses»

«uses»

Figure 4-2 – Use Case identifying the components of an automated scheduling system

requiring rule testing

 51

4 INCEPTION AND ELABORATION

The integration section also contains the description of the rule definition

language. This language may be the key to the overall effectiveness of the

description of the rules and then compilation of those rules into something

which is executable and, in turn, can run quickly. There is the need to be able

to describe the data to be tested against those rules in a way in which the

integrating scheduling system and the rule testing engine can both understand.

For example in a scheduling system temporal information, such as the start and

end of appointments, would be fairly generic and something which the rule

testing engine should be able to comprehend, so it is probably best for this data

description to exist in the integration section.

The rule testing engine has some complex yet simple to describe use cases

interacting with the integration section. The rule testing engine needs to be

able to compile the rules because, as discussed in the Section 3.3, compiled

rules will execute much faster than interpreted rules.

The rule testing engine will need to be able to organise the data provided by

the scheduling system into some form of work pattern. The legal driving rules

(Transport, 1998)

describe rule dependencies and the organisation of data into

daily, weekly and fortnightly work and rest rules; the rule testing engine would

need to be able to organise the data in this way in order to be able to test the

data against those rules.

4.2 Design

Following on from some of the literature review,(Lee & Sohn, 2003)(Boley,

Tabet, & Wagner, Design Rationale of RuleML: A Markup Language for

Semantic Web Rules, 2001) and the analysis of the problem, it is found that

there is a significant difference between the rule testing process in this research

and that of other rule testing systems. This is largely due to the need to deal

with temporal rules for scheduling applications and, as such, there needs to be

a certain level of design focus on this during the Inception and Elaboration

phases.

 52

4 INCEPTION AND ELABORATION

4.2.1 Rule Support

In order to have a generic rule testing system it is important to provide a

mechanism to permit its integration with a host application. This application

could be a scheduling system but may also be other types of system requiring

the ability to test temporal rules, so the integration mechanism needs to be

flexible.

Figure 4-3 shows the Class Diagram for part of the integration support

functionality looking at the IPeriodElement interface and how, for

example, in a transport scheduling application, an Appointment may inherit it

as an Appointment has a StartTime and EndTime and needs to

describe the RestLength and WorkLength to the rule testing engine.

Figure 4-3 – Class diagram illustrating an example Appointment class which inherits

from a generic IPeriodElement interface

The IPeriodElement interface can be used by any sort of temporal event

to describe start and end times. If the event is a rest period then the

RestLength would be the difference between the Start and Finish,

whereas if the event is a work period then the WorkLength would be the

difference.

 53

4 INCEPTION AND ELABORATION

In the given example the Appointment is used as the data to be tested

against a set of rules (see Section 6.1.1.2). If the scheduling system were to

test, for example, timetabling for schools, the data may not been an

Appointment but may be a taught subject and therefore it would still need

to describe a start and end time and also the WorkLength and

RestLength.

4.2.2 Rule Definition

Once integrated with a host application such as a scheduling system it is

necessary to describe a set of rules for the data to be tested against. Figure 4-4

shows the Class Diagram for the mechanism of rule description and

compilation of rules at the highest level. These classes are used to begin the

description of rules and, as can be seen in the base class Period, contain an

attribute called Rules which is an array that contains those rules associated

with either a Work Period (WP) or a Rest Period (RP).

Figure 4-4 – Class Diagram describing the concept of a Period and its subclasses, WP

(Work Period) and RP (Rest Period)

 54

4 INCEPTION AND ELABORATION

Another important thing to note about the Period class is the method called

Compile which is designed to be called when the rules are to be compiled.

The process of compilation is fairly simple; at the highest level the rule is told

to compile, which in turn, calls the Compile method of the various rules

stored within the Rules attribute. Those sub-rules call the Compile method

of the rules stored within them and so on, in a recursive fashion, until each rule

or sub-rule of a rule is compiled and has had the opportunity to emit its

functionality to the resulting executable library.

It is important to acknowledge again, at this point, that the rule testing process

does not apply the if-then approach as there are no actions. The approach

required for the legal driving rules example is to determine if the driving

schedule breaks the rules; if it does then we cannot use the given schedule,

otherwise the schedule is valid. This means that during the testing phase the

rule has to result in a Boolean value, true or false, depending on whether

or not the rule is broken. If the result of the test is true, the rules were tested

and the result was that the rules were not broken, if the value returned was

false, the rules were broken.

Figure 4-5 identifies the different types of rules that exist that may result in a

Boolean value. These all inherit from the abstract class Comparitor which

describes the ability to make a generic comparison. Each class also has a

Compile method to provide the opportunity for it to emit the relevant

executable code to perform its designated operation.

The AndCondition class provides a mechanism for having two or more

rules that have to be met in order that the overall rule can be met. A transport

scheduling example is if you can drive up to 10 hours in a day and up to 6 days

a week, these may be two separate rules but they can be concatenated by an

And operation.

 55

4 INCEPTION AND ELABORATION

Figure 4-5 – Class Diagram illustrating the various types of rule

The OrCondition class carries out an Or operation on the various rules

contained within it and the Comparison class is used to provide slightly

more advanced non-boolean comparisons such as if a number value is greater

or less than, similar to those which are available to „if‟ statements in common

programming languages.

The sorts of values that can be used in making a comparison range from

numeric values to dates and times and even string values. Most importantly

parameter values derived from the data itself, such as the StartTime of an

Appointment.

In order to describe a generic value that has some form of data the Value

class is used. Figure 4-6 shows the Value class which has a Compile

method to allow it to compile as part of the overall rule compilation process.

Figure 4-6 also identifies the Math class which is derived from the Value

class. The Math class provides the ability to perform mathematical operations

on two or more Value objects by specifying the Value objects and the type

of Operation to be performed such as Addition, Subtraction,

Multiplication and Division.

 56

4 INCEPTION AND ELABORATION

Figure 4-6 - Value and Math Operations

All of the different classes which go toward describing a set of rules must have

the ability to be serialised into XML. This may require that certain attributes

are placed on the properties of a class, or even the class itself in order to

correctly control the serialisation process.

4.2.3 Work Plan Organisation

To test against temporal rules such as those in driver scheduling the rule

testing software needs the data to be organised into a work plan. A work plan

would have the data arranged into various types of period, for example a Daily

Work Period, Weekly Work Period, Daily Rest Period or Weekly Rest Period.

This type of work plan requires that data be ordered in a particular way, for

example, there may be two appointments that, when combined, contribute

toward a Daily Work Period and the remaining appointments fall under a

different Daily Work Period and the two Daily Work Periods are separated by

a Daily Rest Period. These two Daily Work Periods together with the Daily

Rest Period may form a Weekly Work Period.

 57

4 INCEPTION AND ELABORATION

A method for handling the organisational description of rules is in the

PeriodDescription class that can be seen in Figure 4-4 as a member of

the Period class, as its Description property.

Figure 4-7 - Period Description Class

Figure 4-7 shows the PeriodDescription class in detail. The first things

to note are the Name and Description attributes which provide a means of

describing this type of rule, the name being a short form of the rule and the

description providing a more detailed description. An example could be that

the name is “DWP” and the description is “Daily Work Period”. The

name would be used to help reference the type of Period such as when using

the Parameter type in the Value class; to reference the start of the Daily

Work Period, the shortened form of „DWP.StartTime‟ would be used.

The Contains attribute is used to describe what types of periods can be

contained within the Period. For example the Daily Work Period would

contain Appointments and the Weekly Work Period would contain Daily Work

Periods and Daily Rest Periods.

 58

4 INCEPTION AND ELABORATION

The PrePosts attribute provides a mechanism for describing the sorts of

periods that come before and after the given period. For example an

Appointment can come before or after another Appointment. A Daily Work

Period can come either before or after either a Daily Rest Period.

With this level of detail being assigned to a period of time it is possible to

organise the period appropriately so that a work plan is constructed. By

providing the facility to construct the data into a work plan it takes away the

burden from the host program and allows for an optimised method of

managing the process of the work plan.

The construction of the work plan is not the main focus of the research

reported in this thesis and, as such, a fairly simple approach to constructing a

work plan can be used with the ability in future research to provide a less

processor intensive, more optimised construction method.

4.3 Implementation

When designing the classes of the various elements of the rule testing engine,

it is possible that the definition of the rule description language can occur as a

direct result of the class design, due to the ability for objects in modern object

oriented languages to be serialised into XML.

Figure 4-8 gives an example of an instance of the WorkPeriod class

serialised into XML. The data associated with the class is also serialised

providing a hierarchical description of the rule in a human readable language.

At a later point this XML can be deserialised back into object data in a

program where the rule engine can compile these rules into executable code

and then test data against them by organising the data into a valid work plan.

The example illustrated in Figure 4-8 is a simple one. A comparison is made to

the work period in order to ensure that the overall WorkLength of the work

 59

4 INCEPTION AND ELABORATION

period is less than or equal to 8 hours. This is one of the legal driving rules and

demonstrates that this approach can be used in real world applications.

<?xml version="1.0"?>

<Period xsi:type="WP">

 <Description>

 <Name>DWP</Name>

 <Description>Daily Work Period</Description>

 <PrePosts>

 <PrePost>

 <Pre />

 <Post>DRP</Post>

 </PrePost>

 <PrePost>

 <Pre>DRP</Pre>

 <Post>DRP</Post>

 </PrePost>

 <PrePost>

 <Pre>DRP</Pre>

 <Post>WRP</Post>

 </PrePost>

 <PrePost>

 <Pre>WRP</Pre>

 <Post>DRP</Post>

 </PrePost>

 <PrePost>

 <Pre>DRP</Pre>

 <Post />

 </PrePost>

 </PrePosts>

 <Contains>

 <Contain>

 <Name>Appointment</Name>

 </Contain>

 </Contains>

 </Description>

 <Rules xsi:type="Comparison">

 <Operation>LessThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>WorkLength</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>8</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Rules>

</Period>

Figure 4-8 – An example of a Work Period object serialised into XML

An important thing to note in Figure 4-8 is that there is a lot of XML used to

provide the description of the rule which is a serialised form of the class

described in Figure 4-7. It is this description that allows the rule testing engine

to organise the data into a valid work plan.

 60

4 INCEPTION AND ELABORATION

4.4 Feasibility

As identified in the Literature Review chapter, there are a number of research

fields that work around the area of rule-based testing for scheduling systems,

but there isn‟t a specific solution which can meet the requirements outlined in

Chapter 3, or that are consistent with the contributions outlined in Section 1.4.

The analysis work carried out identifies the Use Cases involved in an

automated scheduling system that requires rule testing and provides the first

step towards a solution to prove the identified contributions. The designs

provide a mechanism by which the concepts outlined in Section 1.4 can be

implemented and highlight an approach that can, once implemented,

demonstrate the increase in speed and efficiency of the overall process in

comparison to a manual scheduling process, such as Figure 4-1.

4.5 Summary

This section of the thesis has managed to identify many areas of the problem

and requirements that need to have their architectural and technological risks

brought under control and has attempted, with the aid of UML, to unpack and

expand on the various aspects of the problem. Diagrams have been produced

that can help to move forward to the next phase of the development process, to

construct a solution.

The next phase, the Construction Phase, is the point where the main

implementation will take place, with the support of the work completed so far.

 61

5 CONSTRUCTION

5 CONSTRUCTION

In the preceding chapters this thesis has presented an extensive literature

review and has then attempted to identify the original contributions made by

the reported research. It has also attempted to break down the research

requirements in order to more clearly define the problem; some analysis and

design has also been presented with the aid of the RUP design methodology

and UML.

During the Construction phase the aim is to bring the logistical risks of the

project under control. This phase is the largest phase within the project

development lifecycle and, by the end of the Construction phase, a working

solution should be available.

Based upon the results from the Inception and Elaboration phases it is possible

to move forward further into the implementation of a number of different

elements of the design, whilst at the same time continuing some of the design

work that has yet to take place, often due to the need to have implemented

some parts of the system first.

This chapter presents the outcome of a large amount of design and

implementation work by discussing various components of the proposed

solution. It looks into the process of rule compilation and looks in detail at the

technology employed and the specific implementation of the various software

classes designed to support this process.

In addition to the various elements described within this Chapter, Appendix

11.2 provides a set of complete class diagrams that describe the overall

solution and Appendix 11.3 provides a complete set of code from which a

number of code snippets are taken and explained in detail during this Chapter.

 62

5 CONSTRUCTION

5.1 Rule Definition

As a result of the Inception and Elaboration phases, designs were produced to

help describe a suitable method of implementing the rule definition

functionality of the system. As previously stated, providing this is

implemented correctly, the XML version of the rules should result directly

from the class implementation.

In order to help describe the various classes and their functionality we will

start by looking at the system from the perspective of the compiler and then

gradually move through the process of compilation to see how the other

classes carry out their compilation functionality.

The reader should note that from this point forward the term „period‟ is used to

describe a temporal rule containing a rule definition and its additional

metadata describing how the given temporal rule relates to other temporal

rules. This has been described in some detail in the previous chapter. The term

„data‟ refers to the units of information to be tested against the rules, such as

the Appointment, previously seen in the transport scheduling scenario.

It is also worth noting at this point that a „period‟ is designed to describe

temporally organised sets of data and the rules within a given period support

the organisation of data into a form of work plan. For the testing of typical

business rules that do not require work plan organisation, a standard rule

engine, such as Mandarax (Dietrich J. , 2003) or TAKE (Dietrich, Hiller, &

Schenke, 2007), may be more appropriate.

5.1.1 Compiler

The Compiler class comes under the RuleCompiler namespace and is

designed with a single goal in mind, to provide a mechanism for the host

system to take the rules and turn them into an executable assembly. The

 63

5 CONSTRUCTION

Compiler class is not designed to have an instance created; it is designed

with a single static method called Compile that, when called, turns the rules

into an executable assembly.

The first thing that the Compile method does is to determine how the types

of data to be tested against the rules relate to the rules themselves and how the

various periods and data relate to each other. It is important to determine this

first as it can eliminate a number of compilation errors that could potentially

occur later in the process.

An essential part of the compilation process is to define the new assembly

where the compiled code will be placed. This is currently fixed for the purpose

of simplicity in demonstrating the concepts of the system, although this can be

easily changed later to be more dynamic.

Once the new assembly is defined, as demonstrated in Figure 5-1, the compiler

iterates through all of the periods in the period array, instructing them to

compile one at a time, each injecting its IL into the assembly. Each period

creates its own class within the assembly using the short name given in its

description as the class name. The classes produced can be created and

executed at will and are later returned as a result of the call to the Compile

method of the Compiler class.

// Declare the necessary assembly builder variables for use

// in this method.

AssemblyName assemblyName = null;

AssemblyBuilder builder = null;

ModuleBuilder module = null;

// Intialise the new Assembly and declare it is run only for

// the time beging. Later in may be worth look at ways of

// caching the compiled assembly to prevent recompilation but

// for the time being, we will recompile.

assemblyName = new AssemblyName();

assemblyName.Name = "TestAssembly";

builder = AppDomain.CurrentDomain.DefineDynamicAssembly(assemblyName,

AssemblyBuilderAccess.RunAndSave);

// Define the module within the Assembly that will contain

// the new types.

module = builder.DefineDynamicModule("TestModule", "Test.dll");

// Define an array to store the new types, one type per

// period, then, using a loop, get each period to compile

// itself.

Type[] theTypes = new Type[periods.Count];

 64

5 CONSTRUCTION

for(int i = 0; i < periods.Count; i++)

 theTypes[i] = periods[i].Compile(module,

typeMapping[periods[i].Description.Name]);

// Save the compiled rules into a dynamic link library

builder.Save("Test.dll");

// Save an XML representation of the rules along with

// the DLL to allow for debugging later.

return theTypes;

Figure 5-1 - Code snippet illustrating the process of constructing a new rule assembly

5.1.2 Period

The Period class comes under the RuleDefinitionLanguage

namespace, along with the remaining classes under section 5.1, and was

designed to describe a temporal element which contains rules. An example of

this from (Transport, 1998) would be a Daily Work Period or Weekly Rest

Period. The class design provided in Figure 4-4 shows the concept of the

Period class with a relatively simple implementation. It is not until the

implementation is tackled that the complexity shows.

The first step in compiling the Period class, as shown in Figure 5-2, is to

define a new public class using the periods‟ short name. From this a new

default constructor is created whose task it is to call the constructor of its base

class. This is because the class being defined has an equivalent runtime base

class which is used to provide additional functionality, saving the compilation

process of the rules from having to include some of the standard rule testing

functionality.

// Define the variables used within this method.

TypeBuilder newType = null;

ILGenerator ilGenerator = null;

ConstructorBuilder constructor = null;

MethodBuilder testMethod = null;

// Define the new class for this particular period type basing

// it on the base class provided.

newType = moduleBuilder.DefineType(Description.Name, TypeAttributes.Class |

TypeAttributes.Public, baseType);

// Define the constructor for the new object and emit the code

// to get the constructor to call the base classes constructor

// which should initialise everything properly. Also get the

// new types Description object to inject its intial setup

// values inserted into the constructor.

constructor = newType.DefineConstructor(MethodAttributes.Public,

 65

5 CONSTRUCTION

CallingConventions.Standard, new Type[0]);

ilGenerator = constructor.GetILGenerator();

ilGenerator.Emit(OpCodes.Ldarg_0);

ilGenerator.Emit(OpCodes.Call, baseType.GetConstructor(new Type[] {}));

Description.Compile(baseType, typeMap, ilGenerator);

ilGenerator.Emit(OpCodes.Ret);

Figure 5-2 – Code snippet illustrating the creation process of a new class

The new class also needs to store the description information for its rule which

is essential for helping the class to later determine how to generate the work

plan, such as which periods can be stored within or around it. This is achieved

by adding custom class attributes to each period class generated. The benefit of

using attributes is that a new instance of the period class does not need to be

instantiated to access this information at runtime resulting in improved

performance.

Figure 5-3 provides a code example showing how the custom attributes for the

period description are emitted into the compiled executable to support the

work plan generation process.

// The customAttribute local variable is used to store the

// CustomAttributes that will be defined for this rule type.

CustomAttributeBuilder customAttribute;

// The values local variable is used to store an array of

// string to be held by the customAttribute once compiled.

List<string> values;

// First of all construct array of the items this type can

// contain, then construct a ContainsAttribute for this type.

values = new List<string>();

foreach (string contain in typeMap.Contains)

 values.Add(contain);
customAttribute = new

CustomAttributeBuilder(typeof(RuleSupport.ContainsAttribute).GetConstructor(new

Type[] { typeof(string[]) }), new object[] { values.ToArray() });

newType.SetCustomAttribute(customAttribute);

// Now construct an array of the types that can contain this

// type, then construct a ContainedWithinAttribute for this

// type.

values = new List<string>();

foreach (string containWithin in typeMap.ContainWithin)

 values.Add(containWithin);
customAttribute = new

CustomAttributeBuilder(typeof(RuleSupport.ContainedWithinAttribute).GetConstruc

tor(new Type[] { typeof(string[]) }), new object[] { values.ToArray() });

newType.SetCustomAttribute(customAttribute);

// Now construct a list of the items than can come before

// and after this type, then construct a PrePostAttribute

// for this type.

values = new List<string>();

foreach (PrePost prePost in typeMap.PrePost)

{

 values.Add(prePost.Pre);

 66

5 CONSTRUCTION

 values.Add(prePost.Post);
}

customAttribute = new

CustomAttributeBuilder(typeof(RuleSupport.PrePostAttribute).GetConstructor(new

Type[] { typeof(string[]) }), new object[] { values.ToArray() });

newType.SetCustomAttribute(customAttribute);

Figure 5-3 – Code snippet demonstrating how the period description is included with the

compiled rule, as attributes to the rules class

The next task is to define the Test method. The Test method is used to start

the testing process of the given period, returning a Boolean value indicating

the outcome of the test. The contents of the test method are, however, not yet

defined, apart from the point of returning a value. The definition of the Test

method comes from the Rules collection contained within the period.

It is possible to see, from the two code snippets, Figure 5-2 and Figure 5-4,

how simple it is to start emitting IL into the assembly. Once the class has been

created it is a simple case of a method call to DefineMethod to define a

new method within the class. From the returned MethodBuilder, it is a

simple case of calling its GetILGenerator method to return an

ILGenerator object which is used to emit IL into the method.

// Now define the Test method which returns a boolean value,

// true meaning that the test was successful, false it is was

// not.

testMethod = newType.DefineMethod("Test", MethodAttributes.Public |

MethodAttributes.Virtual, CallingConventions.Standard, typeof(bool), new

Type[0]);

// In order to generate the necessary IL code for this method,

// we get the rules themselves to inject their sections of the

// code into. Each section of the rule will normally inject

// its code into seperate scopes to keep the different sections

// seperated.

ilGenerator = testMethod.GetILGenerator();

LocalBuilder retVal = ilGenerator.DeclareLocal(typeof(bool));

ilGenerator.BeginScope();

Rules.Compile(retVal, ilGenerator);

ilGenerator.EndScope();

ilGenerator.Emit(OpCodes.Ldloc_S, retVal);

ilGenerator.Emit(OpCodes.Ret);

// Return the newly created type to the calling object.

try

{

 return newType.CreateType();

}

catch(Exception e)

{

 throw new RuleCompiler.RuleCompilerException("CreateType Failed: " +

e.ToString());

}

Figure 5-4 – Code snippet illustrating the creation of the Boolean returning Test method

 67

5 CONSTRUCTION

5.1.3 Comparitor

The Comparitor class is designed as the base class for all types of rule as it

provides a means of carrying out a test and returning a Boolean value.

The Compile method of the Comparitor class can be seen in Figure 5-5. It

shows that the return value generated as a result of the condition is stored in

the retVal parameter, the first argument of the Compile method, and the

functionality of the comparison is emitted into the executable through the

ilGenerator, the second argument of the Compile method.

There are three main classes which inherit from the Comparitor class, as

previously seen in Figure 4-5, providing a means of building up a set of more

complex rules. These are the AndCondition, OrCondition and

Comparison classes.

/// <summary>

/// Comparitor Class. Used to represent an operation which will

/// result in either a true or false answer.

/// </summary>

public abstract class Comparitor

{

 /// <summary>

 /// This method, when consumed by a parent class, is used for

 /// the parent to emit its IL.

 /// </summary>

 /// <param name="retVal">

 /// The retVal is the boolean value where the operation will

 /// store the result of the comparison.

 /// </param>

 /// <param name="ilGenerator">

 /// The ilGenerator is to be used for emitting the IL to.

 /// </param>

 public abstract void Compile(LocalBuilder retVal, ILGenerator ilGenerator);

}

Figure 5-5 – Code snippet illustrating the abstract base class, Comparitor, and its

Compile method

 68

5 CONSTRUCTION

5.1.4 AndCondition

The AndCondition rule is designed to concatenate a number of sub-rules

together to form a more complex rule. All of the sub-rules Anded together

must result in a positive outcome in order for the AndCondition to return

true.

Figure 5-6 shows the Compile method implementation for the

AndCondition. Firstly, an array of local variables are defined to store the

result of the sub-rules of the AndCondition. Each sub-rule then has its

Compile method called causing it to emit its IL, storing its Boolean result

into one of the predefined local variables.

Once all of the sub-rules have been emitted, each return value is compared,

one-by-one with the previous, to determine if the results indicate a failed rule.

If a failed rule is detected then execution branches out of the loop to where the

endLabel has been marked, at the end of the method, otherwise execution

branches to the nextLabel and the next Boolean result of the next sub-rule,

until all of the results have been compared.

LocalBuilder[] retVals = new LocalBuilder[Conditions.Length];

for(int i = 0; i < Conditions.Length; i++)

{

 retVals[i] = ilGenerator.DeclareLocal(typeof(bool));

 ilGenerator.BeginScope();

 Conditions[i].Compile(retVals[i], ilGenerator);

 ilGenerator.EndScope();

}

Label endLabel = ilGenerator.DefineLabel();

ilGenerator.Emit(OpCodes.Ldc_I4_0);

ilGenerator.Emit(OpCodes.Stloc_S, retVal);

ilGenerator.Emit(OpCodes.Ldloc, retVals[0]);

for(int ii = 1; ii < retVals.Length; ii++)

{

 ilGenerator.Emit(OpCodes.Ldloc, retVals[ii]);

 Label nextLabel = ilGenerator.DefineLabel();

 ilGenerator.Emit(OpCodes.Beq_S, nextLabel);

 ilGenerator.Emit(OpCodes.Br_S, endLabel);

 ilGenerator.MarkLabel(nextLabel);

}

ilGenerator.Emit(OpCodes.Ldc_I4_1);

ilGenerator.Emit(OpCodes.Stloc_S, retVal);

ilGenerator.MarkLabel(endLabel);

Figure 5-6 - Code snippet illustrating the compilation process of the And class

 69

5 CONSTRUCTION

5.1.5 OrCondition

The OrCondition works in a very similar way to the AndCondition.

The main difference is that it is not checking for a Boolean And comparison,

but for a Boolean Or. Figure 5-7 provides the code for the Compile method

of the OrCondition.

5.1.6 ComparisonOperation

The ComparisonOperation enum provides a programmatic list of

operation types that can be carried out within a comparison between two

values to produce a Boolean result.

LocalBuilder[] retVals = new LocalBuilder[Conditions.Length];

for(int i = 0; i < Conditions.Length; i++)

{

 retVals[i] = ilGenerator.DeclareLocal(typeof(bool));

 ilGenerator.BeginScope();

 Conditions[i].Compile(retVals[i], ilGenerator);

 ilGenerator.EndScope();

}

Label endLabel = ilGenerator.DefineLabel();

ilGenerator.Emit(OpCodes.Ldc_I4_0);

ilGenerator.Emit(OpCodes.Stloc_S, retVal);

Label trueLabel = ilGenerator.DefineLabel();

for(int ii = 0; ii < retVals.Length; ii++)

{

 ilGenerator.Emit(OpCodes.Ldc_I4_1);

 ilGenerator.Emit(OpCodes.Ldloc, retVals[ii]);

 ilGenerator.Emit(OpCodes.Beq_S, trueLabel);

}

ilGenerator.Emit(OpCodes.Br_S, endLabel);

ilGenerator.MarkLabel(trueLabel);

ilGenerator.Emit(OpCodes.Ldc_I4_1);

ilGenerator.Emit(OpCodes.Stloc_S, retVal);

ilGenerator.MarkLabel(endLabel);

Figure 5-7 - Code snippet illustrating the compilation process of the Or class

The ComparisonOperation enum is designed to work with the

Comparison class to describe the type of comparison to make against

multiple values.

 70

5 CONSTRUCTION

/// <summary>

/// The ComparisonOperation enum describes the type of

/// comparison to make on two true or false values.

/// </summary>

public enum ComparisonOperation

{

 /// <summary>

 /// Are the two values equal?

 /// </summary>

 Equals,

 /// <summary>

 /// Are the two values not equal?

 /// </summary>

 NotEquals,

 /// <summary>

 /// Is the first value less than the second? Can only be

 /// applied to values of a numeric nature.

 /// </summary>

 LessThan,

 /// <summary>

 /// Is the first value less than or equal to the second?

 /// Can only be applied to values of a numeric nature.

 /// </summary>

 LessThanOrEqualTo,

 /// <summary>

 /// Is the first value greater than the second? Can only

 /// be applied to values of a numeric nature.

 /// </summary>

 GreaterThan,

 /// <summary>

 /// Is the first value greater or equal to the second?

 /// Can only be applied to values of a numeric nature.

 /// </summary>

 GreaterThanOrEqualTo

};

Figure 5-8 - Code snippet illustrating the definition of the comparison operations

5.1.7 Comparison

The Comparison class describes the means of making a comparison

between two or more values. The result of a comparison, as with all other basic

rule types, is a Boolean value indicating the outcome of the comparison. The

Compile method of the Comparison class is designed to emit the IL to

deal with the various types of comparison as seen in Figure 5-8.

The code snippet provided in Figure 5-9 shows that the first thing to be done is

to emit the IL for all of the values and to store their results in an array of

variables. The next step is to set up the return value for the Comparison to

false, that way if at any point the comparison has a negative result,

 71

5 CONSTRUCTION

execution can branch to the endLabel, at the end of the method and false is

returned.

LocalBuilder[] retVals = new LocalBuilder[Values.Length];

for(int i = 0; i < Values.Length; i++)

{

 ilGenerator.BeginScope();

 Values[i].Compile(ilGenerator, ref retVals[i]);

 ilGenerator.EndScope();

}

Label endLabel = ilGenerator.DefineLabel();

ilGenerator.Emit(OpCodes.Ldc_I4_0);

ilGenerator.Emit(OpCodes.Stloc_S, retVal);

ilGenerator.Emit(OpCodes.Ldloc, retVals[0]);

for(int ii = 1; ii < retVals.Length; ii++)

{

 ilGenerator.Emit(OpCodes.Ldloc, retVals[ii]);

 Label nextLabel;

 switch(Operation)

 {

 case ComparisonOperation.Equals:

 nextLabel = ilGenerator.DefineLabel();

 ilGenerator.Emit(OpCodes.Beq_S, nextLabel);

 ilGenerator.Emit(OpCodes.Br_S, endLabel);

 ilGenerator.MarkLabel(nextLabel);

 break;

 case ComparisonOperation.NotEquals:

 ilGenerator.Emit(OpCodes.Beq_S, endLabel);

 break;

 case ComparisonOperation.LessThan:

 ilGenerator.Emit(OpCodes.Bge_S, endLabel);

 break;

 case ComparisonOperation.LessThanOrEqualTo:

 ilGenerator.Emit(OpCodes.Bgt_S, endLabel);

 break;

 case ComparisonOperation.GreaterThan:

 ilGenerator.Emit(OpCodes.Ble_S, endLabel);

 break;

 case ComparisonOperation.GreaterThanOrEqualTo:

 ilGenerator.Emit(OpCodes.Blt_S, endLabel);

 break;

 }

 ilGenerator.Emit(OpCodes.Ldc_I4_1);

 ilGenerator.Emit(OpCodes.Stloc_S, retVal);

 ilGenerator.MarkLabel(endLabel);

}

Figure 5-9 - Code snippet illustrating the compilation process of the Comparison class

 72

5 CONSTRUCTION

For each of the values stored in the array the for loop makes a comparison of

the current value against the last with the comparison algorithm being

dependant on which ComparisonOperation was specified. The switch

statement provides a relatively simple means of separating the comparison

type for the logic of the comparison by using simple branching statements.

5.1.8 ValueType

The ValueType enum is used to describe the different types of value that can

be represented by the Value class. These can be seen in Figure 5-10. There

are two value types that are described in this enum that cannot be represented

numerically which are the String type and the Parameter type; all of the others

can be represented internally by, for example, the double data type.

/// <summary>

/// The ValueType enum is used to describe different types of

/// Values which can be used by a Value object.

/// </summary>

public enum ValueType

{

 /// <summary>

 /// A number which will be of a floating point type to allow

 /// for maximum compatibility as a general number.

 /// </summary>

 Number = 0,

 /// <summary>

 /// A quantity of days as a floating point to allow

 /// fractions of days.

 /// </summary>

 Days = 1,

 /// <summary>

 /// A quantity of months as a floating point to allow

 /// fractions of months.

 /// </summary>

 Months = 2,

 /// <summary>

 /// A quantity of years as a floating point to allow

 /// fractions of years.

 /// </summary>

 Years = 3,

 /// <summary>

 /// A quantity of hours as a floating point to allow

 /// fractions of hours.

 /// </summary>

 Hours = 4,

 /// <summary>

 /// A quantity of minutes as a floating point to allow

 /// fractions of minutes.

 /// </summary>

 Minutes = 5,

 73

5 CONSTRUCTION

 /// <summary>

 /// A quantity of seconds as a floating point to allow

 /// fractions of seconds.

 /// </summary>

 Seconds = 6,

 /// <summary>

 /// A quantity of milliseconds as a floating point to allow

 /// fractions of days.

 /// </summary>

 Milliseconds = 7,

 /// <summary>

 /// A string value.

 /// </summary>

 String = 8,

 /// <summary>

 /// A property of the given period or a related period denoted

 /// by a seperation of decimal points within the description.

 /// </summary>

 Parameter = 9

};

Figure 5-10 - Code snippet illustrating the types of value that can be used by the Value

class, as stored in the ValueType enum

5.1.9 Value

The Value class provides a fairly simple means of representing different

values externally, to the consumer. Internally, however, the code emitted into

the executable appears relatively complex.

For the sake of simplicity in the representation of data held by the rule engine,

the double data type is used to store a large variety of types of data including

numeric values, dates, times and parameter values. This concept of fixed sized

data representation isn‟t uncommon and can be seen in other industrial systems

such as MatLab. By using a double, we are able to hold the largest range of

numeric values, with an approximate range of ±5.0 × 10
−324

 to ±1.7 × 10
308

providing an unrestrictive, future proof, common storage format for all

numeric values.

 74

5 CONSTRUCTION

The simplest of the value types to emit code for is the Number which can

have its value stored as a double with simplicity. The code for emitting IL for

dealing with a standard numeric value is seen in Figure 5-11.

newLocal = ilGenerator.DeclareLocal(typeof(double));

ilGenerator.Emit(OpCodes.Ldc_R8, double.Parse(Description));

Figure 5-11 - Code snippet illustrating the declaration and association of a simple

numeric value, stored in a double data type

The management of the Days value type is dealt with slightly differently.

Internally, all date and time value types are represented as whole and fractional

hours. By standardising to a concept such as this, making comparisons

between periods of time, further down the line, becomes much faster as it is

simply the comparison of two variables of the double data type and not of a

complex data type such as the TimeSpan or DateTime data types.

Figure 5-12 shows the IL for converting the number of days into hours

representation and storing them within a double data type. Firstly the number

of days is passed in to the static FromDays method of the TimeSpan object

to produce a new TimeSpan object. The TotalHours property of the

TimeSpan object is then used to complete the conversion into double

precision hours.

newLocal = ilGenerator.DeclareLocal(typeof(double));

tmpLocal = ilGenerator.DeclareLocal(typeof(TimeSpan));

ilGenerator.Emit(OpCodes.Ldc_R8, double.Parse(Description));

ilGenerator.Emit(OpCodes.Call, typeof(TimeSpan).GetMethod("FromDays", new

Type[1] {typeof(double)}));

ilGenerator.Emit(OpCodes.Stloc_S, tmpLocal);

ilGenerator.Emit(OpCodes.Ldloca_S, tmpLocal);

ilGenerator.Emit(OpCodes.Call, typeof(TimeSpan).GetMethod("get_TotalHours", new

Type[0]));

Figure 5-12 - Code snippet illustrating the declaration and association of a number of

days, stored in a double data type

Each of the other date and time value types has its functionality emitted in a

similar way to that of the Days example in Figure 5-12. The String data

type emits code similar to that given in Figure 5-11 except that it works with a

String data type rather than a double data type.

 75

5 CONSTRUCTION

The final and most complex of the value types is the Parameter value type.

This value type describes a value which is obtained from either an element of

rule testing data or of the rules themselves. For example, the required length of

the daily rest period between two daily work periods.

Rather than spending the time emitting all of the IL necessary to evaluate the

name of the property to the property value, a base class method to the Period

object, of which the newly emitted class inherits, contains a GetProperty

method which returns the appropriate value back to the caller. The

implementation for invoking this method is shown in Figure 5-13.

newLocal = ilGenerator.DeclareLocal(typeof(double));

ilGenerator.Emit(OpCodes.Ldarg_0);

ilGenerator.Emit(OpCodes.Ldstr, Description);

ilGenerator.Emit(OpCodes.Call,

typeof(RuleSupport.Period).GetMethod("GetProperty", new Type[]

{typeof(String)}));

Figure 5-13 - Code snippet illustrating the declaration and obtainment of a Parameter

value then stored in a double data type

5.1.10 MathOperation

The MathOperation enum describes the four basic math operations that

can be carried out by the Math class. Figure 5-14 shows the code snippet for

the MathOperation enum.

/// <summary>

/// The MathOperation enum describe a type of mathematical operation

/// which can be used with the Math class.

/// </summary>

public enum MathOperation

{

 /// <summary>

 /// The operation of adding two numbers together.

 /// </summary>

 Add,

 /// <summary>

 /// The operation of subtracting two numbers.

 /// </summary>

 Subtract,

 /// <summary>

 /// The operation of multiplying two numbers together.

 /// </summary>

 76

5 CONSTRUCTION

 Multiply,

 /// <summary>

 /// The operation of dividing two numbers.

 /// </summary>

 Divide

};

Figure 5-14 - Code snippet illustrating the math operations permitted for use with the

Math class.

5.1.11 Math

The Math class is able to emit the executable code to carry out the four math

operations on a given set of values. Figure 5-15 shows the code snippet for the

Compile method of the Math class. The purpose is to loop through all of the

values provided and store each of them within a local variable. The next step is

to loop through each variable, performing the math operation on each, one

after the other.

Although the number of math operations that are currently supported is very

limited, it would not be overly complex to expand on these by providing

additional operations within the MathOperation enum and then adding the

matching functionality to the Compile method of the Math class. To

establish a proof of concept, however, the four main operations are considered

adequate.

newLocal = ilGenerator.DeclareLocal(typeof(double));

ilGenerator.BeginScope();

// Start by generating all of the local variables which will

// be used.

LocalBuilder[] valueLocals = new LocalBuilder[Values.Length];

for(int i = 0; i < valueLocals.Length; i++)

{

 Values[i].Compile(ilGenerator, ref valueLocals[i]);

}

// If you are adding numbers, you can start at 0.0,

// but if you are subtracting, of course it wont work!

ilGenerator.Emit(OpCodes.Ldloc_S, valueLocals[0]);

for(int ii = 1; ii < valueLocals.Length; ii++)

{

 ilGenerator.Emit(OpCodes.Ldloc_S, valueLocals[ii]);

 switch(Operation)

 {

 case MathOperation.Add:

 77

5 CONSTRUCTION

 ilGenerator.Emit(OpCodes.Add);

 break;

 case MathOperation.Subtract:

 ilGenerator.Emit(OpCodes.Sub);

 break;

 case MathOperation.Multiply:

 ilGenerator.Emit(OpCodes.Mul);

 break;

 case MathOperation.Divide:

 ilGenerator.Emit(OpCodes.Div);

 break;

 }

}

// Store the result of the math operation in our new local

// variable.

ilGenerator.Emit(OpCodes.Stloc_S, newLocal);

ilGenerator.EndScope();

Figure 5-15 - Code snippet illustrating the compilation process of the Math class

5.2 Rule Support

The various rule support classes are fundamental to the overall process of

making the rule engine function. Whilst much of the rule specific functionality

has been designed to compile into an executable module and run, there are

certain elements of functionality that it would be an overhead to emit as part of

the compilation process and, as such, are included as part of a separate, pre-

defined, set of functionality.

All rule support classes fall under the RuleSupport namespace. There are

some classes which come under the RuleSupport namespace that share the

same name as some of the classes which fall within the

RuleDefinitionLanguage namespace although there are some key

differences. The RuleDefinitionLanguage namespace classes are for

use as compile-time classes (classes used for compilation of the rules into

executable code) and for rule definition and serialisation into XML. Those

classes with similar names that fall under the RuleSupport namespace have

a different goal as they are used during run-time to provide support to the

compiled rules as either base classes or automation classes, carrying out

certain elements of the rule testing functionality that it would be inefficient to

emit into the rules individually, at compile-time.

 78

5 CONSTRUCTION

5.2.1 IPeriodElement

An important interface for use by the consuming application is the

IPeriodElement interface. This interface serves as the basis for any type

of timed element such as an Appointment, when used with transport

scheduling, or a Class, when used in timetable scheduling, as it specifies that a

deriving class must have a Start and Finish as well as a WorkLength

and RestLength. These are essential elements when looking at temporal

based rules and by using an interface to define these, it is possible for a

consuming application to simply implement the functionality of this interface

to provide an integration mechanism for using the rule engine.

5.2.2 ITestable

Another important interface for the rule engine is the ITestable interface.

This defines an interface for any type that has the ability to carry out a test and

return a Boolean value as a result. All rules described using the rule definition

language implement the ITestable interface and have a Test method

along with the other components required to be ITestable. There is the

potential with an interface such as this to allow the consuming application to

develop predefined classes that implement the ITestable interface, to be

tested as part of the rule testing process.

As well as requiring the consuming class to have a Test method, the

ITestable interface also states that the consuming class must provide two

events to allow them access to the IPeriodElement objects that may be

connected to them within a work pattern. Details of this feature are presented

in Section 5.3.1.

 79

5 CONSTRUCTION

5.2.3 Period

The Period class, which is located under the RuleSupport namespace,

has been designed to provide runtime support to compiled rules and serves as a

base class for the WorkPeriod class and the RestPeriod class. It provides

certain key functionality that many types of Period may find useful. The

Period class implements both the IPeriodElement interface, providing

Start and Finish times as well as WorkLength and RestLength, and

also the ITestable interface as it provides a Test method and the two

events used to gain access to other IPeriodElements relative to itself in

the work pattern. Details of this feature are presented in Section 5.3.1.

One of the most useful and complex methods of the Period class is the

GetProperty method. This method is designed to evaluate property,

specified as text in the rule definition, to its value at runtime, similar to the

late-binding mechanisms found in some modern programming languages.

When, for example, in a rule definition a Value type is specified with a

ValueType enum of Property and a value of PRE.Start, the

GetProperty method will be used to obtain the Start value of the

IPeriodElement that comes before the current IPeriodElement

within the work pattern.

5.2.4 WorkPeriod

The WorkPeriod class provides a basic set of features that would be

common to a period of time which describes a working element. The

WorkPeriod class is the base class for all compiled rules described as a

WorkPeriod and provides property implementations for Start, Finish,

WorkLength and RestLength based upon the elements contained with it.

As an example, if the WorkPeriod rule described a Daily Work Period, in

the transport scheduling problem, the WorkPeriod object would, for the

 80

5 CONSTRUCTION

Start property, return the earliest start time based upon the appointments

that would be contained within; the Finish property would return the latest

finish time of the appointments contained within; the WorkLength would

return the sum of the WorkLengths of the appointments contained within

and the RestLength would return the sum of the RestLengths of the

appointments contained within.

5.2.5 RestPeriod

The RestPeriod class provides a basic set of features that are common to

all periods of time that describe a period of rest. All compiled rules that are

described as a RestPeriod will extend the RestPeriod class.

The RestPeriod class implements the Start, Finish, WorkLength

and RestLength properties but in a different way to the WorkPeriod

class. A RestPeriod would not normally contain any other Period objects

as it describes a gap between one WorkPeriod and another. The Start

property of a RestPeriod is obtained by looking at the previous period in

the work plan and obtaining its Finish property. Similarly, the Finish

property is obtained by looking forward in the work plan and obtaining the

Start property of the WorkPeriod which follows. The WorkLength

property of the RestPeriod class also returns a 0 value as there is no work

within a period of rest. The RestLength returns the difference between the

periods Start property and the periods Finish property.

5.2.6 Specialised Classes

Certain classes provided by the .NET Framework needed to be extended in

order to provide additional functionality. The first example of this is the

 81

5 CONSTRUCTION

TimeSpan class which describes a period of time. The original TimeSpan

class found under .NET‟s System namespace does not provide the ability to

convert the TimeSpan into the System.DateTime data type or make

comparison between a TimeSpan and a DateTime. A specialist version of

the TimeSpan data type was created which can offer this additional

functionality.

Similarly, the List class found under the

System.Collections.Generic namespace required additional

functionality currently not supported. The List class is a generic class

providing the ability to store a dynamically sizable array of a specialist data

type. The additional functionality required from this was the ability to describe

the content of the List as „dirty‟. This means that the items within the List

had changed in some way since the last time the List was accessed. An

example of this type of functionality is in storing the IPeriodElement

object contained within a Period. If the List has not changed then we can

return to a calling method the cached results of the Start, Finish,

WorkLength and RestLength properties to reduce the processing

requirement at runtime. If the List cannot describe whether its contents have

changed then it is not possible to decide whether we can cache various

properties. Additionally, the new DirtyList class has a fairly advanced

Sort method that is able to sort its contents based upon a predicate describing

the value of either a contained variable, a property or the result of a method

call. This can support the process of sorting contained IPeriodElement

objects within the List by the Start property, amongst other things.

5.3 Rule Testing

The functionality that carries out the rule testing process is located under the

RuleTesting namespace. The testing method provided is very basic and

not optimised to support advanced methods of producing work plans as it is

 82

5 CONSTRUCTION

not considered the focus of the research presented within this thesis. This is

discussed further in Section 9.5.1.

5.3.1 WorkPatternCollection

The WorkPatternCollection class provides a range of functionality that

supports the organisation of the data, provided by the host application in the

form of objects which implement the IPeriodElement interface, into a

useable work pattern. The class inherits from the DirtyList class.

One of the main elements of functionality that is provided by the class is the

ability to describe appointments that may come before or after a particular

period. For example, the RestPeriod class requires the ability to obtain its

Start property based upon the Finish property of the WorkPeriod that

comes before it. The WorkPatternCollection class provides a means

for each of the periods within the pattern to access other periods also organised

within the pattern, by their organisational relationship.

The class also provides the ability to serialise itself into XML so that the work

pattern can be saved to disk, transported across a network or displayed in

human readable format to the user. This helps to see how the system has

organised, based on the rules, the data into a workable schedule or,

alternatively, where the system believes a rule has been broken.

5.3.2 Tester

The Tester class is the main class used for managing the rule testing

process. Whilst the actual rules themselves are compiled, it is the Tester class

that has the task of organising the data provided by the host application into a

useable work pattern, with the help of the WorkPatternCollection class

and the rules themselves. The class takes many different elements of

information into consideration relating to the way the rules were originally

 83

5 CONSTRUCTION

described. Each rule provides a description of the data or rules contained

within or that come before or after it. The Tester class uses this information

in order to arrange the data into the work pattern and invoke the compiled rule

testing process to determine whether rules have been broken by its

organisation.

The Tester class has a two stage testing process. The first stage, given in

Figure 5-16, is used to get the testing process started by adding the first

WorkPeriod to the work pattern and seeing if the first element of data can

be added to it without breaking the rules. The first stage calls the second stage,

a recursive method given in Figure 5-17, to carry out the process of adding the

remaining data elements to the work pattern and to build up the work pattern to

include different types of period, as necessary.

The result of both stages is a simple Boolean value indicated the success or

failure of being able to add an element of data to the work pattern. If the

process fails it is because, when compared against the compiled rules

provided, the data cannot be organised into the work pattern generated.

The implementation of this algorithm can be found under Section 11.3.4. The

two methods are quite simple in design and, as stated in section 9.5, there is

future work to be done in this area to further improve the algorithm used.

 84

5 CONSTRUCTION

Period[]

CompiledRules

IPeriodElement[]

Datset

X =

CompiledRules[I]

I = 0

W = Dataset[0]

Start

X Can Contain W?

NO

I = I + 1

I = 1

YES

Invoke Rule Testing.

Result?

PASS

FAIL

W = Dataset[I]

Do Stage 2. Result?

FAIL

FAIL

I = I + 1

PASS

I = Dataset.Count

SUCCESS

YES

NO

I = CompiledRules.Count

NO

YES

Inputs

Stage 1

The first stage of the process loops through

each of the CompiledRules to find on that

has the ability to contained the first element

of data in the Dataset.

Once the first CompileRuie is identified, the

process of adding the remaining elements

of data to the ruleset can have a starting

point.

Stage 2

The second stage of the process is

concerned with looping through each of the

remaining elements of data within the

Dataset and adding them, one by one into

the work pattern.

The majority of the work from this stage is

carried out under the TestB process.

Figure 5-16 – Flowchart illustrating Stage 1 of the automated Testing process

 85

5 CONSTRUCTION

Period[]

CompiledRules

WorkPatternCollection

WorkPattern

Inputs

IPeriodElement

data

Start

Can LastPeriod contain data of

type data.Type?

Add data to

LastPeriod

LastPeriod =

WorkPattern[WorkPattern.Length – 1]

Does the rule test

succeed

YES

SUCCESS

NO

Remove data from

LastPeriod

I = 0

NextPeriod =

LastPeriod.PrePost[I].Post

I = I + 1

I =

LastPeriod.PrePost.Length

Add NextPeriod to

the WorkPattern

Add data to the

NextPeriod

Carry out Stage 2. Does

this break the rules?

Remove data from

NextPeriod

Remove

NextPeriod from

the WorkPattern

FAIL

YES

YES

NO

NO

Step 1

The first thing we want to check is whether

this element of data can be contained with

the LastPeriod of the WorkPattern.

Step 2a

If the data can go in to the LastPeriod, add

it and check to see if it break to rules. If it

does then we’ll have to try 2b.

Step 2b

If the period cannot be added to the

LastPeriod we need to see what types of

Period come after it and attempt to add

the data to any of these as part of the

overall WorkPattern.

NO

Figure 5-17 – Flowchart illustrating Stage 2 of the automated Testing process

 86

5 CONSTRUCTION

5.4 Summary

This chapter of the thesis has illustrated some of the implementation and

further design work that has taken place during the Construction phase of the

reported research. It is hoped that this has resulted in a much clearer definition

of a more optimal solution for the technical implementation of the research and

provides a means of moving forward, to develop a test harness for the

collection of statistical results.

The next chapter of the thesis aims to discuss the testing section of the

research, both in terms of the development of a test harness as well as a

discussion of the results obtained from running the test harness.

 87

6 TESTING

6 TESTING

The preceding chapters have set out the key research requirements along with

the design and implementation of the rule testing software.

Over the course of the next 3 chapters, Testing, Initial Results and Further

Results, this thesis will look at the overall testing process for the given

solution. The purposes of these three chapters are to:

 Define an initial set of test procedures to help demonstrate the

functionality of the prototype solution.

 Obtain measurements to gauge the performance of the proposed

solution across various computing hardware to help determine some

form of baseline in performance and to understand idiosyncrasies that

affect the solutions performance.

 Analyse the solutions performance under varying conditions including

a look at alternate rulesets, execution environments and operating

systems in order to determine the effects these things have on the

performance of the solution.

The Testing chapter will begin by identifying a programme for testing the

proposed solution both in terms of standard software testing, to support the

bug removal process, and also to gauge the performance of the proposed

solution. Following on from the design of the test programme a design for a

test harness is demonstrated that can help automate the main testing process.

The Initial Results chapter presents the findings of the tests carried out to

determine the performance of the proposed solution within the initial testing

scenario. It draws some conclusions as to how the results obtained differ from

what may have been expected and some of the issues that affect the solutions

performance. This chapter also discusses the issues found when attempting

draw comparison of the results against alternative solutions.

 88

6 TESTING

The Further Results chapter looks at the outcome of additional work including

a comparison of the performance of the initial testing work with that of a

ruleset from an alternate application domain. Additionally this chapter

analyses the performance results of tests taken to understand the solutions

performance under alternative conditions such as the solutions execution using

an alternate execution environment, i.e. Mono instead of the .NET Framework,

and the performance comparison across multiple operating systems. The

results should help to gauge the optimal conditions under which the proposed

solution should operate to receive the optimal performance.

6.1 Test Programme

The test programme is used to define the kinds of results required from the

testing process and how these results will be obtained.

Operationally, the testing process needs to identify whether the developed

software solution will be able to carry out the functions for which it was

designed. It will be important to be able to provide a set of rules and a set of

data to the software under test to determine whether the solution can:

a. be integrated into a system requiring rule testing (see Section 3.1)

b. read a set of rules from the external system (see Section 3.2)

c. compile the rules into an executable form (see Section 3.3)

d. test a set of data against the compiled rules

Subject to the software under test being capable of meeting the above criteria,

it would be useful to be able to obtain an initial set of data to help understand

the proposed solutions overall performance, both in terms of computational

performance and memory usage.

As previously highlighted, the need for this research has spawned from the

transport scheduling application domain. Therefore, in order to ensure the

proposed solutions validity for this real-world application the rules and data to

 89

6 TESTING

be tested will be derived from those outlined in (Transport, 1998). Once the

initial set of operational tests are completed it will be possible to determine

any bottlenecks or other areas of improvement for the proposed solution.

6.1.1 Test Scenario

The initial scenario used for testing the solution and gaining measurable results

comes from the transport scheduling field as described in (Transport, 1998).

Rather than making comparisons based upon the entire set of legal driving

rules, a small subset of rules have been used. The reason for this is that the

complete set of legal driving rules are very complex and usually require a

domain expert to understand and implement that complete set manually. For

the purpose of the testing programme, a subset is suitable for non-domain

experts to be able to determine the operational performance of the given

solution. The complete set of rules are highly complex are would potentially

detract from the purpose of the testing programme. A more manageable subset

of the rules would help to prove operational effectiveness of the programme

under test as well as produce a useful baseline as an indication of the expected

performance if faced with the complete ruleset.

The test data itself relates to a single drivers schedule, as opposed to a set of

drivers and their schedules. This is because, in the legal driving rules scenario

specifically, the rules themselves relate to an individual drivers schedule, not a

set of driver schedules. In order to test multiple driver schedules, the process

could be carried out in series or in parallel as the testing process of driver

schedules are not dependent upon each other.

6.1.1.1 Ruleset

The rules used for obtaining results for comparison in this section are as

follows:

 90

6 TESTING

 A daily work period can be up to 8 hours long.

 A weekly work period can be up to 6 daily work periods long.

 A daily rest period must be at least 8 hours long.

 A weekly rest period must be at least 30 hours long.

Clearly, these rules have additional metadata to explain how they work

together and which can be used by the work pattern creation process with the

dataset that will be provided.

The metadata for the rules, as well as the rule data itself, can be seen in Figure

6-1 for the four rules described. The metadata provides details of how the rules

work together both in what types of rules can come before or after a particular

rule as well as those types that can be contained within a particular period.

Daily Work Period (DWP)

Pre - Post

null - DRP

DRP - DRP

DRP - null

null - null

Contains

Appointment

Rules

WorkLength <= 8 hours

Daily Rest Period (DRP)

Pre - Post

DWP - DWP

Rules

Length >= 8 hours

Weekly Work Period (WWP)

Pre - Post

WRP - WRP

null - WRP

WRP - null

null - null

Contains

DWP

DRP

Rules

DWP.Count <= 6

Weekly Rest Period (WRP)

Pre - Post

WWP - WWP

Rules

Length >= 30 hours

Figure 6-1 – Illustration showing the four testing rules together with their supporting

metadata

6.1.1.2 Dataset

The first set of test data used for this experiment consists of a number of

appointments, each with a start and finish time. For the benefit of simplifying

the testing scenario, it is to be assumed that all appointments require the driver

to drive between the start and finish times of the appointment and that no in-

between rest breaks will be taken. This simplifies the process further by not

requiring the test bench to consider travel times and distances between

locations, which are not a factor necessary for consideration when the focus is

on the rule testing process and not the scheduling process.

 91

6 TESTING

For consistency during the testing process, it is important that all tests

conducted start from the same date, in order that oddities such as the number

of days in a month, or leap years, do not affect the outcome or the test results.

To support this, the start date of each appointment is relative to 01/01/2007,

providing an initial start date which is always on a Monday (the start of a

normal working week). This provides for a convenient means of automatic

appointment generation, relative to a known starting date as well as a fixed

consistent set of data which can be replicated automatically under varying

conditions, as shown in Figure 6-2.

Appointment Start Time Finish Time

1 01/01/2007 09:00 01/01/2007 14:00

2 01/01/2007 15:00 01/01/2007 16:00

3 02/01/2007 09:00 02/01/2007 14:00

4 02/01/2007 15:00 02/01/2007 16:00

5 03/01/2007 09:00 03/01/2007 14:00

6 03/01/2007 15:00 03/01/2007 16:00

7 05/01/2007 09:00 05/01/2007 14:00

8 05/01/2007 15:00 05/01/2007 16:00

9 06/01/2007 09:00 06/01/2007 14:00

10 06/01/2007 15:00 06/01/2007 16:00

Figure 6-2 – One Week Appointment Dataset

This range of appointments takes place over a period of 7 days, with two days

off on days 4 and 7. A graphical representation of this data can be seen in

Figure 6-3.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

09:00 - 10:00

10:00 - 11:00

11:00 - 12:00

12:00 - 13:00

13:00 - 14:00

14:00 - 15:00

15:00 - 16:00 2 4 6 8 10

16:00 - 17:00

17:00 - 18:00

1 3 5 7 9

Figure 6-3 – One Week Dataset Represented Graphically

In order to generate large quantities of valid data automatically to carry out

tests of the proposed rule testing system, a simple method was designed that

 92

6 TESTING

took the 10 appointments outlined above and incremented their dates in order

to place them in different weeks. An example of a three week, 30 appointment,

dataset can been see in Figure 6-4.

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9 Day 10 Day 11 Day 12 Day 13 Day 14 Day 15 Day 16 Day 17 Day 18 Day 19 Day 20 Day 21

09:00 - 10:00

10:00 - 11:00

11:00 - 12:00

12:00 - 13:00

13:00 - 14:00

14:00 - 15:00

15:00 - 16:00 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

16:00 - 17:00

17:00 - 18:00

1 3 5 7 9 11 13 15 25 27 2917 19 21 23

Figure 6-4 – The three week driver schedule dataset represented graphically

A large variety of dataset sizes have been chosen to test against the rules. The

dataset size ranges from 250 to 10,000 appointments at increments of 250. The

upper boundary far exceeds the normal upper limit of appointments typically

found in the transport scheduling scenario. The proposed solution does,

however, have to be considered for potential future applications which may

have large dataset sizes and an understanding of the testing performance for

future scenarios is important. Additionally it should provide some interesting

results to help understand the systems performance and potential areas for

improvement.

6.1.2 Test Plan

With these rules clearly defined a number of different approaches can be taken

to generate results for comparison. In the transport scheduling field, the

original client would pay a domain expert to look over a drivers work pattern

to determine whether there were any infringements to the legal driving rules.

As this is the original business case, this must be set as a test scenario. The

automated system proposed in this research could, therefore, be testing against

the manual process to measure the performance gains in the driver scheduling

scenario.

In addition to manual test scenarios, automated test scenarios are necessary to

see how the solution performs across a range of modern computer systems.

 93

6 TESTING

The areas being used for comparison are based on varying processor speeds,

quantities of memory and operating systems.

The table shown in Figure 6-5 provides the technical specifications of the

systems used. These systems were chosen due to their availability in an

average organisation. The majority of organisations upgrade or replace their

computer systems on a three year rolling programme. This set of computer

systems indicates a reasonable representation of systems from new to 3 years

of age which would typically be the specification of the target system for the

proposed solution.

Identifier Processor Type Processor Speed RAM Size Operating System

A Intel Pentium 4 3 GHz 1 GB XP Service Pack 2

B Intel Pentium 4 3 GHz 2 GB XP Service Pack 2

C Intel Pentium 4 2.4 GHz 1 GB XP Service Pack 2

D Intel Core Duo (Centrino Duo) 2.33 GHz 4 GB Vista x86

Figure 6-5 - Computer Specifications Used In Testing

6.2 Test Bench

In order to produce a set of test results which demonstrate the proposed

solution can meet the requirements set out in Chapter 3, a test bench had to be

implemented which was capable of consuming the functionality of the

proposed solution, as if it were a scheduling system, and which could perform

some analysis on the results obtained. Using rapid application development

(RAD), a relatively simple graphical user interface (GUI) was designed that

would be able to call the functions of the Rule Testing System to carry out the

testing process and display the results in a useful way. Figure 6-6 shows the

simple GUI design.

 94

6 TESTING

Figure 6-6 – Screen capture of the test bench

The two buttons to the top of the GUI provide the main interface with the

program. The Compile Rules button carries out the task of compiling a set of

rules from their original descriptive form. Whilst the test bench itself uses

rules that are hard-coded, the rules can, in reality, be imported into a system

through any medium that can store or transmit XML.

Once the rules have been compiled, a serialised copy of the rules are displayed

to the user in the text box which spans the top half of the screen, as can be seen

in Figure 6-7.

The next button at the top of the screen begins the rule testing process using

the compiled rules. After pressing this button a new thread is created and the

testing process begins in the new thread. This frees up the GUI‟s thread to

focus on keeping the graphical interface up to date.

 95

6 TESTING

Figure 6-7 - Screen capture of the test bench after rule compilation has occurred

The text box occupying the top half of the screen outputs the progress of the

testing process whilst the picture box which occupies the lower half of the

screen displays a simple line graph of the test results which have been obtained

so far. An example of this stage of execution can be seen in Figure 6-8.

The results being displayed in the text box are being displayed in a format

known as Comma Separated Values (CSV) which is a format that can easily be

imported into a spreadsheet for statistical analysis and processing at a later

point.

Once processing is under way, the user can either wait for the processing to

complete (in this tests case, wait for 10,000 elements of data to be processed)

or the user can press the Stop Test button (formally Run Test) in order to end

the test early and take the test results away for analysis.

 96

6 TESTING

Figure 6-8 - Screen capture of the test bench during the testing process

(Note: the second column represents the increment made, not the dataset size, as indicated in

the column header)

At the end of the testing process the result summary of the test is returned to

the user in the form of a message box summarising the overall processing time

and the information that is left in the text box, as can be seen in Figure 6-9.

The final task, as far as the test program goes, is to copy the data from the text

box and paste it into a text editor, such as notepad and save it with the

extension .csv, ready to open within a spreadsheet application.

6.2.1 Test Bench Logic

Whilst much of the appearance of the test bench is fairly simplistic, its

implementation is far more complex. For example, a new data type had to be

defined to implement the IPeriodElement interface, described in Figure

4-3. The full implementation of this class can be found in Section 11.3.5.3.

 97

6 TESTING

Figure 6-9 - Screen capture of the test bench after the testing process has finished

As previously stated, the rules, in this instance, were hard coded. This was

merely for simplicity and could just have easily been provided from an

external source in a serialised form. The code snippets which illustrate the

implementation of the description of these rules can be seen in Figure 6-10,

Figure 6-11, Figure 6-12 and Figure 6-13. An alternate means of describing the

same set of rules is using XML and this equivalent can be found seen in Figure

6-14.

9
8

6
 T

E
S

T
IN

G

9
8

// A daily work period can be up to 8 hours long.

RuleDefinitionLanguage.WP myDWP = new RuleDefinitionLanguage.WP();

myDWP.Description.Name = "DWP";

myDWP.Description.Description = "Daily Work Period";

myDWP.Description.PrePosts = new RuleDefinitionLanguage.PrePost[] { new RuleDefinitionLanguage.PrePost("", "DRP"), new

RuleDefinitionLanguage.PrePost("DRP", "DRP"), new RuleDefinitionLanguage.PrePost("DRP", ""), new RuleDefinitionLanguage.PrePost("", "") };

myDWP.Description.Contains = new RuleDefinitionLanguage.Contain[] { new RuleDefinitionLanguage.Contain("Appointment") };

myDWP.Rules = new RuleDefinitionLanguage.AndCondition(new RuleDefinitionLanguage.Comparitor[] { new

RuleDefinitionLanguage.Comparison(RuleDefinitionLanguage.ComparisonOperation.LessThanOrEqualTo, new RuleDefinitionLanguage.Value[] { new

RuleDefinitionLanguage.Value("WorkLength", RuleDefinitionLanguage.ValueType.Parameter), new RuleDefinitionLanguage.Value("8",

RuleDefinitionLanguage.ValueType.Hours) }, null), new RuleDefinitionLanguage.Comparison(RuleDefinitionLanguage.ComparisonOperation.GreaterThan,

new RuleDefinitionLanguage.Value[] { new RuleDefinitionLanguage.Value("Appointment.Count", RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("0", RuleDefinitionLanguage.ValueType.Number) }, null) });

theRules.Add(myDWP);

Figure 6-10 - Code snippet showing how the Daily Work Period rule was defined within the testing bench

// A weekly work period can be up to 6 daily work periods long.

RuleDefinitionLanguage.WP myWWP = new RuleDefinitionLanguage.WP();

myWWP.Description.Name = "WWP";

myWWP.Description.Description = "Weekly Work Period";

myWWP.Description.PrePosts = new RuleDefinitionLanguage.PrePost[] { new RuleDefinitionLanguage.PrePost("WRP", "WRP"), new

RuleDefinitionLanguage.PrePost("", "WRP"), new RuleDefinitionLanguage.PrePost("WRP", ""), new RuleDefinitionLanguage.PrePost("", "") };

myWWP.Description.Contains = new RuleDefinitionLanguage.Contain[] { new RuleDefinitionLanguage.Contain("DWP"), new

RuleDefinitionLanguage.Contain("DRP") };

myWWP.Rules = new RuleDefinitionLanguage.AndCondition(new RuleDefinitionLanguage.Comparitor[] { new

RuleDefinitionLanguage.Comparison(RuleDefinitionLanguage.ComparisonOperation.LessThanOrEqualTo, new RuleDefinitionLanguage.Value[] { new

RuleDefinitionLanguage.Value("DWP.Count", RuleDefinitionLanguage.ValueType.Parameter), new RuleDefinitionLanguage.Value("6",

RuleDefinitionLanguage.ValueType.Number) }, null), new

RuleDefinitionLanguage.Comparison(RuleDefinitionLanguage.ComparisonOperation.GreaterThan, new RuleDefinitionLanguage.Value[] { new

RuleDefinitionLanguage.Value("DWP.Count", RuleDefinitionLanguage.ValueType.Parameter), new RuleDefinitionLanguage.Value("0",

RuleDefinitionLanguage.ValueType.Number) }, null) });

theRules.Add(myWWP);

Figure 6-11 - Code snippet showing how the Weekly Work Period rule was defined within the testing bench

9
9

6
 T

E
S

T
IN

G

9
9

// A weekly rest period must be at least 30 hours long.

RuleDefinitionLanguage.RP myWRP = new RuleDefinitionLanguage.RP();

myWRP.Description.Name = "WRP";

myWRP.Description.Description = "Weekly Rest Period";

myWRP.Description.PrePosts = new RuleDefinitionLanguage.PrePost[] { new RuleDefinitionLanguage.PrePost("WWP", "WWP") };

myWRP.Description.Contains = new RuleDefinitionLanguage.Contain[] { };

myWRP.Rules = new RuleDefinitionLanguage.Comparison(RuleDefinitionLanguage.ComparisonOperation.GreaterThanOrEqualTo, new

RuleDefinitionLanguage.Value[] { new RuleDefinitionLanguage.Value("RestLength", RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("30", RuleDefinitionLanguage.ValueType.Hours) }, null);

theRules.Add(myWRP);

Figure 6-12 – Code snippet showing how the Weekly Rest Period rule was defined within the testing bench

// A daily rest period must be at least 8 hours long.

RuleDefinitionLanguage.RP myDRP = new RuleDefinitionLanguage.RP();

myDRP.Description.Name = "DRP";

myDRP.Description.Description = "Daily Rest Period";

myDRP.Description.PrePosts = new RuleDefinitionLanguage.PrePost[] { new RuleDefinitionLanguage.PrePost("DWP", "DWP") };

myDRP.Description.Contains = new RuleDefinitionLanguage.Contain[] { };

myDRP.Rules = new RuleDefinitionLanguage.AndCondition(new RuleDefinitionLanguage.Comparitor[] { new

RuleDefinitionLanguage.Comparison(RuleDefinitionLanguage.ComparisonOperation.GreaterThanOrEqualTo, new RuleDefinitionLanguage.Value[] { new

RuleDefinitionLanguage.Value("RestLength", RuleDefinitionLanguage.ValueType.Parameter), new RuleDefinitionLanguage.Value("8",

RuleDefinitionLanguage.ValueType.Hours) }, null), new RuleDefinitionLanguage.Comparison(RuleDefinitionLanguage.ComparisonOperation.LessThan,

new RuleDefinitionLanguage.Value[] { new RuleDefinitionLanguage.Value("RestLength", RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("30", RuleDefinitionLanguage.ValueType.Hours) }, null) });

theRules.Add(myDRP);

Figure 6-13 - Code snippet showing how the Daily Rest Period rule was defined within the testing bench

<?xml version="1.0"?>

<ArrayOfPeriod xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Period xsi:type="WP">

 <Description>

 <Name>DWP</Name>

 <Description>Daily Work Period</Description>

 <PrePosts>

 <PrePost>

 <Pre />

 <Post>DRP</Post>

 </PrePost>

 <PrePost>

 <Pre>DRP</Pre>

 <Post>DRP</Post>

 </PrePost>

6
 T

E
S

T
IN

G

1
0
0

 <PrePost>

 <Pre>DRP</Pre>

 <Post />

 </PrePost>

 <PrePost>

 <Pre />

 <Post />

 </PrePost>

 </PrePosts>

 <Contains>

 <Contain>

 <Name>Appointment</Name>

 </Contain>

 </Contains>

 </Description>

 <Rules xsi:type="AndCondition">

 <Conditions>

 <Comparitor xsi:type="Comparison">

 <Operation>LessThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>WorkLength</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>8</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Comparitor>

 <Comparitor xsi:type="Comparison">

 <Operation>GreaterThan</Operation>

 <Values>

 <Value>

 <Description>Appointment.Count</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>0</Description>

 <Type>Number</Type>

 </Value>

 </Values>

 </Comparitor>

 </Conditions>

 </Rules>

 </Period>

 <Period xsi:type="WP">

 <Description>

 <Name>WWP</Name>

 <Description>Weekly Work Period</Description>

 <PrePosts>

 <PrePost>

 <Pre>WRP</Pre>

 <Post>WRP</Post>

 </PrePost>

 <PrePost>

 <Pre />

 <Post>WRP</Post>

 </PrePost>

 <PrePost>

 <Pre>WRP</Pre>

 <Post />

 </PrePost>

 <PrePost>

 <Pre />

 <Post />

 </PrePost>

 </PrePosts>

 <Contains>

 <Contain>

 <Name>DWP</Name>

 </Contain>

 <Contain>

 <Name>DRP</Name>

 </Contain>

 </Contains>

 </Description>

 <Rules xsi:type="AndCondition">

 <Conditions>

 <Comparitor xsi:type="Comparison">

 <Operation>LessThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>DWP.Count</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>6</Description>

6
 T

E
S

T
IN

G

1
0
1

 <Type>Number</Type>

 </Value>

 </Values>

 </Comparitor>

 <Comparitor xsi:type="Comparison">

 <Operation>GreaterThan</Operation>

 <Values>

 <Value>

 <Description>DWP.Count</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>0</Description>

 <Type>Number</Type>

 </Value>

 </Values>

 </Comparitor>

 </Conditions>

 </Rules>

 </Period>

 <Period xsi:type="RP">

 <Description>

 <Name>WRP</Name>

 <Description>Weekly Rest Period</Description>

 <PrePosts>

 <PrePost>

 <Pre>WWP</Pre>

 <Post>WWP</Post>

 </PrePost>

 </PrePosts>

 <Contains />

 </Description>

 <Rules xsi:type="Comparison">

 <Operation>GreaterThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>RestLength</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>30</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Rules>

 </Period>

 <Period xsi:type="RP">

 <Description>

 <Name>DRP</Name>

 <Description>Daily Rest Period</Description>

 <PrePosts>

 <PrePost>

 <Pre>DWP</Pre>

 <Post>DWP</Post>

 </PrePost>

 </PrePosts>

 <Contains />

 </Description>

 <Rules xsi:type="AndCondition">

 <Conditions>

 <Comparitor xsi:type="Comparison">

 <Operation>GreaterThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>RestLength</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>8</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Comparitor>

 <Comparitor xsi:type="Comparison">

 <Operation>LessThan</Operation>

 <Values>

 <Value>

 <Description>RestLength</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>30</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Comparitor>

 </Conditions>

 </Rules>

6
 T

E
S

T
IN

G

1
0
2

 </Period>

</ArrayOfPeriod>

Figure 6-14 – The XML rule representation of the daily and weekly work and

rest periods after serialisation

 103

6 TESTING

6.3 Summary

This chapter of the thesis has outlined the proposed testing programme to

indicate the purpose and method for the initial operational testing process.

In addition, a test bench has been designed that is capable of supporting the

testing programme, to assist in the automated generation of statistical results.

As outline in Section 6.1, it was important to show, with the operational tests,

that the given solution can:

a. be integrated into a system requiring rule testing

b. read a set of rules from the external system

c. compile the rules into an executable form

d. test a set of data against the compiled rules

Following the completion of the test plans execution, the proposed solution has

been shown to meet these operational tests. The solution was successfully

integrated into an external system, provided with a set of rules by the external

system, compiled the rules into executable code, and tested data against the

compiled rules, returning the correct Boolean response.

The next step is to undertake the outlined test plan; the results of which are

presented and analysed in the next chapter.

 104

7 INITIAL RESULTS

7 INITIAL RESULTS

The testing programme has been set out in the previous chapter of this thesis

and the test bench application has been designed and implemented that can be

used to carry out the testing of the defined rules and data in order to prove that

the solution works and to assess its performance.

There are a variety of result types that can be obtained from research such as

this. These range greatly from analysis of the computational performance

increases gained from using the system, as opposed to the manual alternatives,

through to the measurable organisational value of such a system to a company

using this approach as a part of their scheduling process.

The focus of this Chapter is to determine whether the proposed solution can:

a. be integrated into a system requiring rule testing (see Section 3.1)

b. read a set of rules from the external system (see Section 3.2)

c. compile the rules into an executable form (see Section 3.3)

d. test a set of data against the compiled rules

The outcome of this Chapter looks at the various results gained in relation to

the above and considers how these results compare to alternative approaches

and how they could be improved in the future.

Once the proposed solution is shown to work and meet the initial requirements

(set out in Chapter 3), Chapter 8 takes the test of the proposed solution further

by seeing how it operates under various condition, for example alternative

software frameworks and operating systems, to determine the effects of this

change on the overall system performance.

 105

7 INITIAL RESULTS

7.1 Test Results

Analysis of the system‟s performance is one of the methods that can be used to

rate the proposed solution. This method used the test case defined in the

Testing chapter to generate a set of data that can then be analysed and from

which some conclusions can be drawn.

In order to obtain the statistical results for comparison, the test bench uses a

stopwatch style approach to capturing data. Before execution of a test the

current system time is captured (using the operating systems high resolution

timer), then again after execution. The length of time taken to execute is then

determined as the difference between the two. This will provide a very

accurate look at the computational performance of the solution without

interfering with the execution process itself.

In addition the applications current level of memory usage is captured in order

to see the changes in memory usage between the start of execution and the

end. The main reason for taking this approach and not monitoring throughout

execution is that it was important that the computational performance

measurements were not interfered with during execution by taking processing

time to capture the memory usage.

For clarity when reading the diagrams, as previously illustrated within Figure

6-5, Figure 7-1 shows the specifications of the various systems used during the

testing process.

Figure 7-1 - Computer Specifications Used In Testing

Identifier Processor Type Processor Speed RAM Size Operating System

A Intel Pentium 4 3 GHz 1 GB XP Service Pack 2

B Intel Pentium 4 3 GHz 2 GB XP Service Pack 2

C Intel Pentium 4 2.4 GHz 1 GB XP Service Pack 2

D Intel Core Duo (Centrino Duo) 2.33 GHz 4 GB Vista x86

 106

7 INITIAL RESULTS

7.1.1 Test Results – Computational Performance

After carrying out the tests on the varying dataset sizes against the rules some

interesting results were found. Figure 7-2 and Appendix 11.6.1 provide charts

representing the results gained from carrying out the tests on different dataset

sizes against the rules. The following conclusions can be made:

Figure 7-2 - Chart illustrating the computation performance comparison between

different system types

The results are non-linear. If the results were linear this would imply that the

length of time taken to carry out the rule tests on the data is directly

proportional to the increase in dataset size. After an investigation into the

reasons for the results found, it seems that the bottle neck in the testing process

is not as a result of slow execution of the compiled rules in testing the data but

it indicates that there are issues with the work plan generation algorithm in

constructing the work plan in an incremental way.

Multi-core processors provide improved performance. The system with the

slowest processor speed has outperformed the other system types in

0

1000

2000

3000

4000

5000

6000

7000

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Dataset Size (Appointments)

Computational Performance Comparison of the
Non-Optimised Method

A

B

C

D

 107

7 INITIAL RESULTS

computational performance execution which provides a good indication that its

multi-core feature is providing a considerable performance improvement to the

overall execution time.

In the article (Geer, 2005) Geer talks about some of the reasons for turning to

multi-core processors and states “multi-core chips don‟t necessarily run as fast

as the highest performing single-core models, but they improve overall

performance by handling more work in parallel”. In the case of the proposed

rule testing solution, the solution itself has not been designed as a parallel

activity which could potentially improve the testing performance (discussed

under Section 9.5 as future work). There are, however, other tasks being

carried out in the background by the operating system, or even within the

.NET framework within other threads, that will be able to operate on the other

core, leaving the rule testing algorithm with the full use of its own dedicated

core, subject to the resource scheduling process of the operating system.

Larger quantities of RAM provide better computational performance.

Two of the systems have the same processor type and operating system

however one has twice the RAM available compared to the other. The rule

testing system isn‟t using an excessive amount of RAM (see Section 7.1.2)

however it is clear from the test results provided in the chart that the

performance of computer B is better than that of computer A when the dataset

size reaches around 6000 appointments.

The reasons for the differences relate to the garbage collection scheme used by

the .NET framework. The .NET framework‟s garbage collector uses an

optimisation engine to determine the best time to perform a collection based on

a variety of factors. This means that if a process is performing computationally

expensive tasks, the garbage collector will not attempt to perform collection at

that point unless the amount of available memory is limited and thus there is a

need for the collection. With a system with plenty of available RAM, the rule

testing engine can execute for longer, with more uncollected, allocated,

memory associated than a system with limited available memory.

 108

7 INITIAL RESULTS

This does then have an overall effect of the computational tests undertaken

where we may expect to see a difference in computational performance for

equivalent systems where one has more memory than the other.

7.1.2 Test Results – Memory Performance

In addition to measuring the computational performance of the rule testing

process, measurements were taken to determine how memory usage changed

depending upon system architecture. Figure 7-3 and Appendix 11.6.2 provide

charts representing the memory usage of the rule testing application as

measured before undertaking each test, then after.

Figure 7-3 - Chart illustrating the memory usage comparison between different system

types

Whilst no significant conclusions can be drawn from these results, it can be

seen that no matter which system type is considered, the memory usage is

roughly the same with the increase in memory over time relating to the

increase in the dataset size and resultant work pattern produced following the

rule testing process. The .NET Framework‟s garbage collector is responsible

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
e
m

o
ry

 U
s
a
g

e
 (

K
B

)

Dataset Size (Appointments)

Memory Usage Comparison of the Non-Optimised
Method

A

B

C

D

 109

7 INITIAL RESULTS

for managing the applications memory, ensuring that any unused memory is

freed appropriately and no memory leaks are occurring.

7.1.3 Additional Improvement to Computational Performance

As a result of undertaking the tests above, it was clear that there were some

performance issues relating to the work pattern creation algorithm element of

the rule testing process. This was a fairly unexpected result. The original aim

of the research was to improve the overall rule testing process for scheduling

systems requiring rule testing; the work pattern creation algorithm wasn‟t

originally perceived as one of the more important elements of the rule testing

process, however, the results indicated this was an area that could benefit from

some additional work.

This is not to say that the approach of compiling rules into executable code is

wrong, however, now that this element of the system has been optimised the

bottleneck within the system has moved. There are a number of areas that

could be considered in order to improve the computational performance of the

work plan creation process, as outline in Figure 5-16 and Figure 5-17.

7.1.3.1 Incremental Work Plan Construction

When constructing the work plan, rather than having to recreate the entire

work plan when testing additional elements of data, a performance increase

could be gained from caching the already constructed work plan and only

adding the additional elements of data to the plan during each new test phase.

With some minor modifications to the Tester class (previously discussed

under Section 5.3.2), a cached version of the work pattern can be taken as an

additional output to the testing method and passed back in to the Test method

during the next iteration. After undertaking this relatively simple modification

 110

7 INITIAL RESULTS

and running the testing procedure again, a much better computational

performance was found and can be seen in Figure 7-4 and Appendix 11.6.3.

Figure 7-4 - Chart illustrating the computational performance comparison between the

original and the incremental testing approaches

(Legend example: A= non-optimised, Ao = optimised)

The incremental approach reduces the execution time of the rule testing

process considerably and identifies an important fact, that during a scheduling

process the work plan for each of the drivers (in the case of the transport

scheduling system) should ideally be cached and reused when attempting to

add additional work to a work pattern. There are limitations to this, however,

in that only elements of data that occur at the end of the current work pattern

can be added using the optimised method as opposed to elements of work that

occur at the start or in the middle of the work pattern. For those that cannot be

added incrementally, the simplest method would be to reconstruct the work

pattern from scratch.

In terms of memory usage, the charts provided in Figure 7-5 and Appendix

11.6.4 show the memory usage between the different approaches barely

changes.

0

1000

2000

3000

4000

5000

6000

7000

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Dataset Size (Appointments)

Computational Performance Comparison Between
Both Optimised and Non-Optimised Methods

A Ao

B Bo

C Co

D Do

 111

7 INITIAL RESULTS

Figure 7-5 - Chart illustrating the memory usage comparison between the original and

the incremental testing approaches

(Legend example: A= non-optimised, Ao = optimised)

The approach taken to monitor memory usage without hindering the

computational performance of the rule testing process required the capturing of

memory usage before and after the rule testing process is carried out. Because

the end result of the rule testing process is the same, a complete work plan, the

amount of memory used at each point will have been the same.

However, within the non-optimised approach there will have been a significant

amount of additional load placed on memory management due to the fact that

the work pattern array is being frequently created and destroyed requiring

more memory allocations and de-allocations per rule testing cycle, with the

same eventual outcome and resultant level of memory usage. This will, in turn,

have an impact on the computational performance measurement and will not

show up with the memory usage measurements taken.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
M

e
m

o
ry

 U
s
a
g

e
 (

K
B

)

Dataset Size (Appointments)

Memory Usage Comparison Between Both
Optimised and Non-Optimised Methods

A Ao

B Bo

C Co

D Do

 112

7 INITIAL RESULTS

7.2 Alternate Metrics

For this research problem, the computational performance results aren‟t

necessarily the most appropriate means of measuring the outcomes of this

work. The problem domain from which this research has been derived is based

on a real world business problem and, as such, it is also important to consider

the Measurable Organisational Value (MOV) of the original problem and how

the software solution compares using this method of measurement.

7.2.1 Measurable Organisational Value

Existing work, such as (Wetherall, 2002), identifies the need for this research

from a business problem point of view. For that organisation specifically, a

relatively high paid domain expert had to be employed full-time at each of

their branches in order to manually undertake the scheduling process taking

into account the legal driving rules. This time consuming task for the scheduler

is the manual interpretation and testing of the legal driving rules which is at the

core of the scheduling process.

It can therefore be concluded that the financial benefits of having the

developed software solution in place within an organisation is significant to

the overall operating costs of the scheduling process. When considering that a

domain expert, the alternative to an automated system, may be paid a

minimum of £30,000 GBP per year, the financial saving of replacing the work

of the domain expert based on a non-increasing salary alone is potentially

£300,000 GBP over a 10 year period. Not to mention the other employer costs

such as human resourcing, national insurance and tax contributions, pension

schemes and standard pay increases which contribute toward an even greater

overall saving.

Per organisation is one thing, however, when considering that this solution

would benefit not just every transport scheduling company who have to

 113

7 INITIAL RESULTS

schedule based on legal driving rules, but any other organisation also

scheduling with a set of rules, such as timetable scheduling systems, the

proposed solution can have a significant impact on the future of rule testing in

scheduling.

An alternative overhead employed by a number of organisations that use

automated scheduling systems is the use of expert scheduling algorithm

developers who use, for example, the constraint based scheduling algorithm

approach within their scheduling systems. When the rules within the

company‟s domain change, the expert has to be re-employed to develop a new

scheduling algorithm which takes into account a new set of rules at

considerable cost to the company. This overhead could be eliminated if the

proposed solution was employed instead of an algorithmic rule scheduling

process.

7.2.2 Compiled Execution

In addition to the other tests carried out, an important aspect that needs

consideration is the claim that compiling the rules results in computationally

faster execution than other approaches. A number of experiments to prove this

claim have been investigated however the results of these tests have resulted in

numerous pit falls.

The main issue faced, when attempting to investigate this, is that there are no

suitable rule interpreters for the execution of either IL (Intermediate Language)

or C#. Microsoft‟s implementation, within the .NET Framework, only includes

a JIT (Just-In-Time) compiler for runtime execution of an applications IL. This

approach is focused on heavily within the standard document of the CLI

(ISO/IEC23271, 2006). As a result alternate approaches to creating

computational performance comparisons have been investigated.

The first experiment attempted to investigate the concept using the open

source implementation of the CLI (Common Language Infrastructure) and

 114

7 INITIAL RESULTS

CLR (Common Language Runtime) provided by the Mono project (Dumbill,

2004). In early versions of the Mono project, they used an interpreter called

Mint as a first step to porting Mono onto alternate platforms. With current

versions of Mono, including the source code distributions, the Mint application

has not been maintained and every attempt to compile Mint, including using

historic source distributions, has failed.

Additionally, the use of DotGNU(Bollow), another open source

implementation has been investigated. DotGNU can be used in two ways, the

first with a JIT compiler and the second without, i.e., interpreted. The main

issue found when attempting this approach is that the open source project is

relatively immature and isn‟t keeping up with the development of technology

in the same way the Mono project is managing to. The approach taken with

DotGNU is to develop the project to meet specifically with the standard

specification (ISO/IEC23271, 2006) as opposed to providing compatibility

with the Microsoft implementation of the .NET Framework. The main problem

found in using this approach were incomplete or incompatible

implementations of the System.Reflection namespace. It was not,

therefore, possible to follow this line of investigation further.

The final approach attempted to use a C# interpreter known as

PaxScript(Baranovsky) to interpret a C# representation of the rules. The

problem found when attempting this approach is that the compiled rule

approach proposed depends heavily on the RuleSupport functionality

provided within the proposed rule testing engine and there are limitations on

PaxScripts‟ ability to interpret class inheritance with classes in existing class

libraries.

After substantial investigation, no other appropriate methods of proving the

claim that a compiled rule approach is computation faster than a non-compiled

approach could be found therefore it is determined that the use of existing

work will be required to prove this claim. A number of references have been

made in the literature review to existing research papers that support the claim

 115

7 INITIAL RESULTS

that compiled code executes faster than interpreted code, as seen in Section

2.6.

7.3 Summary

This chapter of the thesis has presented the test results that were generated as a

result of running the test bench in conjunction with the rules and data that were

identified in the Testing chapter of this thesis.

The results have been analysed and some conclusions have been drawn on the

results. An optimised method of incrementally generating work patterns has

been identified which has reduced the execution time of the system as well as

reducing the needed continuous memory allocations and de-allocations in the

non-optimised method.

The next chapter will present some additional results obtained through further

testing work that has been done to investigate the effectiveness of the proposed

solution on different software platforms and operating systems, as well as

discussing some of the problems found in trying to derive the evidence.

 116

8 FURTHER RESULTS

8 FURTHER RESULTS

The previous chapter of this thesis reported the results of the testing process

undertaken to show evidence of the contributions proposed in Section 1.4. This

chapter of the thesis expands on this work by further illustrating how the

proposed solution can be used within alternate application domains and within

various environments. This chapter will also look at problems that are faced in

designing a set of rules to work with such a complex system and how

additional support can be provided to help diagnose problems with rule

definitions.

In addition this chapter draws a comparison between the performance

execution time between the previous test results given in Section 7.1 and those

result obtained from the testing of a new set of rules within an alternate

application domain. Finally this chapter will highlight some of the

inconsistencies between the two sets of test results and provide justifications

for these inconsistencies.

8.1 Additional Test Scenario

The additional testing scenario is derived from the problem of lecturer

timetable scheduling. The rules in this scenario differ between Countries,

Unions and Institutions so a subset of localised rules has been defined for the

purposes of testing.

The rules for testing within this domain are divided into three categories, Shift,

Daily Work Period (DWP) and Weekly Work Period (WWP).

A Shift is classed as a period of work, such as a morning, an afternoon or an

evening. A Shift cannot be longer than 4 hours long without a break between it

and the next shift. A Shift cannot start before 9am and cannot go on passed

 117

8 FURTHER RESULTS

9pm. A Shift must be separated by a break of at least 1 hour, called a Shift

Break (SB), and there cannot be more that 2 Shifts within a DWP.

Each DWP cannot be longer than 9 hours and must be separated by at least 15

hours of rest, called a Daily Rest Period (DRP). A WWP cannot be more than

5 DWPs long and must be separated by a rest of at least 2 days, called a

Weekly Rest Period (WRP), giving the worker a weekend length break.

Shift (S)

Pre - Post

null - SB

SB - SB

SB - null

Contains

Appointment

Rules

Work <= 4 hours

AND

Start.Hour >= 9 am

AND

Finish.Hour <= 11 pm

Daily Work Period (DWP)

Pre - Post

null - DRP

DRP - DRP

DRP - null

Contains

S

SB

Rules

Length <= 9 hours

S.Count <= 3 shifts

Weekly Work Period (WWP)

Pre - Post

null - null

null - WRP

WRP - null

WRP - WRP

Contains

DWP

DRP

Rules

DWP.Count <= 5

Shift Break (SB)

Pre - Post

S - S

Rules

RestLength >= 1 hour

Daily Rest Period (DRP)

Pre - Post

DWP - DWP

Rules

Length >= 15 hours

Weekly Rest Period (WRP)

Pre - Post

WWP - WWP

Rules

Length >= 2 days

Figure 8-1 - Illustration showing the six testing rules together with their supporting

metadata for the additional test scenario

8.2 Rule Description Problems

In a similar way to the previous testing scenario of driving rules, the teaching

rules were written into their XML representation for use with the rule testing

engine. These can be seen in Section 11.7.2.

Problems were found when executing these rules with unexpected outcomes

shown by the rule engine. The problem comes from the fact that whilst

 118

8 FURTHER RESULTS

creating the rule descriptions using XML has simplified the process of

describing rules, trying to remove “bugs” within the rule description is actually

quite complex and difficult to achieve.

In order to overcome this, further improvements were required from the rule

compiler and execution engine to support the ability to debug the rules

themselves whilst the engine is executing.

8.2.1 Rule Debugging

In traditional software development, the debugging of an algorithm is often

carried out within an IDE (Integrated Development Environment), such as

Microsoft Visual Studio 2008 (as used for the construction of the rule compiler

for this project). Normally, breakpoints can be added to a particular line within

the source code of a program and the IDE will halt execution at that line and

allow the developer to step through the code and look at the values of variables

in order to diagnose problems.

In some ways the XML representation of the rules can be classed as source

code for the rule compiler, however, there is not always an XML file as rules

can be transferred to the system through an alternate medium such as a direct

download via the internet from server to client. Additionally, the XML

representation is merely a serialised form of the software objects representing

the rules within the software application, differing from traditional source code

significantly.

In order to provide an equivalent of source code for the rules for use during the

debugging process, it is necessary to output an XML file during rule

compilation. In addition to the production of a source file, variables that are

used internally by the rule engine will require variable names to support the

debugging process.

 119

8 FURTHER RESULTS

This extra support has been added to the rule compiler with the addition of a

new class to support the addition of the debug information to the compiled

rules. This class can be seen in Section 11.3.1.2 . It is responsible for the

creation of a file called Rules.xml and integrating the compilation process of

the rules to the source code output into the new Rules.xml file.

Once the ability to debug is added to the system, breakpoints can be added into

the IDE at particular lines of that source or within the RuleTesting.Tester class.

An appropriate place for this would be within the DoTest method of the Tester

class, prior to the call to the compiled rules Test method.

Once the rule engine has halted at the line of code prior to calling the Test

method on the rules themselves (as seen in Figure 8-2), it is possible, using the

debugging features built in to Visual Studio 2008, to step into the newly

generated rule file and begin debugging the rules themselves.

Figure 8-2 – Screen shot illustrating the break in execution of the rule engine prior to the

test method

 120

8 FURTHER RESULTS

Figure 8-3 shows the result of stepping into the Test method. This jumps from

the C# source code for the rule engine‟s Tester class into the Rule.xml file

produced by the rule compiler. It is then possible, in the same way as

debugging C# code, to debug the rules, by stepping through the code and

analysing the changes to variables within the rules themselves.

As well as being able to debug the rules, when reaching a point in the rules

such as where the value of a parameter is being obtained, the developer can

step into this line which will bring the developer back to the C# source code to

obtain parameter values so this can be debugged also.

Figure 8-3 - Screen shot illustrating the “step-through” debugging of the XML rules

Figure 8-4 shows the effect of stepping into the rules in order to obtain a

property‟s value, such as the Length of a work or rest period. There are a few

interesting things that can be seen from this figure; firstly the Locals window

 121

8 FURTHER RESULTS

in the bottom left shows the variables used by both the compiled Rules and the

rule engine; secondly the Call Stack window, at the bottom in the middle,

shows the current call stack and this shows the previous calling method to the

GetProperty method is the compiled rule, of unknown language.

Figure 8-4 - Screen shot illustrating the Locals and Call Stack windows containing the

debugged rules variables

With the addition of the debugging support, the process of removing faults

with the rules becomes as simple as developing the rules themselves and

results in an all round better solution for rule development.

One of the drawbacks to this approach is that when including debugging

information into the compiled rules, the resulting dynamic link library (DLL)

becomes bloated and the performance execution time is affected. One of the

ways to prevent this affecting the rule engine was to specify that debugging

 122

8 FURTHER RESULTS

information is only included when the rule engine itself is compiled to include

debug information. This means that two version of the engine can be used, one

for diagnosing problems with described rules and the other for regular rule

execution.

8.2.2 Comparison of Debuggable and Normal Rule Compilation

Tests have been undertaken to produce results that allow for the comparison of

the computational performance and memory usage of the rule engine using

both regular compiled rules and those with debugging information included.

With these tests it is possible to see why it is important to use different

versions for both testing and live implementations of the rule engine.

Figure 8-5 - Chart illustrating the computational performance comparison between rules

compiled with and without debugging information

Figure 8-5 shows the results of the tests undertaken to show the difference

between the computational performance of the rule testing process with

debugging information included into the compiled rules and without. It is clear

0

50

100

150

200

250

300

350

400

3
5

0

1
0

5
0

1
7

5
0

2
4

5
0

3
1

5
0

3
8

5
0

4
5

5
0

5
2

5
0

5
9

5
0

6
6

5
0

7
3

5
0

8
0

5
0

8
7

5
0

9
4

5
0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Dataset Size (Appointments)

Computation Performance Comparison
Between Debuggable and Normal Rule

Compilation

Without Debug
Information

With Debug Information

 123

8 FURTHER RESULTS

to see from the results that the performance improvement obtained when not

including the debug information is substantial, especially when testing large

dataset sizes. This is an important find as it will help to identify the need for

two versions of the runtime, one for the rule developer, to help with

diagnosing faults in the rule descriptions, and the other for use in execution of

the rule engine within a live rule testing application.

Figure 8-6 - Chart illustrating the memory usage comparison between rules compiled

with and without debugging information

Interestingly, the memory usage comparison, show in Figure 8-6, shows that

the quantity of memory required when executing the two approaches is nearly

identical, with only mild differences that can be attributed to fluctuations in the

garbage collectors cleanup routine. A strange similarity occurs when the

dataset size reaches around 5000 elements, when a spike occurs in the memory

consumption, simultaneously for both approaches. After some investigation

into the cause of this sudden memory increase, it was found not to occur

within the rule engine and therefore it is highly likely that, again, the common

language runtimes garbage collector found it unsuitable to collect memory at

that time.

118000

120000

122000

124000

126000

128000

130000

132000

3
5

0

1
4

0
0

2
4

5
0

3
5

0
0

4
5

5
0

5
6

0
0

6
6

5
0

7
7

0
0

8
7

5
0

9
8

0
0

M
e

m
o

ry
 U

sa
ge

 (
kB

)

Dataset Size (Appointments)

Memory Usage Comparison Between
Debuggable and Normal Rule

Compilation

Without Debug
Information

With Debug Information

 124

8 FURTHER RESULTS

8.3 Additional Testing Process

Once the new teaching rules were defined correctly, it was possible to

undertake a testing process on those rules on a range of hardware architectures,

in order to gain a comparison of the performance execution between the

driving rules and the teaching rules.

Only the optimised testing process, without debugging information, was used

to obtain results for comparison as it has already been proven that this

approach produces a greater performance. Also, as modifications were made to

the rule engine, the optimised driving rules were retested in conjunction with

the new teaching rules to provide fair comparison between the two.

8.3.1 Test Plan

The teaching test data has been designed to test the boundaries of the teaching

rules, described in Section 8.1.

Figure 8-7 shows a graphical representation of a week of teaching that will

adhere to the new teaching rules and can be used to generate reoccurring sets

of data spaced a week apart. The generation of larger datasets works in a

similar way to the previous testing approach, described in detail in Section

6.1.1.2.

 125

8 FURTHER RESULTS

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7

09:00 - 10:00

10:00 - 11:00

11:00 - 12:00

12:00 - 13:00

13:00 - 14:00

14:00 - 15:00

15:00 - 16:00

16:00 - 17:00

17:00 - 18:00

18:00 - 19:00

19:00 - 20:00

20:00 - 21:00

21:00 - 22:00

22:00 - 23:00

1

2

3

4

5

6

13

14

7

8

9

10

11

12

Figure 8-7 – A single week of the sample teaching dataset represented graphically

The test data for the driving rules are unchanged from those illustrated with

Figure 6-1 and Figure 6-2. However, rather than generating datasets

incrementing with 250 elements of data at a time, this test plan will use dataset

sizes of 350 elements of data in order to work with multiples that can also

support the teaching test data. This is because there are 14 elements of data to

the teaching dataset and 10 elements of data to the driving set, and 350 is a

multiple of both 14 and 10.

In order to support the testing of the new rules and data, additional

functionality was added to the original test bench, described in Section 6.2, to

include the ability to specify which type of rules to test for, driving or

teaching. The top left of Figure 8-8 shows the ability to choose between

Driving and Teaching rules within the testing process.

 126

8 FURTHER RESULTS

Figure 8-8 - Screen shot illustrating the modification to the test bench to include the

testing of Teaching rules

8.4 Comparison of Driving Rules and Teaching Rules

The next step in the additional testing process was to compare the computation

performance between the existing driving rules and the new teaching rules and

their respective datasets.

With the inclusion of the Shift breaks, introduced within the teaching rules,

that ruleset had 6 types of rule in comparison to the driving ruleset which had

4 types of rule. It was expected that this additional complexity would

contribute toward an increase in computation in order that the additionally

rules can be tested against their dataset.

Figure 8-9 shows the computational performance results of testing both the

Driving and Teaching rules. The results are not quite as expected. Initially, the

 127

8 FURTHER RESULTS

expectation was that the additional 2 rules into the ruleset would cause a

natural increase in computation time, relative to the number of rules; so that if

it took the driving rules 16 seconds to test a set of data, the same quantity of

data on the teaching rules would take 24 seconds.

Figure 8-9 - Chart illustrating the computation performance comparison between

driving and teaching rules

It is clear, from Figure 8-10 that this is not the case and that there isn‟t a direct

correlation between ruleset size and computation performance. After some

investigation, it was found that that the complexity of a given rule plays a

significant role in the computation performance of the rulset. Also, the inter-

relationship between rules influences computational performance. For

example, the teaching ruleset contains a Shift which is contained within a

Daily Work Period which is contained within a Weekly Work Period; this

differs significantly as this ruleset has 3 levels of rules whereas the driving

ruleset has only 2 levels of rules, reducing the work plan constructions

workload substantially.

0

50

100

150

200

250

300

350

400

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Dataset Size (Appointments)

Computation Performance
Comparison Between Driving and

Teaching Rules

Driving Rules

Teaching Rules

 128

8 FURTHER RESULTS

Figure 8-10 - Chart illustrating the per rule computation performance comparison

between driving and teaching rules

Another interesting factor that influences the computational performance of

the rule engine, also found in trying to understand the difference in

performance between driving and teaching rules, is the use of various

properties within the rule itself. For example, if the rule requires the testing of

rest periods whose length must be calculated dynamically based on the size of

the surrounding work periods, the additional time required for this calculation,

when dealing with many tests each second, has a significant impact in

reducing the rule engine‟s performance.

The results of the memory usage comparison between driving and teaching

rules, given in Figure 8-11, are as expected from the various differences

between the two rulesets as described above. No doubt, the addition of another

layer in the rule hierarchy will have had an impact in the work plan produced

by the rule engine and explains the increase in the amount of memory required

to store that work plan.

0

10

20

30

40

50

60

70

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Dataset Size (Appointments)

Computation Performance Comparison
Per Rule Between Driving and Teaching

Rules

Time Per Driving Rule

Time Per Teaching Rule

 129

8 FURTHER RESULTS

Figure 8-11 - Chart illustrating the memory usage comparison between driving and

teaching rules

8.5 Comparison of Common Language Infrastructures

So far all of the development and testing work has been undertaken on a

Microsoft Windows based operating systems using the Microsoft .NET CLI

(Common Language Infrastructure) as the platform for executing the rule

testing engine. There are various reasons for choosing this technology, as

discussed in Section 3.3, but there are alternative implementations of the CLI

on top of which software written using the .NET technology can run.

The most supported alternative implementation of the CLI is the Mono project

and is greatly support by Novell, with many of the new developments for the

OpenSUSE Linux implementation being written using the C# language and

running on Mono. Unlike Microsoft‟s .NET CLI, the Mono CLI has been

designed to be cross platform, to run on operating systems such as Linux, Mac

OSX and Microsoft Windows. It can also run across multiple architectures

such as x86, x86-64, ARM, s390 and the PowerPC.

0

20000

40000

60000

80000

100000

120000

140000

160000

180000
M

e
m

o
ry

 U
sa

ge
 (

kB
)

Dataset Size (Appointments)

Memory Usage Comparison Between
Driving and Teaching Rules

Driving Rules

Teaching Rules

 130

8 FURTHER RESULTS

One of the other benefits of Mono is that it is binary compatible with compiled

.NET applications, i.e. it is able to run the compiled executables, because it is

implemented to the same standard (ISO/IEC23271, 2006) as .NET.

All of the following tests use Mono 2.4.2.1 and are executed on the same

hardware and operating system. As an additional measure of success, the rule

engine has been tested against both .NET and Mono to provide a comparison

between the computational performance of the two implementations of the

CLI, to see if this has an effect on the performance of the rule testing engine.

Figure 8-12 shows the comparison between the computational performance of

both the driving and teaching rules when run on .NET and on Mono. The

Mono computational performance is far worse than .NET, although in some

ways this is to be expected as Mono has been designed as a cross platform

solution in comparison to .NET which has been finely tuned for performance

under Microsoft Windows.

Figure 8-12 - Chart illustrating the computation performance comparison between .NET

and Mono

0

50

100

150

200

250

300

350

3
5

0

1
0

5
0

1
7

5
0

2
4

5
0

3
1

5
0

3
8

5
0

4
5

5
0

5
2

5
0

5
9

5
0

6
6

5
0

7
3

5
0

8
0

5
0

8
7

5
0

9
4

5
0

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Dataset Size (Appointments)

Computation Performance Comparison
Between .NET and Mono

Driving Rules - .NET

Driving Rules - Mono

Teaching Rules - .NET

Teaching Rules - Mono

 131

8 FURTHER RESULTS

The most interesting results in this comparison can be found in the memory

usage. Figure 8-13 shows the memory usage comparison between .NET

executing the rules and Mono. The .NET execution shows a smooth controlled

usage of memory with only minor flutters during execution. The Mono

execution shows a more sporadic memory usage across the rule testing process

with large variations in the levels of memory being used. The reasons for this

will be in the implementation of the two CLI‟s garbage collection algorithms,

which is not standardised in the standard.

8.6 Comparison Across Operating Systems

As previously mentioned, the Mono implementation of the CLI standard has

been designed to run across multiple operating systems. This is something that

separates it from the .NET Framework, which, whilst faster and more efficient

at managing memory, is unable to work on different platforms.

Figure 8-13 - Chart illustrating the memory usage comparison between .NET and Mono

0

200000

400000

600000

800000

1000000

1200000

3
5

0

1
4

0
0

2
4

5
0

3
5

0
0

4
5

5
0

5
6

0
0

6
6

5
0

7
7

0
0

8
7

5
0

9
8

0
0

M
e

m
o

ry
 U

sa
ge

 (
kB

)

Dataset Size (Appointments)

Memory Usage Comparison Between
.NET and Mono

Driving Rules - .NET

Driving Rules - Mono

Teaching Rules - .NET

Teaching Rules - Mono

 132

8 FURTHER RESULTS

In order to test the rule engine on alternate platforms, a slight alteration was

required to the StopWatch class used to take measurements of the execution

time as the Microsoft Windows based implementation depends upon the use of

the High Performance Timer using native Windows API function calls.

Obtaining the same level of accuracy on Unix based operating systems such as

the Mac OS or Linux requires an equivalent function such as the gettimeofday

function.

In order to obtain a comparison across multiple operating systems, a Mac Mini

was used. Unfortunately, the only way of testing the solution using the Mac

OS is to use Mac hardware so it was important, in order to use the same

hardware for an equal comparison, that both Linux and Windows tests were

also undertaken on this hardware. It is possible to boot a Mac into a Linux

based Live CD in order to obtain test results. To run Windows Vista on a Mac

requires the installation of the Windows Vista operating systems onto a

separate partition and, with the support of Mac‟s Boot Camp facility, Windows

can be dual booted.

Figure 8-14 – Screen capture illustrating the test bench appearance when executed on the

Mac OSX operating system

 133

8 FURTHER RESULTS

The following tests were undertaken using three different operating systems,

Apple Mac OSX 10.5.7, Microsoft Windows Vista Business SP2 and

openSUSE 11.1. All tests use the same version of Mono, version 2.4.2.1, and

the same underlying hardware, a Mac Mini. Figure 8-14 shows the test bench

software running on the Mac OS using Mono.

After running the test bench on the three platforms, some interesting results

were found (Figure 8-15). Even though the physical hardware has been

designed for the OSX operating system, the computational performance results

showed this to be the worst performing operating system of the three. This is a

strange result as you would expect, considering the hardware and OS have

been designed to work together and the other two OS‟s are designed to work

across various hardware architectures, which you would expect to see a

performance drop as a result. The best performing operating system of the

three is Windows Vista with OpenSUSE coming a close second.

0

50

100

150

200

250

Ex
e

cu
ti

o
n

 T
im

e
 (

m
s)

Dataset Size (Appointments)

Computational Performance Comparison
Between Operating Systems

Apple Mac OSX 10.5.7

OpenSUSE 11.1 (Linux)

Microsoft Windows Vista

Figure 8-15 - Chart illustrating the computation performance comparison between

operating systems

 134

8 FURTHER RESULTS

In terms of memory usage, Figure 8-16 shows an interesting outcome. The

memory usage on the Windows platform is performing the same way as we

saw in the .NET and Mono comparison, it is spiking at regular intervals. The

memory usage on the other two operating systems shows a higher level of

consistency than that of the Windows platform.

The reasons for the strange results from the memory tests are not entirely clear.

The approaches taken to garbage collect are the same across Mono builds for

the various operating systems so the reasons for the fluctuations on Windows

and not the other two are not obvious. After a limited amount of investigation

as to the cause, no feasible explanation was found, however, these tests have

started to move outside the domain of the initial work and may be something

worth coming back to.

0

100000

200000

300000

400000

500000

600000

700000

800000

900000

M
e

m
o

ry
 U

sa
ge

 (
kB

)

Dataset Size (Appointments)

Memory Usage Comparison Between Operating
Systems

Apple Mac OSX 10.5.7

OpenSUSE 11.1 (Linux)

Microsoft Windows Vista

Figure 8-16 - Chart illustrating the memory usage comparison between operating

systems

8.7 Summary

 135

8 FURTHER RESULTS

In this Chapter of the thesis, an expanded set of tests have been undertaken to

test the rule testing engine against an alternate set of rules. Expanding on this

further, a range of tests were conducted to determine the systems performance

on multiple runtimes and across a range of operating systems.

The next chapter of the thesis will draw some conclusions on the work

completed and highlight how the work completed proposes a feasible solution

to the problems outlined in Section 1.4.

 136

9 CONCLUSION

9 CONCLUSION

As a result of undertaking the work reported in this thesis, a new method of

rule testing for scheduling applications has been proposed. This provides a

facility to improve the computational performance of a scheduling system

requiring rule testing.

This chapter of the thesis draws conclusions on the process undertaken through

the project and aims to justify the contributions that are being claimed as a

result of this research.

9.1 Process

The process undertaken for this research followed, relatively closely, the RUP,

which is normally found as a process for managing the flow of software

engineering projects as opposed to a programme of study for a PhD. One of

the justifications for using this approach is that this PhD is within the

Engineering field and, as such, an engineering approach was required.

9.2 Testing

A lengthy testing process took place following the development of the solution

to meet the identified requirements. This process initially focused on a single

ruleset and computation performance and memory usage comparisons were

made between various PC architectures. The outcomes of these tests tended to

show an improved performance between dual core CPUs over single core

CPUs however these results were unsurprising. An important outcome from

these tests was that the developed system functioned correctly and

demonstrated the concept of a rule testing engine that could be incorporated

into scheduling applications.

 137

9 CONCLUSION

Continuing on from the initial testing work, an additional set of tests were

undertaken to demonstrate that this approach was not specifically designed for

a single set of rules, but could be adapted to be used within an alternative

application domain. The driving rules work was compared to a new set of

teaching rules and data to analyse the impact that changing the rules would

have on the computation performance and memory usage of the rule testing

engine. Some interesting results were highlighted in that not just the quantity

but the complexity of rules plays a large part in the performance of the rule

testing engine.

Following on from the addition of a new ruleset, the computational

performance and memory usage tests were undertaken on an alternate common

language infrastructure to see the effects this may have on the overall system

performance. It was clear from the results that execution of the system on

Microsoft‟s .NET Framework differed substantially from that of the slower

and more memory erratic Mono CLI.

Finally tests were undertaken to identify the differences across operating

systems in terms of computational performance and memory usage. An

interesting outcome was found in the result of these tests, in that the Mac OSX

performed worst, even though the tests were running on Mac hardware.

In order to support the development and problem diagnosis of rules during

their construction, a debugging method was included within the additional

testing section. This played an important role in developing the new teaching

rules as without this support, problems during the development process would

have been very complex to diagnose. The ability to debug, pausing the

execution, stepping throughout the code and monitoring variable values

provided a key solution to problem diagnosis.

With respect to the testing work, there were some outcomes that were expected

and naturally support the original contributions claimed by this research. These

include the demonstration of the solutions computational performance and

memory usage by comparison against varying PC architectures. The additional

 138

9 CONCLUSION

testing work demonstrated the ability to use the same rule engine for testing a

ruleset from an alternate application domain.

As well as these natural outcomes, some additional outcomes were discovered

which do not necessarily contribute directly to the claims made by this

research, but nevertheless may inform future work. These are that whilst the

use of systems such as Mono, open source and free, are useful for providing a

cross platform solution to executing software developed with .NET, the

computational performance and memory usage comparisons clearly show that

the .NET Framework is much more efficient at managing the execution of a

process and Mono is not an effective substitute on the Windows platform.

The benefits of Mono were shown in that it is possible to execute applications

compiled using .NET‟s C# without change. Also, the ability, with Mono, to

execute the program across multiple operating systems to compare the

differences in performance provides a justification for its performance to be

less than that of the .NET Framework.

9.3 Justification of Contributions

The research reported in this thesis began with a detailed literature survey in

the technical areas surrounding the proposed project, as reported in Chapter 2.

Inherent in this process was the derivation of the target original contributions,

as set out in section 2.7.

Having undertaken a plan of work aimed at meeting the Objectives outline in

Section 1.2, this section sets out to review the target original contributions, and

to provide a short summary of the work completed, aimed at addressing each

of them.

This research will bridge the gap between rule testing and scheduling

systems providing a solution where previously an optimum solution hasn’t

existed.

 139

9 CONCLUSION

 From the literature review, a variety of research areas have been identified

(Generic scheduling, transport scheduling, rule-based systems, GA‟s) that

contribute part way toward the temporal rule testing goal, but do not

succeed fully.

 The design of a rule testing language is presented in Sections 4.2.2 and 5.1.

This provides a means of describing rules for a rule testing system which

can function in a scheduling environment.

 The rule testing engine presented in Section 5.3 is specific to the field of

scheduling systems as the metadata descriptions for each rule provide a

means of supporting the work plan creation process.

It will describe a potential rule testing definition language that has been

designed around the need for describing rules which relate to temporal

problem domains such as scheduling.

 A rule definition language has been defined in Section 4.2.2 which can be

used to serialise and deserialise rule testing ready rules (as seen in Section

4.3).

 The rule definition metadata described in Section 4.2.3 provides a means

of describing rules that can be organised into a form of work plan.

 The lessons learnt in developing the rule definition language for describing

temporal rules can be transferred to other rule description languages, such

as RuleML(Boley, Tabet, & Wagner, Design Rationale of RuleML: A

Markup Language for Semantic Web Rules, 2001), with the addition of

some metadata to the rule definitions themselves.

It will demonstrate an approach to rule testing by compiling rules to

optimise the speed for continuous testing scenarios such as scheduling.

 140

9 CONCLUSION

 A method for compiling rules is set out in Section 5.1 to optimise the

overall speed of rule testing. Whilst a discussion was presented in Section

3.3 to explain the difficulties in comparing compiled and interpreted rules,

results in Chapter 7 show the computational performance comparisons of

compiled rules in various scenarios.

 In addition, as a result of improving the computational performance of the

rule testing itself, additional bottlenecks have been identified, addressed

and tested and are reported in Chapter 8.

It will provide an example approach to modularising the rule testing

engine in a way in which would allow it to fully integrate with existing

systems.

 A clearly defined interface has been described in Section 4.2.1 in order to

define a link between the rule testing engine and potential host systems.

The standard software development interface provided has been

demonstrated within the test bench in Chapter 6.

It will define a method of benchmarking the resulting solution in order

that further improvements to future developments have a means of

comparison.

 Chapter 6 has defined a specific test programme against which future

developments within this field can test against in order to draw comparison

to determine improvements to the overall rule testing process.

 Chapter 8 defines a second test case that can be used as well as approaches

to testing future work across multiple software platforms and operating

systems to further support future test case comparisons.

 141

9 CONCLUSION

9.4 Impact

Whilst it has been recognised within the literature survey that there are various

existing solutions which can integrate rules into a scheduling process, such as

constraints based approaches and meta-heuristic methods, the limitation is in

the need for an expert to design a scheduling algorithm which takes into

account a set of rules. If the rules were to change, the expert would need to re-

design the scheduling algorithm, at a substantial cost.

The approach proposed within this thesis provides a rule testing solution for

scheduling applications, that can take a set of rules, described in an abstract,

human readable language, and compile them into executable code, for greater

performance than existing general purpose interpreted rule testing engines can

provide.

The impact of such a solution would not only support existing transport

scheduling systems, for which this proposed solution should be able to

integrate due to its modular design, but also other scheduling areas where the

testing of temporal rules is required. As discussed in Section 7.2.1, the value to

an organisation who is currently undertaking the rule testing process manually

is very high and, when looked at across an entire industry sector, or indeed

multiple industry sectors, the potential impact is enormous.

9.5 Future Work

As a result of undertaking the research reported in this thesis a number of areas

have been identified for future work. These are now presented in summary

form.

 142

9 CONCLUSION

9.5.1 Improved Algorithm for Work Plan construction

Currently, the solution proposed in this thesis uses a fairly simple algorithm

for the generation of the work plan from the dataset provided to the rule testing

process. Whilst performance increases have been identified in this research,

additional work could take place in this area to further improve the

performance of this bottleneck within the rule testing process.

This type of research could consider focusing more on mathematical methods

for the improvement of performance as well as considerations for alternate

performance gains in language specific feature areas, such as the reduction in

the number method calls made in the rule testing process, to reduce the

overhead of continually adding and removing stack based data.

As this method is called the most, in conjunction with the compiled rules,

performance increased in this particular area could improve the overall system

performance.

9.5.2 Graphical Interface for Rule Generation

It has become clear that there is a need beyond the domain of the research

reported in this thesis for a tool that will allow the creation of rules using a

high level intuitive graphical interface. For the generation of the rules used in

the testing phase of this research, the rules were constructed programmatically

and were serialised from their object states into XML.

A graphical tool would significantly improve the usability of the system for

those who choose to integrate it within their scheduling system or for those

rule providers who need to provide a representation of their rules to scheduling

applications within their domain.

 143

9 CONCLUSION

9.5.3 Multi-threaded Approach

The current state of processor manufacturer development indicates a potential

for more parallelisation of the rule testing process by taking better advantage

of the multi core and hyper threading technologies included within modern

processors. Intel‟s I7 processor has 4 cores with each core enabled with hyper

threading providing effectively 8 processing units that can be consumed by the

operating system.

The computational performance benefits that can be found by further

improving the rule testing process with the specific inclusion of parallelised

work plan construction or rule testing could be significant and certainly an area

for consideration in the future.

9.5.4 Hardware Acceleration

There is the potential, as in the fields of computer graphics, networking,

physics and other computational expensive tasks, to off-load processing of the

rule testing onto a dedicated piece of hardware. This would free up the main

CPU (Central Processing Unit) for carrying out other standard tasks required

by the Operating System and the user whilst the rule testing process is

underway.

This would require a considerable amount of additional investigation in order

to identify which aspects of the scheduling and rule testing processes should be

off-loaded onto a dedicated processor and which should remain part of the job

for the main CPU. A number of other research fields are also considering this

method for performance increases, especially with the development of

technology such as the Compute Unified Device Architecture (CUDA).

 144

9 CONCLUSION

9.5.5 Validation Checking

The proposed solution does not undertake any validation checking of the rules

to determine whether the initial set of rules are actually valid. There are two

elements to the validation checking problem that need consideration:

1. Are the XML representation of the rules valid, i.e. do they meet with

the XML standard?

2. Do any of the rules contradict any of the other rules?

Further work could be undertaken to address these two issues, the second of

which, it is expected, would be a complex topic to address.

9.5.6 Integration with Existing Scheduling Systems

An important area of further work which is less of a research problem and

more of an application problem is the further testing and demonstration of the

ability to integrate the proposed solution within a variety of existing

scheduling systems. This is the natural next step for the outcome of this

research, both in terms of further proving the concept but also, more

importantly, in an effort toward the commercialisation of the proposed

solution.

One such example of this is the potential integration of the proposed solution

into the GAS system, described in Section 2.2.1.

9.6 Summary

In summary this chapter has summarised the work completed, aimed at

addressing the target original contributions. Additionally, Section 9.5 has

identified a number of potential areas for future work.

10 REFERENCES

145

10 REFERENCES

Abramson, D., & Adela, J. (1991). A Parallel Genetic Algorithm for Solving

the School Timetabling Problem. IJCAI workshop on Parallel Processing in

AI.

Alba, E., & Troya, J. (2002). Improving Flexibility and Efficiency by Adding

Parallelism to Genetic Algorithms. Statistics & Computing , 91-114.

Ambler, S. (2004). The Object Primer: Agile Model-Driven Development with

UML 2.0 (3rd Edition ed.). Cambridge University Press.

Ammons, G., Bodik, R., & Larus, J. (2002). Mining Specifications.

Proceedings of the 29th ACM Symposium on Principles of Programming

Languages.

Baranovsky, A. (n.d.). paxScript.NET. Retrieved 01 2010, from

http://www.paxscript.net

Bartak, R. (2003). Visopt ShopFloor: On The Edge Of Planning And

Scheduling. International Conference on Automated Planning and Scheduling.

Toronto.

Beck, J. C., & Fox, M. S. (1998). A Generic Framework for constraint-directed

search and scheduling. AI Magazine .

Bittner, K. &. (2002). Use Case Modeling. Addison Wesley Professional.

Bittner, K. (2006). Driving Iterative Development With Use Cases. IBM.

Boley, H. (2001). The Rule Markup Language: RDF-XML Data Model, XML

Schema Hierarchy, and XSL Transformations. 14th International Conference

of Applications of Prolog (INAP).

Boley, H., Paschke, A., Tabet, S., & Grosof, B. (2010). Schema Specification

of RuleML 1.0. Retrieved July 2010, from http://ruleml.org/1.0/

Boley, H., Tabet, S., & Wagner, G. (2001). Design Rationale of RuleML: A

Markup Language for Semantic Web Rules. Proceedings of the International

Semantic Web Working Symposium.

Bollow, N. (n.d.). DotGNU Project. Retrieved 01 2010, from

http://www.gnu.org/projects/dotgnu/

10 REFERENCES

146

Bray, T., Paoli, J., Sperberg-McQueen, C., & Maler, E. (2000). eXtensible

Markup Language (XML) 1.0 (Second Edition). W3C Recommendation.

Burke, E., & Petrovic, S. (2002). Recent Research Directions in Automated

Timetabling. European Journal of Operational Research , 140 (2), 266-280.

Cesta, A., Oddi, A., & Susi, A. (2000). Fast Production and Flexible

Maintenance of Schedule for Space Applications. World Automation

Congress.

Chen, L. C., Wetherall, J., & Doncheva, R. (2005). Performance optimisation

of rule-based testing in scheduling within a distributed processing environment

(A). Proceedings of the ESPRC PREP 2005. Lanaster, UK.

Chen, L. C., Wetherall, J., & Doncheva, R. (2005). Performance optimisation

of rule-based testing in scheduling within a distributed processing environment

(B). Proceedings of the Joint DCABES and ICPACE Meeting.

Dail, H. J. (2002). A modular framework for adaptive scheduling in Grid

Application Development Environments. San Diago: University of California.

de Icaza, M., & Jepson, B. (2002). Mono. Dr. Dobb's Journal of Software

Tools .

Dietrich, J. (2003). The Mandarax Manual. Massey University, New Zealand:

Institute of Information Sciences & Technology.

Dietrich, J., Hiller, J., & Schenke, B. (2007). Take - A Rule Compiler for

Derivation Rules. Advances in Rule Interchange and Applications , 134-148.

Dumbill, E. B. (2004). Mono (Developer's Notebook). O'Reilly Media.

Fischetti, M., Lodi, A., Martello, S., & Toth, P. (2001). A Polyhedral

Approach to Simplified Crew Scheduling and Vehicle Scheduling Problems.

Management Science , 833-850.

Fores, S., & Proll, L. (1998). Driver scheduling by integer linear

programming-the TRACS II approach. Proceedings CESA'98 Computational

Engineering in Systems Applications Symposium on Industrial and

Manufacturing Systems, LÚnion des Chercheurs et Ingenieurs Scientifiques

(UCIS).

Forrest, S. (1996). Genetic Algorithms. ACM Computing Surveys (CSUR) , 77-

70.

10 REFERENCES

147

Freling, R., Huisman, D., & Wagelmans, A. (2000). Applying an Integrated

Approach to Vehicle and Crew Scheduling in Practice. Erasmus Research

Institute of Management, Erasmus University Rotterdam.

Freling, R., Huisman, D., & Wagelmans, A. (2003). Models and Algorithms

for Integration of Vehicle and Crew Scheduling. Journal of Scheduling , 63-

85.

Geer, D. (2005). Chip Makers Turn to Multicore Processors. IEEE Computer

Society .

Goncalves, J., Mendes, J., & Resende, M. (2008). A Genetic Algorithm for the

Resource Constrained Multi-Project Scheduling Problem. European Journal of

Operational Research , 189 (3), 1171-1190.

Green, J. (2001). Buyer‟s Guide: Job Scheduling Software. Windows 2000

Magazine .

Hayes-Roth, F. (1985). Rule-Based Systems. . Communications of the ACM ,

921-932.

Hericko, M., Juric, M. B., Rozman, I., Beloglavec, S., & Zivkovic, A. (2003).

Object serialization analysis and comparison in Java and .NET. ASM

SIGPLAN Notices, (pp. 44-54).

ISO/IEC23270. (2006). C# Language Specification. International Organisation

for Standardization (ISO).

ISO/IEC23271. (2006). Common Language Infrastructure (CLI) Partitions I to

VI. International Organisation for Standardization (ISO).

JSR-199. (n.d.). JavaTM Compiler API. Retrieved from Java Community

Process: http://jcp.org/en/jsr/detail?id=199

JSR-94. (n.d.). JavaTM Rule Engine API. Retrieved 2010, from Java

Community Process: http://jcp.org/en/jsr/detail?id=94

Kerningham, B., & Van Wyk, C. (1998). Timing Trials, or the Trials of

Timing: Experiments with Scripting and User-Interface Languages. Software -

Practice and Experience, (pp. 819-843).

Krintz, C., Grove, D., Lieber, D., Sarkar, V., & Calder, B. (2001). Reducing

the Overhead of Dynamic Compilation. Software - Practice and Experience,

(pp. 717-738).

Kwan, R., Kwan, A., & Wren, A. (2001). Evolutionary Driver Scheduling with

Relief Chains. Evolutionary Computation , 9 (4), 445 - 460.

10 REFERENCES

148

Lee, J. K., & Sohn, M. M. (2003). The Extensible Rule Markup Language.

Communications of the ACM , 59-64.

Liebowitz, J. (1997). Intelligent scheduling with GUESS (Generically used

expert scheduling system): development and testing result. International

Journal of Knowledge Engineering and Neural Networks (Expert Systems) .

Lu, C., Stankovic, J. A., Tao, G., & Son, S. H. (2001). Feedback Control Real-

Time Scheduling: Framework, Modelling, and Algorithms. Journal of Real-

Time Systems .

Mak, B., & Blanning, R. (2003). A logic-based approach to rule induction in

expert systems. International Journal of Knowledge Engineering and Neural

Networks .

Malachy, C., & Crawford, I. (2007). Scheduling Trains on a Network of Busy

Complex Stations. Transportation Research Part B: Methodological , 41 (2),

159-178.

Martijn, M., van der Heijden, M., & van Harten, A. (2007). Comparison of

Agent-Based Scheduling to Look-Ahead Heuristics for Real-Time

Transportation Problems. European Journal of Operational Research , 181

(1), 59-75.

Newhall, T. (1999). Performance Measurement of Interpreted, Just-In-Time

Compiled and Dynamically Compiled Executions: PhD Dissertation. Madison:

University of Wisconsin.

Pan, J. (2005). Requirements for a Semantic Web Rule Language. W3C

Workshop on Rule Languages for Interoperability. Washington D.C., USA.

Pavel, O., Ivan, S., & Jan, R. (1996). Multilevel Distributed Genetic

Algorithms. First International Conference on Genetic Algorithms in

Engineering Systems: Innovations and Applications.

Peters, E., de Matta, R., & Boe, W. (2007). Short-Term Work Scheduling with

Job Assignment Flexibility for a Multi-Fleet Transport System. European

Journal of Operational Research , 180 (1), 82-98.

Pinto., I. G., Monterio, V. S., & Rosa, A. C. (1999). Distributed Genetic

Algorithms Using DLL. IEEE International Conference on Systems, Man, and

Cybernetics. Tokyo, Japan.

Proth, J.-M. (2007). Scheduling: New Trends in Industrial Environment.

Annual Reviews in Control , 31 (1), 157-166.

10 REFERENCES

149

RuleML. (n.d.). Retrieved 2010, from RuleML: http://ruleml.org/

Rumbaugh, J., Jacobson, I., & Booch, G. (2004). The Unified Modeling

Language Reference Manual. Addison-Wesley.

Shadbolt, N., Berners-Lee, T., & Hall, W. (2006). The Semantic Web

Revisited. IEEE Intelligent Systems , 93-101.

Sommerville, I. (2006). Software Engineering 8. Addison Wesley.

Stutz, D., Neward, T., & Shilling, G. (2003). Shared Source CLI Essentials.

Subramanian, L., Katz, R. H., & Franklin, J. (2000). Aggregate Scheduling:

Enhancing Throughput in Collective Tasking Systems. Fourth USENIX

Symposium on Operating Systems Design and Implementation (OSDI). San

Diego.

Thompson, H., Tobin, R., & Connolly, D. (2005). Validator for XML Schema,

XSV 3.1-1 of 2007/12/11 16:20:05. Retrieved July 2010, from

http://www.w3.org/2001/03/webdata/xsv

Tongchim, S., & Chongstitvatana, P. (2002). Parallel Genetic Algorithm with

Parameter Adaption. Information Processing Letter , pp. 47-54.

Transport, D. o. (1998). Drivers’ Hours and Tachograph Rules. UK.

Wagner, G. (2002). How to Design a General Rule Markup Language.

Technologies for the Semantic Web Workshop Proceedings.

Weerdt, M. (1999). Towards Algorithms For Scheduling Of Transport

Processes. TRAIL Research School, Delft University of Technology.

Wetherall, J. (2002). Kings Ferry Coaches, Intermediate Progress Report.

School of Engineering, University of Greenwich.

Whaley, J., Martin, M., & Lam, M. (2002). Automatic Extraction of Object

Oriented Component Interfaces. Proceedings of the ACM SIGSOFT 2002.

International Symposium on Software Testing and Analysis.

Wren, A., Fores, S., Kwan, A., Kwan, R., Parker, M., & Proll, L. (2002). A

Flexible System for Scheduling Drivers. University of Leeds Research Report

Series. University of Leeds.

11 APPENDICES

150

11 APPENDICES

11 APPENDICES

151

11.1 Object Serialisation Example

An example of object serialisation using the C# programming languages is as

follows. This simple example uses a class called Value which has two public

variables, Description and Type. Figure 11-1 provides an example of how this

class is defined.

public class MyClass

{

 public string Description;

 public string Value;

}

Figure 11-1 - XML Serialisation Example A

The serialisation process is made very simple in the sense that there are a set of

classes that exist to support the process of serialisation and deserialisation.

Figure 11-2 provides an example of the serialisation process using the .NET

Framework approach to XML object serialisation. The variable

outputStream being passed in as the first parameter of the Serialize

method of the XMLSerializer object can be any type of stream such as a

File stream or even a Network stream.

// Create a new instance of MyClass and set some values

// to the public variables.

MyClass myClass = new MyClass();

myClass.Description = "Hello World";

myClass.Value = "Anything";

// Create the XmlSerializer object which will be used to

// convert the object into a stream of XML.

XmlSerializer newSerializer = new XmlSerializer(typeof(MyClass));

// Perform the serialization of the array to the stream.

newSerializer.Serialize(outputStream, myClass);

Figure 11-2 - XML Serialisation Example B

Now that serialisation of the object has taken place the XML representation

exists at the other end of the outputStream. This means that it would

reside in a file if it were a file stream or even on another machine if it were a

network stream. Figure 11-3 shows the resulting XML representation of the

object as produced by the XmlSerializer object in .NET.

11 APPENDICES

152

<?xml version="1.0"?>

<MyClass>

 <Description>Hello World</Description>

 <Value>Anything</Value>

</MyClass>

Figure 11-3 - XML Serialisation Example C

11 APPENDICES

153

11.2 Class Diagrams

1
1
 A

P
P

E
N

D
IC

E
S

1
5
4

1
1
 A

P
P

E
N

D
IC

E
S

1
5
5

11 APPENDICES

156

11.3 Code Listing

11 APPENDICES

157

11.3.1 RuleCompiler Namespace

11.3.1.1 Compiler Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use this library for providing dynamically sizable collections.

using System.Collections.Generic;

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection;

using System.Reflection.Emit;

// Use all of the types defined in the RuleDefinitionLanguage to do the

// majority of the compilation process.

using RuleDefinitionLanguage;

/// <summary>

/// The RuleCompiler namespace contains all of the functionality

/// required to support the compilation of the rules in the rule

/// definition language to executable code.

/// </summary>

namespace RuleCompiler

{

 /// <summary>

 /// Compiler Class.

 /// This class is used to compile rules into executable code.

 /// </summary>

 public static class Compiler

 {

 /// <summary>

 /// The Compile method is used to take in the Rule Description

 /// Language and return a Type object ready for execution.

 /// </summary>

 /// <param name="periods">

 /// The periods parameters defines the collection of period

 /// objects from which the new Types are to be created.

 /// </param>

 /// <returns>

 /// Returns a Type array from which new instances can be created

 /// and instantiated.

 /// </returns>

 public static Type[] Compile(Periods periods, Type[]

datasetTypes)

 {

 // Create a collection to store type mapping information

 // which is used to allow us to see the relationship

 // between the various data types.

 SortedList<string, TypeMap> typeMapping = new

SortedList<string, TypeMap>();

 // Find out what type of data we are looking at so that

 // it can be related to the periods types.

 for(int a = 0; a < datasetTypes.Length; a++)

 {

 String typeName = datasetTypes[a].Name;

 if(!typeMapping.ContainsKey(typeName))

 {

 typeMapping.Add(typeName, new

TypeMap(typeName));

 }

 }

 // Create a mapping between the periods and the dataset

 // so that we can build up a relationship list between

 // entries.

11 APPENDICES

158

 foreach(Period period in periods)

 {

 // Add the object names which are contained

 // within the period object.

 TypeMap typeMap = new

TypeMap(period.Description.Name);

 foreach(Contain contain in

period.Description.Contains)

 typeMap.Contains.Add(contain.Name);

 typeMapping.Add(period.Description.Name,

typeMap);

 }

 // Create a cross-relationship to allow an object to

 // know what objects it is contained within.

 foreach(TypeMap typeMap in typeMapping.Values)

 {

 for(int c = 0; c < typeMap.Contains.Count; c++)

 {

 // Check to ensure that we have a typeMap

 // for the type that is being

 // cross-referenced. If not then it is

 // necessary to throw an exception as we

 // are missing necessary information.

 String containName = (String)

typeMap.Contains[c];

 if(!typeMapping.ContainsKey(containName))

 throw new

RuleCompilerException("Unknown Type: " + containName);

 else

 ((TypeMap)

typeMapping[containName]).ContainWithin.Add(typeMap.Name);

 }

 }

 // Perform a check to ensure that all of the prepost

 // entries have type names which are listed in our

 // type map. If not then we must throw an exception.

 foreach(Period period in periods)

 {

 foreach(PrePost prePost in

period.Description.PrePosts)

 {

 if((prePost.Pre != "") &&

(!typeMapping.ContainsKey(prePost.Pre)))

 throw new

RuleCompilerException("Unknown Type: " + prePost.Pre + "\nDefined within rule:

" + period.Description.Name + " as post.");

 if((prePost.Post != "") &&

(!typeMapping.ContainsKey(prePost.Post)))

 throw new

RuleCompilerException("Unknown Type: " + prePost.Post + "\nDefined within rule:

" + period.Description.Name + " as post.");

 ((TypeMap)

typeMapping[period.Description.Name]).PrePost.Add(new PrePost(prePost.Pre,

prePost.Post));

 }

 }

 // Perform a check to ensure that each of the give

 // dataset types can be contained by at least one

 // of the periods, otherwise we would wont be able

 // to test the dataset type later.

 foreach(Type datasetType in datasetTypes)

 {

 String typeName = datasetType.Name;

 if(((TypeMap)typeMapping[typeName]).ContainWithin.Count == 0)

11 APPENDICES

159

 throw new

RuleCompilerException("Uncontained Type: " + typeName + "\nThe names type is

not contained by a rule statement and therefore cannot be tested.");

 }

 // Declare the necessary assembly builder variables for

 // use in this method.

 AssemblyName assemblyName = null;

 AssemblyBuilder builder = null;

 ModuleBuilder module = null;

 // Intialise the new Assembly and declare it is run only

 // for the time beging. Later in may be worth look at

 // ways of caching the compiled assembly to prevent

 // recompilation but for the time being, we will

 // recompile.

 assemblyName = new AssemblyName();

 assemblyName.Name = "TestAssembly";

 builder =

AppDomain.CurrentDomain.DefineDynamicAssembly(assemblyName,

AssemblyBuilderAccess.RunAndSave);

 // Define the module within the Assembly that will

 // contain the new types.

 module = builder.DefineDynamicModule("TestModule",

"Test.dll", DebugSupport.IsDebuggable);

 // Define the object that will deal with debug support

 // for us.

 DebugSupport debugSupport = new DebugSupport(builder,

module);

 // Define an array to store the new types, one type per

 // period, then, using a loop, get each period to

 // compile itself.

 Type[] theTypes = new Type[periods.Count];

 for(int i = 0; i < periods.Count; i++)

 theTypes[i] = periods[i].Compile(module,

typeMapping[periods[i].Description.Name], debugSupport);

 // Dispose the debugSupport object, ensuring the source

 // file gets closed properly.

 debugSupport.Dispose();

 // Save the compiled rules into a dynamic link library

 builder.Save("Test.dll");

 // Save an XML representation of the rules along with

 // the DLL to allow for debugging later.

 return theTypes;

 }

 }

}

11.3.1.2 DebugSupport Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use this library for providing dynamically sizable collections.

using System.Collections.Generic;

// Use these libraries for access to the classes required for emitting

// debug information.

using System.Diagnostics;

using System.Diagnostics.SymbolStore;

// Use this library for access to the file relate functionality.

using System.IO;

11 APPENDICES

160

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection.Emit;

/// <summary>

/// The RuleCompiler namespace contains all of the functionality

/// required to support the compilation of the rules in the rule

/// definition language to executable code.

/// </summary>

namespace RuleCompiler

{

 /// <summary>

 /// The DebuggingCodeMarker struct is used by the

 /// DebuggingSupport class to identify the line and

 /// character position in a snapshot of the emitted

 /// file.

 /// </summary>

 public struct DebugCodeMarker

 {

 /// <summary>

 /// The Line parameters stores the current line

 /// in the source file to which this marker refers.

 /// </summary>

 public int Line;

 /// <summary>

 /// The CharPos parameter stores the current column

 /// in the source file to which this marker refers.

 /// </summary>

 public int CharPos;

 /// <summary>

 /// A simple constructor used to provide the line and

 /// charpos on construction.

 /// </summary>

 public DebugCodeMarker(int line, int charPos)

 {

 Line = line;

 CharPos = charPos;

 }

 }

 /// <summary>

 /// The DebuggingSupport file contains everything required

 /// to include the ability to include debug information

 /// with the compiled rules.

 /// </summary>

 public class DebugSupport : IDisposable

 {

 /// <summary>

 /// The debuggable variable is used locally to store our

 /// debuggability.

 /// </summary>

 private bool debuggable;

 /// <summary>

 /// The sourceFile variable is used locally to store the

 /// location of the sourceFile.

 /// </summary>

 private string sourceFile;

 /// <summary>

 /// The sourceWriter variable is used locally to store the

 /// stream writer for churning source code out to the file.

 /// </summary>

 private StreamWriter sourceWriter;

 /// <summary>

 /// The symbolDocument variable is used locally when writing

 /// source code marker points into the compiled rules assembly.

 /// </summary>

 private ISymbolDocumentWriter symbolDocument;

 /// <summary>

11 APPENDICES

161

 /// The charPos variable is used locally to track the charPos

 /// of the current character in the source file.

 /// </summary>

 private int charPos = 0;

 /// <summary>

 /// The lineCount variable is used locally to track the number

 /// of lines stored in the source file.

 /// </summary>

 private int lineCount = 1;

 /// <summary>

 /// The tabCount variable is used locally to track the number of

 /// tabs to indent newly written source code to the source file

 /// with.

 /// </summary>

 private int tabCount = 0;

 /// <summary>

 /// The varCounts variable is used to track the number of

 /// occurances of variables with similar types in order that each

 /// can be assigned a unique number.

 /// </summary>

 SortedList<string, int> varCounts;

 /// <summary>

 /// The marker stack is used to store start markers for the

 /// beginning of a code segment within the source code. Calling

 /// StartMarker will add a new entry to the top of the stack and

 /// calling EndMarker will pop an entry off, using it to complete

 /// the beginning and end of a segment of code.

 /// </summary>

 Stack<DebugCodeMarker> markers;

 /// <summary>

 /// The TabCount property returns the current number of tabs that

 /// the source is to be indented with.

 /// </summary>

 public int TabCount

 {

 get

 {

 return tabCount;

 }

 }

 /// <summary>

 /// The Debuggable property describes when the compiliation process

 /// is currently emitting debug information.

 /// </summary>

 public bool Debuggable

 {

 get

 {

 return debuggable;

 }

 }

 /// <summary>

 /// The static IsDebuggable property determines firstly when the

 /// RuleCompiler library is built to include debug symbals and

 /// secondly whether a debugger is attached. The result is a

 /// combination of the two to determine whether or not to debug.

 /// </summary>

 public static bool IsDebuggable

 {

 get

 {

#if DEBUG

 return (Debugger.IsAttached);

#else

 return false;

#endif

 }

 }

11 APPENDICES

162

 /// <summary>

 /// The StartMarker method starts a new segment marker point within

 /// the source code at the current line and character position,

 /// adding it to the marker stack.

 /// </summary>

 public void StartMarker()

 {

 // We only carry out this functionality if the new code is

 // debuggable.

 if (!debuggable) return;

 // Crete a new start marker using out current line and character

 // position.

 DebugCodeMarker startMarker = new DebugCodeMarker(lineCount,

charPos);

 // Push this new marker onto our stack.

 markers.Push(startMarker);

 }

 /// <summary>

 /// The EndMarker method pops the last added entry off of the marker

 /// start and uses it, along with the current line and character

 /// position, to determine the section of code within the source code

 /// that is used as the mark sequence point in the currently emitting

 /// IL Generator.

 /// </summary>

 /// <param name="ilGenerator">

 /// The ilGenerator parameter is used to emit a MarkSequencePoint,

 /// adding debug information to the code.

 /// </param>

 public void EndMarker(ILGenerator ilGenerator)

 {

 // We only carry out this functionality if the new code is

 // debuggable.

 if (!debuggable) return;

 // Pop the last added marker form the stack, this is our start

 // point within the source code.

 DebugCodeMarker startMarker = markers.Pop();

 // Emit a MarkSequencePoint within the code to tie the segment of

 // source code to the emitted il code.

 ilGenerator.MarkSequencePoint(symbolDocument, startMarker.Line,

startMarker.CharPos, lineCount, charPos);

 // By emitting a Nop instruction we are ensuring that out programs

 // execution with stop at the marked sequenced point, even if no

 // real functionality is taken place.

 ilGenerator.Emit(OpCodes.Nop);

 }

 /// <summary>

 /// The SetVariableName method is used to assign each variable to

 /// be viewed in the variable list with a unique name.

 /// </summary>

 /// <param name="builder">

 /// The builder parameter represents the LocalBuilder to which we

 /// are assigning a variable name.

 /// </param>

 /// <param name="name">

 /// The name parameter provides a string which describes the

 /// name to which a unique number will be attached to

 /// form the variable name.

 /// </param>

 public void SetVariableName(LocalBuilder builder, string name)

 {

 // We only carry out this functionality if the new code is

 // debuggable.

 if (!debuggable) return;

 // If the name exists in the sorted list, get the value the

 // is currently being held.

 int num = 0;

 if (varCounts.ContainsKey(name))

 num = varCounts[name];

11 APPENDICES

163

 // Increment the unique number and save it back to the array

 // for potential use later.

 num++;

 varCounts[name] = num;

 // Set the debug data so that the variable name is the name

 // provided with the unique number appended to the end.

 builder.SetLocalSymInfo(name + num.ToString());

 }

 /// <summary>

 /// The DebuggingSupport constructor takes the AssemblyBuilder and

 /// ModuleBuilder and sets them up to incldue all the necessary

 /// configuration to support debugging, if debugging should be

 /// enabled.

 /// </summary>

 /// <param name="builder">

 /// The builder parameter provides the AssemblyBuilder object to be

 /// configured for debugging.

 /// </param>

 /// <param name="module">

 /// The module parameter provides the ModuleBuilder object to be

 /// configured for debugging.

 /// </param>

 public DebugSupport(AssemblyBuilder builder, ModuleBuilder module)

 {

 // Store in our local variable whether or not we should produce

 // any debug information.

 debuggable = IsDebuggable;

 // We only carry out the rest of this functionality if the new

 // code is debuggable.

 if (!debuggable)

 return;

 // Create ourselves the stack for the markers.

 markers = new Stack<DebugCodeMarker>();

 // Create ourselves the array of variable numbers so we don't

 // duplicate within the code.

 varCounts = new SortedList<string, int>();

 // Determine the sourceFile filename for use by the filestream.

 sourceFile = System.IO.Path.Combine(Environment.CurrentDirectory,

"Rules.xml");

 // Open our source file output stream.

 sourceWriter = new StreamWriter(sourceFile);

 // If we are debuggable, add the debuggable attribute to our

 // new assembly.

 builder.SetCustomAttribute(new

CustomAttributeBuilder(typeof(DebuggableAttribute).GetConstructor(new Type[] {

typeof(DebuggableAttribute.DebuggingModes) }), new object[] {

DebuggableAttribute.DebuggingModes.DisableOptimizations |

DebuggableAttribute.DebuggingModes.Default }));

 // If we are debuggable, we need to define a symbol document

writer.

 symbolDocument = module.DefineDocument(sourceFile, Guid.Empty,

Guid.Empty, Guid.Empty);

 }

 /// <summary>

 /// The WriteSource method is used to write a line of source code

 /// to the source file. It does not emit any mark points to the

 /// debug information, just emits text to the source file.

 /// </summary>

 /// <param name="source">

 /// The source parameter provides the source code to write to the

 /// file.

 /// </param>

 public void WriteSource(string source)

 {

 // We only carry out this functionality if the new code is

11 APPENDICES

164

 // debuggable.

 if (!debuggable) return;

 // Count the number of lines within the text be output.

 lineCount += source.Split('\n').Length - 1;

 // If the source includes end brackets we'll reduce the

 // indention.

 int deTabs = source.Split(new string[] { @"</" },

StringSplitOptions.None).Length + source.Split(new string[] { @"/>" },

StringSplitOptions.None).Length - 2;

 tabCount -= deTabs;

 // Prepend the tabs onto the start of the source code.

 source = (new string('\t', tabCount)) + source;

 // Does this source code have a new line, if so, we need

 // to determine the new charPos based on the last line

 // within the source, other we just increment the current

 // charPos.

 if (source.LastIndexOf('\n') > 0)

 charPos = source.Length - source.LastIndexOf('\n');

 else

 charPos += source.Length;

 // Write the new line of source to the sourceWriter.

 sourceWriter.Write(source);

 // If the source includes start brackets we'll increase the

 // indention.

 int tabs = (source.Split(new string[] { @"<" },

StringSplitOptions.None).Length - 1) - (source.Split(new string[] { @"</" },

StringSplitOptions.None).Length - 1);

 tabCount += tabs;

 }

 /// <summary>

 /// The WriteSourceLine method is used to write a line of source

 /// code to the source file, appending a newline to the end. It

 /// does not emit any mark points to the debug information, just

 /// emits text to the source file.

 /// </summary>

 /// <param name="source">

 /// The source parameter provides the source code to write to the

 /// file.

 /// </param>

 public void WriteSourceLine(string source)

 {

 // We only carry out this functionality if the new code is

 // debuggable.

 if (!debuggable) return;

 // Using the WriteSource method to output the given source

 // code, appending a newline character to it.

 WriteSource(source + "\r\n");

 }

 /// <summary>

 /// The WriteSource method is used to write a line of source code

 /// to the source file. This method will also emit debug information

 /// to surround the source.

 /// </summary>

 /// <param name="source">

 /// The source parameter provides the source code to write to the

 /// file.

 /// </param>

 /// <param name="ilGenerator">

 /// The ilGenerator parameter provides the ILGenerator instance to

 /// mark with the given piece of source.

 /// </param>

 public void WriteSourceAndMark(string source, ILGenerator ilGenerator)

 {

 // We only carry out this functionality if the new code is

 // debuggable.

 if (!debuggable) return;

11 APPENDICES

165

 // First we set a StartMarker, them we WriteSource, then

 // finally an EndMarker.

 StartMarker();

 WriteSource(source);

 EndMarker(ilGenerator);

 }

 /// <summary>

 /// The WriteSourceLine method is used to write a line of source

 /// code to the source file, appending a newline to the end. This

 /// method will also emit debug information to surround the source.

 /// </summary>

 /// <param name="source">

 /// The source parameter provides the source code to write to the

 /// file.

 /// </param>

 /// <param name="ilGenerator">

 /// The ilGenerator parameter provides the ILGenerator instance to

 /// mark with the given piece of source.

 /// </param>

 public void WriteSourceLineAndMark(string source, ILGenerator

ilGenerator)

 {

 // We only carry out this functionality if the new code is

 // debuggable.

 if (!debuggable) return;

 // First we set a StartMarker, them we WriteSourceLine, then

 // finally an EndMarker.

 StartMarker();

 WriteSourceLine(source);

 EndMarker(ilGenerator);

 }

 /// <summary>

 /// This dispose method will clean up any open file streams and

 /// clear any arrays ready for garbage collection.

 /// </summary>

 public void Dispose()

 {

 // Only clear up the markers if the object has been created.

 if (markers != null)

 {

 markers.Clear();

 markers = null;

 }

 // Only clear up the sourceWriter if the object has been

 // created.

 if (sourceWriter != null)

 {

 sourceWriter.Close();

 sourceWriter.Dispose();

 sourceWriter = null;

 }

 }

 }

}

11.3.1.3 RuleCompilerException Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

namespace RuleCompiler

{

 /// <summary>

 /// The RuleCompilerException class is used to describe a

11 APPENDICES

166

 /// throwable exception that is generation which there are

 /// problems found during the compilation process.

 /// </summary>

 public class RuleCompilerException : Exception

 {

 public RuleCompilerException(String Message)

 : base(Message)

 {

 }

 }

}

11.3.1.4 TypeMap Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

// Use the RuleDefinitionLanguage library, PrePost, as a means of storage.

using RuleDefinitionLanguage;

/// <summary>

/// The RuleCompiler namespace contains all of the functionality

/// required to support the compilation of the rules in the rule

/// definition language to executable code.

/// </summary>

namespace RuleCompiler

{

 /// <summary>

 /// The TypeMap class provides a means of storing

 /// a complete list of the PrePost's, type names contained

 /// within or that can contain Types. This is used after the

 /// main compilation to do a check to ensure all loosely

 /// defined types, which are referenced, exist, once compiled.

 /// </summary>

 public class TypeMap

 {

 public String Name;

 public List<PrePost> PrePost = new List<PrePost>();

 public List<string> Contains = new List<string>();

 public List<string> ContainWithin = new List<string>();

 public TypeMap(String name)

 {

 Name = name;

 }

 }

}

11 APPENDICES

167

11.3.2 RuleDefinitionLanguage Namespace

11.3.2.1 AndCondition Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection.Emit;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// AndCondition Class. Used to an And condition which

 /// devides into different parts.

 /// </summary>

 [Serializable()]

 public class AndCondition : Comparitor

 {

 private Comparitor[] lConditions;

 /// <summary>

 /// The Conditions member contains the various Comparitor which are

 /// to be And-ed together to determine a positive or negative

 /// result.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public Comparitor[] Conditions

 {

 get

 {

 return lConditions;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lConditions = value;

 }

 }

 /// <summary>

 /// The default constructor for this class allocates and empty

 /// array of conditions for the AndCondition which, if tested, would

 /// result in a True statement.

 /// </summary>

 public AndCondition()

 {

 Conditions = new Comparitor[0];

 }

 /// <summary>

 /// This constructor allows the allocation of the conditions to be

 /// set on initialisation of the class.

 /// </summary>

 /// <param name="conditions">

 /// The Conditions member contains the various Comparitor which are

 /// to be And-ed together to determine a positive or negative

 /// result.

 /// </param>

 public AndCondition(Comparitor[] conditions)

11 APPENDICES

168

 {

 Conditions = conditions;

 }

 /// <summary>

 /// The Compile method for the And comparision will emit the

 /// appropriate IL to combine to boolean conditions.

 /// </summary>

 /// <param name="retVal">

 /// The retVal parameter is the local variable passed in by the

 /// caller to be used to store the result of this And boolean

 /// comparison.

 /// </param>

 /// <param name="ilGenerator">

 /// The ilGenerator parameter is used to perform the emitting of

 /// the necessary And comparison code.

 /// </param>

 /// <param name="debugSupport">

 /// The debugSupport is used to allow the compilation process

 /// emit debug information.

 /// </param>

 public override void Compile(LocalBuilder retVal, ILGenerator

ilGenerator, RuleCompiler.DebugSupport debugSupport)

 {

 debugSupport.WriteSourceLineAndMark("<And>", ilGenerator);

 LocalBuilder[] retVals = new LocalBuilder[Conditions.Length];

 for (int i = 0; i < Conditions.Length; i++)

 {

 retVals[i] = ilGenerator.DeclareLocal(typeof(bool));

 debugSupport.SetVariableName(retVals[i], "And");

 ilGenerator.BeginScope();

 Conditions[i].Compile(retVals[i], ilGenerator, debugSupport);

 ilGenerator.EndScope();

 }

 Label endLabel = ilGenerator.DefineLabel();

 ilGenerator.Emit(OpCodes.Ldc_I4_0);

 ilGenerator.Emit(OpCodes.Stloc_S, retVal);

 for (int ii = 1; ii < retVals.Length; ii++)

 {

 ilGenerator.Emit(OpCodes.Ldloc_S, retVals[ii - 1]);

 ilGenerator.Emit(OpCodes.Ldloc_S, retVals[ii]);

 Label nextLabel = ilGenerator.DefineLabel();

 ilGenerator.Emit(OpCodes.Beq_S, nextLabel);

 ilGenerator.Emit(OpCodes.Br_S, endLabel);

 ilGenerator.MarkLabel(nextLabel);

 }

 ilGenerator.Emit(OpCodes.Ldc_I4_1);

 ilGenerator.Emit(OpCodes.Stloc_S, retVal);

 ilGenerator.MarkLabel(endLabel);

 debugSupport.WriteSourceLineAndMark("</And>", ilGenerator);

 }

 }

}

11.3.2.2 Comparison Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection.Emit;

11 APPENDICES

169

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// The ComparisonOperation enum describes the type of

 /// comparison to make on two true or false values.

 /// </summary>

 public enum ComparisonOperation

 {

 /// <summary>

 /// Are the two values equal?

 /// </summary>

 Equals,

 /// <summary>

 /// Are the two values not equal?

 /// </summary>

 NotEquals,

 /// <summary>

 /// Is the first value less than the second? Can only be

 /// applied to values of a numeric nature.

 /// </summary>

 LessThan,

 /// <summary>

 /// Is the first value less than or equal to the second?

 /// Can only be applied to values of a numeric nature.

 /// </summary>

 LessThanOrEqualTo,

 /// <summary>

 /// Is the first value greater than the second? Can only

 /// be applied to values of a numeric nature.

 /// </summary>

 GreaterThan,

 /// <summary>

 /// Is the first value greater or equal to the second?

 /// Can only be applied to values of a numeric nature.

 /// </summary>

 GreaterThanOrEqualTo

 };

 /// <summary>

 /// Comparison Class. Used to compare two values.

 /// </summary>

 [Serializable()]

 public class Comparison : Comparitor

 {

 private ComparisonOperation lOperation;

 private Value[] lValues;

 private Comparitor lCondition;

 /// <summary>

 /// Operation describe the type of comparison to make.

 /// </summary>

 public ComparisonOperation Operation

 {

 get

 {

 return lOperation;

 }

 set

 {

 lOperation = value;

 }

 }

 /// <summary>

11 APPENDICES

170

 /// Values contain the different values to make comparisons with.

 /// The different values must be of the same ValueType to have a

 /// chance at returning a True value.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public Value[] Values

 {

 get

 {

 return lValues;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lValues = value;

 }

 }

 /// <summary>

 /// Condition describes any additional condition which must be

 /// satisfied in order to return a True value, such as requiring

 /// compensation. This member can be null.

 /// </summary>

 public Comparitor Condition

 {

 get

 {

 return lCondition;

 }

 set

 {

 lCondition = value;

 }

 }

 /// <summary>

 /// The default constructor allocates initial values. The default

 /// comparison is set to Equals with no Values or Conditions which

 /// will return True unless changed.

 /// </summary>

 public Comparison()

 {

 Operation = ComparisonOperation.Equals;

 Values = new Value[0];

 //Condition = new Comparitor();

 }

 /// <summary>

 /// This constructor allows the member variables to be initialised

 /// at construction.

 /// </summary>

 /// <param name="operation">

 /// operation describe the type of comparison to make.

 /// </param>

 /// <param name="values">

 /// values contain the different values to make comparisons with.

 /// The different values must be of the same ValueType to have a

 /// chance at returning a True value.

 /// </param>

 /// <param name="condition">

 /// condition describes any additional condition which must be

 /// satisfied in order to return a True value, such as requiring

 /// compensation. This parameter can be null.

 /// </param>

 public Comparison(ComparisonOperation operation, Value[] values,

Comparitor condition)

 {

 Operation = operation;

 Values = values;

 Condition = condition;

 }

 /// <summary>

 /// The Compile method of the Comparison class is used to Emit the

11 APPENDICES

171

 /// IL for comparing two values to each other and return the result.

 /// </summary>

 /// <param name="retVal">

 /// The retVal parameter is passed in by the caller to be used by

 /// the Emitted code to set the return value to.

 /// </param>

 /// <param name="ilGenerator">

 /// The ilGenerator parameter is the object used to Emit the code

 /// and would have been used previously by the caller.

 /// </param>

 /// <param name="debugSupport">

 /// The debugSupport is used to allow the compilation process

 /// emit debug information.

 /// </param>

 public override void Compile(LocalBuilder retVal, ILGenerator

ilGenerator, RuleCompiler.DebugSupport debugSupport)

 {

 debugSupport.WriteSourceLineAndMark("<Comparison Operation='" +

Operation.ToString() + "'>", ilGenerator);

 LocalBuilder[] retVals = new LocalBuilder[Values.Length];

 for (int i = 0; i < Values.Length; i++)

 {

 ilGenerator.BeginScope();

 Values[i].Compile(ilGenerator, ref retVals[i], debugSupport);

 ilGenerator.EndScope();

 }

 Label endLabel = ilGenerator.DefineLabel();

 ilGenerator.Emit(OpCodes.Ldc_I4_0);

 ilGenerator.Emit(OpCodes.Stloc_S, retVal);

 ilGenerator.Emit(OpCodes.Ldloc, retVals[0]);

 for (int ii = 1; ii < retVals.Length; ii++)

 {

 ilGenerator.Emit(OpCodes.Ldloc, retVals[ii]);

 Label nextLabel;

 switch (Operation)

 {

 case ComparisonOperation.Equals:

 nextLabel = ilGenerator.DefineLabel();

 ilGenerator.Emit(OpCodes.Beq_S, nextLabel);

 ilGenerator.Emit(OpCodes.Br_S, endLabel);

 ilGenerator.MarkLabel(nextLabel);

 break;

 case ComparisonOperation.NotEquals:

 ilGenerator.Emit(OpCodes.Beq_S, endLabel);

 break;

 case ComparisonOperation.LessThan:

 ilGenerator.Emit(OpCodes.Bge_S, endLabel);

 break;

 case ComparisonOperation.LessThanOrEqualTo:

 ilGenerator.Emit(OpCodes.Bgt_S, endLabel);

 break;

 case ComparisonOperation.GreaterThan:

 ilGenerator.Emit(OpCodes.Ble_S, endLabel);

 break;

 case ComparisonOperation.GreaterThanOrEqualTo:

 ilGenerator.Emit(OpCodes.Blt_S, endLabel);

 break;

 }

11 APPENDICES

172

 ilGenerator.Emit(OpCodes.Ldc_I4_1);

 ilGenerator.Emit(OpCodes.Stloc_S, retVal);

 ilGenerator.MarkLabel(endLabel);

 }

 debugSupport.WriteSourceLineAndMark("</Comparison>", ilGenerator);

 }

 }

}

11.3.2.3 Comparitor Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use this library to provide a means of serialising the objects into

// XML for file storage and network transportation.

using System.Xml.Serialization;

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection.Emit;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// Comparitor Class. Used to represent an operation which will

 /// result in either a true or false answer.

 /// </summary>

 [Serializable(), XmlInclude(typeof(AndCondition)),

XmlInclude(typeof(OrCondition)), XmlInclude(typeof(Comparison))]

 public abstract class Comparitor

 {

 /// <summary>

 /// This method, when consumed by a parent class, is used for

 /// the parent to emit its IL.

 /// </summary>

 /// <param name="retVal">

 /// The retVal is the boolean value where the operation will

 /// store the result of the comparison.

 /// </param>

 /// <param name="ilGenerator">

 /// The ilGenerator is to be used for emitting the IL to.

 /// </param>

 /// <param name="debugSupport">

 /// The debugSupport is used to allow the compilation process

 /// emit debug information.

 /// </param>

 public abstract void Compile(LocalBuilder retVal, ILGenerator

ilGenerator, RuleCompiler.DebugSupport debugSupport);

 }

}

11 APPENDICES

173

11.3.2.4 Contain Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// Content Class. Used to define the type of contents that

 /// a period may have, imply multiple X's make up a Y.

 /// </summary>

 [Serializable()]

 public class Contain

 {

 private String lName;

 /// <summary>

 /// The Name describes the name of a period which can have multiple

 /// instances contained with the period.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public String Name

 {

 get

 {

 return lName;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lName = value;

 }

 }

 /// <summary>

 /// The default constructor for this class simply assigns default

 /// values to the member variables.

 /// </summary>

 public Contain()

 {

 Name = "";

 }

 /// <summary>

 /// This constructor for this class has parameters to assign the

 /// start values of the member variables.

 /// </summary>

 /// <param name="name">

 /// The Name describes the name of a period which can have multiple

 /// instances contained with the period.

 /// </param>

 public Contain(String name)

 {

 Name = name;

 }

 }

}

11 APPENDICES

174

11.3.2.5 Math Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use this library to provide a means of serialising the objects into

// XML for file storage and network transportation.

using System.Xml.Serialization;

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection.Emit;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// The MathOperation enum describe a type of mathematical operation

 /// which can be used with the Math class.

 /// </summary>

 public enum MathOperation

 {

 /// <summary>

 /// The operation of adding two numbers together.

 /// </summary>

 Add,

 /// <summary>

 /// The operation of subtracting two numbers.

 /// </summary>

 Subtract,

 /// <summary>

 /// The operation of multiplying two numbers together.

 /// </summary>

 Multiply,

 /// <summary>

 /// The operation of dividing two numbers.

 /// </summary>

 Divide

 };

 /// <summary>

 /// Math Class. Used to perform math operations on a set

 /// of values.

 /// </summary>

 [Serializable()]

 public class Math : Value

 {

 private MathOperation lOperation;

 private Value[] lValues;

 /// <summary>

 /// Operation describes the type of math function to be carried out

 /// on the given Values.

 /// </summary>

 public MathOperation Operation

 {

 get

 {

 return lOperation;

 }

 set

 {

 lOperation = value;

 }

 }

11 APPENDICES

175

 /// <summary>

 /// The Values are the given values to have the mathematical

 /// functions performed on.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public Value[] Values

 {

 get

 {

 return lValues;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lValues = value;

 }

 }

 /// <summary>

 /// The description variable overriden from the base class to hide

 /// it as it is no longer required at this level.

 /// </summary>

#pragma warning disable 0169

 [XmlIgnore()]

 private new String Description;

#pragma warning restore 0169

 /// <summary>

 /// The default constructor intializing the Math object to an Add

 /// operation with no Values, which should return a zero values as

 /// a result.

 /// </summary>

 public Math()

 {

 Operation = MathOperation.Add;

 Values = new Value[0];

 }

 /// <summary>

 /// This constructor allows for the members to be initialised to

 /// the given values passed in as paramters.

 /// </summary>

 /// <param name="operation">

 /// operation describes the type of math function to be carried out

 /// on the given Values.

 /// </param>

 /// <param name="values">

 /// The values are the given values to have the mathematical

 /// functions performed on.

 /// </param>

 public Math(MathOperation operation, Value[] values)

 {

 Operation = operation;

 Values = values;

 }

 /// <summary>

 /// The Compile method of the Math class is used to Emit the

 /// IL for performing operations on various values.

 /// </summary>

 /// <param name="ilGenerator">

 /// The ilGenerator parameter is the object used to Emit the code

 /// and would have been used previously by the caller.

 /// </param>

 /// <param name="newLocal">

 /// The newLocal parameter is used to refer to the variable

 /// that stores the result of the Math operation;

 /// </param>

 /// <param name="debugSupport">

 /// The debugSupport is used to allow the compilation process

 /// emit debug information.

 /// </param>

 public override void Compile(ILGenerator ilGenerator, ref LocalBuilder

newLocal, RuleCompiler.DebugSupport debugSupport)

11 APPENDICES

176

 {

 debugSupport.WriteSourceLineAndMark("<Math>", ilGenerator);

 newLocal = ilGenerator.DeclareLocal(typeof(double));

 debugSupport.SetVariableName(newLocal, "Math");

 ilGenerator.BeginScope();

 // Start by generating all of the local variables which will

 // be used.

 LocalBuilder[] valueLocals = new LocalBuilder[Values.Length];

 for (int i = 0; i < valueLocals.Length; i++)

 {

 Values[i].Compile(ilGenerator, ref valueLocals[i],

debugSupport);

 }

 // If you are adding numbers, you can start at 0.0,

 // but if you are subtracting, of course it wont work!

 debugSupport.WriteSourceLineAndMark("<Operation type='" +

Operation.ToString() + "' />", ilGenerator);

 ilGenerator.Emit(OpCodes.Ldloc_S, valueLocals[0]);

 for (int ii = 1; ii < valueLocals.Length; ii++)

 {

 ilGenerator.Emit(OpCodes.Ldloc_S, valueLocals[ii]);

 switch (Operation)

 {

 case MathOperation.Add:

 ilGenerator.Emit(OpCodes.Add);

 break;

 case MathOperation.Subtract:

 ilGenerator.Emit(OpCodes.Sub);

 break;

 case MathOperation.Multiply:

 ilGenerator.Emit(OpCodes.Mul);

 break;

 case MathOperation.Divide:

 ilGenerator.Emit(OpCodes.Div);

 break;

 }

 }

 // Store the result of the math operation in our new local

 // variable.

 ilGenerator.Emit(OpCodes.Stloc_S, newLocal);

 ilGenerator.EndScope();

 debugSupport.WriteSourceLineAndMark("</Math>", ilGenerator);

 }

 }

}

11.3.2.6 OrCondition Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection.Emit;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

11 APPENDICES

177

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// OrCondition Class. Used to an Or condition which

 /// devides into different parts.

 /// </summary>

 [Serializable()]

 public class OrCondition : Comparitor

 {

 private Comparitor[] lConditions;

 /// <summary>

 /// The Conditions member contains the various Comparitor which are

 /// to be Or-ed together to determine a positive or negative

 /// result.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public Comparitor[] Conditions

 {

 get

 {

 return lConditions;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lConditions = value;

 }

 }

 /// <summary>

 /// The default constructor for this class allocates and empty

 /// array of conditions for the AndCondition which, if tested, would

 /// result in a True statement.

 /// </summary>

 public OrCondition()

 {

 Conditions = new Comparitor[0];

 }

 /// <summary>

 /// This constructor allows the allocation of the conditions to be

 /// set on initialisation of the class.

 /// </summary>

 /// <param name="conditions">

 /// The Conditions member contains the various Comparitor which are

 /// to be Or-ed together to determine a positive or negative

 /// result.

 /// </param>

 public OrCondition(Comparitor[] conditions)

 {

 Conditions = conditions;

 }

 /// <summary>

 /// The Compile method for the Or comparision will emit the

 /// appropriate IL to combine to boolean conditions.

 /// </summary>

 /// <param name="retVal">

 /// The retVal parameter is the local variable passed in by the

 /// caller to be used to store the result of this Or boolean

 /// comparison.

 /// </param>

 /// <param name="ilGenerator">

 /// The ilGenerator parameter is used to perform the emitting of

 /// the necessary Or comparison code.

 /// </param>

 /// <param name="debugSupport">

 /// The debugSupport is used to allow the compilation process

 /// emit debug information.

 /// </param>

 public override void Compile(LocalBuilder retVal, ILGenerator

ilGenerator, RuleCompiler.DebugSupport debugSupport)

11 APPENDICES

178

 {

 debugSupport.WriteSourceLineAndMark("<Or>", ilGenerator);

 LocalBuilder[] retVals = new LocalBuilder[Conditions.Length];

 for (int i = 0; i < Conditions.Length; i++)

 {

 retVals[i] = ilGenerator.DeclareLocal(typeof(bool));

 ilGenerator.BeginScope();

 Conditions[i].Compile(retVals[i], ilGenerator, debugSupport);

 ilGenerator.EndScope();

 }

 Label endLabel = ilGenerator.DefineLabel();

 ilGenerator.Emit(OpCodes.Ldc_I4_0);

 ilGenerator.Emit(OpCodes.Stloc_S, retVal);

 Label trueLabel = ilGenerator.DefineLabel();

 for (int ii = 0; ii < retVals.Length; ii++)

 {

 ilGenerator.Emit(OpCodes.Ldc_I4_1);

 ilGenerator.Emit(OpCodes.Ldloc, retVals[ii]);

 ilGenerator.Emit(OpCodes.Beq_S, trueLabel);

 }

 ilGenerator.Emit(OpCodes.Br_S, endLabel);

 ilGenerator.MarkLabel(trueLabel);

 ilGenerator.Emit(OpCodes.Ldc_I4_1);

 ilGenerator.Emit(OpCodes.Stloc_S, retVal);

 ilGenerator.MarkLabel(endLabel);

 debugSupport.WriteSourceLineAndMark("</Or>", ilGenerator);

 }

 }

}

11.3.2.7 Period Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use this library to provide a means of serialising the objects into

// XML for file storage and network transportation.

using System.Xml.Serialization;

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection;

using System.Reflection.Emit;

// Use the RuleCompiler namespace to gain access to the TypeMap class.

using RuleCompiler;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// Period Class. Used to define a period.

 /// </summary>

 [Serializable(), XmlInclude(typeof(WP)), XmlInclude(typeof(RP)),

XmlInclude(typeof(AndCondition)), XmlInclude(typeof(Comparison)),

XmlInclude(typeof(Comparitor)), XmlInclude(typeof(Contain)),

11 APPENDICES

179

XmlInclude(typeof(Math)), XmlInclude(typeof(OrCondition)),

XmlInclude(typeof(PeriodDescription)), XmlInclude(typeof(PrePost)),

XmlInclude(typeof(Value))]

 public class Period

 {

 private PeriodDescription lDescription;

 private Comparitor lRules;

 /// <summary>

 /// Description is an instance of PeriodDescription used to describe

 /// general information about the period such as its name and other

 /// personalised pieces of information.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public PeriodDescription Description

 {

 get

 {

 return lDescription;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lDescription = value;

 }

 }

 /// <summary>

 /// Rules is an instance of a Comparitor which can be any of the

 /// inherited classes of type Comparitor used to define a set of

 /// rules which must evaluate to true in order to meet their

 /// conditions.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public Comparitor Rules

 {

 get

 {

 return lRules;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lRules = value;

 }

 }

 /// <summary>

 /// Period Constructor is used for defining an instance of the

 /// Period class without specifying any of the details up front.

 /// </summary>

 public Period()

 {

 Description = new PeriodDescription();

 //Rules = new Comparitor();

 }

 /// <summary>

 /// Period Constructor is used for defining an instance of the

 /// Period class including the details which make this period

 /// instance unique from the others.

 /// </summary>

 /// <param name="description">

 /// description is an instance of PeriodDescription used to describe

 /// general information about the period such as its name and other

 /// personalised pieces of information.

 /// </param>

 /// <param name="rules">

 /// rules is an instance of a Comparitor which can be any of the

 /// inherited classes of type Comparitor used to define a set of

 /// rules which must evaluate to true in order to meet their

11 APPENDICES

180

 /// conditions.

 /// </param>

 public Period(PeriodDescription description, Comparitor rules)

 {

 Description = description;

 Rules = rules;

 }

 /// <summary>

 /// The Compile method is a general implementation of the compile

 /// method used within more specific implementing classes such as

 /// WP and RP. They would typically call this base class method

 /// in order to compile the rules.

 /// </summary>

 /// <param name="moduleBuilder">

 /// The moduleBuilder parameter is the module into which the new

 /// type is created and can be then consumed.

 /// </param>

 /// <param name="typeMap">

 /// The typeMap variable provides a means of describing how the

 /// variables types fit together.

 /// </param>

 /// <param name="baseType">

 /// The baseType parameter is the Type of object which will be the

 /// base class for the new Type. Each base Type such as WP or RP

 /// has slightly different implementations to support that

 /// particular type of rule.

 /// </param>

 /// <param name="debugSupport">

 /// The debugSupport is used to allow the compilation process

 /// emit debug information.

 /// </param>

 /// <returns>

 /// The return of the method is a TypeBuilder object describing

 /// the new Type. Before the new type can be used, it must be

 /// creating using the TypeBuilder's CreateType method.

 /// </returns>

 public Type Compile(ModuleBuilder moduleBuilder, TypeMap typeMap, Type

baseType, DebugSupport debugSupport)

 {

 // Define the variables used within this method.

 TypeBuilder newType = null;

 ILGenerator ilGenerator = null;

 ConstructorBuilder constructor = null;

 MethodBuilder testMethod = null;

 // Define the new class for this particular period type basing

 // it on the base class provided.

 newType = moduleBuilder.DefineType("Rules." + Description.Name,

TypeAttributes.Class | TypeAttributes.Public, baseType);

 // Define the constructor for the new object and emit the code

 // to get the constructor to call the base classes constructor

 // which should initialise everything properly. Also get the

 // new types Description object to inject its intial setup

 // values inserted into the constructor.

 constructor = newType.DefineConstructor(MethodAttributes.Public,

CallingConventions.Standard, new Type[0]);

 ilGenerator = constructor.GetILGenerator();

 debugSupport.WriteSourceLineAndMark("<" + Description.Name + ">",

ilGenerator);

 ilGenerator.Emit(OpCodes.Ldarg_0);

 ilGenerator.Emit(OpCodes.Call, baseType.GetConstructor(new Type[] {

}));

 Description.Compile(baseType, newType, typeMap, ilGenerator);

 ilGenerator.Emit(OpCodes.Ret);

 // Now define the Test method which returns a boolean value,

 // true meaning that the test was successful, false it is was

 // not.

 testMethod = newType.DefineMethod("Test", MethodAttributes.Public |

MethodAttributes.Virtual, CallingConventions.Standard, typeof(bool), new

Type[0]);

 // In order to generate the necessary IL code for this method,

11 APPENDICES

181

 // we get the rules themselves to inject their sections of the

 // code into. Each section of the rule will normally inject

 // its code into seperate scopes to keep the different sections

 // seperated.

 ilGenerator = testMethod.GetILGenerator();

 debugSupport.WriteSourceLineAndMark("<Rules>", ilGenerator);

 LocalBuilder retVal = ilGenerator.DeclareLocal(typeof(bool));

 debugSupport.SetVariableName(retVal, "Result");

 ilGenerator.BeginScope();

 Rules.Compile(retVal, ilGenerator, debugSupport);

 ilGenerator.EndScope();

 debugSupport.WriteSourceLineAndMark("</Rules>", ilGenerator);

 ilGenerator.Emit(OpCodes.Ldloc_S, retVal);

 debugSupport.WriteSourceLineAndMark("</" + Description.Name + ">",

ilGenerator);

 ilGenerator.Emit(OpCodes.Ret);

 // Return the newly created type to the calling object.

 try

 {

 return newType.CreateType();

 }

 catch (Exception e)

 {

 throw new RuleCompiler.RuleCompilerException("CreateType

Failed: " + e.ToString());

 }

 }

 /// <summary>

 /// As this is the base class for an 'normal' period type, it

 /// defines a typical Compile method which any overriding class

 /// would need to implement.

 /// </summary>

 /// <param name="moduleBuilder">

 /// The moduleBuilder parameter defines the module into which the

 /// new type will be placed.

 /// </param>

 /// <param name="typeMap">

 /// The typeMap variable provides a means of describing how the

 /// variables types fit together.

 /// </param>

 /// <param name="debugSupport">

 /// The debugSupport is used to allow the compilation process

 /// emit debug information.

 /// </param>

 /// <returns>

 /// The return value of this compile method is the TypeBuilder for

 /// the newly created type.

 /// </returns>

 public virtual Type Compile(ModuleBuilder moduleBuilder, TypeMap

typeMap, DebugSupport debugSupport)

 {

 return Compile(moduleBuilder, typeMap, typeof(Object),

debugSupport);

 }

 }

}

11.3.2.8 PeriodDescription Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

11 APPENDICES

182

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection;

using System.Reflection.Emit;

// Use the RuleCompiler namespace to gain access to the TypeMap class.

using RuleCompiler;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// PeriodDescription Class. Used to define details about a type

 /// of period.

 /// </summary>

 [Serializable()]

 public class PeriodDescription

 {

 private String lName;

 private String lDescription;

 private PrePost[] lPrePosts;

 private Contain[] lContains;

 /// <summary>

 /// The Name of the PeriodDescription instance.

 /// </summary>

 /// <remarks>

 /// This property should be unique.

 /// </remarks>

 /// <exception cref="System.ArgumentNullException"></exception>

 public String Name

 {

 get

 {

 return lName;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lName = value;

 }

 }

 /// <summary>

 /// The Description of the PeriodDescription instance.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public String Description

 {

 get

 {

 return lDescription;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lDescription = value;

 }

 }

 /// <summary>

 /// The PrePosts array define a set of periods which can come before

 /// and after this type of period.

 /// </summary>

 /// <remarks>

11 APPENDICES

183

 /// Value cannot be null.

 /// </remarks>

 /// <exception cref="System.ArgumentNullException"></exception>

 public PrePost[] PrePosts

 {

 get

 {

 return lPrePosts;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lPrePosts = value;

 }

 }

 /// <summary>

 /// The Contains array describe the periods which are contained

 /// within this type of period.

 /// </summary>

 /// <remarks>

 /// Value cannot be null.

 /// </remarks>

 /// <exception cref="System.ArgumentNullException"></exception>

 public Contain[] Contains

 {

 get

 {

 return lContains;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lContains = value;

 }

 }

 /// <summary>

 /// This constructor is used to create a new PeriodDescription

 /// instance without specifying any unique characteristics.

 /// </summary>

 public PeriodDescription()

 {

 Name = "";

 Description = "";

 PrePosts = new PrePost[0];

 Contains = new Contain[0];

 }

 /// <summary>

 /// This constructor is used to create a new PeriodDescription

 /// instance including specifying any unique characteristics.

 /// </summary>

 /// <param name="name">

 /// The name of the PeriodDescription instance. This should be

 /// unique.

 /// </param>

 /// <param name="description">

 /// The description of the PeriodDescription instance.

 /// </param>

 /// <param name="prePosts">

 /// The prePosts array define a set of periods which can come before

 /// and after this type of period. Value cannot be null.

 /// </param>

 /// <param name="contains">

 /// The contains array describe the periods which are contained

 /// within this type of period. Value cannot be null.

 /// </param>

 public PeriodDescription(String name, String description, PrePost[]

prePosts, Contain[] contains)

 {

 Name = name;

11 APPENDICES

184

 Description = description;

 PrePosts = prePosts;

 Contains = contains;

 }

 /// <summary>

 /// The Compile method of the PeriodDescription class is used to

 /// inject into the constructor of the new Type the entries to be

 /// placed in the Contains collection.

 /// </summary>

 /// <param name="baseType">

 /// The baseType property provides the base class of the new Type

 /// so that the Contains collection can be obtained.

 /// </param>

 /// <param name="newType">

 /// The newType property describes the type we are currently

 /// building and for which this method is designed to compile for.

 /// </param>

 /// <param name="typeMap">

 /// The typeMap property describes how the various types all

 /// interact with each other.

 /// </param>

 /// <param name="ilGenerator">

 /// The ilGenerator property provides the ILGenerator for the

 /// constructor so that the necessary code can be injected into it.

 /// </param>

 public void Compile(Type baseType, TypeBuilder newType, TypeMap

typeMap, ILGenerator ilGenerator)

 {

 // The customAttribute local variable is used to store the

 // CustomAttributes that will be defined for this rule type.

 CustomAttributeBuilder customAttribute;

 // The values local variable is used to store an array of

 // string to be held by the customAttribute once compiled.

 List<string> values;

 // First of all construct array of the items this type can

 // contain, then construct a ContainsAttribute for this type.

 values = new List<string>();

 foreach (string contain in typeMap.Contains)

 values.Add(contain);

 customAttribute = new

CustomAttributeBuilder(typeof(RuleSupport.ContainsAttribute).GetConstructor(new

Type[] { typeof(string[]) }), new object[] { values.ToArray() });

 newType.SetCustomAttribute(customAttribute);

 // Now construct an array of the types that can contain this

 // type, then construct a ContainedWithinAttribute for this

 // type.

 values = new List<string>();

 foreach (string containWithin in typeMap.ContainWithin)

 values.Add(containWithin);

 customAttribute = new

CustomAttributeBuilder(typeof(RuleSupport.ContainedWithinAttribute).GetConstruc

tor(new Type[] { typeof(string[]) }), new object[] { values.ToArray() });

 newType.SetCustomAttribute(customAttribute);

 // Now construct a list of the items than can come before

 // and after this type, then construct a PrePostAttribute

 // for this type.

 values = new List<string>();

 foreach (PrePost prePost in typeMap.PrePost)

 {

 values.Add(prePost.Pre);

 values.Add(prePost.Post);

 }

 customAttribute = new

CustomAttributeBuilder(typeof(RuleSupport.PrePostAttribute).GetConstructor(new

Type[] { typeof(string[]) }), new object[] { values.ToArray() });

 newType.SetCustomAttribute(customAttribute);

 }

 }

}

11 APPENDICES

185

11.3.2.9 Periods Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

// Use this library for file and stream activity.

using System.IO;

// Use this library to provide a means of serialising the objects into

// XML for file storage and network transportation.

using System.Xml.Serialization;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// The Periods class is used to encapsulate a set of Period objects

 /// into a single class. It has a number of supporting methods which

 /// can be used to perform actions like serialization and

 /// deserialization of rules to and from XML.

 /// </summary>

 [Serializable(), XmlInclude(typeof(Period)), XmlInclude(typeof(WP)),

XmlInclude(typeof(RP)), XmlInclude(typeof(AndCondition)),

XmlInclude(typeof(Comparison)), XmlInclude(typeof(Comparitor)),

XmlInclude(typeof(Contain)), XmlInclude(typeof(Math)),

XmlInclude(typeof(OrCondition)), XmlInclude(typeof(PeriodDescription)),

XmlInclude(typeof(PrePost)), XmlInclude(typeof(Value))]

 public class Periods : IEnumerable<Period>

 {

 private List<Period> thePeriods;

 /// <summary>

 /// This is the most simple constructor used to create a new

 /// instance of the Periods class without specifying any Period

 /// objects to add to it.

 /// </summary>

 public Periods()

 {

 thePeriods = new List<Period>();

 }

 /// <summary>

 /// This implementation of the constructor adds an array of

 /// Period objects to the collection and is used if the Period

 /// objects do not need to be loaded from a stream.

 /// </summary>

 /// <param name="periods">

 /// The periods parameter is the array of Period objects to be

 /// added to the collection.

 /// </param>

 public Periods(Period[] periods)

 {

 thePeriods = new List<Period>(periods);

 }

 /// <summary>

 /// This implementation of the constructor is used to load the

 /// Period objects from an Xml encoding from a stream. This allows

 /// rules to be loaded from a file, network connection or other

 /// type of Stream enabled means.

 /// </summary>

 /// <param name="inputStream">

 /// The Stream from with the Period objects are to be loaded.

 /// </param>

11 APPENDICES

186

 public Periods(Stream inputStream)

 {

 FromStream(inputStream);

 }

 /// <summary>

 /// This implementation of the constructor is used to load the

 /// Period objects from an Xml encoding from a file.

 /// </summary>

 /// <param name="path">

 /// The path parameter describes the path of the file to load.

 /// </param>

 public Periods(String path)

 {

 // The stream to read from.

 Stream file = new FileStream(path, FileMode.Open, FileAccess.Read,

FileShare.Read);

 // Load the periods form the stream.

 FromStream(file);

 // Close the file.

 file.Close();

 }

 /// <summary>

 /// The FromStream method is a helper method to perform the

 /// function of loading the periods from a stream.

 /// </summary>

 /// <param name="inputStream">

 /// The input stream to load the periods from.

 /// </param>

 private void FromStream(Stream inputStream)

 {

 // The array to deserialise into.

 Period[] theArray = new Period[0];

 // Create a new XmlSerializer object which is capable of

 // converting a stream of bytes into a Period array for use

 // in this object.

 XmlSerializer newSerializer = new

XmlSerializer(theArray.GetType());

 // Perform the Deserialization from the stream.

 theArray = (Period[])newSerializer.Deserialize(inputStream);

 // Add the array to this collection.

 thePeriods = new List<Period>(theArray);

 }

 /// <summary>

 /// The ToStream method allows the Periods object to convert the

 /// Period objets contained within to Xml and output to the given

 /// Stream. This allows the periods to be serialised to a file,

 /// network location or other Stream enabled location.

 /// </summary>

 /// <param name="outputStream">

 /// The outputStream parameter is the output stream to which the

 /// Period collection will be serialised to.

 /// </param>

 public void ToStream(Stream outputStream)

 {

 // The array to serialise.

 Period[] theArray = ToArray();

 // Create the XmlSerializer object which will be used to

 // convert the array of periods into a stream of bytes.

 XmlSerializer newSerializer = new

XmlSerializer(theArray.GetType());

 //XmlSerializer newSerializer = new XmlSerializer(typeof(Periods));

 // Perform the serialization of the array to the stream.

 newSerializer.Serialize(outputStream, theArray);

 //newSerializer.Serialize(outputStream, this);

 }

11 APPENDICES

187

 /// <summary>

 /// The ToStream method allows the Periods object to convert the

 /// Period objets contained within Xml and output to the given path.

 /// </summary>

 /// <param name="path">

 /// The path parameter allows you to specifiy the filename to save

 /// the periods to.

 /// </param>

 public void ToFile(String path)

 {

 // Open a new file stream to write the data to.

 Stream file = new FileStream(path, FileMode.CreateNew,

FileAccess.Write, FileShare.Write);

 // Call the ToStream method to write the periods to the file.

 ToStream(file);

 // Close the file now we've finished with it.

 file.Close();

 }

 /// <summary>

 /// The ToString method returns an XML representation of the Rules

 /// object.

 /// </summary>

 /// <returns>

 /// A String value containing the XML representation of the object.

 /// </returns>

 public override String ToString()

 {

 MemoryStream memStream = new MemoryStream();

 StreamReader streamReader = new StreamReader(memStream);

 ToStream((Stream)memStream);

 memStream.Seek(0, SeekOrigin.Begin);

 return streamReader.ReadToEnd();

 }

 /// <summary>

 /// The Add method allows the addition of individual period

 /// objects to the collection.

 /// </summary>

 /// <param name="period">

 /// The period parameter is the period which will be added to the

 /// collection.

 /// </param>

 /// <returns>

 /// The return value is the index of the collection where the

 /// period has been added.

 /// </returns>

 public int Add(Period period)

 {

 thePeriods.Add(period);

 return thePeriods.Count - 1;

 }

 /// <summary>

 /// The AddRange method allows the addition of an array of

 /// period values to the collection of periods.

 /// </summary>

 /// <param name="periods">

 /// The periods parameters contains the periods to be added to

 /// the collection.

 /// </param>

 public void AddRange(Period[] periods)

 {

 thePeriods.AddRange(periods);

 }

 /// <summary>

 /// The Remove method is used to remove an individual Period object

 /// from the collection of periods.

 /// </summary>

 /// <param name="Index">

 /// The Index within the collection at which the object to be

 /// removed is placed.

 /// </param>

11 APPENDICES

188

 public void Remove(int Index)

 {

 thePeriods.RemoveAt(Index);

 }

 /// <summary>

 /// The Remove method is used to remove an individual Period object

 /// from the collection of periods.

 /// </summary>

 /// <param name="period">

 /// The period parameter describes the object within the collection

 /// which is to be removed.

 /// </param>

 public void Remove(Period period)

 {

 thePeriods.Remove(period);

 }

 /// <summary>

 /// The Count property returns the number of entries that exist

 /// in the collection of Period objects as an integer value.

 /// </summary>

 public int Count

 {

 get

 {

 return thePeriods.Count;

 }

 }

 /// <summary>

 /// The indexer for the Periods object allows the getting or

 /// setting of a Period value at a given Index within the Period

 /// collection.

 /// </summary>

 public Period this[int Index]

 {

 get

 {

 return (Period)thePeriods[Index];

 }

 set

 {

 thePeriods[Index] = value;

 }

 }

 /// <summary>

 /// The ToArray method simply returns an array of Period objects

 /// so that the array can be used elsewhere where a collection is

 /// not necessary.

 /// </summary>

 /// <returns>

 /// The return value is the array of Period objects.

 /// </returns>

 public Period[] ToArray()

 {

 return thePeriods.ToArray();

 }

 /// <summary>

 /// The GetEnumerator method implements the interface required by

 /// IEnumerable to allow this collection to be iterated through

 /// with the Foreach operator.

 /// </summary>

 /// <returns>

 /// The IEnumarator interface.

 /// </returns>

 public IEnumerator<Period> GetEnumerator()

 {

 return thePeriods.GetEnumerator();

 }

 /// <summary>

 /// The GetEnumerator method implements the interface required by

11 APPENDICES

189

 /// IEnumerable to allow this collection to be iterated through

 /// with the Foreach operator.

 /// </summary>

 /// <returns>

 /// The IEnumarator interface.

 /// </returns>

 System.Collections.IEnumerator

System.Collections.IEnumerable.GetEnumerator()

 {

 return thePeriods.GetEnumerator();

 }

 }

}

11.3.2.10 PrePost Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// PrePost Class. Used to define what comes before or

 /// after a period.

 /// </summary>

 [Serializable()]

 public class PrePost

 {

 private String lPre;

 private String lPost;

 /// <summary>

 /// Pre is the period that can come before the one in question.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public String Pre

 {

 get

 {

 return lPre;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lPre = value;

 }

 }

 /// <summary>

 /// Post is the period that can come after the one in question.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public String Post

 {

 get

 {

 return lPost;

 }

 set

11 APPENDICES

190

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lPost = value;

 }

 }

 /// <summary>

 /// This constructor will create a new instance of the class with

 /// blank entries for the Pre and Post members.

 /// </summary>

 public PrePost()

 {

 Pre = "";

 Post = "";

 }

 /// <summary>

 /// This constructor will create a new instance of the class with

 /// paramters to specify the members.

 /// </summary>

 /// <param name="pre">

 /// Pre is the period that can come before the one in question.

 /// </param>

 /// <param name="post">

 /// Post is the period that can come after the one in question.

 /// </param>

 public PrePost(String pre, String post)

 {

 Pre = pre;

 Post = post;

 }

 }

}

11.3.2.11 RP Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection.Emit;

// Use the RuleCompiler namespace to gain access to the TypeMap class.

using RuleCompiler;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// RP Class. Used to define a rest period.

 /// </summary>

 [Serializable()]

 public class RP : Period

 {

 /// <summary>

 /// This constructor is used for defining the rest period without

 /// specifying any unique characteristics.

 /// </summary>

 public RP()

 : base()

 {

11 APPENDICES

191

 }

 /// <summary>

 /// This constructor is used for defining the rest period including

 /// parameters for specifying any unique characteristics.

 /// </summary>

 /// <param name="description">

 /// description is an instance of PeriodDescription used to describe

 /// general information about the period such as its name and other

 /// personalised pieces of information.

 /// </param>

 /// <param name="rules">

 /// rules is an instance of a Comparitor which can be any of the

 /// inherited classes of type Comparitor used to define a set of

 /// rules which must evaluate to true in order to meet their

 /// conditions.

 /// </param>

 public RP(PeriodDescription description, Comparitor rules)

 : base(description, rules)

 {

 // This constructor is here to pass the two parameters

 // in to the base class.

 }

 /// <summary>

 /// The Compile method of the RP class uses the Period base class

 /// Compile method to generate the test method of the new class.

 /// </summary>

 /// <param name="moduleBuilder">

 /// The input for this is the module into which the new type will

 /// be created in.

 /// </param>

 /// <param name="typeMap">

 /// The typeMap variable provides a means of describing how the

 /// variables types fit together.

 /// </param>

 /// <param name="debugSupport">

 /// The debugSupport is used to allow the compilation process

 /// emit debug information.

 /// </param>

 /// <returns>

 /// This method returns the TypeBuilder for the new object type

 /// which is created with the Test method.

 /// </returns>

 public override Type Compile(ModuleBuilder moduleBuilder, TypeMap

typeMap, RuleCompiler.DebugSupport debugSupport)

 {

 return base.Compile(moduleBuilder, typeMap,

typeof(RuleSupport.RestPeriod), debugSupport);

 }

 }

}

11.3.2.12 Value Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use this library to provide a means of serialising the objects into

// XML for file storage and network transportation.

using System.Xml.Serialization;

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection.Emit;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

11 APPENDICES

192

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// The ValueType enum is used to describe different types of

 /// Values which can be used by a Value object.

 /// </summary>

 public enum ValueType

 {

 /// <summary>

 /// A number which will be of a floating point type to allow

 /// for maximum compatibility as a general number.

 /// </summary>

 Number = 0,

 /// <summary>

 /// A quantity of days as a floating point to allow

 /// fractions of days.

 /// </summary>

 Days = 1,

 /// <summary>

 /// A quantity of months as a floating point to allow

 /// fractions of months.

 /// </summary>

 Months = 2,

 /// <summary>

 /// A quantity of years as a floating point to allow

 /// fractions of years.

 /// </summary>

 Years = 3,

 /// <summary>

 /// A quantity of hours as a floating point to allow

 /// fractions of hours.

 /// </summary>

 Hours = 4,

 /// <summary>

 /// A quantity of minutes as a floating point to allow

 /// fractions of minutes.

 /// </summary>

 Minutes = 5,

 /// <summary>

 /// A quantity of seconds as a floating point to allow

 /// fractions of seconds.

 /// </summary>

 Seconds = 6,

 /// <summary>

 /// A quantity of milliseconds as a floating point to allow

 /// fractions of days.

 /// </summary>

 Milliseconds = 7,

 /// <summary>

 /// A string value.

 /// </summary>

 String = 8,

 /// <summary>

 /// A property of the given period or a related period denoted

 /// by a seperation of decimal points within the description.

 /// </summary>

 Parameter = 9

 };

 /// <summary>

 /// Value Class. Used to define a specific value such as a

 /// constant or the name of a property of a type.

 /// </summary>

11 APPENDICES

193

 [Serializable(), XmlInclude(typeof(MathOperation))]

 public class Value

 {

 private String lDescription;

 private ValueType lType;

 /// <summary>

 /// The Description member holds the actual value of this class

 /// as a String. Any conversion to other types as described by

 /// Type can be carried out later.

 /// </summary>

 /// <exception cref="System.ArgumentNullException"></exception>

 public String Description

 {

 get

 {

 return lDescription;

 }

 set

 {

 if (value == null)

 throw new ArgumentNullException();

 else

 lDescription = value;

 }

 }

 /// <summary>

 /// The Type is a ValueType enum variable used to describe the type

 /// of data held by Description.

 /// </summary>

 public ValueType Type

 {

 get

 {

 return lType;

 }

 set

 {

 lType = value;

 }

 }

 /// <summary>

 /// The default constructor of the value class assumes an empty

 /// String value and type for the member variables.

 /// </summary>

 public Value()

 {

 Description = "";

 Type = ValueType.String;

 }

 /// <summary>

 /// This constructor allocates the member values by the parameters

 /// passed in.

 /// </summary>

 /// <param name="description">

 /// The description parameter holds the actual value of this class

 /// as a String. Any conversion to other types as described by

 /// Type can be carried out later.

 /// </param>

 /// <param name="type">

 /// The type is a ValueType enum variable used to describe the type

 /// of data held by Description.

 /// </param>

 public Value(string description, ValueType type)

 {

 Description = description;

 Type = type;

 }

 /// <summary>

 /// The Compile method for the Value class will emit the

 /// appropriate IL to setup the variable ready for use.

 /// </summary>

11 APPENDICES

194

 /// <param name="ilGenerator">

 /// The ilGenerator parameter is used to perform the emitting of

 /// the necessary And comparison code.

 /// </param>

 /// <param name="newLocal">

 /// The newLocal parameter is used to refer to the variable

 /// that stores the resulting parameter of this Value;

 /// </param>

 /// <param name="debugSupport">

 /// The debugSupport is used to allow the compilation process

 /// emit debug information.

 /// </param>

 public virtual void Compile(ILGenerator ilGenerator, ref LocalBuilder

newLocal, RuleCompiler.DebugSupport debugSupport)

 {

 debugSupport.WriteSourceLineAndMark("<Value>", ilGenerator);

 debugSupport.WriteSourceLineAndMark("<Type>" + Type.ToString() +

"</Type>\r\n" + (new string('\t', debugSupport.TabCount)) + "<Description>" +

Description + "</Description>", ilGenerator);

 LocalBuilder tmpLocal;

 switch (Type)

 {

 case ValueType.Number:

 newLocal = ilGenerator.DeclareLocal(typeof(double));

 debugSupport.SetVariableName(newLocal, "Value");

 ilGenerator.Emit(OpCodes.Ldc_R8,

double.Parse(Description));

 break;

 case ValueType.Days:

 newLocal = ilGenerator.DeclareLocal(typeof(double));

 debugSupport.SetVariableName(newLocal, "Value");

 tmpLocal = ilGenerator.DeclareLocal(typeof(TimeSpan));

 debugSupport.SetVariableName(tmpLocal, "Value");

 ilGenerator.Emit(OpCodes.Ldc_R8,

double.Parse(Description));

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("FromDays", new Type[1] { typeof(double) }));

 ilGenerator.Emit(OpCodes.Stloc_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Ldloca_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("get_TotalHours", new Type[0]));

 break;

 case ValueType.Months:

 newLocal = ilGenerator.DeclareLocal(typeof(double));

 debugSupport.SetVariableName(newLocal, "Value");

 tmpLocal = ilGenerator.DeclareLocal(typeof(TimeSpan));

 debugSupport.SetVariableName(tmpLocal, "Value");

 ilGenerator.Emit(OpCodes.Ldc_R8,

double.Parse(Description));

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("FromMonths", new Type[1] { typeof(double) }));

 ilGenerator.Emit(OpCodes.Stloc_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Ldloca_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("get_TotalHours", new Type[0]));

 break;

 case ValueType.Years:

 newLocal = ilGenerator.DeclareLocal(typeof(double));

 debugSupport.SetVariableName(newLocal, "Value");

 tmpLocal = ilGenerator.DeclareLocal(typeof(TimeSpan));

 debugSupport.SetVariableName(tmpLocal, "Value");

 ilGenerator.Emit(OpCodes.Ldc_R8,

double.Parse(Description));

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("FromYears", new Type[1] { typeof(double) }));

 ilGenerator.Emit(OpCodes.Stloc_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Ldloca_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("get_TotalHours", new Type[0]));

 break;

 case ValueType.Hours:

 newLocal = ilGenerator.DeclareLocal(typeof(double));

 debugSupport.SetVariableName(newLocal, "Value");

 tmpLocal = ilGenerator.DeclareLocal(typeof(TimeSpan));

 debugSupport.SetVariableName(tmpLocal, "Value");

11 APPENDICES

195

 ilGenerator.Emit(OpCodes.Ldc_R8,

double.Parse(Description));

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("FromHours", new Type[1] { typeof(double) }));

 ilGenerator.Emit(OpCodes.Stloc_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Ldloca_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("get_TotalHours", new Type[0]));

 break;

 case ValueType.Minutes:

 newLocal = ilGenerator.DeclareLocal(typeof(double));

 debugSupport.SetVariableName(newLocal, "Value");

 tmpLocal = ilGenerator.DeclareLocal(typeof(TimeSpan));

 debugSupport.SetVariableName(tmpLocal, "Value");

 ilGenerator.Emit(OpCodes.Ldc_R8,

double.Parse(Description));

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("FromMinutes", new Type[1] { typeof(double) }));

 ilGenerator.Emit(OpCodes.Stloc_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Ldloca_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("get_TotalHours", new Type[0]));

 break;

 case ValueType.Seconds:

 newLocal = ilGenerator.DeclareLocal(typeof(double));

 debugSupport.SetVariableName(newLocal, "Value");

 tmpLocal = ilGenerator.DeclareLocal(typeof(TimeSpan));

 debugSupport.SetVariableName(tmpLocal, "Value");

 ilGenerator.Emit(OpCodes.Ldc_R8,

double.Parse(Description));

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("FromSeconds", new Type[1] { typeof(double) }));

 ilGenerator.Emit(OpCodes.Stloc_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Ldloca_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("get_TotalHours", new Type[0]));

 break;

 case ValueType.Milliseconds:

 newLocal = ilGenerator.DeclareLocal(typeof(double));

 debugSupport.SetVariableName(newLocal, "Value");

 tmpLocal = ilGenerator.DeclareLocal(typeof(TimeSpan));

 debugSupport.SetVariableName(tmpLocal, "Value");

 ilGenerator.Emit(OpCodes.Ldc_R8,

double.Parse(Description));

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("FromMilliseconds", new Type[1] { typeof(double)

}));

 ilGenerator.Emit(OpCodes.Stloc_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Ldloca_S, tmpLocal);

 ilGenerator.Emit(OpCodes.Call,

typeof(TimeSpan).GetMethod("get_TotalHours", new Type[0]));

 break;

 case ValueType.String:

 newLocal = ilGenerator.DeclareLocal(typeof(String));

 debugSupport.SetVariableName(newLocal, "Value");

 ilGenerator.Emit(OpCodes.Ldstr, Description);

 break;

 case ValueType.Parameter:

 newLocal = ilGenerator.DeclareLocal(typeof(double));

 debugSupport.SetVariableName(newLocal, "Value");

 ilGenerator.Emit(OpCodes.Ldarg_0);

 ilGenerator.Emit(OpCodes.Ldstr, Description);

 ilGenerator.Emit(OpCodes.Call,

typeof(RuleSupport.Period).GetMethod("GetProperty", new Type[] { typeof(String)

}));

 break;

 }

 // Finally, save the value to return as a result of this call.

 ilGenerator.Emit(OpCodes.Stloc_S, newLocal);

 debugSupport.WriteSourceLineAndMark("</Value>", ilGenerator);

 }

 }

}

11 APPENDICES

196

11.3.2.13 WP Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use these libraries for enabling Reflection of the classes into

// executable code.

using System.Reflection.Emit;

// Use the RuleCompiler namespace to gain access to the TypeMap class.

using RuleCompiler;

/// <summary>

/// RuleDefinitionLanguage Namespace.

/// This namespace defines core types used to help define a

/// set of rules. These types are not used for execution but for

/// description of the rules.

/// </summary>

namespace RuleDefinitionLanguage

{

 /// <summary>

 /// WP Class. Used to define a work period.

 /// </summary>

 [Serializable()]

 public class WP : Period

 {

 /// <summary>

 /// This constructor is used for defining the work period without

 /// specifying any unique characteristics.

 /// </summary>

 public WP()

 : base()

 {

 }

 /// <summary>

 /// This constructor is used for defining the work period including

 /// parameters for specifying any unique characteristics.

 /// </summary>

 /// <param name="description">

 /// description is an instance of PeriodDescription used to describe

 /// general information about the period such as its name and other

 /// personalised pieces of information.

 /// </param>

 /// <param name="rules">

 /// rules is an instance of a Comparitor which can be any of the

 /// inherited classes of type Comparitor used to define a set of

 /// rules which must evaluate to true in order to meet their

 /// conditions.

 /// </param>

 public WP(PeriodDescription description, Comparitor rules)

 : base(description, rules)

 {

 // This constructor is here to pass the two parameters

 // in to the base class.

 }

 /// <summary>

 /// The Compile method of the WP class uses the Period base class

 /// Compile method to generate the test method of the new class.

 /// </summary>

 /// <param name="moduleBuilder">

 /// The input for this is the module into which the new type will

 /// be created in.

 /// </param>

 /// <param name="typeMap">

 /// The typeMap variable provides a means of describing how the

 /// variables types fit together.

 /// </param>

 /// <param name="debugSupport">

 /// The debugSupport is used to allow the compilation process

 /// emit debug information.

11 APPENDICES

197

 /// </param>

 /// <returns>

 /// This method returns the TypeBuilder for the new object type

 /// which is created with the Test method.

 /// </returns>

 public override Type Compile(ModuleBuilder moduleBuilder, TypeMap

typeMap, RuleCompiler.DebugSupport debugSupport)

 {

 return base.Compile(moduleBuilder, typeMap,

typeof(RuleSupport.WorkPeriod), debugSupport);

 }

 }

}

11 APPENDICES

198

11.3.3 RuleSupport Namespace

11.3.3.1 Contains Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

{

 /// <summary>

 /// The Contains class is designed to describe those

 /// types of period that are stored within a particular

 /// class, such as an Appointment stored within a Daily

 /// Work Period.

 /// </summary>

 [Serializable()]

 public class Contains : SortedList<String, DirtyList<IPeriodElement>>

 {

 /// <summary>

 /// The Add method provides the ability to Add a

 /// list of entries contained within the SortedList

 /// using the containName as the key and creating

 /// a new DirtyList as the value.

 /// </summary>

 /// <param name="containName">

 /// The containing name used to refer to the new

 /// DirtyList with.

 /// </param>

 public void Add(String containName)

 {

 base.Add(containName, new DirtyList<IPeriodElement>());

 }

 /// <summary>

 /// The AddRange method provides the ability to add

 /// a range of entries to the SortedList, each

 /// entry will use the name provided as the key and

 /// have a new DirtyList created as its value.

 /// </summary>

 /// <param name="containNames">

 /// The containNames is a string array describing the

 /// range of names to created with the SortedList.

 /// </param>

 public void AddRange(String[] containNames)

 {

 for (int i = 0; i < containNames.Length; i++)

 Add(containNames[i]);

 }

 /// <summary>

 /// The GetTypes method returns an array of strings

 /// representing the Keys used within the SortedList.

 /// </summary>

 /// <returns>

 /// An array of string representing the Key used

 /// within the SortedList.

 /// </returns>

 public String[] GetTypes()

 {

 List<string> arr = new List<string>(base.Keys.Count);

 foreach (string a in base.Keys)

11 APPENDICES

199

 arr.Add(a);

 return arr.ToArray();

 }

 /// <summary>

 /// The IsDirty method bases its dirty value on the

 /// items stored within the various arrays that are

 /// stored within its sorted list.

 /// </summary>

 /// <returns>

 /// The return result is a boolean value describing

 /// the whether or not there are Dirty values within

 /// the arrays stored within the sorted list.

 /// </returns>

 public bool IsDirty()

 {

 for (int i = 0; i < base.Count; i++)

 if (this[i].IsDirty()) return true;

 return false;

 }

 /// <summary>

 /// The ClearDirty method runs through each array

 /// stored within its SortedList, clearly the dirty

 /// flag..

 /// </summary>

 public void ClearDirty()

 {

 for (int i = 0; i < base.Count; i++)

 this[i].ClearDirty();

 }

 /// <summary>

 /// This indexer provides an additional means of

 /// accessing members of the SortedList based upon

 /// the index of the Key, stored in alphabetical

 /// order.

 /// </summary>

 /// <param name="index">

 /// The index provided refers to the key position

 /// within the Keys collection.

 /// </param>

 /// <returns>

 /// The return value is the DirtyList object

 /// related to the Key found at the give index in

 /// the Keys collection.

 /// </returns>

 public DirtyList<IPeriodElement> this[int index]

 {

 get

 {

 return (DirtyList<IPeriodElement>)base[base.Keys[index]];

 }

 }

 /// <summary>

 /// The GetCombined method takes all of the entries stored

 /// within the the various internal arrays and produced a

 /// single larger list.

 /// </summary>

 /// <returns></returns>

 public DirtyList<IPeriodElement> GetCombined()

 {

 DirtyList<IPeriodElement> newCol = new DirtyList<IPeriodElement>();

 for (int i = 0; i < Count; i++)

 newCol.AddRange(this[i]);

 return newCol;

 }

 }

}

11 APPENDICES

200

11.3.3.2 DirtyList Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

{

 /// <summary>

 /// The DirtyList class is basically a slightly more

 /// advanced version of its base class List with

 /// some slight modifications.

 ///

 /// Firstly the class has the ability to determine

 /// whether or not it is dirty, ie, whether an item

 /// has been added or removed since the dirty flag was

 /// last cleared. This can help cut down on the over

 /// processing of data at a later stage.

 ///

 /// It also has a fairly advanced Sort method, which

 /// is able to generate a sorted list based upon

 /// a reflected member of the contained class set.

 /// </summary>

 [Serializable()]

 public class DirtyList<T> : List<T>

 {

 private bool dirty = true;

 public bool IsDirty() { return dirty; }

 public void ClearDirty() { dirty = false; }

 /// <summary>

 /// The Add method for the DirtyList is similar

 /// to the traditional List Add method except

 /// that it also sets the DirtyList's dirty flag.

 /// </summary>

 /// <param name="item">

 /// The item to add to the list.

 /// </param>

 public new void Add(T item)

 {

 dirty = true;

 base.Add(item);

 }

 /// <summary>

 /// The AddRange method for the DirtyList is similar

 /// to the traditional List AddRange method except

 /// that it also sets the DirtyList's dirty flag.

 /// </summary>

 /// <param name="collection">

 /// The collection of items to add to the list.

 /// </param>

 public new void AddRange(IEnumerable<T> collection)

 {

 dirty = true;

 base.AddRange(collection);

 }

 /// <summary>

 /// The Clear method for the DirtyList is similar

 /// to the traditional List Clear method except

 /// that it also sets the DirtyList's dirty flag.

 /// </summary>

 public new void Clear()

 {

 dirty = true;

11 APPENDICES

201

 base.Clear();

 }

 /// <summary>

 /// The Insert method for the DirtyList is similar

 /// to the traditional List Clear method except

 /// that it also sets the DirtyList's dirty flag.

 /// </summary>

 /// <param name="index">

 /// The index parameter specifies the index location

 /// within the List to start inserting the item.

 /// </param>

 /// <param name="item">

 /// The item parameter specifies the item to be

 /// inserted into the List.

 /// </param>

 public new void Insert(int index, T item)

 {

 dirty = true;

 base.Insert(index, item);

 }

 /// <summary>

 /// The InsertRange method for the DirtyList is similar

 /// to the traditional List Clear method except

 /// that it also sets the DirtyList's dirty flag.

 /// </summary>

 /// <param name="index">

 /// The index parameter specifies the index location

 /// within the List to start inserting the range of

 /// values.

 /// </param>

 /// <param name="collection">

 /// The collection parameter specifies the items to be

 /// inserted into the List.

 /// </param>

 public new void InsertRange(int index, IEnumerable<T> collection)

 {

 dirty = true;

 base.InsertRange(index, collection);

 }

 /// <summary>

 /// The Remove method for the DirtyList is similar

 /// to the traditional List Clear method except

 /// that it also sets the DirtyList's dirty flag.

 /// </summary>

 /// <param name="item">

 /// The item parameter specifies the item to be

 /// removed from the List.

 /// </param>

 public new void Remove(T item)

 {

 dirty = true;

 base.Remove(item);

 }

 /// <summary>

 /// The RemoveAll method for the DirtyList is similar

 /// to the traditional List Clear method except

 /// that it also sets the DirtyList's dirty flag.

 /// </summary>

 /// <param name="match">

 /// The match parameter provides the Predicate to

 /// determine matching criteria for items to be

 /// removed.

 /// </param>

 /// <returns>

 /// The return values indicates the number of items

 /// removed from the List.

 /// </returns>

 public new int RemoveAll(Predicate<T> match)

 {

 dirty = true;

 return base.RemoveAll(match);

 }

11 APPENDICES

202

 /// <summary>

 /// The RemoveAt method for the DirtyList is similar

 /// to the traditional List Clear method except

 /// that it also sets the DirtyList's dirty flag.

 /// </summary>

 /// <param name="index">

 /// The index parameter describes the index location

 /// of the item to remove from the List.

 /// </param>

 public new void RemoveAt(int index)

 {

 dirty = true;

 base.RemoveAt(index);

 }

 /// <summary>

 /// The RemoveRange method for the DirtyList is similar

 /// to the traditional List Clear method except

 /// that it also sets the DirtyList's dirty flag.

 /// </summary>

 /// <param name="index">

 /// The index parameter describes the index location of

 /// the first item to be removed from the List.

 /// </param>

 /// <param name="count">

 /// The count parameter describes the number of items

 /// from the given index to remove from the list.

 /// </param>

 public new void RemoveRange(int index, int count)

 {

 dirty = true;

 base.RemoveRange(index, count);

 }

 /// <summary>

 /// This sort method is designed to take a MemberInfo

 /// object which describes a particular member of the

 /// contained objects and then sorts the entries based

 /// upon that member.

 /// </summary>

 /// <param name="member">

 /// The member of the class to carry out a sort with.

 /// </param>

 /// <returns>

 /// A sorted list containing the array elements sorted by

 /// the given member.

 /// </returns>

 public SortedList<string, T> Sort(System.Reflection.MemberInfo member)

 {

 SortedList<string, T> newList = new SortedList<string,

T>(this.Count);

 for (int i = 0; i < this.Count; i++)

 {

 switch (member.MemberType)

 {

 case System.Reflection.MemberTypes.Field:

 System.Reflection.FieldInfo field =

(System.Reflection.FieldInfo)member;

 newList.Add(GetString(field.GetValue(this[i])) + ":" +

i.ToString(), this[i]);

 break;

 case System.Reflection.MemberTypes.Property:

 System.Reflection.PropertyInfo property =

(System.Reflection.PropertyInfo)member;

 newList.Add(GetString(property.GetValue(this[i], null))

+ ":" + i.ToString(), this[i]);

 break;

 case System.Reflection.MemberTypes.Method:

 System.Reflection.MethodInfo method =

(System.Reflection.MethodInfo)member;

 newList.Add(GetString(method.Invoke(this[i], new

object[0] { })) + ":" + i.ToString(), this[i]);

 break;

 }

 }

11 APPENDICES

203

 return newList;

 }

 /// <summary>

 /// The GetString method is a helper method returns which

 /// returns a string representation of the object provided.

 /// It is mainly used to turn DateTime objects into a

 /// useful string.

 /// </summary>

 /// <param name="value">

 /// The value parameter provides the object which requires

 /// a string representation.

 /// </param>

 /// <returns>

 /// The return value is a string representation of value.

 /// </returns>

 private string GetString(object value)

 {

 if (value is DateTime)

 return ((DateTime)value).ToString("yyyyMMddHHmmss");

 else

 return value.ToString();

 }

 }

}

11.3.3.3 IPeriodElement Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

{

 /// <summary>

 /// A base interface which all others that are exposed from here

 /// tend to inherit from.

 /// </summary>

 public interface IPeriodElement

 {

 /// <summary>

 /// The Start property provides and IPeriodElement with

 /// a means of describing its Start date/time.

 /// </summary>

 DateTime Start { get; }

 /// <summary>

 /// The Finish property provides and IPeriodElement with

 /// a means of describing its Finish date/time.

 /// </summary>

 DateTime Finish { get; }

 /// <summary>

 /// The RestLength property provides and IPeriodElement with

 /// a means of describing its length of rest.

 /// </summary>

 TimeSpan RestLength { get; }

 /// <summary>

 /// The WorkLength property provides and IPeriodElement with

 /// a means of describing its length of work.

 /// </summary>

 TimeSpan WorkLength { get; }

 }

11 APPENDICES

204

}

11.3.3.4 ITestable Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

{

 /// <summary>

 /// The PeriodRequestDelegate is designed to allow any type

 /// rule to request the information from other rules or data

 /// sitting relative to them within a work plan. This way if,

 /// for example, a daily rest period rule has a length which

 /// is dependant upon the previous daily work period length,

 /// the daily rest period can request access to the previous

 /// daily work period.

 /// </summary>

 /// <param name="source">

 /// The IPeriodElement who is requesting access to a relative

 /// item.

 /// </param>

 /// <param name="relativeIndex">

 /// The index of the item relative to the requesting

 /// IPeriodElement. For example, -1 would recieve the

 /// IPeriodElement that came before it and +1 would return the

 /// next IPeriodElement.

 /// </param>

 /// <returns>

 /// The IPeriodElement item that was located relative to the

 /// source IPeriodElement.

 /// </returns>

 public delegate IPeriodElement PeriodRequestDelegate(IPeriodElement source,

int relativeIndex);

 public delegate IPeriodElement PeriodTypeRequestDelegate(IPeriodElement

source, int relativeIndex, Type periodType);

 /// <summary>

 /// The ITestable interface defines a number of attributes that

 /// any object which has the ability to be tested must have of

 /// provide a facility for.

 /// </summary>

 public interface ITestable

 {

 event PeriodRequestDelegate RequestPeriod;

 event PeriodTypeRequestDelegate RequestPeriodType;

 /// <summary>

 /// The Test method returns a bolean value indicating the

 /// success of the test. All testable objects must have a

 /// test method.

 /// </summary>

 /// <returns>

 /// Returns a boolean value indicating the success of the

 /// test.

 /// </returns>

 bool Test();

 }

}

11 APPENDICES

205

11.3.3.5 Period Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

{

 /// <summary>

 /// The Period class provides a base class and relevant

 /// functionality for all types of periods. All periods

 /// have a start and finish time and a RestLength and

 /// WorkLength time spans.

 ///

 /// Additionally all period classes can have periods

 /// contained within them, be contained within another

 /// period and have other periods that can come before

 /// or after them.

 /// </summary>

 public abstract class Period : WorkPattern, IPeriodElement, ITestable

 {

 /// <summary>

 /// The ITestable interface states we must have a

 /// Start property which we do not yet want to

 /// define so it is specified as abstract.

 /// </summary>

 public abstract DateTime Start { get; }

 /// <summary>

 /// The ITestable interface states we must have a

 /// Finish property which we do not yet want to

 /// define so it is specified as abstract.

 /// </summary>

 public abstract DateTime Finish { get; }

 /// <summary>

 /// The ITestable interface states we must have a

 /// RestLength property which we do not yet want to

 /// define so it is specified as abstract.

 /// </summary>

 public abstract TimeSpan RestLength { get; }

 /// <summary>

 /// The ITestable interface states we must have a

 /// WorkLength property which we do not yet want to

 /// define so it is specified as abstract.

 /// </summary>

 public abstract TimeSpan WorkLength { get; }

 /// <summary>

 /// Length property describes the difference

 /// between the start and finish of the period.

 /// </summary>

 public TimeSpan Length { get { return new RuleSupport.TimeSpan(Finish -

Start); } }

 /// <summary>

 /// The ITestable interface states we must have a

 /// RequestPeriod event which we do not yet want to

 /// define so it is specified as abstract.

 /// </summary>

 public event PeriodRequestDelegate RequestPeriod;

 /// <summary>

11 APPENDICES

206

 /// The ITestable interface states we must have a

 /// RequestPeriodType event which we do not yet want to

 /// define so it is specified as abstract.

 /// </summary>

 public event PeriodTypeRequestDelegate RequestPeriodType;

 /// <summary>

 /// The private contains variable stores a cahced copy

 /// of the loaded attribute details.

 /// </summary>

 private Contains contains = null;

 /// <summary>

 /// The Contains property provides a means accessing

 /// the collection of Types that can be contained within

 /// this type.

 /// </summary>

 public new Contains Contains

 {

 get

 {

 if (contains == null)

 contains =

((ContainsAttribute)(this.GetType().GetCustomAttributes(typeof(ContainsAttribut

e), false)[0])).Contains;

 return contains;

 }

 set

 {

 contains = value;

 }

 }

 /// <summary>

 /// The ContainWithin property provides a means of

 /// accessing the Types that can contain this type.

 /// </summary>

 public Contains ContainWithin

 {

 get

 {

 return

((ContainedWithinAttribute)(this.GetType().GetCustomAttributes(typeof(Contained

WithinAttribute), false)[0])).Container;

 }

 }

 /// <summary>

 /// The PrePosts property provides a means of

 /// accessing the Types that can come before and

 /// after this type.

 /// </summary>

 public PrePosts PrePosts

 {

 get

 {

 return

((PrePostAttribute)(this.GetType().GetCustomAttributes(typeof(PrePostAttribute)

, false)[0])).PrePosts;

 }

 }

 /// <summary>

 /// The ITestable interface states we must have a

 /// Test method which we do not yet want to

 /// define so it is specified as abstract.

 /// </summary>

 public abstract bool Test();

 /// <summary>

 /// The constructor intialises the object.

 /// </summary>

 public Period()

 {

 }

11 APPENDICES

207

 #region Overrides of the Add and Remove Methods

 /// <summary>

 /// This overrident Add method determines which of

 /// the storage containers a given element can be

 /// contained within and add's the object to that

 /// specific collection. If the given object does

 /// not belong to that collection, the method

 /// returns false.

 /// </summary>

 /// <param name="Period">

 /// The Period parameter provides the object to be

 /// added to a container.

 /// </param>

 /// <returns>

 /// The return value is a boolean describing

 /// whether the given object has been added

 /// to one of the containers.

 /// </returns>

 public new bool Add(IPeriodElement Period)

 {

 if (this.Contains.ContainsKey(Period.GetType().Name))

 {

 this.Contains[Period.GetType().Name].Add(Period);

 if (Period is RuleSupport.ITestable)

 base.Add((ITestable)Period);

 return true;

 }

 else

 return false;

 }

 /// <summary>

 /// The Remove method identifies which of the

 /// containers a given object belows to and

 /// removes the object from that container.

 /// </summary>

 /// <param name="Period">

 /// The Period parameter provides the object to be

 /// removed from a container.

 /// </param>

 public new void Remove(IPeriodElement Period)

 {

 if (this.Contains.ContainsKey(Period.GetType().Name))

 {

 this.Contains[Period.GetType().Name].Remove(Period);

 if (base.Contains(Period))

 base.Remove((ITestable)Period);

 }

 }

 /// <summary>

 /// The CanContain method provides a quick and simple

 /// lookup, to determine whether this period can contain

 /// a given element, based on the permitted containers

 /// originally define within this periods metadata.

 /// </summary>

 /// <param name="element"></param>

 /// <returns></returns>

 public bool CanContain(IPeriodElement element)

 {

 return this.Contains.ContainsKey(element.GetType().Name);

 }

 #endregion

 #region Relative Period Objects Access Methods

 /// <summary>

 /// The GetProperty method is a relatively complex method

 /// for obtaining a value for a named property item. This

 /// allows, for example, a period to obtain values from

 /// periods around them, periods they are contained within

11 APPENDICES

208

 /// or periods they contain.

 /// </summary>

 /// <param name="name">

 /// The qualified name of the property whose value is to be

 /// returned. This would be in the form of, for example,

 /// PRE.Start or PRE(DWP.Finish).

 /// </param>

 /// <returns>

 /// The return value is a double representing the numberic

 /// value of the property.

 /// </returns>

 public double GetProperty(String name)

 {

 Object instance = this;

 String prePart = "";

 String postPart = name;

 Type instanceType = instance.GetType();

 while (postPart.Length > 0)

 {

 if (postPart.IndexOf(".") > 0)

 {

 prePart = postPart.Substring(0, postPart.IndexOf("."));

 postPart = postPart.Substring(postPart.IndexOf(".") + 1);

 if (prePart.ToUpper() == "PRE")

 instance = ((Period)instance).GetPrevious();

 else if (prePart.ToUpper() == "POST")

 instance = ((Period)instance).GetNext();

 else if (prePart.ToUpper().StartsWith("PRE("))

 instance =

((Period)instance).GetPrevious(int.Parse(prePart.ToUpper().Substring(0,

4).Substring(0, prePart.ToUpper().Substring(0, 4).Length - 1)));

 else if (prePart.ToUpper().StartsWith("POST("))

 instance =

((Period)instance).GetNext(int.Parse(prePart.ToUpper().Substring(0,

5).Substring(0, prePart.ToUpper().Substring(0, 5).Length - 1)));

 else if (((Period)instance).Contains.ContainsKey(prePart))

 instance = ((Period)instance).Contains[prePart];

 else if (instanceType.GetProperty(prePart) != null)

 instance =

instanceType.GetProperty(prePart).GetValue(instance, new object[] { });

 else if (instanceType.GetField(prePart) != null)

 instance =

instanceType.GetField(prePart).GetValue(instance);

 else if (instanceType.GetMethod(prePart, new Type[] { }) !=

null)

 instance =

instanceType.GetMethod(prePart).Invoke(instance, new Type[] { });

 instanceType = instance.GetType();

 }

 else

 {

 prePart = postPart;

 postPart = "";

 }

 }

 Object returnValue = null;

 double returnValueD = (double)0;

 if (instanceType.GetProperty(prePart) != null)

 returnValue =

instanceType.GetProperty(prePart).GetValue(instance, new object[] { });

 if (instanceType.GetField(prePart) != null)

 returnValue =

instanceType.GetField(prePart).GetValue(instance);

 if (instanceType.GetMethod(prePart, new Type[] { }) != null)

 returnValue = instanceType.GetMethod(prePart).Invoke(instance,

11 APPENDICES

209

new Type[] { });

 if (returnValue.GetType() == typeof(RuleSupport.TimeSpan))

 returnValueD =

(double)((RuleSupport.TimeSpan)returnValue).myTS.TotalHours;

 else

 double.TryParse(returnValue.ToString(),

System.Globalization.NumberStyles.Any,

System.Globalization.CultureInfo.CurrentCulture, out returnValueD);

 return returnValueD;

 }

 /// <summary>

 /// The GetPrevious method is a shortcut method to

 /// obtaining an object located before this one

 /// within a work pattern.

 /// </summary>

 /// <param name="relativeCount">

 /// The relativeCount parameter describes the number

 /// of place back in the work pattern to look to obtain

 /// the object location previous to this one.

 /// </param>

 /// <returns>

 /// The IPeriodElement located the give number of

 /// places before this in the work pattern.

 /// </returns>

 public IPeriodElement GetPrevious(int relativeCount)

 {

 return this.RequestPeriod(this, 0 - relativeCount);

 }

 /// <summary>

 /// The GetNext method is a shortcut method to

 /// obtaining an object located after this one

 /// within a work pattern.

 /// </summary>

 /// <param name="relativeCount">

 /// The relativeCount parameter describes the number

 /// of place forward in the work pattern to look to

 /// obtain the object location previous to this one.

 /// </param>

 /// <returns>

 /// The IPeriodElement located the give number of

 /// places after this in the work pattern.

 /// </returns>

 public IPeriodElement GetNext(int relativeCount)

 {

 return this.RequestPeriod(this, relativeCount);

 }

 /// <summary>

 /// The GetPrevious method is a shortcut method to

 /// obtaining the object located before this one

 /// within a work pattern.

 /// </summary>

 /// <returns>

 /// The IPeriodElement located the before this in

 /// the work pattern.

 /// </returns>

 public IPeriodElement GetPrevious()

 {

 return this.RequestPeriod(this, -1);

 }

 /// <summary>

 /// The GetNext method is a shortcut method to

 /// obtaining the object located after this one

 /// within a work pattern.

 /// </summary>

 /// <returns>

 /// The IPeriodElement located after this in the

 /// work pattern.

 /// </returns>

 public IPeriodElement GetNext()

 {

11 APPENDICES

210

 return this.RequestPeriod(this, 1);

 }

 /// <summary>

 /// The GetPrevious method is a shortcut method to

 /// obtaining the object located before this one

 /// within a work pattern.

 /// </summary>

 /// <param name="type">

 /// The type parameter describes the type of object

 /// to obtain from the work pattern.

 /// </param>

 /// <param name="relativeCount">

 /// The relativeCount parameter describes the number

 /// of place back in the work pattern to look to obtain

 /// the object location previous to this one.

 /// </param>

 /// <returns>

 /// The IPeriodElement located the give number of

 /// places before this, of a given type in the work

 /// pattern.

 /// </returns>

 public IPeriodElement GetPrevious(Type type, int relativeCount)

 {

 return this.RequestPeriodType(this, 0 - relativeCount, type);

 }

 /// <summary>

 /// The GetNext method is a shortcut method to

 /// obtaining the object located after this one

 /// within a work pattern.

 /// </summary>

 /// <param name="type">

 /// The type parameter describes the type of object

 /// to obtain from the work pattern.

 /// </param>

 /// <param name="relativeCount">

 /// The relativeCount parameter describes the number

 /// of place forward in the work pattern to look to

 /// obtain the object location after to this one.

 /// </param>

 /// <returns>

 /// The IPeriodElement located the give number of

 /// places after this, of a given type in the work

 /// pattern.

 /// </returns>

 public IPeriodElement GetNext(Type type, int relativeCount)

 {

 return this.RequestPeriodType(this, relativeCount, type);

 }

 /// <summary>

 /// The GetPrevious method is a shortcut method to

 /// obtaining the object located before this one

 /// within a work pattern.

 /// </summary>

 /// <param name="type">

 /// The type parameter describes the type of object

 /// to obtain from the work pattern.

 /// </param>

 /// <returns>

 /// The IPeriodElement located the before this, of a

 /// given type in the work pattern.

 /// </returns>

 public IPeriodElement GetPrevious(Type type)

 {

 return this.RequestPeriodType(this, -1, type);

 }

 /// <summary>

 /// The GetNext method is a shortcut method to

 /// obtaining the object located before this one

 /// within a work pattern.

 /// </summary>

 /// <param name="type">

 /// The type parameter describes the type of object

11 APPENDICES

211

 /// to obtain from the work pattern.

 /// </param>

 /// <returns>

 /// The IPeriodElement located the after this, of a

 /// given type in the work pattern.

 /// </returns>

 public IPeriodElement GetNext(Type type)

 {

 return this.RequestPeriodType(this, 1, type);

 }

 /// <summary>

 /// The GetEndStack method is an interative method used

 /// for looking down the work pattern hierachy and

 /// gaining access to the various layers.

 /// </summary>

 /// <param name="layers"></param>

 public void GetEndStack(Stack<RuleSupport.Period> layers)

 {

 // Add ourselves to the stack, for of all..

 layers.Push(this);

 // If we contain anything that resembles a Period

 // type of object, call its GetEndStack method.

 if ((this.Count > 0) && (this[this.Count - 1] is

RuleSupport.Period))

 ((RuleSupport.Period)this[this.Count - 1]).GetEndStack(layers);

 }

 #endregion

 }

}

11.3.3.6 PeriodDescriptionAttribute Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

namespace RuleSupport

{

 /// <summary>

 /// The PeriodDescriptionAttribute class provides a means of giving

 /// description to a period through an attribute, available later at

 /// runtime.

 /// </summary>

 public class PeriodDescriptionAttribute : Attribute

 {

 public string Name { get; private set; }

 public string Description { get; private set; }

 public PeriodDescriptionAttribute(string name, string description)

 {

 Name = name;

 Description = description;

 }

 }

 /// <summary>

 /// The PrePostAttribute provides a means of describing PrePost

 /// information through an attribute so that the periods pre and

 /// post information can be accessed at runtime without the need

 /// for class initialisation.

 /// </summary>

 public class PrePostAttribute : Attribute

 {

 public PrePosts PrePosts { get; private set; }

 public PrePostAttribute(params string[] preposts)

11 APPENDICES

212

 {

 if (preposts.Length % 2 == 1)

 throw new InvalidOperationException("PrePosts should be

provided in pairs.");

 PrePosts = new PrePosts();

 for (int i = 0; i < preposts.Length / 2; i += 2)

 PrePosts.Add(preposts[i], preposts[i + 1]);

 }

 }

 /// <summary>

 /// The ContainsAttribute provides a means of describing the

 /// types that can be contained within this type through an

 /// attribute so that they can be accessed at runtime without

 /// the need for class initialisation.

 /// </summary>

 public class ContainsAttribute : Attribute

 {

 public Contains Contains { get; private set; }

 public ContainsAttribute(params string[] contains)

 {

 Contains = new Contains();

 foreach (string contain in contains)

 Contains.Add(contain);

 }

 }

 /// <summary>

 /// The ContainedWithinAttribute provides a means of

 /// describing the types that can contain the given type

 /// through an attribute so that they can be accessed at

 /// runtime without the need for class initialisation.

 /// </summary>

 public class ContainedWithinAttribute : Attribute

 {

 public Contains Container { get; private set; }

 public ContainedWithinAttribute(params string[] containers)

 {

 Container = new Contains();

 foreach (string container in containers)

 Container.Add(container);

 }

 }

}

11.3.3.7 PrePost Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

{

 /// <summary>

 /// The PrePost class is designed to represent a description

 /// of those period types that come before and after a particular

 /// period.

 ///

 /// This is the run-time version of the PrePost class as opposed

11 APPENDICES

213

 /// to the compile-time version which comes under the

 /// RuleDefinitionLanguage namespace.

 /// </summary>

 [Serializable()]

 public class PrePost

 {

 public String Pre;

 public String Post;

 public PrePost(String pre, String post)

 {

 Pre = pre;

 Post = post;

 }

 }

 /// <summary>

 /// The PrePosts class is a specialised form the the List class

 /// providing an additional function for adding a PrePost item

 /// by specifying the two constructor arguments of the PrePost.

 /// </summary>

 [Serializable()]

 public class PrePosts : List<PrePost>

 {

 /// <summary>

 /// The Add method provides the ability to add an PrePost

 /// entry based upon the string versions of the Pre and the

 /// Post, rather than an object instance of a PrePost.

 /// </summary>

 /// <param name="Pre">

 /// The string representation of the Pre entry.

 /// </param>

 /// <param name="Post">

 /// The string representation of the Post entry.

 /// </param>

 public void Add(String Pre, String Post)

 {

 base.Add(new PrePost(Pre, Post));

 }

 }

}

11.3.3.8 RestPeriod Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

{

 /// <summary>

 /// This is the base RestPeriod class used to describe

 /// a general rest period. It is inherited by classes

 /// generated by the rule compiler and is designed for

 /// the purpose of carrying out some of the basic

 /// functionality that is expected from a standard rest

 /// period.

 /// </summary>

 [Serializable()]

 public abstract class RestPeriod : Period

 {

 /// <summary>

 /// The constructor calls the base classes contructor

 /// to initialise any relevant variables.

11 APPENDICES

214

 /// </summary>

 public RestPeriod()

 : base()

 {

 }

 /// <summary>

 /// The Start time of the rest period is determined

 /// by looking at the previous period within the

 /// work pattern to see when it finished, using this

 /// as the start time.

 /// </summary>

 public override DateTime Start

 {

 get

 {

 IPeriodElement previous = GetPrevious();

 if (previous == null)

 return new DateTime();

 else

 return previous.Finish;

 }

 }

 /// <summary>

 /// The Finish time of the rest period is determined

 /// by looking at the next period within the

 /// work pattern to see when it starts, using this

 /// as the finish time.

 /// </summary>

 public override DateTime Finish

 {

 get

 {

 IPeriodElement next = GetNext();

 if (next == null)

 return new DateTime();

 else

 return next.Start;

 }

 }

 /// <summary>

 /// As this is a rest period, the entire duration of

 /// the period is used as the rest length.

 /// </summary>

 public override TimeSpan RestLength

 {

 get

 {

 IPeriodElement previous = GetPrevious();

 IPeriodElement next = GetNext();

 if ((previous == null) || (next == null))

 return new TimeSpan(long.MaxValue);

 else

 return ((TimeSpan)(next.Start - previous.Finish));

 }

 }

 /// <summary>

 /// As this is a rest period, there is no work and

 /// as such the TimeSpan return contains no time.

 /// </summary>

 public override TimeSpan WorkLength

 {

 get

 {

 return new TimeSpan();

 }

 }

 }

}

11 APPENDICES

215

11.3.3.9 TimeSpan Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

{

 /// <summary>

 /// This new definition of the TimeSpan class supports additional

 /// conversion between the original System.TimeSpan class and the

 /// System.DateTime class.

 /// </summary>

 [Serializable()]

 public struct TimeSpan

 {

 /// <summary>

 /// The internal System.TimeSpan object that contains the base

 /// functionality of a TimeSpan.

 /// </summary>

 internal System.TimeSpan myTS; // = new System.TimeSpan(0);

 /// <summary>

 /// The ToString method provides the TimeSpan object as a string

 /// representation.

 /// </summary>

 /// <returns>

 /// The string representation of the TimeSpan object.

 /// </returns>

 public override string ToString()

 {

 return myTS.ToString();

 }

 /// <summary>

 /// The implicit operator converts the TimeSpan into a DateTime

 /// data type.

 /// </summary>

 /// <param name="ts">

 /// The ts parameter is the TimeSpan object who will be converted

 /// into a DateTime object.

 /// </param>

 /// <returns>

 /// The return value is the DateTime version of the TimeSpan.

 /// </returns>

 public static implicit operator DateTime(TimeSpan ts)

 {

 return new DateTime(0, 0, ts.myTS.Days, ts.myTS.Hours,

ts.myTS.Minutes, ts.myTS.Seconds);

 }

 /// <summary>

 /// The implicit operator converts the TimeSpan into a

 /// System.TimeSpan data type.

 /// </summary>

 /// <param name="ts">

 /// The ts parameter is the TimeSpan object who will be converted

 /// into a System.TimeSpan object.

 /// </param>

 /// <returns>

 /// The return value is the System.TimeSpan version of the TimeSpan.

 /// </returns>

 public static implicit operator System.TimeSpan(TimeSpan ts)

 {

 return ts.myTS;

 }

 /// <summary>

 /// The implicit operator converts a DateTime type into a TimeSpan

11 APPENDICES

216

 /// data type.

 /// </summary>

 /// <param name="ts">

 /// The dt parameter is the DateTime object who will be converted

 /// into a TimeSpan object.

 /// </param>

 /// <returns>

 /// The return value is the TimeSpan version of the DateTime.

 /// </returns>

 public static implicit operator TimeSpan(System.DateTime dt)

 {

 return new TimeSpan(new System.TimeSpan(dt.Day, dt.Hour, dt.Minute,

dt.Second));

 }

 /// <summary>

 /// The explicit operator converts the System.TimeSpan into a

 /// TimeSpan data type.

 /// </summary>

 /// <param name="ts">

 /// The ts parameter is the System.TimeSpan object who will be

 /// converted into a TimeSpan object.

 /// </param>

 /// <returns>

 /// The return value is the TimeSpan version of the

 /// System.TimeSpan.

 /// </returns>

 public static explicit operator TimeSpan(System.TimeSpan ts)

 {

 // code to convert from System.TimeSpan to TimeSpan

 return new TimeSpan(ts);

 }

 /// <summary>

 /// The operator + carries out the addition of two TimeSpan

 /// objects, returning the result.

 /// </summary>

 /// <param name="a">

 /// The left hand TimeSpan to add to.

 /// </param>

 /// <param name="b">

 /// The right hand TimeSpan to be added.

 /// </param>

 /// <returns>

 /// The result is the additional of the two TimeSpan objects.

 /// </returns>

 public static TimeSpan operator +(TimeSpan a, TimeSpan b)

 {

 return new TimeSpan(a.myTS + b.myTS);

 }

 /// <summary>

 /// The operator - carries out the substraction of two

 /// TimeSpan objects, returning the result.

 /// </summary>

 /// <param name="a">

 /// The left hand TimeSpan to substract from.

 /// </param>

 /// <param name="b">

 /// The right hand TimeSpan to be substracted.

 /// </param>

 /// <returns>

 /// The result is the substraction of the two TimeSpan

 /// objects.

 /// </returns>

 public static TimeSpan operator -(TimeSpan a, TimeSpan b)

 {

 return new TimeSpan(a.myTS - b.myTS);

 }

 /// <summary>

 /// The operator > compares two TimeSpan objects,

 /// returning the result.

 /// </summary>

 /// <param name="a">

 /// The left hand TimeSpan to compare.

11 APPENDICES

217

 /// </param>

 /// <param name="b">

 /// The right hand TimeSpan to compare.

 /// </param>

 /// <returns>

 /// The result is the comparison of the of the two

 /// TimeSpan objects.

 /// </returns>

 public static bool operator >(TimeSpan a, TimeSpan b)

 {

 return a.myTS > b.myTS;

 }

 /// <summary>

 /// The operator ? compares two TimeSpan objects,

 /// returning the result.

 /// </summary>

 /// <param name="a">

 /// The left hand TimeSpan to compare.

 /// </param>

 /// <param name="b">

 /// The right hand TimeSpan to compare.

 /// </param>

 /// <returns>

 /// The result is the comparison of the of the two

 /// TimeSpan objects.

 /// </returns>

 public static bool operator <(TimeSpan a, TimeSpan b)

 {

 return a.myTS < b.myTS;

 }

 /// <summary>

 /// The operator >= compares two TimeSpan objects,

 /// returning the result.

 /// </summary>

 /// <param name="a">

 /// The left hand TimeSpan to compare.

 /// </param>

 /// <param name="b">

 /// The right hand TimeSpan to compare.

 /// </param>

 /// <returns>

 /// The result is the comparison of the of the two

 /// TimeSpan objects.

 /// </returns>

 public static bool operator >=(TimeSpan a, TimeSpan b)

 {

 return a.myTS >= b.myTS;

 }

 /// <summary>

 /// The operator ?= compares two TimeSpan objects,

 /// returning the result.

 /// </summary>

 /// <param name="a">

 /// The left hand TimeSpan to compare.

 /// </param>

 /// <param name="b">

 /// The right hand TimeSpan to compare.

 /// </param>

 /// <returns>

 /// The result is the comparison of the of the two

 /// TimeSpan objects.

 /// </returns>

 public static bool operator <=(TimeSpan a, TimeSpan b)

 {

 return a.myTS <= b.myTS;

 }

 /// <summary>

 /// This constructor constructs the object with the

 /// given number of ticks as the length of the

 /// TimeSpan.

 /// </summary>

 /// <param name="ticks">

11 APPENDICES

218

 /// The number of ticks that represent this TimeSpan.

 /// </param>

 public TimeSpan(long ticks)

 {

 myTS = new System.TimeSpan(ticks);

 }

 /// <summary>

 /// This constructor constructs the object with the

 /// given number of hours, minutes and seconds as

 /// the length of the TimeSpan.

 /// </summary>

 /// <param name="Hours">

 /// The number of hours this TimeSpan represents.

 /// </param>

 /// <param name="Minutes">

 /// The number of minutes this TimeSpan represents.

 /// </param>

 /// <param name="Seconds">

 /// The number of seconds this TimeSpan represents.

 /// </param>

 public TimeSpan(int Hours, int Minutes, int Seconds)

 {

 myTS = new System.TimeSpan(Hours, Minutes, Seconds);

 }

 /// <summary>

 /// This constructor constructs the object using the

 /// System.TimeSpan to represent its length.

 /// </summary>

 /// <param name="ts">

 /// The System.TimeSpan to use to represent the length

 /// of this TimeSpan.

 /// </param>

 public TimeSpan(System.TimeSpan ts)

 {

 myTS = ts;

 }

 /// <summary>

 /// This constructor constructs the object using the

 /// System.DateTime to represent the length of the

 /// TimeSpan.

 /// </summary>

 /// <param name="dt">

 /// The System.DateTime to use to represent the length

 /// of this TimeSpan.

 /// </param>

 public TimeSpan(System.DateTime dt)

 {

 myTS = new System.TimeSpan(dt.Day, dt.Hour, dt.Minute, dt.Second);

 }

 }

}

11.3.3.10 Types Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

11 APPENDICES

219

{

 /// <summary>

 /// The Types class is used to help in the generation of the work

 /// pattern by providing a means of quickly and easily sorting through

 /// and finding Types which may be contained within or are the container

 /// for other types. Providing the logic for this in a seperate class

 /// helps to relieve complexity on the work pattern and tester classes.

 /// </summary>

 public class Types : SortedList<string, Type>, IEnumerable<Type>

 {

 /// <summary>

 /// The default constructor takes no arguments and simply

 /// calls the constructor for the base class.

 /// </summary>

 public Types()

 : base()

 {

 }

 /// <summary>

 /// This special constructor takes an array of Types to be

 /// added to the collection. This constructor also calls

 /// the default base class constructor.

 /// </summary>

 /// <param name="types">

 /// The array of Type objects to be added to the collection.

 /// </param>

 public Types(Type[] types)

 : base()

 {

 AddRange(types);

 }

 /// <summary>

 /// This Add method provides a means of adding a Type to the

 /// collection without specifying its key as the key is taken

 /// from the given Type objects name.

 /// </summary>

 /// <param name="type">

 /// The Type to be added to the collection.

 /// </param>

 public void Add(Type type)

 {

 base.Add(type.Name, type);

 }

 /// <summary>

 /// This AddRange method provides a means of adding multiple Type

 /// objects to the collection. Each one is added independantly to

 /// the collection, using its Type.Name property as the key for

 /// the entry in the collection.

 /// </summary>

 /// <param name="types">

 /// The array of Type objects to be added to the collection.

 /// </param>

 public void AddRange(Type[] types)

 {

 foreach (Type type in types)

 Add(type);

 }

 /// <summary>

 /// The Contains method returns a boolean value indicating whether

 /// the Type specified exists within the collection.

 /// </summary>

 /// <param name="type">

 /// The Type to check the existance of within the collection.

 /// </param>

 /// <returns>

 /// A boolean value indicating whether the Type exists in the

collection.

 /// </returns>

 public bool Contains(Type type)

 {

11 APPENDICES

220

 return base.ContainsKey(type.Name);

 }

 /// <summary>

 /// The GetTypesThatContainType method returns those types contained

 /// within this collection who have the ability to contain the given

 /// type.

 /// </summary>

 /// <param name="containee">

 /// The type for whom container types will be returned.

 /// </param>

 /// <returns>

 /// A new type collection containing those types that can contain the

 /// given containee.

 /// </returns>

 public Types GetTypesThatContainType(Type containee)

 {

 // Create a variable to use as the return value later.

 Types newTypeArray = new Types();

 // Loop through each Type stored within this collection to see

 // if if it can contain the given type.

 foreach (Type type in this.Values)

 {

 RuleSupport.ContainsAttribute attr =

(RuleSupport.ContainsAttribute)type.GetCustomAttributes(typeof(RuleSupport.Cont

ainsAttribute), false)[0];

 if (attr.Contains.ContainsKey(containee.Name) &&

(!newTypeArray.Contains(type)))

 newTypeArray.Add(type);

 }

 return newTypeArray;

 }

 /// <summary>

 /// The GetTypesContainedInType method returns a new collection of

 /// types for those stored within this collection who can be contained

 /// within the given container. In addition, the previous type is

 /// specified in order that those types are returned who are able to

 /// come after the previous type.

 /// </summary>

 /// <param name="container">

 /// The container Type whose Types that can be contained within it are

 /// returned.

 /// </param>

 /// <param name="previous">

 /// The previous Type provided in order to limit the return of Types

 /// to those that can come after this Type.

 /// </param>

 /// <returns>

 /// A new type collection containing those Types that can be contained

 /// within the container type and who can also follow the previous

type.

 /// </returns>

 public Types GetTypesContainedInType(Type container, Type previous)

 {

 // Create a variable to use as the return value later.

 Types newTypes = new Types();

 // Obtain the string value representing the name of the

 // type as found in the PrePosts collection.

 string prev = "";

 if (previous != null)

 prev = previous.Name;

 // Create a new instance of the container in order that we can

 // gain access to the list of types that can be contained within

 // it.

 RuleSupport.ContainsAttribute containsAttr =

(RuleSupport.ContainsAttribute)container.GetCustomAttributes(typeof(RuleSupport

.ContainsAttribute), false)[0];

 // Loop through each of the keys in the Contains property to

 // look at each of the Types that can be contained within the

 // container.

11 APPENDICES

221

 foreach (string contains in containsAttr.Contains.Keys)

 {

 // Check to ensure this is a Type available within the Types

 // collection, and not an element of data.

 if (this.ContainsKey(contains))

 {

 // Create a new instance of the found type in order that

 // we can access the PrePost collection for the Type.

 RuleSupport.PrePostAttribute prepostAttr =

(RuleSupport.PrePostAttribute)((Type)this[contains]).GetCustomAttributes(typeof

(RuleSupport.PrePostAttribute), false)[0];

 // Loop through the PrePosts in order to ensure this Type

 // can follow the specified previous Type.

 foreach (PrePost prepost in prepostAttr.PrePosts)

 {

 // If we've found it we can add this Type to the

 // collection and break from the PrePosts foreach

 // statement.

 if (prepost.Pre == prev)

 {

 // Add the Type to the new collection.

 newTypes.Add((Type)this[contains]);

 // Break from the PrePost foreach interations.

 break;

 }

 }

 }

 }

 // Return the new collection of types containing those requested.

 return newTypes;

 }

 /// <summary>

 /// The GetTypesThatProceedType method returns those types stored

 /// within the collection that would normally come after the given

 /// containee in a work plan.

 /// </summary>

 /// <param name="containee">

 /// The containee Type whose proceeding types will be returned.

 /// </param>

 /// <returns>

 /// A new type collection containing those Types proceeding the

 /// containee type.

 /// </returns>

 public Types GetTypesThatProceedType(Type containee)

 {

 // Create a variable to use as the return value later.

 Types newTypes = new Types();

 // Create a new instance of the containee type in order that

 // we can access the PrePost collection for the Type.

 RuleSupport.PrePostAttribute prepostAttr =

(RuleSupport.PrePostAttribute)containee.GetCustomAttributes(typeof(RuleSupport.

PrePostAttribute), false)[0];

 // Loop through each PrePost entry so we can see those Types

 // the proceed it.

 foreach (RuleSupport.PrePost prepost in prepostAttr.PrePosts)

 {

 // If the Post item is contained within this collection and

 // the key is not already in the new collection, we can add

 // the Type to the new collection.

 if ((this.ContainsKey(prepost.Post)) &&

(!newTypes.ContainsKey(prepost.Post)))

 {

 // Add this Post Type to the collection.

 newTypes.Add((Type)this[prepost.Post]);

 }

 }

 // Return the new collection of types containing those requested.

 return newTypes;

 }

11 APPENDICES

222

 /// <summary>

 /// The CreatePeriod method is a simple helper method that constructs a

new

 /// instance of the given type using the Types default constructor.

 /// </summary>

 /// <param name="type">

 /// The Type to construct a new instance of an object from.

 /// </param>

 /// <returns>

 /// The return value is the new instance of the type as its base Period

class.

 /// </returns>

 public static RuleSupport.Period CreatePeriod(Type type)

 {

 // Get access to the default constructor of the Type and invoke it

in

 // order to create a new instance of the Type.

 return (RuleSupport.Period)type.GetConstructor(new Type[] {

}).Invoke(new Type[] { });

 }

 #region IEnumerable<Type> Members

 /// <summary>

 /// The standard enumerator for a generic SortedList does not provide

simple

 /// iteration of the collection through a foreach(Type type in ...)

style

 /// statement which is why this new iterator has been defined.

 /// </summary>

 /// <returns></returns>

 public new IEnumerator<Type> GetEnumerator()

 {

 // Return the base classes Values enumerator.

 return base.Values.GetEnumerator();

 }

 #endregion

 }

}

11.3.3.11 WorkPattern Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

// Use the Serialisation libraries to support the conversion of the

// workpattern into some form of streamed data.

using System.Runtime.Serialization;

// Use this library to provide a means of serialising the objects into

// XML for file storage and network transportation.

using System.Xml.Serialization;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

{

 /// <summary>

 /// The WorkPatternCollection class is used to support the Testing

 /// class in carrying out the test. It will contain the built up work

 /// pattern derived by the Testing class.

11 APPENDICES

223

 /// </summary>

 [Serializable(), XmlRoot("WorkPattern")]

 public class WorkPattern :

RuleSupport.DirtyList<RuleSupport.IPeriodElement>, ISerializable

 {

 RuleSupport.PeriodRequestDelegate periodRequestDelegate = null;

 RuleSupport.PeriodTypeRequestDelegate periodTypeRequestDelegate = null;

 public WorkPattern()

 : base()

 {

 periodRequestDelegate = new

RuleSupport.PeriodRequestDelegate(Period_RequestPeriod);

 periodTypeRequestDelegate = new

RuleSupport.PeriodTypeRequestDelegate(Period_RequestPeriodType);

 }

 /// <summary>

 /// The Period_RequestPeriod method is a callback method

 /// for using by the various PeriodRequestDelegates

 /// stored within the WorkPatternCollection. It's task is

 /// to retrieve the IPeriodElement that is located

 /// relative to the source IPeriodElement and return it.

 /// </summary>

 /// <param name="source">

 /// The source IPeriodElement object whose relative is

 /// to be returned.

 /// </param>

 /// <param name="relativeIndex">

 /// The relativeIndex describes either a positive or

 /// negative position relative to the source

 /// IPeriodElement to return to the caller.

 /// </param>

 /// <returns>

 /// The return value is the IPeriodElement that is

 /// relative to the source.

 /// </returns>

 private RuleSupport.IPeriodElement

Period_RequestPeriod(RuleSupport.IPeriodElement source, int relativeIndex)

 {

 RuleSupport.IPeriodElement tmp = null;

 int curIndex = IndexOf(source);

 if (relativeIndex == 0)

 tmp = (RuleSupport.IPeriodElement)this[curIndex];

 else if (relativeIndex < 0)

 {

 if (curIndex + relativeIndex >= 0) tmp =

(RuleSupport.IPeriodElement)this[curIndex + relativeIndex];

 }

 else

 {

 if (curIndex + relativeIndex <= Count - 1) tmp =

(RuleSupport.IPeriodElement)this[curIndex + relativeIndex];

 }

 return tmp;

 }

 /// <summary>

 /// The Period_RequestPeriodType method is a callback method

 /// for using by the various PeriodTypeRequestDelegates

 /// stored within the WorkPatternCollection. It's task is

 /// to retrieve the IPeriodElement that is located

 /// relative to the source IPeriodElement, of a given type,

 /// and return it.

 /// </summary>

 /// <param name="source">

 /// The source IPeriodElement object of the given type whose

 /// relative is to be returned.

 /// </param>

 /// <param name="relativeIndex">

 /// The relativeIndex describes either a positive or

 /// negative position relative to the source

 /// IPeriodElement, of the given type to return to the caller.

11 APPENDICES

224

 /// </param>

 /// <param name="periodType">

 /// The periodType describes the type of IPeriodElement who

 /// is located relative to the caller, to return.

 /// </param>

 /// <returns>

 /// The return value is the IPeriodElement, of the given type,

 /// that is relative to the source.

 /// </returns>

 private RuleSupport.IPeriodElement

Period_RequestPeriodType(RuleSupport.IPeriodElement source, int relativeIndex,

Type periodType)

 {

 RuleSupport.IPeriodElement tmp = null;

 int curIndex = IndexOf(source);

 int tmpCount = 0;

 if (relativeIndex == 0)

 tmp = (RuleSupport.IPeriodElement)this[curIndex];

 else if (relativeIndex < 0)

 {

 for (int i = curIndex - 1; i > 0; i--)

 {

 if (this[i].GetType() == periodType)

 {

 tmpCount++;

 if (tmpCount == relativeIndex)

 {

 tmp = (RuleSupport.IPeriodElement)this[i];

 break;

 }

 }

 }

 }

 else

 {

 for (int i = curIndex + 1; i > Count; i++)

 {

 if (this[i].GetType() == periodType)

 {

 tmpCount++;

 if (tmpCount == relativeIndex)

 {

 tmp = (RuleSupport.IPeriodElement)this[i];

 break;

 }

 }

 }

 }

 return tmp;

 }

 /// <summary>

 /// The Add method provides the ability to add an

 /// ITestable object to the collection whilst at the

 /// same time assigning the delegates with a method

 /// to handle the request of relative objects.

 /// </summary>

 /// <param name="Period">

 /// The ITestable to add to the collection.

 /// </param>

 /// <returns>

 /// The return value is the index of the ITestable

 /// within the collection.

 /// </returns>

 public virtual int Add(RuleSupport.ITestable Period)

 {

 Period.RequestPeriod += periodRequestDelegate;

 Period.RequestPeriodType += periodTypeRequestDelegate;

 base.Add((RuleSupport.IPeriodElement)Period);

 return base.Capacity - 1;

 }

 /// <summary>

 /// The Remove method provides the ability to remove

 /// an ITestable from the collection whilst at the

11 APPENDICES

225

 /// same time removeing the delegate handlers.

 /// </summary>

 /// <param name="Period">

 /// The ITestable to be removed from the collection.

 /// </param>

 public virtual void Remove(RuleSupport.ITestable Period)

 {

 Period.RequestPeriod -= periodRequestDelegate;

 Period.RequestPeriodType -= periodTypeRequestDelegate;

 base.Remove((RuleSupport.IPeriodElement)Period);

 }

 /// <summary>

 /// The Remove method allows the removal of an item

 /// from the collection based upon the items index.

 /// </summary>

 /// <param name="PeriodIndex">

 /// The PeriodIndex describes the index of the period

 /// with the collection.

 /// </param>

 public void Remove(int PeriodIndex)

 {

 Remove(base[PeriodIndex]);

 }

 /// <summary>

 /// The ToXML method is designed to convert the work

 /// pattern into an XML structure representing it. This

 /// allows the calling system to be able to see how the

 /// rule engine has organised the data and to determine

 /// whether the data is organised correctly.

 /// </summary>

 /// <returns>

 /// The return value is a string representing the XML

 /// version of the work pattern.

 /// </returns>

 public String ToXML()

 {

 System.Xml.Serialization.XmlSerializer mySerializer = new

System.Xml.Serialization.XmlSerializer(typeof(WorkPattern));

 System.IO.MemoryStream myMemoryStream = new

System.IO.MemoryStream();

 System.IO.StreamWriter myStreamWriter = new

System.IO.StreamWriter(myMemoryStream);

 System.IO.StreamReader myStreamReader = new

System.IO.StreamReader(myMemoryStream);

 String myResult;

 mySerializer.Serialize(myStreamWriter, this);

 myMemoryStream.Seek(0, System.IO.SeekOrigin.Begin);

 myResult = myStreamReader.ReadToEnd();

 myStreamReader.Close();

 myStreamWriter.Close();

 myMemoryStream.Close();

 return myResult;

 }

 #region ISerializable Members

 public void GetObjectData(SerializationInfo info, StreamingContext

context)

 {

 info.SetType(typeof(WorkPattern));

 }

 #endregion

 /// <summary>

 /// The GetEndStack method return the stack of entries

 /// at the end of the hierachy of rules built up within

 /// this work pattern.

 /// </summary>

 /// <returns>

 /// The return value is the stack containing those entries

 /// at the end of the rule hierachy.

11 APPENDICES

226

 /// </returns>

 public Stack<RuleSupport.Period> GetEndStack()

 {

 Stack<RuleSupport.Period> layers = new Stack<RuleSupport.Period>();

 if ((this.Count > 0) && (this[this.Count - 1] is

RuleSupport.Period))

 ((RuleSupport.Period)(this[this.Count -

1])).GetEndStack(layers);

 return layers;

 }

 }

}

11.3.3.12 WorkPeriod Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

/// <summary>

/// RuleSupport Namespace.

/// This namespace provides a range of functionality to support both the

/// compilation and execution of rules.

/// </summary>

namespace RuleSupport

{

 /// <summary>

 /// This is the base WorkPeriod class used to describe

 /// a general work period. It is inherited by classes

 /// generated by the rule compiler and is designed for

 /// the purpose of carrying out some of the basic

 /// functionality that is expected from a standard work

 /// period.

 /// </summary>

 [Serializable()]

 public abstract class WorkPeriod : Period

 {

 private DateTime startTime;

 private DateTime finishTime;

 private TimeSpan workLength;

 private TimeSpan restLength;

 /// <summary>

 /// The constructor initialising the private member variables

 /// of this object to their default values.

 /// </summary>

 public WorkPeriod()

 : base()

 {

 startTime = new DateTime(0);

 finishTime = new DateTime(0);

 workLength = new TimeSpan();

 restLength = new TimeSpan();

 }

 /// <summary>

 /// The refreshDirtyValues method is designed to recalculate the

 /// start, finish, worklength and restlength times only if the

 /// contents of this period changes which would cause an effect

 /// on these times. Otherwise the same values as before can be

 /// used.

 /// </summary>

 private void refreshDirtyValues()

11 APPENDICES

227

 {

 workLength = new TimeSpan();

 restLength = new TimeSpan();

 DirtyList<IPeriodElement> combinedList = Contains.GetCombined();

 if (combinedList.Count == 0) return;

 SortedList<string, IPeriodElement> sortedList =

combinedList.Sort(typeof(IPeriodElement).GetProperty("Start"));

 startTime = sortedList[sortedList.Keys[0]].Start;

 finishTime = sortedList[sortedList.Keys[sortedList.Count -

1]].Finish;

 sortedList = null;

 for (int i = 0; i < combinedList.Count; i++)

 {

 workLength += combinedList[i].WorkLength;

 restLength += combinedList[i].RestLength;

 }

 Contains.ClearDirty();

 }

 /// <summary>

 /// The Start property returns the earliest start

 /// time of the items stored within the work period.

 /// </summary>

 public override DateTime Start

 {

 get

 {

 if (Contains.IsDirty())

 refreshDirtyValues();

 return startTime;

 }

 }

 /// <summary>

 /// The Finish property returns the latest finished

 /// time of the items stored within the work period.

 /// </summary>

 public override DateTime Finish

 {

 get

 {

 if (Contains.IsDirty())

 refreshDirtyValues();

 return finishTime;

 }

 }

 /// <summary>

 /// The RestLength property returns the accumulated

 /// rest time of the items stored within the work period.

 /// </summary>

 public override TimeSpan RestLength

 {

 get

 {

 if (Contains.IsDirty())

 refreshDirtyValues();

 return restLength;

 }

 }

 /// <summary>

 /// The WorkLength property returns the accumulated

 /// work time of the items stored within the work period.

 /// </summary>

 public override TimeSpan WorkLength

 {

 get

11 APPENDICES

228

 {

 if (Contains.IsDirty())

 refreshDirtyValues();

 return workLength;

 }

 }

 }

}

11 APPENDICES

229

11.3.4 RuleTesting Namespace

11.3.4.1 Tester Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

// Use the facilities provided by the rule support namespace.

using RuleSupport;

/// <summary>

/// RuleTesting Namespace.

/// This namespace defines the classes used to either perform Rule Testing

/// or to support the process of Rule Testing. The Tester class is a

/// sample testing class which can be used to test rules.

/// </summary>

namespace RuleTesting

{

 /// <summary>

 /// The Tester class provides a sample implementation of a class which

 /// is able to take test the compiled rules against the data by organising

 /// the data into a work pattern.

 /// </summary>

 public class Tester

 {

 /// <summary>

 /// This is the main test method for this approach to test the

 /// provided dataset against the work and rest periods.

 /// </summary>

 /// <param name="PeriodTypes">

 /// The PeriodTypes array provides the work and rest periods that

 /// can be used to both devise the work pattern and test the rules

 /// with.

 /// </param>

 /// <param name="dataset">

 /// The dataset parameter provides the dataset to test against the

 /// different rules types..

 /// </param>

 /// <param name="workPattern">

 /// The workPattern parameter provides a work pattern for the testing

 /// method to start from. This parameter should be null if a new

 /// work pattern is to be constructed.

 /// </param>

 /// <returns>

 /// This method returns a boolean value, true for success and false

 /// for failure.

 /// </returns>

 public bool Test(Type[] periodTypes, RuleSupport.IPeriodElement[]

dataset, ref WorkPattern workPattern)

 {

 // First of all, if no data is provided, or no PeriodTypes, we

 // can give up now.

 if (dataset.Length == 0) return true;

 if (periodTypes.Length == 0) return false;

 // If a workPattern has not been provided, is null, we should

 // create a new WorkPattern.

 if (workPattern == null)

 workPattern = new WorkPattern();

 // Place the Types in a Types object for ease of access and to

 // gain from the benefits provided with some of the Get methods

 // in querying the Types at various times throughout the testing

 // process.

 Types Periods = new Types(periodTypes);

11 APPENDICES

230

 // Now we need to iterate through each of the elements of data

 // provided and construct a work pattern based upon the metadata

 // provided within the rules and from the data itself.

 foreach (RuleSupport.IPeriodElement data in dataset)

 {

 // Use this variable to monitor the success in adding this

 // element of data to the work pattern.

 bool returnVal = false;

 // If the work pattern is currently empty, we need to start

 // from scratch. This section of the Test method should only

 // get reached with the first piece of data, if the work

 // pattern provided was null, otherwise it shouldn't get used.

 if (workPattern.Count == 0)

 {

 // Get a list of those types that can contain this type of

 // data.

 Types types =

Periods.GetTypesThatContainType(data.GetType());

 // Loop through these types, looking for one that will be

 // able to store the given element of data without breaking

 // the rules.

 foreach (Type type in types)

 {

 // Create an instance of the current Type.

 RuleSupport.Period period = Types.CreatePeriod(type);

 // Add the element of data to the period.

 period.Add(data);

 // Add the period to the work pattern.

 workPattern.Add(period);

 // Now test the work pattern, with the single period of

 // time, to see if this breaks the rules as it

currently

 // stands.

 if (DoTest(workPattern))

 {

 // If we haven't broken the rules, we need to start

 // adding the parental periods (those which this

 // period must belong) to the work pattern and

ensure

 // this does not break the rules.

 if (RecursivelyAddParentalContainers(Periods,

workPattern, period))

 {

 // If we reach this point, the work pattern has

 // been constructed with the single eleemnt of

data

 // and includes the appropriate rule hierachy

to

 // support it. This is it for the first element

of

 // data, on to the next.

 returnVal = true;

 break;

 }

 }

 // If we reach this point, either the data does not fit

within

 // the work pattern or the parental rule hierachy does

not work

 // with the element of data and the chosen period. We

can

 // remove it from the work pattern and try the next, or

fail.

 workPattern.Remove(period);

 }

 }

11 APPENDICES

231

 // If we've reach the else, we are dealing with any element of

data

 // except for the first element, so a work pattern exists and

we need

 // try and either add this element of data to the existing work

pattern

 // or modify the pattern to accomodate this element of data.

 else

 {

 // In order to look at the complex rule hierachy that has

probably

 // built up in the work pattern, we can construct a stack

based

 // view of the end of the hierachy, from the outer most

elements,

 // place in the Stack first, through to the smallest form

of detail

 // that is placed in last.

 Stack<RuleSupport.Period> layers =

workPattern.GetEndStack();

 // Loop through the various layers of the stack until we

find a

 // solution at the most appropriate layer. This would be

starting

 // at the smallest level of detail, then working our way

outward.

 while ((layers.Count > 0) && (!returnVal))

 {

 // The currentLayer variable is used to help

iteratively look

 // through the work patterns hierachy. Pop the first

entry

 // from the stack into our variables, which will also

remove

 // it from the stack.

 RuleSupport.Period currentLayer = layers.Pop();

 // If this layer can contain types of data like the one

we

 // are trying to add to the work pattern, we can start

by

 // giving it a try.

 if (currentLayer.CanContain(data))

 {

 // Add the element of data to the work pattern.

 currentLayer.Add(data);

 // Now lets test to see if adding the element of

data to

 // the work pattern works.

 if (!DoTest(workPattern))

 {

 // The test failed so we can remove this

element of

 // data, although it was worth a try.

 currentLayer.Remove(data);

 }

 else

 {

 // The test succeeded so we can set our flag to

true

 // and we will break out from the while loop we

are

 // currently in.

 returnVal = true;

 }

 }

 // The current layer cannot directly contain this type

of data

 // however we can try some other approaches at this

level to

 // see if can add additional periods in order to get

11 APPENDICES

232

this data

 // element into the work pattern.

 else

 {

 // We have to be careful from here on as we are

making

 // calls to recursive methods which have the

potential of

 // overflowing the stack.

 // First of all, lets try and add periods into the

current

 // layer of the work pattern vertical to the

current layer.

 if (RecursivelyAddInnerPeriods(Periods,

workPattern, currentLayer, data))

 returnVal = true;

 // If that fails, lets try and add periods to the

work

 // pattern horizontal to the current layer.

 else if (RecursivelyAddPostPeriods(Periods,

workPattern, (layers.Count > 0 ? layers.Peek() : null), currentLayer, data))

 returnVal = true;

 }

 }

 }

 // If we reach this stage and our flag still indicates a false

value,

 // we've tried all we can and just cannot add this element of

data to

 // the work pattern without breaking the rules.

 if (!returnVal)

 return false;

 }

 // If we reach this point, we must have added all of the elements

of data

 // to the work pattern successfully and can return a positive

result to

 // the caller.

 return true;

 }

 /// <summary>

 /// The RecursivelyAddParentalContainers method has been designed to

 /// start with one of the smallest periods of time and recursively add

 /// them parental style periods until the greatest level of period

 /// exists in the hierachy.

 /// </summary>

 /// <param name="Periods">

 /// The collection of period types (compiled rules) that can be used in

 /// constructing the work pattern.

 /// </param>

 /// <param name="workPattern">

 /// The overarching work pattern object that forms the basis of the

tree

 /// structure with the various instancing of periods branching from it.

 /// </param>

 /// <param name="current">

 /// The current period from which a parent may need to be created.

 /// </param>

 /// <returns>

 /// A boolean value indicating the success of the recursive method.

 /// </returns>

 private bool RecursivelyAddParentalContainers(Types Periods,

WorkPattern workPattern, RuleSupport.Period current)

 {

 // Obtain a string array from the ContainWithin property of the

 // current period which will provide a list of all Types that can

 // contain this type within them.

 string[] containedWithin = current.ContainWithin.GetTypes();

11 APPENDICES

233

 // If there are no elements in the array it means we have reached

 // the outer most layer of the rule hierachy and can return

 // success.

 if (containedWithin.Length == 0)

 return true;

 // Otherwise, there are still containers for us to reside in and

 // we must attempt to add ourselves to these containers.

 else

 {

 // First of all, remove the current entry from the root of the

 // work pattern.

 workPattern.Remove(current);

 // Loop through each of the return strings representing the

 // names of the types that we can reside in.

 foreach (string typeName in containedWithin)

 {

 // Create a new instance of the type, ready for use.

 RuleSupport.Period container =

Types.CreatePeriod(Periods[typeName]);

 // Add the current period to the new period, as its

 // parent.

 container.Add(current);

 // Add the new container to the work pattern ready for

 // testing.

 workPattern.Add(container);

 // Carry out the rule testing process on the work pattern.

 if (!DoTest(workPattern))

 {

 // If we fail we should remove the container from the

 // work Pattern, ready for moving on to the next one.

 workPattern.Remove(container);

 }

 else

 {

 // If we succeed we must recursively call this method,

 // this time look for whether the container has a

parent

 // container that it must reside within.

 if (RecursivelyAddParentalContainers(Periods,

workPattern, container))

 {

 // If the result of the recursion is true, we can

 // return true;

 return true;

 }

 }

 }

 // If we reach this point, we have tried each of the

 // potential containers, none of which are suitable, and we

 // have to return a fail.

 return false;

 }

 }

 /// <summary>

 /// The RecursivelyAddInnerPeriods method is a recursive method that

 /// attempts to add periods into the current period object, in the

 /// search for a period that is able to store the data element

provided.

 /// </summary>

 /// <param name="Periods">

 /// The Periods argument provides the collection of period Types used

 /// for selecting the appropriate periods that can be stored within the

 /// current period.

 /// </param>

 /// <param name="workPattern">

 /// The workPattern arguments provides the work pattern object which

 /// is storing the rule hierachy as it currently stands.

 /// </param>

11 APPENDICES

234

 /// <param name="currentPeriod">

 /// The currentPeriod describes the period to try and add new period

 /// types within.

 /// </param>

 /// <param name="data">

 /// The data argument provides the data element to try and add to an

 /// inner period of the current period.

 /// </param>

 /// <returns>

 /// The return value indicates the success of trying to locate an

 /// inner period for the current period.

 /// </returns>

 private bool RecursivelyAddInnerPeriods(Types Periods, WorkPattern

workPattern, RuleSupport.Period currentPeriod, RuleSupport.IPeriodElement data)

 {

 // First of all, lets get those types that can be contained within

 // the current type, from the Period collection.

 Types containedTypes =

Periods.GetTypesContainedInType(currentPeriod.GetType(), (currentPeriod.Count >

0 ? currentPeriod[currentPeriod.Count - 1].GetType() : null));

 // Secondly, we want to narrow down the types available to only

 // those that can follow the previous period, if there is one,

 // otherwise we'll look at the complete set provided.

 Types containedAndProceedingTypes = null;

 if (currentPeriod.Count > 0)

 containedAndProceedingTypes =

containedTypes.GetTypesThatProceedType(currentPeriod[currentPeriod.Count -

1].GetType());

 else

 containedAndProceedingTypes = containedTypes;

 // Now lets loop through the valid subset of periods that can be

 // contained within the current Period.

 foreach (Type type in containedAndProceedingTypes)

 {

 // We need to create a new instances of this period type.

 RuleSupport.Period period = Types.CreatePeriod(type);

 // Add the period to the current period, as it will comes

 // within it in the work pattern hierachy.

 currentPeriod.Add(period);

 // Can this new period contain the data element directly?

 // If it can we can add the element of data and test the

 // work pattern to see if it works.

 if (period.CanContain(data))

 {

 // Add the elment of data to the period.

 period.Add(data);

 // Test the work pattern.

 if (DoTest(workPattern))

 {

 // If the work pattern test succeeds, this new

 // period is able to store the element of data

 // and the rules testing is successful so we can

 // return success.

 return true;

 }

 else

 {

 // If the test fails we can remove the element of

 // data from this period and try something else.

 period.Remove(data);

 }

 }

 else

 {

 // If we reach this point it is because the period

 // cannot contain an element of data like and we need

 // to look with the new period or after it in order to

 // find a period type that can contain this type of data.

 // If either of these approaches succeeds, we can return

 // success, otherwise we'll have to try the next type of

11 APPENDICES

235

 // period.

 // First of all, try recursively calling this method only

 // with the new period as the current period.

 if (RecursivelyAddInnerPeriods(Periods, workPattern,

period, data))

 return true;

 // If that fails, try looking at those periods that may

 // be able to follow this periods in the hierachy.

 else if (RecursivelyAddPostPeriods(Periods, workPattern,

currentPeriod, period, data))

 return true;

 }

 // Reaching this points means that the period we are looking

 // add does not fit with the current work pattern and data

 // combination and we should try the next.

 currentPeriod.Remove(period);

 }

 // If we reach this point it means we cannot find a solution by

 // looking down this path, we may have been luck when navigating

 // back up the recursive call stack.

 return false;

 }

 /// <summary>

 /// The RecursivelyAddPostPeriods method is a recursive method that

 /// looks horizontal at period types that reside at the same layer

 /// as the current period, to see if there are others at the same

 /// layer that can be added to the rule hierachy to help build a

 /// successful work pattern.

 /// </summary>

 /// <param name="Periods">

 /// The Periods argument provides the collection of period Types used

 /// for selecting the appropriate periods that can be stored at the

same

 /// layer as the current period.

 /// </param>

 /// <param name="workPattern">

 /// The workPattern argument provides the work pattern object which

 /// is storing the rule hierachy as it currently stands.

 /// </param>

 /// <param name="parentPeriod">

 /// The parentPeriod argument provides the parentPeriod to which the

 /// new periods that reside at the same level as the current period

 /// will be added. This argument can be null if the work pattern

 /// should be used as the parent.

 /// </param>

 /// <param name="currentPeriod">

 /// The currentPeriod describes the period to try and add new period

 /// types at the same level.

 /// </param>

 /// <param name="data">

 /// The data argument provides the data element to try and add to the

 /// work pattern

 /// </param>

 /// <returns>

 /// The return value indicates the success of trying to locate a

 /// peer for the current period.

 /// </returns>

 private bool RecursivelyAddPostPeriods(Types Periods, WorkPattern

workPattern, RuleSupport.Period parentPeriod, RuleSupport.Period currentPeriod,

RuleSupport.IPeriodElement data)

 {

 // Obtain a collection of period types that can follow the

 // current type within a work pattern. This helps to narrow

 // down our search early on.

 Types types =

Periods.GetTypesThatProceedType(currentPeriod.GetType());

 // Loop through each of the types in the collection.

 foreach (Type type in types)

11 APPENDICES

236

 {

 // Create a new instance of the type to for use in our

 // work pattern.

 RuleSupport.Period period = Types.CreatePeriod(type);

 // If a parent is provided then we should be adding the

 // new period to the parent, otherwise we should be

 // adding it to the root of the work pattern.

 if (parentPeriod == null)

 workPattern.Add(period);

 else

 parentPeriod.Add(period);

 // Can this period contain the type of data we are

 // trying to add to our work pattern.

 if (period.CanContain(data))

 {

 // Add the data to the period.

 period.Add(data);

 // Test the work pattern as it now stands to see

 // if the data being contained within our new

 // period produces a succesful result.

 if (!DoTest(workPattern))

 {

 // The result failed indicated that the data

 // does not fit in to the work plan in this way

 // and we need to try something else.

 period.Remove(data);

 }

 else

 {

 // The test was successful and we can return

 // with a successful response up the call stack.

 return true;

 }

 }

 // If we reach here it is because we have added the new

 // period to the work pattern however it cannot contain

 // this type of data and therefore we need to try adding

 // additional periods to the work pattern to contain the

 // data.

 else

 {

 // First of all, try recursively calling this method only

 // with the new period as the current period.

 if (RecursivelyAddInnerPeriods(Periods, workPattern,

period, data))

 return true;

 // If that fails, try looking at those periods that may

 // be able to follow this periods in the hierachy.

 else if((period.Contains.Count == 0) &&

(RecursivelyAddPostPeriods(Periods, workPattern, parentPeriod, period, data)))

 return true;

 }

 // Reaching this points means that the period we are looking

 // add does not fit with the current work pattern and data

 // combination and we should try the next.

 if (parentPeriod == null)

 workPattern.Remove(period);

 else

 parentPeriod.Remove(period);

 }

 // If we reach this point it means we cannot find a solution by

 // looking down this path, we may have been luck when navigating

 // back up the recursive call stack.

 return false;

 }

 /// <summary>

 /// The DoTest method carries out a test on the the given work

11 APPENDICES

237

 /// period.

 /// </summary>

 /// <param name="workPattern">

 /// The workPattern parameter is the pattern of work to be tested.

 /// </param>

 /// <returns>

 /// The return value is a boolean value returning the result of

 /// the test. True if the test was successful, or false if it was

 /// not.

 /// </returns>

 private bool DoTest(WorkPattern workPattern)

 {

 // If we are the top level workPattern, we wont have

 // implemented the ITestable interface so we don't test it,

 // otherwise, we call our own test method first.

 if (workPattern is RuleSupport.ITestable)

 if (!((RuleSupport.ITestable)workPattern).Test())

 return false;

 // We need to test all periods within this period,

 // including those periods contained within those periods,

 // recursively.

 for(int i = 0; i < workPattern.Count; i++)

 if (!DoTest((WorkPattern)workPattern[i]))

 return false;

 // We've made it this far and therefore we can pass the test.

 return true;

 }

 }

}

11 APPENDICES

238

11.3.5 RuleCompilerTestbench Namespace

11.3.5.1 StopWatch Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

/// <summary>

/// RuleCompilerTestbench Namespace

/// Contains the classes and functionality to support the testing of the

/// RuleCompiler library and its various functionality.

/// </summary>

namespace RuleCompilerTestbench

{

 /// <summary>

 /// The class provides a "stop watch" for applications requiring

 /// accurate timing measurements. It has been designed to be fairly

 /// cross platform with an implementation for the windows platform

 /// as well as for linux running mono.

 /// </summary>

 public class StopWatch

 {

 /// <summary>

 /// The QueryPerformanceCounter method is a platform invocation

 /// style method to the windows based high performance timer

 /// method. This gives much higher accuracy than the built in

 /// .NET Framework TimeSpan and DateTime classes.

 /// </summary>

 /// <param name="lpPerformanceCount">

 /// The value of the high performance timer is stored in the

 /// reference parameter lpPerformanceCount.

 /// </param>

 /// <returns>

 /// The return value is a boolean indicating the success of

 /// the method call.

 /// </returns>

 [System.Runtime.InteropServices.DllImport("KERNEL32")]

 private static extern bool QueryPerformanceCounter(ref long

lpPerformanceCount);

 /// <summary>

 /// The QueryPerformanceFrequency method is a platform invocation

 /// style method to the windows based high performance timer

 /// method. The outcome of this method indicates how many

 /// lpPerformanceCount's there are in a second when used with

 /// QueryPerformanceCounter.

 /// </summary>

 /// <param name="lpFrequency">

 /// The number of lpPerformanceCount's there are in a second when

 /// used with QueryPerformanceCounter.

 /// </param>

 /// <returns>

 /// The return value is a boolean indicating the success of

 /// the method call.

 /// </returns>

 [System.Runtime.InteropServices.DllImport("KERNEL32")]

 private static extern bool QueryPerformanceFrequency(ref long

lpFrequency);

 /// <summary>

 /// The gettimeofday method is a platform invocation style

 /// method to the posix compliant high performance timer

 /// method. This method is used when running the system

 /// on Mono using Linux or another Mono supported OS.

 /// </summary>

 /// <param name="tv">

 /// The reference parameter tv is set by the method to

 /// be the number of seconds and microseconds since the

 /// start of 01/01/1970.

11 APPENDICES

239

 /// </param>

 /// <param name="ignore">

 /// The paramter ignore is not used in this instance

 /// and should have IntPtr.Zero passed in.

 /// </param>

 /// <returns>

 /// This method should always return 0.

 /// </returns>

 [System.Runtime.InteropServices.DllImport("MonoPosixHelper", EntryPoint

= "Mono_Posix_Syscall_gettimeofday")]

 private static extern int gettimeofday(out Timeval tv, IntPtr ignore);

 /// <summary>

 /// The Timeval structure is used by the gettimeofday

 /// platform invocation method to store its return

 /// values.

 /// </summary>

 private struct Timeval

 {

 /// <summary>

 /// The variable tv_sec is used to store the number

 /// of whole seconds since the start of 01/01/1970.

 /// </summary>

 public long tv_sec;

 /// <summary>

 /// The variable tv_usec is used to store the number

 /// of microseconds to accompany tv_sec.

 /// </summary>

 public long tv_usec;

 /// <summary>

 /// The ToTicks method will convert the values

 /// stored in tv_sec and tv_usec into ticks that

 /// can be used for comparison with TimeSpan and

 /// DateTime values.

 /// </summary>

 /// <returns>

 /// The number of ticks stored in tv_sec and

 /// tv_usec.

 /// </returns>

 public long ToTicks()

 {

 return (long)((10000000d * ((double)tv_sec)) +

(((double)tv_usec) * 10d));

 }

 /// <summary>

 /// The ToTimeSpan method will convert the values

 /// stored in tv_sec and tv_usec into a TimeSpan

 /// structure for comparison with other normal

 /// TimeSpan and DateTime operations.

 /// </summary>

 /// <returns>

 /// The TimeSpan representation of the values

 /// stored in tv_sec and tv_usec.

 /// </returns>

 public TimeSpan ToTimeSpan()

 {

 return new TimeSpan(ToTicks());

 }

 /// <summary>

 /// The ToDateTime method will convert the values

 /// stored in tv_sec and tv_usec into a DateTime

 /// structure for comparison with other normal

 /// TimeSpan and DateTime operations.

 /// </summary>

 /// <returns>

 /// The DateTime representation of the values

 /// stored in tv_sec and tv_usec.

 /// </returns>

 public DateTime ToDateTime()

 {

 return new DateTime(1970, 1, 1, 0, 0, 0,

11 APPENDICES

240

0).AddSeconds(tv_sec).AddTicks(tv_usec * 10);

 }

 };

 /// <summary>

 /// The TimerTypes enum is used to help describe the

 /// type of timer that is being used.

 /// </summary>

 private enum TimerTypes : int

 {

 /// <summary>

 /// HighPerformanceWindows is used to illustrate

 /// that the window performance counter is being

 /// used by the stopwatch.

 /// </summary>

 HighPerformanceWindows = 0,

 /// <summary>

 /// HighPerformancePosix is used to illustrate

 /// that the Posix high performance time is

 /// being used by the stopwatch.

 /// </summary>

 HighPerformancePosix = 1,

 /// <summary>

 /// CLRTicks is used to illustrate that the

 /// .NET Frameworks DateTime.Now is being

 /// used by the stopwatch to take

 /// measurements.

 /// </summary>

 CLRTicks = 2

 };

 /// <summary>

 /// The timerType variable is used to determine which

 /// timer is being used to take stopwatch measurements.

 /// </summary>

 private TimerTypes timerType;

 private long totalCount = 0;

 private long lastCount = 0;

 // For HighPerformanceWindows and CLRTicks, the

 // following three variables are used to store and

 // track the stopwatches measurements.

 private long startCount = 0;

 private long stopCount = 0;

 private long freq = 0;

 // For HighPerformancePosix, the following two

 // variables are being used to keep track of the

 // stopwatches measurements.

 private Timeval startTimeval;

 private Timeval stopTimeval;

 // The following four variables are used to keep

 // track of memory usage.

 private long memStartCount = 0;

 private long memStopCount = 0;

 private long memTotalCount = 0;

 private long memLastCount = 0;

 /// <summary>

 /// The constructor is used to initialise the

 /// class by determining which of the timing

 /// methods should be used and setting up some

 /// basic values associated with them.

 /// </summary>

 public StopWatch()

 {

 freq = 0;

 try

 {

 QueryPerformanceFrequency(ref freq);

 timerType = TimerTypes.HighPerformanceWindows;

11 APPENDICES

241

 }

 catch

 {

 try

 {

 gettimeofday(out startTimeval, IntPtr.Zero);

 timerType = TimerTypes.HighPerformancePosix;

 }

 catch

 {

 timerType = TimerTypes.CLRTicks;

 }

 }

 }

 /// <summary>

 /// The Start method starts the stopwatch. The

 /// first set of measurements are recorded

 /// depending upon which time of timer is being

 /// used. Once the measurements are taken, the

 /// timer does nothing until the Stop method is

 /// called.

 /// </summary>

 public void Start()

 {

 lastCount = 0;

 if (timerType == TimerTypes.HighPerformanceWindows)

 {

 QueryPerformanceCounter(ref startCount);

 }

 else if (timerType == TimerTypes.HighPerformancePosix)

 {

 gettimeofday(out startTimeval, IntPtr.Zero);

 startCount = startTimeval.ToTicks();

 }

 else

 {

 startCount = DateTime.Now.Ticks;

 }

 memLastCount = 0;

 memStartCount = ApplicationPhysicalMemoryUsage;

 }

 /// <summary>

 /// The Stop method is used to stop a started

 /// stopwatch. The stopwatch will take another

 /// measurement of the current system time with

 /// the appropriate timing method.

 /// </summary>

 public void Stop()

 {

 if (timerType == TimerTypes.HighPerformanceWindows)

 {

 QueryPerformanceCounter(ref stopCount);

 }

 else if (timerType == TimerTypes.HighPerformancePosix)

 {

 gettimeofday(out stopTimeval, IntPtr.Zero);

 stopCount = stopTimeval.ToTicks();

 }

 else

 {

 stopCount = DateTime.Now.Ticks;

 }

 memStopCount = ApplicationPhysicalMemoryUsage;

 lastCount = stopCount - startCount;

 totalCount += lastCount;

 memLastCount = memStopCount - memStartCount;

 memTotalCount += memLastCount;

 }

11 APPENDICES

242

 /// <summary>

 /// The Reset method will reset the timer back

 /// to a zero state so timing can begin from

 /// scratch.

 /// </summary>

 public void Reset()

 {

 lastCount = 0;

 totalCount = 0;

 memLastCount = 0;

 memTotalCount = 0;

 }

 /// <summary>

 /// The LastMemory property will return the

 /// amount of memory change between the

 /// stopwatch last starting and stopping.

 /// </summary>

 public long LastMemory

 {

 get

 {

 return memLastCount;

 }

 }

 /// <summary>

 /// The LastTime property will return the

 /// ammount of time that elapsed since the

 /// stopwatch last started and stopped. The

 /// method for calculating this depends on

 /// the timing method used.

 /// </summary>

 public TimeSpan LastTime

 {

 get

 {

 if (timerType == TimerTypes.HighPerformanceWindows)

 {

 return new TimeSpan((long)(((double)lastCount /

(double)freq) * 10000000d));

 }

 else if (timerType == TimerTypes.HighPerformancePosix)

 {

 return new TimeSpan(lastCount);

 }

 else

 {

 return new TimeSpan(lastCount); ;

 }

 }

 }

 /// <summary>

 /// The TotalMemory method is used to return

 /// the total amount of memory change since the

 /// stopwatch was last constructed or reset.

 /// </summary>

 public long TotalMemory

 {

 get

 {

 return memTotalCount;

 }

 }

 /// <summary>

 /// The TotalTimeSpan method is used to return

 /// the total amount of time accumulated since

 /// the stopwatch was last constructed or reset.

 /// </summary>

 public TimeSpan TotalTimeSpan

 {

 get

 {

11 APPENDICES

243

 if (timerType == TimerTypes.HighPerformanceWindows)

 {

 return new TimeSpan((long)(((double)totalCount /

(double)freq) * 10000000d));

 }

 else if (timerType == TimerTypes.HighPerformancePosix)

 {

 return new TimeSpan(totalCount);

 }

 else

 {

 return new TimeSpan(totalCount); ;

 }

 }

 }

 /// <summary>

 /// The static MemoryToString method is used to

 /// convert the number of bytes provided in a

 /// string representing the number of bytes in

 /// a more human readable form.

 /// </summary>

 /// <param name="bytes">

 /// The number of bytes to be convereted into a

 /// string representation.

 /// </param>

 /// <returns>

 /// The return value is a string representation of

 /// the number of bytes passed in.

 /// </returns>

 public static string MemoryToString(long bytes)

 {

 long theMem = bytes;

 string theUnit = "bytes";

 if (theMem > 1024)

 {

 theMem = theMem / 1024;

 theUnit = "KB";

 }

 if (theMem > 1024)

 {

 theMem = theMem / 1024;

 theUnit = "MB";

 }

 if (theMem > 1024)

 {

 theMem = theMem / 1024;

 theUnit = "GB";

 }

 return theMem.ToString() + theUnit;

 }

 /// <summary>

 /// The ToString method overrides the base

 /// class ToString method to display the

 /// processing time and memory usage recorded

 /// by the stopwatch.

 /// </summary>

 /// <returns>

 /// The return value is a string displaying the

 /// number of seconds and amount of memory

 /// change recorded by the stopwatch.

 /// </returns>

 public override string ToString()

 {

 return String.Format("{0:F2} seconds, {1} memory",

TotalTimeSpan.TotalSeconds, MemoryToString(memTotalCount));

 }

 /// <summary>

 /// The ApplicationPhysicalMemoryUsage property

 /// is used to isolate the means of determine

 /// application memory usage in order that an

 /// alternative method is used later, if

11 APPENDICES

244

 /// appropriate.

 /// </summary>

 private long ApplicationPhysicalMemoryUsage

 {

 get

 {

 return GC.GetTotalMemory(true);

 }

 }

 }

}

11.3.5.2 GraphImage Class

// Use the following two libraries for providing graphical interface

// capabilities to the class.

using System.Drawing;

// Use the these libraries for providing dynamically sizable collections.

using System.Collections.Generic;

/// <summary>

/// RuleCompilerTestbench Namespace

/// Contains the classes and functionality to support the testing of the

/// RuleCompiler library and its various functionality.

/// </summary>

namespace RuleCompilerTestbench

{

 /// <summary>

 /// The GraphImage class provides a simple means of drawing a basic

 /// line graph from results provided by the stopwatch.

 /// </summary>

 public class GraphImage

 {

 /// <summary>

 /// The GraphPoint describes an individual point that will be

 /// displayed on the line graph.

 /// </summary>

 public struct GraphPoint

 {

 public Point Position;

 public string Description;

 public GraphPoint(Point position, string description)

 {

 Position = position;

 Description = description;

 }

 }

 // The following variables simple describes the colours and

 // typical formating that will be used when drawing the graph.

 private Brush backColour = Brushes.Black;

 private Pen gridColour = Pens.Green;

 private Pen lineColour = Pens.White;

 private Brush textColour = Brushes.White;

 private Font font = TestBench.DefaultFont;

 // The virtual variables are used to translate between the

 // scale the graph is expected to used in relation to the

 // GraphPoint data and the height and width of the image

 // to be drawn.

 private Size virtualSize;

 private Point virtualGridFrequency;

 // The points list is used to store all of the points that

 // will be drawn onto the graph.

 private List<GraphPoint> points;

11 APPENDICES

245

 // The bitmap private variable and public property provide

 // a means of getting the image of the graph once drawn,

 // by not setting it as it needs to be read-only.

 private Bitmap bitmap;

 public Bitmap Bitmap

 {

 get

 {

 return bitmap;

 }

 }

 // The VirtualSize property provides a means of changing

 // the size of graph to be produced.

 public Size VirtualSize

 {

 get

 {

 return virtualSize;

 }

 set

 {

 virtualSize = value;

 Redraw();

 }

 }

 /// <summary>

 /// The GraphImage constructor provides a means of

 /// constructing the GraphImage class with all the

 /// necessary values passed in that are required

 /// to be able to draw the graph.

 /// </summary>

 /// <param name="actualSize">

 /// The actualSize parameter describes the width

 /// and height of the bitmap to produce.

 /// </param>

 /// <param name="virtualSize">

 /// The virtualSize parameter describes the size of

 /// the grid to produce based on values relative to

 /// the GridPoints themselves.

 /// </param>

 /// <param name="virtualGridFrequency">

 /// The virtualGridFrequency describes the size

 /// frequency by which the gridlines should be draw

 /// relative to the GridPoint data, not the actual

 /// image size.

 /// </param>

 public GraphImage(Size actualSize, Size virtualSize, Point

virtualGridFrequency)

 {

 bitmap = new Bitmap(actualSize.Width, actualSize.Height);

 this.virtualSize = virtualSize;

 this.virtualGridFrequency = virtualGridFrequency;

 this.points = new List<GraphPoint>();

 this.font = new Font(TestBench.DefaultFont.FontFamily, 6);

 Redraw();

 }

 /// <summary>

 /// The TranslatePoint method will convert a point

 /// from virtual grid space to actual image space.

 /// </summary>

 /// <param name="point">

 /// The point to convert to image space from virtual

 /// grid space.

 /// </param>

 /// <returns>

 /// The return value is the point in image space,

 /// not virtual grid space.

 /// </returns>

 private Point TranslatePoint(Point point)

 {

 return new Point((point.X == 0 ? 0 : (int)((float)bitmap.Width /

11 APPENDICES

246

((float)virtualSize.Width / (float)point.X))), (point.Y == 0 ? 0 :

(int)((float)bitmap.Height / ((float)virtualSize.Height / (float)point.Y))));

 }

 /// <summary>

 /// The Redraw method clears the bitmap and redraws

 /// all of its data using the GridPoints provided.

 /// </summary>

 public void Redraw()

 {

 Graphics graphics = Graphics.FromImage(bitmap);

 graphics.FillRectangle(backColour, 0, 0, bitmap.Width,

bitmap.Height);

 graphics.DrawRectangle(gridColour, 0, 0, bitmap.Width,

bitmap.Height);

 Point transLineFrequency = TranslatePoint(virtualGridFrequency);

 for (int i = transLineFrequency.X; i < bitmap.Width; i +=

transLineFrequency.X)

 graphics.DrawLine(gridColour, new Point(i, 0), new Point(i,

bitmap.Height));

 for (int i = transLineFrequency.Y; i < bitmap.Height; i +=

transLineFrequency.Y)

 graphics.DrawLine(gridColour, new Point(0, i), new

Point(bitmap.Width, i));

 for (int i = 0; i < points.Count; i++)

 {

 if (i == 0)

 DrawPoint(graphics, points[i]);

 else

 DrawPoint(graphics, points[i - 1], points[i]);

 }

 graphics.Dispose();

 }

 /// <summary>

 /// The DrawPoint method draws a point onto the image.

 /// </summary>

 /// <param name="graphics">

 /// The Graphics object to use to carry out the drawing.

 /// This is already setup to draw to our bitmap.

 /// </param>

 /// <param name="lastPoint">

 /// The lastPoint parameter defines where the last point

 /// was located so that we can draw a line from it to

 /// this point.

 /// </param>

 /// <param name="thisPoint">

 /// The thisPoint parameter defines where this point needs

 /// to be drawn, along with the text that is associated

 /// with it.

 /// </param>

 private void DrawPoint(Graphics graphics, GraphPoint lastPoint,

GraphPoint thisPoint)

 {

 Point transPoint = TranslatePoint(thisPoint.Position);

 graphics.DrawEllipse(lineColour, transPoint.X - 1, bitmap.Height -

transPoint.Y - 1, 3, 3);

 graphics.DrawString(thisPoint.Description, font, textColour, new

PointF(transPoint.X + 1, bitmap.Height - transPoint.Y -

graphics.MeasureString("Ag", font).Height));

 Point transLastPoint = TranslatePoint(lastPoint.Position);

 graphics.DrawLine(lineColour, new Point(transLastPoint.X,

bitmap.Height - transLastPoint.Y), new Point(transPoint.X, bitmap.Height -

transPoint.Y));

 }

 /// <summary>

 /// This DrawPoint method draws a point onto the image

 /// but does draw any lines.

 /// </summary>

11 APPENDICES

247

 /// <param name="graphics">

 /// The Graphics object to use to carry out the drawing.

 /// This is already setup to draw to our bitmap.

 /// </param>

 /// <param name="thisPoint">

 /// The thisPoint parameter defines where this point needs

 /// to be drawn, along with the text that is associated

 /// with it.

 /// </param>

 private void DrawPoint(Graphics graphics, GraphPoint thisPoint)

 {

 Point transPoint = TranslatePoint(thisPoint.Position);

 graphics.DrawEllipse(lineColour, transPoint.X - 1, bitmap.Height -

transPoint.Y - 1, 3, 3);

 graphics.DrawString(thisPoint.Description, font, textColour, new

PointF(transPoint.X + 1, bitmap.Height - transPoint.Y -

graphics.MeasureString("Ag", font).Height));

 }

 /// <summary>

 /// The AddPoint method will add the given GraphPoint

 /// into the list to be drawn, then redraws the image to

 /// include the point.

 /// </summary>

 /// <param name="point">

 /// The point parameter provides a GraphPoint to be

 /// added to the list.

 /// </param>

 public void AddPoint(GraphPoint point, bool redraw)

 {

 points.Add(point);

 if(redraw)

 Redraw();

 }

 /// <summary>

 /// The AddPoints method will add an array of GraphPoint

 /// objects into the list to be drawn, then redrews the

 /// image to include the new points.

 /// </summary>

 /// <param name="point">

 /// The point parameter provides the array of GraphPoint

 /// objects to be added to the list.

 /// </param>

 public void AddPoints(GraphPoint[] point)

 {

 points.AddRange(point);

 Redraw();

 }

 }

}

11.3.5.3 Appointment Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

/// <summary>

/// RuleCompilerTestbench Namespace

/// Contains the classes and functionality to support the testing of the

/// RuleCompiler library and its various functionality.

/// </summary>

namespace RuleCompilerTestbench

{

 /// <summary>

 /// The Appointment class implements the IPeriodElement interface

 /// defined in the RuleCompiler library in order that it can act

 /// as an element of data that is capable of being tested against

11 APPENDICES

248

 /// a set of rules.

 /// </summary>

 public class Appointment : RuleSupport.IPeriodElement

 {

 /// <summary>

 /// The start time of the appointment, stored as a DateTime.

 /// </summary>

 private DateTime start;

 /// <summary>

 /// The finish time of the appointment, stored as a DateTime.

 /// </summary>

 private DateTime finish;

 /// <summary>

 /// The Appointment's constructor takes a start and finish

 /// time for the appointment which can be exposed through the

 /// implemented interface methods.

 /// </summary>

 /// <param name="theStart">

 /// The start time of the appointment.

 /// </param>

 /// <param name="theFinish">

 /// The finish time of the appointment.

 /// </param>

 public Appointment(DateTime theStart, DateTime theFinish)

 {

 start = theStart;

 finish = theFinish;

 }

 /// <summary>

 /// This is an implementation of the interfaces Start

 /// property which return the start time of the appointment.

 /// </summary>

 public DateTime Start { get { return start; } }

 /// <summary>

 /// This is an implementation of the interfaces Finish

 /// property which return the finish time of the appointment.

 /// </summary>

 public DateTime Finish { get { return finish; } }

 /// <summary>

 /// This is an implementation of the interfaces RestLength

 /// property which returns a new TimeSpan as these

 /// appointments contain no rest, only continuous work.

 /// </summary>

 public RuleSupport.TimeSpan RestLength { get { return new

RuleSupport.TimeSpan(); } }

 /// <summary>

 /// This is an implementation of the interfaces WorkLength

 /// property which returns a new TimeSpan describing the

 /// difference between the start and finish times.

 /// </summary>

 public RuleSupport.TimeSpan WorkLength { get { return new

RuleSupport.TimeSpan(finish.Subtract(start)); } }

 }

}

11.3.5.4 TestBench Class

// Use this library for the most basic functionality such as the use of

// strings.

using System;

// Use the following two libraries for providing graphical interface

// capabilities to the class, essential when a class inherits from a

11 APPENDICES

249

// Form class.

using System.Drawing;

using System.Windows.Forms;

// Use the these libraries for providing dynamically sizable collections.

//using System.Collections;

using System.Collections.Generic;

// Use this library to provide a means of serialising the objects into

// XML for file storage and network transportation.

using System.Runtime.Serialization;

// Use this library to provide access to the Thread class.

using System.Threading;

// Use the facilities provided by the rule support namespace.

using RuleSupport;

using System.IO;

/// <summary>

/// RuleCompilerTestbench Namespace

/// Contains the classes and functionality to support the testing of the

/// RuleCompiler library and its various functionality.

/// </summary>

namespace RuleCompilerTestbench

{

 /// <summary>

 /// The TestBench form is designed to provide a graphical means

 /// of producing and running tests on the RuleCompiler.

 /// </summary>

 public partial class TestBench : Form

 {

 /// <summary>

 /// The periodTypes variable is used to stored the Types

 /// that are returned by the compiler ones the rules are

 /// successfully compiled. These types can then be used

 /// in conjunction with the Tester class to do the testing

 /// for us.

 /// </summary>

 Type[] periodTypes = null;

 /// <summary>

 /// The testThread variable is used to store a reference

 /// to the testing thread once it has been created.

 /// </summary>

 Thread testThread = null;

 /// <summary>

 /// The logFile variable store access to the log file, if

 /// it is open.

 /// </summary>

 StreamWriter logFile = null;

 private CheckBox UseGraphCheck;

 private CheckBox UseLogFileCheck;

 private CheckBox OutputPCInfoCheck;

 /// <summary>

 /// The patternFile variables stores access to the log

 /// file which holds the work patterns.

 /// </summary>

 StreamWriter patternFile = null;

 /// <summary>

 /// The DatasetSize property is used to return the size

 /// of the database for the given types of rules.

 /// </summary>

 private int DatasetSize

 {

 get

 {

 if (DrivingRadio.Checked)

 return 10;

 else

 return 14;

11 APPENDICES

250

 }

 }

 /// <summary>

 /// The WeekIncrements property is used to return the

 /// number of weeks that are span through the data

 /// provided for the given types of rules.

 /// </summary>

 private int WeekIncrements

 {

 get

 {

 if (DrivingRadio.Checked)

 return 2;

 else

 return 1;

 }

 }

 /// <summary>

 /// The standard constructor just calls the normal

 /// InitializeComponent method. No other initialization is

 /// requirement at this point.

 /// </summary>

 public TestBench()

 {

 InitializeComponent();

 }

 #region Windows Form Designer generated code

 private System.Windows.Forms.CheckBox OptimisedCheck;

 private System.Windows.Forms.Panel panel1;

 private System.Windows.Forms.ProgressBar TestingProgress;

 private System.Windows.Forms.Button CompileButton;

 private System.Windows.Forms.Button RunTestButton;

 private System.Windows.Forms.TextBox ResultText;

 private System.Windows.Forms.PictureBox ResultGraph;

 private System.Windows.Forms.RadioButton TeachingRadio;

 private System.Windows.Forms.RadioButton DrivingRadio;

 /// <summary>

 /// Required method for Designer support - do not modify

 /// the contents of this method with the code editor.

 /// </summary>

 private void InitializeComponent()

 {

 this.OptimisedCheck = new System.Windows.Forms.CheckBox();

 this.panel1 = new System.Windows.Forms.Panel();

 this.TeachingRadio = new System.Windows.Forms.RadioButton();

 this.DrivingRadio = new System.Windows.Forms.RadioButton();

 this.UseGraphCheck = new System.Windows.Forms.CheckBox();

 this.UseLogFileCheck = new System.Windows.Forms.CheckBox();

 this.OutputPCInfoCheck = new System.Windows.Forms.CheckBox();

 this.TestingProgress = new System.Windows.Forms.ProgressBar();

 this.CompileButton = new System.Windows.Forms.Button();

 this.RunTestButton = new System.Windows.Forms.Button();

 this.ResultText = new System.Windows.Forms.TextBox();

 this.ResultGraph = new System.Windows.Forms.PictureBox();

 this.panel1.SuspendLayout();

((System.ComponentModel.ISupportInitialize)(this.ResultGraph)).BeginInit();

 this.SuspendLayout();

 //

 // OptimisedCheck

 //

 this.OptimisedCheck.AutoSize = true;

 this.OptimisedCheck.Checked = true;

 this.OptimisedCheck.CheckState =

System.Windows.Forms.CheckState.Checked;

 this.OptimisedCheck.Location = new System.Drawing.Point(143, 2);

 this.OptimisedCheck.Name = "OptimisedCheck";

 this.OptimisedCheck.Size = new System.Drawing.Size(110, 17);

 this.OptimisedCheck.TabIndex = 2;

 this.OptimisedCheck.Text = "Optimised Testing";

11 APPENDICES

251

 this.OptimisedCheck.CheckedChanged += new

System.EventHandler(this.OptimisedCheck_CheckedChanged);

 //

 // panel1

 //

 this.panel1.Controls.Add(this.TeachingRadio);

 this.panel1.Controls.Add(this.DrivingRadio);

 this.panel1.Controls.Add(this.UseGraphCheck);

 this.panel1.Controls.Add(this.UseLogFileCheck);

 this.panel1.Controls.Add(this.OutputPCInfoCheck);

 this.panel1.Controls.Add(this.OptimisedCheck);

 this.panel1.Controls.Add(this.TestingProgress);

 this.panel1.Controls.Add(this.CompileButton);

 this.panel1.Controls.Add(this.RunTestButton);

 this.panel1.Dock = System.Windows.Forms.DockStyle.Top;

 this.panel1.Location = new System.Drawing.Point(0, 0);

 this.panel1.Name = "panel1";

 this.panel1.Size = new System.Drawing.Size(629, 46);

 this.panel1.TabIndex = 6;

 //

 // TeachingRadio

 //

 this.TeachingRadio.AutoSize = true;

 this.TeachingRadio.Location = new System.Drawing.Point(67, 2);

 this.TeachingRadio.Name = "TeachingRadio";

 this.TeachingRadio.Size = new System.Drawing.Size(70, 17);

 this.TeachingRadio.TabIndex = 3;

 this.TeachingRadio.Text = "Teaching";

 this.TeachingRadio.UseVisualStyleBackColor = true;

 this.TeachingRadio.CheckedChanged += new

System.EventHandler(this.Radio_CheckedChanged);

 //

 // DrivingRadio

 //

 this.DrivingRadio.AutoSize = true;

 this.DrivingRadio.Checked = true;

 this.DrivingRadio.Location = new System.Drawing.Point(3, 2);

 this.DrivingRadio.Name = "DrivingRadio";

 this.DrivingRadio.Size = new System.Drawing.Size(58, 17);

 this.DrivingRadio.TabIndex = 3;

 this.DrivingRadio.TabStop = true;

 this.DrivingRadio.Text = "Driving";

 this.DrivingRadio.UseVisualStyleBackColor = true;

 this.DrivingRadio.CheckedChanged += new

System.EventHandler(this.Radio_CheckedChanged);

 //

 // UseGraphCheck

 //

 this.UseGraphCheck.AutoSize = true;

 this.UseGraphCheck.Checked = true;

 this.UseGraphCheck.CheckState =

System.Windows.Forms.CheckState.Checked;

 this.UseGraphCheck.Location = new System.Drawing.Point(375, 3);

 this.UseGraphCheck.Name = "UseGraphCheck";

 this.UseGraphCheck.Size = new System.Drawing.Size(77, 17);

 this.UseGraphCheck.TabIndex = 2;

 this.UseGraphCheck.Text = "Use Graph";

 this.UseGraphCheck.Visible = false;

 this.UseGraphCheck.CheckedChanged += new

System.EventHandler(this.OptimisedCheck_CheckedChanged);

 //

 // UseLogFileCheck

 //

 this.UseLogFileCheck.AutoSize = true;

 this.UseLogFileCheck.Checked = true;

 this.UseLogFileCheck.CheckState =

System.Windows.Forms.CheckState.Checked;

 this.UseLogFileCheck.Location = new System.Drawing.Point(259, 2);

 this.UseLogFileCheck.Name = "UseLogFileCheck";

 this.UseLogFileCheck.Size = new System.Drawing.Size(85, 17);

 this.UseLogFileCheck.TabIndex = 2;

 this.UseLogFileCheck.Text = "Use Log File";

 this.UseLogFileCheck.Visible = false;

 this.UseLogFileCheck.CheckedChanged += new

System.EventHandler(this.OptimisedCheck_CheckedChanged);

 //

11 APPENDICES

252

 // OutputPCInfoCheck

 //

 this.OutputPCInfoCheck.AutoSize = true;

 this.OutputPCInfoCheck.Checked = true;

 this.OutputPCInfoCheck.CheckState =

System.Windows.Forms.CheckState.Checked;

 this.OutputPCInfoCheck.Location = new System.Drawing.Point(494, 3);

 this.OutputPCInfoCheck.Name = "OutputPCInfoCheck";

 this.OutputPCInfoCheck.Size = new System.Drawing.Size(130, 17);

 this.OutputPCInfoCheck.TabIndex = 2;

 this.OutputPCInfoCheck.Text = "Output PC Information";

 this.OutputPCInfoCheck.Visible = false;

 this.OutputPCInfoCheck.CheckedChanged += new

System.EventHandler(this.OptimisedCheck_CheckedChanged);

 //

 // TestingProgress

 //

 this.TestingProgress.Anchor =

((System.Windows.Forms.AnchorStyles)(((System.Windows.Forms.AnchorStyles.Top |

System.Windows.Forms.AnchorStyles.Left)

 | System.Windows.Forms.AnchorStyles.Right)));

 this.TestingProgress.Location = new System.Drawing.Point(268, 23);

 this.TestingProgress.Name = "TestingProgress";

 this.TestingProgress.Size = new System.Drawing.Size(349, 22);

 this.TestingProgress.TabIndex = 1;

 //

 // CompileButton

 //

 this.CompileButton.Location = new System.Drawing.Point(0, 24);

 this.CompileButton.Name = "CompileButton";

 this.CompileButton.Size = new System.Drawing.Size(120, 22);

 this.CompileButton.TabIndex = 0;

 this.CompileButton.Text = "Compile Rules";

 this.CompileButton.Click += new

System.EventHandler(this.CompileButton_Click);

 //

 // RunTestButton

 //

 this.RunTestButton.Enabled = false;

 this.RunTestButton.Location = new System.Drawing.Point(126, 24);

 this.RunTestButton.Name = "RunTestButton";

 this.RunTestButton.Size = new System.Drawing.Size(120, 22);

 this.RunTestButton.TabIndex = 0;

 this.RunTestButton.Text = "Run Test";

 this.RunTestButton.Click += new

System.EventHandler(this.RunTestButton_Click);

 //

 // ResultText

 //

 this.ResultText.AcceptsReturn = true;

 this.ResultText.Dock = System.Windows.Forms.DockStyle.Fill;

 this.ResultText.Location = new System.Drawing.Point(0, 46);

 this.ResultText.Multiline = true;

 this.ResultText.Name = "ResultText";

 this.ResultText.ReadOnly = true;

 this.ResultText.ScrollBars = System.Windows.Forms.ScrollBars.Both;

 this.ResultText.Size = new System.Drawing.Size(629, 242);

 this.ResultText.TabIndex = 5;

 //

 // ResultGraph

 //

 this.ResultGraph.Dock = System.Windows.Forms.DockStyle.Bottom;

 this.ResultGraph.Location = new System.Drawing.Point(0, 288);

 this.ResultGraph.Name = "ResultGraph";

 this.ResultGraph.Size = new System.Drawing.Size(629, 215);

 this.ResultGraph.TabIndex = 8;

 this.ResultGraph.TabStop = false;

 //

 // TestBench

 //

 this.ClientSize = new System.Drawing.Size(629, 503);

 this.Controls.Add(this.ResultText);

 this.Controls.Add(this.panel1);

 this.Controls.Add(this.ResultGraph);

 this.Name = "TestBench";

 this.Text = "Rule Compiler Test Bench";

11 APPENDICES

253

 this.panel1.ResumeLayout(false);

 this.panel1.PerformLayout();

((System.ComponentModel.ISupportInitialize)(this.ResultGraph)).EndInit();

 this.ResumeLayout(false);

 this.PerformLayout();

 }

 #endregion

 /// <summary>

 /// The GenerateDrivingDataset method will generate a dataset

 /// containing 10 appointments. These appointments are

 /// set apart in such a way as to be ground truth data

 /// described in more details in the thesis.

 /// </summary>

 /// <param name="IncrementWeeks">

 /// The IncrementWeeks parameter provides a means of

 /// shifting the start and end times of the appointments

 /// by a given number of weeks so that the result can

 /// be used with a previously generated collection.

 /// </param>

 /// <returns>

 /// The return value is an array of IPeriodElement

 /// objects, for which the Appointment class implements

 /// and that can be used with the rule testing engine.

 /// </returns>

 private RuleSupport.IPeriodElement[] GenerateDrivingDataset(int

IncrementWeeks)

 {

 // Create the 10 appointments

 Appointment app1 = new Appointment((new DateTime(2007, 01, 01, 09,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 01, 14, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app2 = new Appointment((new DateTime(2007, 01, 01, 15,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 01, 16, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app3 = new Appointment((new DateTime(2007, 01, 02, 09,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 02, 14, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app4 = new Appointment((new DateTime(2007, 01, 02, 15,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 02, 16, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app5 = new Appointment((new DateTime(2007, 01, 03, 09,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 03, 14, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app6 = new Appointment((new DateTime(2007, 01, 03, 15,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 03, 16, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app7 = new Appointment((new DateTime(2007, 01, 05, 09,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 05, 14, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app8 = new Appointment((new DateTime(2007, 01, 05, 15,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 05, 16, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app9 = new Appointment((new DateTime(2007, 01, 06, 09,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 06, 14, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app10 = new Appointment((new DateTime(2007, 01, 06, 15,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 06, 16, 00,

00)).AddDays(7 * IncrementWeeks));

 return new Appointment[] { app1, app2, app3, app4, app5, app6,

app7, app8, app9, app10 };

 }

 /// <summary>

 /// The GenerateTeachingDataset method will generate a dataset

 /// containing 14 appointments. These appointments are

 /// set apart in such a way as to be ground truth data

 /// described in more details in the thesis.

 /// </summary>

 /// <param name="IncrementWeeks">

 /// The IncrementWeeks parameter provides a means of

 /// shifting the start and end times of the appointments

 /// by a given number of weeks so that the result can

11 APPENDICES

254

 /// be used with a previously generated collection.

 /// </param>

 /// <returns>

 /// The return value is an array of IPeriodElement

 /// objects, for which the Appointment class implements

 /// and that can be used with the rule testing engine.

 /// </returns>

 private RuleSupport.IPeriodElement[] GenerateTeachingDataset(int

IncrementWeeks)

 {

 // Create the 14 appointments

 Appointment app1 = new Appointment((new DateTime(2007, 01, 01, 09,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 01, 11, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app2 = new Appointment((new DateTime(2007, 01, 01, 11,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 01, 13, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app3 = new Appointment((new DateTime(2007, 01, 01, 14,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 01, 16, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app4 = new Appointment((new DateTime(2007, 01, 01, 16,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 01, 18, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app5 = new Appointment((new DateTime(2007, 01, 02, 09,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 02, 11, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app6 = new Appointment((new DateTime(2007, 01, 02, 11,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 02, 13, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app7 = new Appointment((new DateTime(2007, 01, 03, 14,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 03, 16, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app8 = new Appointment((new DateTime(2007, 01, 03, 16,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 03, 18, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app9 = new Appointment((new DateTime(2007, 01, 03, 19,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 03, 21, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app10 = new Appointment((new DateTime(2007, 01, 03, 21,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 03, 23, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app11 = new Appointment((new DateTime(2007, 01, 04, 14,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 04, 16, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app12 = new Appointment((new DateTime(2007, 01, 04, 16,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 04, 18, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app13 = new Appointment((new DateTime(2007, 01, 05, 09,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 05, 11, 00,

00)).AddDays(7 * IncrementWeeks));

 Appointment app14 = new Appointment((new DateTime(2007, 01, 05, 11,

00, 00)).AddDays(7 * IncrementWeeks), (new DateTime(2007, 01, 05, 13, 00,

00)).AddDays(7 * IncrementWeeks));

 return new Appointment[] { app1, app2, app3, app4, app5, app6,

app7, app8, app9, app10, app11, app12, app13, app14 };

 }

 /// <summary>

 /// The GenerateDataset method will generate a dataset

 /// depending on which of the rule types has been

 /// selected.

 /// </summary>

 /// <param name="IncrementWeeks">

 /// The IncrementWeeks parameter provides a means of

 /// shifting the start and end times of the appointments

 /// by a given number of weeks so that the result can

 /// be used with a previously generated collection.

 /// </param>

 /// <returns>

 /// The return value is an array of IPeriodElement

 /// objects, for which the Appointment class implements

 /// and that can be used with the rule testing engine.

 /// </returns>

 private RuleSupport.IPeriodElement[] GenerateDataset(int

IncrementWeeks)

 {

11 APPENDICES

255

 if (DrivingRadio.Checked)

 return GenerateDrivingDataset(IncrementWeeks);

 else

 return GenerateTeachingDataset(IncrementWeeks);

 }

 /// <summary>

 /// The DumpIPeriodElementArray method is used to

 /// output the contents of an IPeriodElement array to

 /// the debug output window to aid with debugging.

 /// </summary>

 /// <param name="array">

 /// The array parameter describes the IPeriodElements

 /// to output to the debug window.

 /// </param>

 public void DumpIPeriodElementArray(RuleSupport.IPeriodElement[] array)

 {

 WriteLine(string.Format("{0}:\t\t{1}\t\t{2}", "Index", "Start

Date/Time", "End Date/Time"));

 for (int i = 0; i < array.Length; i++)

 WriteLine(string.Format("{0}:\t\t{1}\t\t{2}", i.ToString(),

array[i].Start.ToString(), array[i].Finish.ToString()));

 WriteLine("");

 }

 /// <summary>

 /// The WriteXMLLine method is used to write out

 /// a line of XML to the currently opened XML

 /// file.

 /// </summary>

 /// <param name="line">

 /// The line of XML to be written to the XML file.

 /// </param>

 public void WriteXMLLine(string line)

 {

 Console.WriteLine(line);

 UpdateGUI(ResultText, "Text", GetGUI(ResultText, "Text").ToString()

+ "\r\n" + line);

 UpdateGUI(ResultText, "SelectionStart", GetGUI(ResultText,

"Text").ToString().Length);

 MethodInvoke(ResultText, "ScrollToCaret", null);

 if (patternFile != null)

 patternFile.WriteLine(line);

#if DEBUG

 System.Diagnostics.Debug.WriteLine(line);

#endif

 }

 /// <summary>

 /// The WriteLine method is used to write out

 /// a line of log info to the currently opened log

 /// file.

 /// </summary>

 /// <param name="line">

 /// The line of log info to be written to the log file.

 /// </param>

 public void WriteLine(string line)

 {

 Console.WriteLine(line);

 MethodInvoke(ResultText, "SuspendLayout", null);

 UpdateGUI(ResultText, "Text", GetGUI(ResultText, "Text").ToString()

+ "\r\n" + line);

 UpdateGUI(ResultText, "SelectionStart", GetGUI(ResultText,

"Text").ToString().Length);

 MethodInvoke(ResultText, "ScrollToCaret", null);

 MethodInvoke(ResultText, "ResumeLayout", null);

 if (logFile != null)

 logFile.WriteLine(line);

11 APPENDICES

256

#if DEBUG

 System.Diagnostics.Debug.WriteLine(line);

#endif

 }

 /// <summary>

 /// The DumpUnknown method is a helper method used

 /// to determine the type of object passed in and

 /// then calls the most appropriate method for

 /// outputing that type of object.

 /// </summary>

 /// <param name="o">

 /// The o parameter is the object to put output

 /// into XML.

 /// </param>

 /// <param name="depth">

 /// The depth parameter describes the number of

 /// tabs to be preceed the appointment XML details.

 /// </param>

 public void DumpUnknown(object o, int depth)

 {

 if (o is Appointment)

 DumpAppointment((Appointment)o, depth);

 else if (o is RuleSupport.Period)

 DumpPeriod((Period)o, depth);

 else if (o is RuleSupport.WorkPattern)

 DumpWorkPattern((WorkPattern)o, depth);

 }

 /// <summary>

 /// The DumpAppointment method is a helper method

 /// used to display appointment information to the

 /// output log in an XML style format.

 /// </summary>

 /// <param name="appointment">

 /// The appointment parameter describes the

 /// appointment to be output to the XML file.

 /// </param>

 /// <param name="depth">

 /// The depth parameter describes the number of

 /// tabs to be preceed the appointment XML details.

 /// </param>

 private void DumpAppointment(Appointment appointment, int depth)

 {

 WriteXMLLine((new string('\t', depth)) + "<Appointment>");

 WriteXMLLine((new string('\t', depth + 1)) + "<Start>" +

appointment.Start.ToString() + "</Start>");

 WriteXMLLine((new string('\t', depth + 1)) + "<Finish>" +

appointment.Finish.ToString() + "</Finish>");

 WriteXMLLine((new string('\t', depth + 1)) + "<WorkLength>" +

appointment.WorkLength.ToString() + "</WorkLength>");

 WriteXMLLine((new string('\t', depth + 1)) + "<RestLength>" +

appointment.RestLength.ToString() + "</RestLength>");

 WriteXMLLine((new string('\t', depth)) + "</Appointment>");

 }

 /// <summary>

 /// The DumpPeriod method is a helper method

 /// used to display period information to the

 /// output log in an XML style format.

 /// </summary>

 /// <param name="period">

 /// The period parameter describes the

 /// period to be output to the XML file.

 /// </param>

 /// <param name="depth">

 /// The depth parameter describes the number of

 /// tabs to be preceed the appointment XML details.

 /// </param>

 public void DumpPeriod(RuleSupport.Period period, int depth)

 {

 WriteXMLLine((new string('\t', depth)) + "<" +

period.GetType().Name + ">");

 WriteXMLLine((new string('\t', depth + 1)) + "<Start>" +

11 APPENDICES

257

period.Start.ToString() + "</Start>");

 WriteXMLLine((new string('\t', depth + 1)) + "<Finish>" +

period.Finish.ToString() + "</Finish>");

 WriteXMLLine((new string('\t', depth + 1)) + "<Length>" +

period.Length.ToString() + "</Length>");

 WriteXMLLine((new string('\t', depth + 1)) + "<WorkLength>" +

period.WorkLength.ToString() + "</WorkLength>");

 WriteXMLLine((new string('\t', depth + 1)) + "<RestLength>" +

period.RestLength.ToString() + "</RestLength>");

 List<RuleSupport.IPeriodElement> list = new

List<RuleSupport.IPeriodElement>();

 if (period.Count > 0)

 WriteXMLLine((new string('\t', depth + 1)) + "<Contains>");

 for (int i = 0; i < period.Count; i++)

 {

 if (!list.Contains(period[i]))

 DumpUnknown(period[i], depth + 2);

 }

 if (period.Count > 0)

 WriteXMLLine((new string('\t', depth + 1)) + "</Contains>");

 WriteXMLLine((new string('\t', depth)) + "</" +

period.GetType().Name + ">");

 }

 /// <summary>

 /// The DumpWorkPattern method is a helper method

 /// used to display work pattern information to the

 /// output log in an XML style format.

 /// </summary>

 /// <param name="workPattern">

 /// The workPattern parameter describes the

 /// work pattern to be output to the XML file.

 /// </param>

 /// <param name="depth">

 /// The depth parameter describes the number of

 /// tabs to be preceed the appointment XML details.

 /// </param>

 public void DumpWorkPattern(RuleSupport.WorkPattern workPattern, int

depth)

 {

 WriteXMLLine((new string('\t', depth)) + "<Work Pattern>");

 for (int i = 0; i < workPattern.Count; i++)

 DumpUnknown(workPattern[i], depth + 3);

 WriteXMLLine((new string('\t', depth)) + "</Work Pattern>");

 }

 /// <summary>

 /// The GetDrivingRules method is used to return the rules

 /// relating to the transport scheduling domain. It is

 /// possible to read the rules from an XML file or, more

 /// simply, construct them on the fly.

 /// </summary>

 /// <returns>

 /// The return value of this method is a Periods collection

 /// describing the rules.

 /// </returns>

 private RuleDefinitionLanguage.Periods GetDrivingRules()

 {

 // It is possible to just load the rules from an XML file.

 //RuleDefinitionLanguage.Periods theRules = new

RuleDefinitionLanguage.Periods(System.IO.Path.Combine(Environment.CurrentDirect

ory, @"Rules\DrivingRules.xml"));

 // Create the test rules.

 RuleDefinitionLanguage.Periods theRules = new

RuleDefinitionLanguage.Periods();

 // A daily work period can be up to 8 hours long.

 RuleDefinitionLanguage.WP myDWP = new RuleDefinitionLanguage.WP();

11 APPENDICES

258

 myDWP.Description.Name = "DWP";

 myDWP.Description.Description = "Daily Work Period";

 myDWP.Description.PrePosts = new RuleDefinitionLanguage.PrePost[] {

new RuleDefinitionLanguage.PrePost("", "DRP"), new

RuleDefinitionLanguage.PrePost("DRP", "DRP"), new

RuleDefinitionLanguage.PrePost("DRP", ""), new

RuleDefinitionLanguage.PrePost("", "") };

 myDWP.Description.Contains = new RuleDefinitionLanguage.Contain[] {

new RuleDefinitionLanguage.Contain("Appointment") };

 myDWP.Rules = /*new RuleDefinitionLanguage.AndCondition(

 new RuleDefinitionLanguage.Comparitor[]

 {*/

 new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.LessThanOrEqualTo,

 new RuleDefinitionLanguage.Value[]

 {

 new

RuleDefinitionLanguage.Value("WorkLength",

RuleDefinitionLanguage.ValueType.Parameter),

 new RuleDefinitionLanguage.Value("8",

RuleDefinitionLanguage.ValueType.Hours)

 },

 null

)/*,

 new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.GreaterThan,

 new RuleDefinitionLanguage.Value[]

 {

 new

RuleDefinitionLanguage.Value("Appointment.Count",

RuleDefinitionLanguage.ValueType.Parameter),

 new RuleDefinitionLanguage.Value("0",

RuleDefinitionLanguage.ValueType.Number)

 },

 null

)

 }

)*/;

 theRules.Add(myDWP);

 // A weekly work period can be up to 6 daily work periods long.

 RuleDefinitionLanguage.WP myWWP = new RuleDefinitionLanguage.WP();

 myWWP.Description.Name = "WWP";

 myWWP.Description.Description = "Weekly Work Period";

 myWWP.Description.PrePosts = new RuleDefinitionLanguage.PrePost[] {

new RuleDefinitionLanguage.PrePost("WRP", "WRP"), new

RuleDefinitionLanguage.PrePost("", "WRP"), new

RuleDefinitionLanguage.PrePost("WRP", ""), new

RuleDefinitionLanguage.PrePost("", "") };

 myWWP.Description.Contains = new RuleDefinitionLanguage.Contain[] {

new RuleDefinitionLanguage.Contain("DWP"), new

RuleDefinitionLanguage.Contain("DRP") };

 myWWP.Rules = new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.LessThanOrEqualTo,

 new RuleDefinitionLanguage.Value[]

 {

 new

RuleDefinitionLanguage.Value("DWP.Count",

RuleDefinitionLanguage.ValueType.Parameter),

 new RuleDefinitionLanguage.Value("6",

RuleDefinitionLanguage.ValueType.Number)

 },

 null

);

 theRules.Add(myWWP);

 // A weekly rest period must be at least 30 hours long.

 RuleDefinitionLanguage.RP myWRP = new RuleDefinitionLanguage.RP();

 myWRP.Description.Name = "WRP";

 myWRP.Description.Description = "Weekly Rest Period";

 myWRP.Description.PrePosts = new RuleDefinitionLanguage.PrePost[] {

new RuleDefinitionLanguage.PrePost("WWP", "WWP") };

 myWRP.Description.Contains = new RuleDefinitionLanguage.Contain[] {

11 APPENDICES

259

};

 myWRP.Rules = new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.GreaterThanOrEqualTo,

 new RuleDefinitionLanguage.Value[]

 {

 new

RuleDefinitionLanguage.Value("Length",

RuleDefinitionLanguage.ValueType.Parameter),

 /*new

RuleDefinitionLanguage.Value("RestLength",

RuleDefinitionLanguage.ValueType.Parameter),*/

 new RuleDefinitionLanguage.Value("30",

RuleDefinitionLanguage.ValueType.Hours)

 },

 null

);

 theRules.Add(myWRP);

 // A daily rest period must be at least 8 hours long.

 // A daily rest period must be less than 30 hours long.

 RuleDefinitionLanguage.RP myDRP = new RuleDefinitionLanguage.RP();

 myDRP.Description.Name = "DRP";

 myDRP.Description.Description = "Daily Rest Period";

 myDRP.Description.PrePosts = new RuleDefinitionLanguage.PrePost[] {

new RuleDefinitionLanguage.PrePost("DWP", "DWP") };

 myDRP.Description.Contains = new RuleDefinitionLanguage.Contain[] {

};

 myDRP.Rules = new RuleDefinitionLanguage.AndCondition(

 new RuleDefinitionLanguage.Comparitor[]

 {

 new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.GreaterThanOrEqualTo,

 new RuleDefinitionLanguage.Value[]

 {

 new

RuleDefinitionLanguage.Value("Length",

RuleDefinitionLanguage.ValueType.Parameter),

 /*new

RuleDefinitionLanguage.Value("RestLength",

RuleDefinitionLanguage.ValueType.Parameter),*/

 new RuleDefinitionLanguage.Value("8",

RuleDefinitionLanguage.ValueType.Hours)

 },

 null

),

 new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.LessThan,

 new RuleDefinitionLanguage.Value[]

 {

 new

RuleDefinitionLanguage.Value("Length",

RuleDefinitionLanguage.ValueType.Parameter),

 /*new

RuleDefinitionLanguage.Value("RestLength",

RuleDefinitionLanguage.ValueType.Parameter),*/

 new RuleDefinitionLanguage.Value("30",

RuleDefinitionLanguage.ValueType.Hours)

 },

 null

)

 }

);

 theRules.Add(myDRP);

 return theRules;

 }

 /// <summary>

 /// The GetTeachingRules method is used to return the rules

 /// relating to the classroom scheduling domain. It is

 /// possible to read the rules from an XML file or, more

 /// simply, construct them on the fly.

 /// </summary>

11 APPENDICES

260

 /// <returns>

 /// The return value of this method is a Periods collection

 /// describing the rules.

 /// </returns>

 private RuleDefinitionLanguage.Periods GetTeachingRules()

 {

 // It is possible to just load the rules from an XML file.

 //RuleDefinitionLanguage.Periods theRules = new

RuleDefinitionLanguage.Periods(System.IO.Path.Combine(Environment.CurrentDirect

ory, @"Rules\TeachingRules.xml"));

 // Create the test rules.

 RuleDefinitionLanguage.Periods theRules = new

RuleDefinitionLanguage.Periods();

 // Shift

 // Cannot be longer than 4 hours

 // Must start after 9am

 // Must finish before 9pm

 RuleDefinitionLanguage.WP myShift = new

RuleDefinitionLanguage.WP();

 myShift.Description.Name = "S";

 myShift.Description.Description = "A shift of work";

 myShift.Description.PrePosts = new RuleDefinitionLanguage.PrePost[]

{ new RuleDefinitionLanguage.PrePost("", ""), new

RuleDefinitionLanguage.PrePost("", "SB"), new

RuleDefinitionLanguage.PrePost("SB", "SB"), new

RuleDefinitionLanguage.PrePost("SB", "") };

 myShift.Description.Contains = new RuleDefinitionLanguage.Contain[]

{ new RuleDefinitionLanguage.Contain("Appointment") };

 myShift.Rules = new RuleDefinitionLanguage.AndCondition(

 new RuleDefinitionLanguage.Comparitor[] {

 new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.LessThanOrEqualTo,

 new RuleDefinitionLanguage.Value[] {

new RuleDefinitionLanguage.Value("Length",

RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("4", RuleDefinitionLanguage.ValueType.Hours) },

 null

),

 new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.GreaterThanOrEqualTo,

 new RuleDefinitionLanguage.Value[] {

new RuleDefinitionLanguage.Value("Start.Hour",

RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("9", RuleDefinitionLanguage.ValueType.Number) },

 null

),

 new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.LessThanOrEqualTo,

 new RuleDefinitionLanguage.Value[] {

new RuleDefinitionLanguage.Value("Finish.Hour",

RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("23", RuleDefinitionLanguage.ValueType.Number) },

 null

)

 }

);

 theRules.Add(myShift);

 // Shift Break

 // Must be at least 1 hour long

 RuleDefinitionLanguage.RP myShiftBreak = new

RuleDefinitionLanguage.RP();

 myShiftBreak.Description.Name = "SB";

 myShiftBreak.Description.Description = "A break between work

shifts";

 myShiftBreak.Description.PrePosts = new

RuleDefinitionLanguage.PrePost[] { new RuleDefinitionLanguage.PrePost("S", "S")

};

 myShiftBreak.Description.Contains = new

RuleDefinitionLanguage.Contain[] { };

 myShiftBreak.Rules = new RuleDefinitionLanguage.Comparison(

11 APPENDICES

261

RuleDefinitionLanguage.ComparisonOperation.GreaterThanOrEqualTo,

 new RuleDefinitionLanguage.Value[] { new

RuleDefinitionLanguage.Value("RestLength",

RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("1", RuleDefinitionLanguage.ValueType.Hours) },

 null

);

 theRules.Add(myShiftBreak);

 // Daily Work Period

 // Cannot be longer than 9 hours

 // cannot be more than 2 shifts long

 RuleDefinitionLanguage.WP myDailyWorkPeriod = new

RuleDefinitionLanguage.WP();

 myDailyWorkPeriod.Description.Name = "DWP";

 myDailyWorkPeriod.Description.Description = "A daily work period";

 myDailyWorkPeriod.Description.PrePosts = new

RuleDefinitionLanguage.PrePost[] { new RuleDefinitionLanguage.PrePost("", ""),

new RuleDefinitionLanguage.PrePost("", "DRP"), new

RuleDefinitionLanguage.PrePost("DRP", "DRP"), new

RuleDefinitionLanguage.PrePost("DRP", "") };

 myDailyWorkPeriod.Description.Contains = new

RuleDefinitionLanguage.Contain[] { new RuleDefinitionLanguage.Contain("S"), new

RuleDefinitionLanguage.Contain("SB") };

 myDailyWorkPeriod.Rules = new RuleDefinitionLanguage.AndCondition(

 new RuleDefinitionLanguage.Comparitor[] {

 new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.LessThanOrEqualTo,

 new RuleDefinitionLanguage.Value[] {

new RuleDefinitionLanguage.Value("Length",

RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("9", RuleDefinitionLanguage.ValueType.Hours) },

 null

),

 new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.LessThanOrEqualTo,

 new RuleDefinitionLanguage.Value[] {

new RuleDefinitionLanguage.Value("S.Count",

RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("3", RuleDefinitionLanguage.ValueType.Number) },

 null

)

 }

);

 theRules.Add(myDailyWorkPeriod);

 // Daily Rest Period

 // Must be at least 20 hours long

 RuleDefinitionLanguage.RP myDailyRestPeriod = new

RuleDefinitionLanguage.RP();

 myDailyRestPeriod.Description.Name = "DRP";

 myDailyRestPeriod.Description.Description = "A daily rest period";

 myDailyRestPeriod.Description.PrePosts = new

RuleDefinitionLanguage.PrePost[] { new RuleDefinitionLanguage.PrePost("DWP",

"DWP") };

 myDailyRestPeriod.Description.Contains = new

RuleDefinitionLanguage.Contain[] { };

 myDailyRestPeriod.Rules = new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.GreaterThanOrEqualTo,

 new RuleDefinitionLanguage.Value[] { new

RuleDefinitionLanguage.Value("Length",

RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("15", RuleDefinitionLanguage.ValueType.Hours) },

 null

);

 theRules.Add(myDailyRestPeriod);

 // Weekly Work Period

 // Must be less than 5 DWPs

 RuleDefinitionLanguage.WP myWeeklyWorkPeriod = new

RuleDefinitionLanguage.WP();

 myWeeklyWorkPeriod.Description.Name = "WWP";

11 APPENDICES

262

 myWeeklyWorkPeriod.Description.Description = "A weekly work

period";

 myWeeklyWorkPeriod.Description.PrePosts = new

RuleDefinitionLanguage.PrePost[] { new RuleDefinitionLanguage.PrePost("", ""),

new RuleDefinitionLanguage.PrePost("", "WRP"), new

RuleDefinitionLanguage.PrePost("WRP", ""), new

RuleDefinitionLanguage.PrePost("WRP", "WRP") };

 myWeeklyWorkPeriod.Description.Contains = new

RuleDefinitionLanguage.Contain[] { new RuleDefinitionLanguage.Contain("DWP"),

new RuleDefinitionLanguage.Contain("DRP") };

 myWeeklyWorkPeriod.Rules = new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.LessThanOrEqualTo,

 new RuleDefinitionLanguage.Value[] { new

RuleDefinitionLanguage.Value("DWP.Count",

RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("5", RuleDefinitionLanguage.ValueType.Number) },

 null

);

 theRules.Add(myWeeklyWorkPeriod);

 // Weekly Rest Period

 // Must be at least 2 days long

 RuleDefinitionLanguage.RP myWeeklyRestPeriod = new

RuleDefinitionLanguage.RP();

 myWeeklyRestPeriod.Description.Name = "WRP";

 myWeeklyRestPeriod.Description.Description = "A weekly rest

period";

 myWeeklyRestPeriod.Description.PrePosts = new

RuleDefinitionLanguage.PrePost[] { new RuleDefinitionLanguage.PrePost("WWP",

"WWP") };

 myWeeklyRestPeriod.Description.Contains = new

RuleDefinitionLanguage.Contain[] { };

 myWeeklyRestPeriod.Rules = new RuleDefinitionLanguage.Comparison(

RuleDefinitionLanguage.ComparisonOperation.GreaterThanOrEqualTo,

 new RuleDefinitionLanguage.Value[] { new

RuleDefinitionLanguage.Value("Length",

RuleDefinitionLanguage.ValueType.Parameter), new

RuleDefinitionLanguage.Value("2", RuleDefinitionLanguage.ValueType.Days) },

 null

);

 theRules.Add(myWeeklyRestPeriod);

 return theRules;

 }

 /// <summary>

 /// The CompileButon_Click method is called when the user

 /// clicks on the compile button. This method will then

 /// construct a set of rules, in code. Rules can also come

 /// from a seperate XML file although this is adequest for

 /// the purposed of testing.

 /// </summary>

 private void CompileButton_Click(object sender, EventArgs e)

 {

 // If the log files are not open yet, make sure we

 // open them now.

 if (!LogsOpen && UseLogFileCheck.Checked)

 OpenLogs();

 // Define a variable to be used to store the rules once

 // loaded/created.

 RuleDefinitionLanguage.Periods theRules = null;

 // Determine if we are working with driving or teaching

 // rules.

 if (DrivingRadio.Checked)

 // Create the test rules.

 theRules = GetDrivingRules();

 else

 // Create the test rules.

 theRules = GetTeachingRules();

 // Serialise the rules into a string which gets them in

 // their XML representation that can be used to display

11 APPENDICES

263

 // or transport.

 //ResultText.Text = theRules.ToString();

 WriteLine(theRules.ToString());

 WriteXMLLine(ResultText.Text);

 Application.DoEvents();

 // Now it is time to use the rule compiler to compile

 // the rules into Types that can be used to test against

 // a set of data.

 try

 {

 // Create a stopwatch that can be used to measure

 // how long the compilation process will take.

 StopWatch stopWatch = new StopWatch();

 // Start the stopwatch before compilation.

 stopWatch.Start();

 // Compile the rules used the Compiler classes

 // static Compile method. The result of the method

 // call is an array of Types that can be used for

 // rule testing.

 periodTypes = RuleCompiler.Compiler.Compile(theRules, new

Type[] { typeof(Appointment) });

 // Stop the stopwatch now compilation is finished.

 stopWatch.Stop();

 // Now we are finished, we can notify the user of

 // our success and compile time and enable the

 // Run Test button.

 WriteLine("The compile method returned: true, and took: " +

stopWatch.ToString());

 System.Windows.Forms.MessageBox.Show("The compile method

returned: true, and took: " + stopWatch.ToString());

 this.RunTestButton.Enabled = true;

 this.RunTestButton.Focus();

 }

 catch (RuleCompiler.RuleCompilerException ex)

 {

 // A problem occured at some point, more than

 // likely at the compile stage. A normal

 // application should catch the Exception and

 // display some information to the user.

 WriteLine("The compile method returned: false\n\nException

details:\n" + ex.ToString());

 System.Windows.Forms.MessageBox.Show("The compile method

returned: false\n\nException details:\n" + ex.ToString());

 }

 }

 // Because we are doing some cross-thread GUI updates,

 // we need to make these GUI changes on the correct

 // thread. To do this, we have got ourselves a delegate

 // and method that are used together to update a

 // controls property using loose binding. It is a bit

 // of a hack but it seems to work for this purpose.

 private delegate void UpdateGUIDelegate(object control, string

propertyName, object value);

 private void UpdateGUI(object control, string propertyName, object

value)

 {

 if (this.InvokeRequired)

 this.Invoke(new UpdateGUIDelegate(UpdateGUI), control,

propertyName, value);

 else

 {

 control.GetType().GetProperty(propertyName).SetValue(control,

value, null);

 Application.DoEvents();

 }

 }

 private delegate object GetGUIDelegate(object control, string

propertyName);

 private object GetGUI(object control, string propertyName)

 {

11 APPENDICES

264

 if (this.InvokeRequired)

 return this.Invoke(new GetGUIDelegate(GetGUI), control,

propertyName);

 else

 {

 return

control.GetType().GetProperty(propertyName).GetValue(control, null);

 }

 }

 private delegate void MethodInvokeDelegate(object control, string

methodName, object[] args);

 private void MethodInvoke(object control, string methodName, object[]

args)

 {

 if (this.InvokeRequired)

 this.Invoke(new MethodInvokeDelegate(MethodInvoke), control,

methodName, args);

 else

 {

 List<Type> types = new List<Type>();

 if(args != null)

 foreach (object o in args)

 types.Add(o.GetType());

 control.GetType().GetMethod(methodName,

types.ToArray()).Invoke(control, args);

 Application.DoEvents();

 }

 }

 /// <summary>

 /// The TestMethod is used by the testing thread to

 /// carrying out the testing process. It is done in

 /// a seperate thread in order that the GUI and testing

 /// process can be treated independantly.

 /// </summary>

 private void TestMethod()

 {

 // If the log files are not open yet, make sure we

 // open them now.

 if (!LogsOpen && UseLogFileCheck.Checked)

 OpenLogs();

 // Firstly we'll set up some variables that are

 // use to define our testing parameters. Both must

 // be divisable by 10 and 14 as we generate either

 // 10 or 14 appointments for the various datasets

 // we are working with through the GenerateDataset

 // method.

 int Increments = 350;

 int MaxDatasetSize = Increments * 28;

 // Update our GUIs progress bar.

 UpdateGUI(TestingProgress, "Maximum", MaxDatasetSize);

 // We need to create ourselves a stopwatch so we

 // can take measurements of the overall testing

 // process. This stopwatch provides times for the

 // overall process, another stopwatch is used for

 // individual testing cycles.

 double maxTimeForGraph = 0.0f;

 StopWatch testWatch = new StopWatch();

 testWatch.Start();

 // Create a variable where we can stored the results

 // in a CSV style format that can be used by a

 // spreadsheet later.

 string ResultsString = "Ruleset Size, Dataset Size, Execution Time

(ms), Memory Increase (bytes)" + Environment.NewLine;

 WriteLine("Ruleset Size,Dataset Size,Execution Time (ms),Memory

Increase (bytes)");

 // Construct ourselves a new GraphImage object that

 // can be used for producing a graph. We also need

 // do display a graph now.

 GraphImage image = new GraphImage(ResultGraph.Size, new Size(1,

MaxDatasetSize), new Point(2, Increments / 2));

11 APPENDICES

265

 image.AddPoint(new GraphImage.GraphPoint(new Point(0, 0), ""),

UseGraphCheck.Checked);

 if(UseGraphCheck.Checked)

 UpdateGUI(ResultGraph, "Image", image.Bitmap);

 // Try catch all of the processing. This is where

 // the heavy work is and if the user hits stop,

 // we'll be somewhere in here carrying out testing

 // work.

 try

 {

 // Keep a track as to which week we are working

 // on so that we can add additional weeks to the

 // list of data elements as we go through the

 // testing process, that well not clash with the

 // already generated weeks.

 int curWeek = 0;

 // Create a means of storing our work pattern

 // that is generated by the testing process.

 WorkPattern workPattern = null;

 // Create a new list of IPeriodElements, the data

 // that will be tested against the rules.

 List<IPeriodElement> theseDataElements = new

List<IPeriodElement>();

 // Now loop through to the max dataset size using

 // the given increments and undertake tests at

 // each increment.

 for (int ii = Increments; ii <= MaxDatasetSize; ii = ii +

Increments)

 {

 // If we have chosen to carry out an

 // optimised testing of the data, the dataset

 // is now in the workpattern (we don't need to

 // keep it). Otherwise, we leave the data in

 // the array for the work pattern to be

 // reconstructed and, in this case, we need

 // to set our workpattern back to null.

 if (OptimisedCheck.Checked)

 theseDataElements.Clear();

 else

 workPattern = null;

 // Now we need to generate our test data to be

 // used during this iteration. We'll do this by

 // looping the appropriate number of times.

 for (int iii = 0; iii < (Increments / DatasetSize); iii++)

 {

 theseDataElements.AddRange(GenerateDataset(curWeek));

 curWeek = curWeek + WeekIncrements;

 }

 // We now have the data and we have the rules,

 // we can carry out the test using the Tester

 // class.

 RuleTesting.Tester Tester = new RuleTesting.Tester();

 // We need to give ourselves a variable that

 // will be used to store the return result as

 // to the success of the rule testing process.

 bool testSuccess;

 // Collect garbage before we start so the

 // garbage collector does not interfere so

 // much with our times.

 GC.Collect();

 // Create ourselves a stopwatch for using during

 // this iteration and start the timer.

 StopWatch stopWatch = new StopWatch();

 stopWatch.Start();

11 APPENDICES

266

 // Do the test, passing in the compiled rules

 // (the periodTypes) the array of data and the

 // workpattern.

 testSuccess = Tester.Test(periodTypes,

theseDataElements.ToArray(), ref workPattern);

 // The test is complete, stop the watch.

 stopWatch.Stop();

 // The result should be successfully as we've

 // specified ground truth data. If it wasn't

 // we need to dump our data so we can determine

 // what went wrong and debug.

 if (!testSuccess)

 {

 // Output some information about the current

 // test including both the data and the

 // currently generated work pattern.

 DumpIPeriodElementArray(theseDataElements.ToArray());

 WriteXMLLine("\n\n<!--\n\tTest executed: Dataset Size:

" + theseDataElements.Count.ToString() + ", Result: " + testSuccess.ToString()

+ "\n-->");

 DumpWorkPattern(workPattern, 0);

 WriteXMLLine("");

 }

 // Update our GUIs progress bar and display

 // various updates to the user as to our status.

 UpdateGUI(TestingProgress, "Value", (TestingProgress.Value

+ Increments));

 string newStatus = periodTypes.Length.ToString() + "," +

theseDataElements.Count.ToString() + "," +

stopWatch.TotalTimeSpan.TotalSeconds.ToString() + "," +

stopWatch.TotalMemory.ToString();

 ResultsString += newStatus + Environment.NewLine;

 WriteLine(newStatus);

 //UpdateGUI(ResultText, "Text", ResultsString);

 // Update our graph with the new results and

 // display the new graph image to the user.

 if (stopWatch.TotalTimeSpan.TotalSeconds > maxTimeForGraph)

 maxTimeForGraph = stopWatch.TotalTimeSpan.TotalSeconds;

 if (UseGraphCheck.Checked)

 image.VirtualSize = new Size((int)(maxTimeForGraph < 1

? 1 : maxTimeForGraph), image.VirtualSize.Height);

 image.AddPoint(new GraphImage.GraphPoint(new

Point((int)stopWatch.TotalTimeSpan.TotalSeconds, ii), ii.ToString() + ": " +

stopWatch.ToString()), UseGraphCheck.Checked);

 if (UseGraphCheck.Checked)

 UpdateGUI(ResultGraph, "Image", image.Bitmap);

 }

 }

 catch (System.Threading.ThreadAbortException) { }

 finally

 {

 try

 {

 // At the end of testing we need to stop the

 // stopwatch which is keeping track of the

 // overall time.

 testWatch.Stop();

 // Display some summarising statiscal

 // information to the user before leaving the

 // thread.

 WriteLine("The test process has finished and took: " +

testWatch.ToString());

 System.Windows.Forms.MessageBox.Show("The test process has

finished and took: " + testWatch.ToString());

 // Return everything back to the way it was.

 UpdateGUI(TestingProgress, "Value", 0);

 UpdateGUI(RunTestButton, "Text", "Run Test");

11 APPENDICES

267

 UpdateGUI(CompileButton, "Enabled", true);

 UpdateGUI(OptimisedCheck, "Enabled", true);

 testThread = null;

 if (UseLogFileCheck.Checked)

 CloseLogs();

 }

 catch (Exception) { }

 }

 }

 /// <summary>

 /// The RunTestButton_Click method is call when the

 /// Run Test button is clicked. It is firstly

 /// responsible for instantiating the thread that is

 /// used for carrying out the testing process and

 /// secondly as a stop button if the testing process

 /// must be stopped.

 /// </summary>

 private void RunTestButton_Click(object sender, EventArgs e)

 {

 // It is important to ensure we have some rules

 // compiled before we can try and used them.

 if ((periodTypes != null) && (periodTypes.Length > 0))

 {

 // If the testThread is null then it means

 // the test is not already running and we

 // can act like we a start button.

 if (testThread == null)

 {

 CompileButton.Enabled = false;

 OptimisedCheck.Enabled = false;

 testThread = new System.Threading.Thread(new

System.Threading.ThreadStart(TestMethod));

 testThread.Start();

 RunTestButton.Text = "Stop Test";

 }

 // Otherwise we need to act like a stop

 // button and stop the currently running

 // thread.

 else

 {

 // Abort the thread.

 testThread.Abort();

 }

 }

 else

 {

 // Notify the user that they need to compile

 // the rules first beforing pressing this

 // button.

 System.Windows.Forms.MessageBox.Show("You must first compile

the rules before they can be used.");

 }

 }

 /// <summary>

 /// The Radio_CheckedChanged event handler deals

 /// with the user changing the rule type which

 /// leads to the log files requiring closure and

 /// the rules recompiling prior to the execution

 /// of the test.

 /// </summary>

 private void Radio_CheckedChanged(object sender, EventArgs e)

 {

 RunTestButton.Enabled = false;

 if (LogsOpen)

 CloseLogs();

 }

 /// <summary>

 /// The OptimisedCheck_CheckChanged event handler

 /// deals with the user changing the rule type which

11 APPENDICES

268

 /// leads to the log files requiring closure.

 /// </summary>

 private void OptimisedCheck_CheckedChanged(object sender, EventArgs e)

 {

 if (LogsOpen)

 CloseLogs();

 }

 /// <summary>

 /// The LogFilename property returns the full name

 /// of the log file (including path), excluding the

 /// files extension which is added later.

 /// </summary>

 private string LogFilename

 {

 get

 {

 string filename = (DrivingRadio.Checked ? "Driving" :

"Teaching") + "-" + (OptimisedCheck.Checked ? "Optimised" : "Not Optimised") +

"-" + Environment.MachineName;

 string directory =

System.IO.Path.Combine(Environment.CurrentDirectory, "Results");

 if (!System.IO.Directory.Exists(directory))

 System.IO.Directory.CreateDirectory(directory);

 return System.IO.Path.Combine(directory, filename);

 }

 }

 /// <summary>

 /// The LogsOpen property returns a boolean

 /// describing whether or not the log files are

 /// currently open.

 /// </summary>

 private bool LogsOpen

 {

 get

 {

 return (logFile != null) && (patternFile != null);

 }

 }

 /// <summary>

 /// The OpenLogs method opens up the log files

 /// and prepares them for data.

 /// </summary>

 private void OpenLogs()

 {

 string logFilename = LogFilename;

 logFile = new StreamWriter(logFilename + ".csv", false);

 patternFile = new StreamWriter(logFilename + ".xml", false);

 WriteLine(GatherPCInfo());

 }

 /// <summary>

 /// The CloseLogs method closes the log files

 /// and disposes of any consumed resources.

 /// </summary>

 private void CloseLogs()

 {

 logFile.Close();

 logFile.Dispose();

 logFile = null;

 patternFile.Close();

 patternFile.Dispose();

 patternFile = null;

 }

 /// <summary>

 /// The GatherPCInfo method attempts to gather

 /// as much useful information about the PC on

 /// which the tests are being run as possible.

 /// The result is returned in CSV format.

 /// </summary>

 /// <returns>

11 APPENDICES

269

 /// The return value is the PC information in

 /// CSV format.

 /// </returns>

 private string GatherPCInfo()

 {

 string PCInfo = "Rule Type,Optimised,Machine Name,OS

Version,Processor Count,Physical Memory,Processor Name,Processor

Architecture\n";

 PCInfo = (DrivingRadio.Checked ? "Driving" : "Teaching");

 PCInfo += "," + OptimisedCheck.Checked.ToString();

 PCInfo += "," + Environment.MachineName;

 PCInfo += "," + Environment.OSVersion.VersionString;

 PCInfo += "," + Environment.ProcessorCount.ToString();

 try

 {

 System.Management.ManagementScope scope = new

System.Management.ManagementScope(@"\\" + Environment.MachineName +

@"\root\cimv2");

 System.Management.ObjectQuery query = new

System.Management.ObjectQuery("SELECT TotalPhysicalMemory FROM

Win32_ComputerSystem");

 System.Management.ManagementObjectSearcher searcher = new

System.Management.ManagementObjectSearcher(scope, query);

 foreach (System.Management.ManagementObject manObject in

searcher.Get())

 PCInfo += "," +

manObject["TotalPhysicalMemory"].ToString();

 query = new System.Management.ObjectQuery("SELECT Name,

AddressWidth FROM Win32_Processor");

 searcher = new

System.Management.ManagementObjectSearcher(scope, query);

 bool first = true;

 foreach (System.Management.ManagementObject manObject in

searcher.Get())

 {

 if (!first)

 PCInfo += "\n,,,,,,";

 else

 first = false;

 PCInfo += "," + manObject["Name"].ToString().Trim();

 PCInfo += "," +

manObject["AddressWidth"].ToString().Trim();

 }

 }

 catch (Exception){}

 PCInfo += "\n\n";

 return PCInfo;

 }

 }

}

11 APPENDICES

270

11.4 Statistical Results

11.4.1 Non-Optimized Computational Performance Comparison

between Different Systems Types

Dataset Size A (ms) B (ms) C (ms) D (ms)

250 2.121131 2.1144106 2.6054923 1.3076564

500 8.1978924 7.9926757 8.6268013 3.5852018

750 19.1669599 18.0037708 18.9059303 7.8951996

1000 32.8151193 32.2817301 33.4188347 14.2619564

1250 51.843355 51.782829 52.0582488 22.561753

1500 75.0367179 74.7958349 75.8231029 32.5905983

1750 103.3021251 102.632663 103.9087126 45.2243479

2000 136.1053152 135.5874543 137.3087879 58.3525804

2250 174.7682654 173.7262386 175.923315 75.7844256

2500 217.6239514 217.4988535 219.8100418 93.4561651

2750 273.2851524 267.5252966 274.2543505 114.6944904

3000 322.4277147 319.4072474 320.2797368 136.3386778

3250 380.5875245 378.4219758 382.2504744 161.5018241

3500 446.4783619 443.3373372 447.6035129 189.6480015

3750 511.706879 514.0705029 520.4708841 220.2501979

4000 589.9725778 591.7112564 598.0968001 253.5856205

4250 670.8721042 674.7248775 680.0368186 288.9188873

4500 759.0128928 765.2705554 772.2280004 327.1477147

4750 853.3551213 860.8725217 883.4990068 368.9246418

5000 954.8093779 964.7089148 974.107296 414.5897301

5250 1062.328443 1071.290858 1157.540748 461.0228689

5500 1174.567447 1189.7846 1306.598238 511.145673

5750 1296.810302 1312.948845 1386.33493 565.3978012

6000 1425.991125 1698.191417 1519.913738 621.4998092

6250 1571.45296 1879.437985 1657.776317 678.0658941

6500 1708.82946 2048.870693 1897.064694 741.0957948

6750 1855.977129 2272.064477 2060.625683 808.4446357

7000 2016.607565 2468.263954 2212.055744 883.0498376

7250 2175.50681 2680.622538 2561.137908 952.4107217

7500 2348.415683 2864.337802 2799.302159 1027.150615

7750 2543.120858 3005.231644 2940.729688 1113.152282

8000 2731.072022 3283.582762 3158.815875 1194.861925

8250 2912.222702 3240.96924 3520.600259 1281.190706

8500 3130.453128 3605.431754 3912.535619 1372.911803

8750 3367.729581 3723.995938 4330.491049 1468.950957

9000 3576.096247 3802.624605 4524.246588 1566.136846

9250 3818.797722 3854.005141 5197.440863 1672.440165

9500 4069.977992 4108.646172 5144.947749 1780.491122

9750 4339.91405 4342.745546 5965.402563 1887.615766

10000 4584.35188 4630.677551 6460.421876 2008.201329

11 APPENDICES

271

11.4.2 Non-Optimized Memory Usage Comparison between

Different System Types

Dataset Size A (bytes) B (bytes) C (bytes) D (bytes)

250 1892352 1466368 2068480 1449984

500 -520192 -200704 -770048 405504

750 28672 8192 -172032 86016

1000 0 233472 380928 520192

1250 118784 249856 98304 745472

1500 122880 151552 -135168 966656

1750 159744 -4096 360448 -1392640

2000 303104 -90112 45056 970752

2250 155648 253952 204800 -872448

2500 221184 200704 81920 258048

2750 49152 28672 229376 90112

3000 110592 180224 376832 139264

3250 245760 143360 114688 335872

3500 409600 155648 32768 -12288

3750 0 147456 208896 192512

4000 512000 163840 0 167936

4250 335872 188416 745472 221184

4500 237568 122880 49152 53248

4750 208896 233472 12288 176128

5000 -274432 151552 462848 450560

5250 143360 446464 -163840 -4096

5500 380928 61440 499712 110592

5750 204800 581632 -200704 229376

6000 249856 192512 434176 98304

6250 442368 159744 204800 188416

6500 270336 24576 65536 385024

6750 151552 122880 565248 188416

7000 323584 475136 -503808 139264

7250 299008 294912 389120 188416

7500 -819200 -143360 1044480 471040

7750 376832 434176 -77824 -327680

8000 249856 294912 -61440 192512

8250 286720 126976 -446464 180224

8500 159744 876544 385024 487424

8750 401408 -1101824 376832 131072

9000 339968 630784 90112 446464

9250 106496 241664 892928 -81920

9500 450560 -397312 -212992 335872

9750 425984 1245184 495616 49152

10000 323584 143360 -139264 139264

11 APPENDICES

272

11.4.3 Optimized Computational Performance Comparison between

Different Systems Types

Dataset Size Ao (ms) Bo (ms) Co (ms) Do (ms)

250 2.3214772 2.3199325 2.3108856 0.9973897

500 6.3086134 6.2920378 6.1381153 3.0384333

750 10.6791754 10.1471454 10.3788959 4.6658972

1000 15.0999852 14.3149544 14.59387 6.3043122

1250 19.6320347 18.7895509 18.9949388 8.2836141

1500 24.3383795 23.4240204 23.3381594 10.1369453

1750 29.2259553 28.118798 27.9535522 12.2594699

2000 34.0704105 32.9102408 32.9196247 14.7651465

2250 39.4948142 37.9844083 37.5923492 16.7341064

2500 44.7579122 43.1627167 42.6504508 19.2062232

2750 50.1647659 48.3107115 48.2990736 21.6638722

3000 56.1471216 53.7633117 54.5122232 23.9249371

3250 61.5078614 59.3450617 61.5991592 26.3754718

3500 66.997542 65.0738188 67.4458331 29.1392337

3750 72.9414267 71.4492515 73.7848273 31.6186158

4000 79.0083531 77.3670413 80.2959634 34.7724468

4250 85.3640209 82.8944853 88.0537153 36.8611504

4500 91.9473068 89.5383069 94.6162201 40.1460977

4750 98.4358151 96.0120618 103.0609943 42.903016

5000 104.5196004 102.6967023 118.2865162 45.7830836

5250 126.8958611 109.5162142 124.8440606 49.0656324

5500 120.2529596 126.9846921 131.3310059 51.9593727

5750 125.7306893 128.5850586 144.2375101 55.5484001

6000 133.5353997 130.4679727 156.5546857 57.8576487

6250 140.7630752 137.7585263 168.3008808 61.6195625

6500 148.1366396 145.6196585 178.0999352 65.6942723

6750 156.7677017 152.9561021 193.8302959 68.2733142

7000 163.6535102 160.6736286 206.7726095 71.9794876

7250 171.6392498 168.8987687 225.4659177 76.4792972

7500 178.8073018 176.9834868 247.7542793 79.8694518

7750 187.5948855 185.0822481 262.3499612 83.3411852

8000 195.559667 193.7304404 287.5864372 87.0561486

8250 205.1578467 202.049403 309.3298002 90.7879625

8500 212.9210193 210.7326892 334.2154761 94.021657

8750 223.631949 220.1550131 363.1418082 97.7400615

9000 233.7543992 228.3274464 385.8108397 101.6817358

9250 243.1498488 237.9274667 408.0126657 106.4492621

9500 253.8723231 246.8324842 440.9294809 110.406726

9750 263.5054274 256.3891297 472.9164355 115.4634155

10000 275.7516997 265.6141127 508.2205174 120.1221319

11 APPENDICES

273

11.4.4 Optimized Memory Usage Comparison between Different

System Types

Dataset Size A (bytes) B (bytes) C (bytes) D (bytes)

250 1892352 1515520 1892352 1454080

500 -520192 -225280 -495616 237568

750 28672 4096 -159744 151552

1000 0 4096 0 253952

1250 118784 0 53248 65536

1500 122880 139264 0 188416

1750 159744 167936 479232 143360

2000 303104 196608 32768 147456

2250 155648 151552 126976 176128

2500 221184 159744 196608 126976

2750 49152 180224 102400 176128

3000 110592 253952 241664 180224

3250 245760 204800 290816 151552

3500 409600 167936 282624 167936

3750 0 0 299008 176128

4000 512000 167936 -24576 135168

4250 335872 126976 4096 167936

4500 237568 155648 348160 155648

4750 208896 155648 57344 204800

5000 -274432 212992 339968 131072

5250 143360 118784 352256 180224

5500 380928 598016 266240 167936

5750 204800 339968 282624 143360

6000 249856 208896 290816 135168

6250 442368 188416 -532480 196608

6500 270336 -36864 0 163840

6750 151552 40960 389120 417792

7000 323584 126976 327680 278528

7250 299008 1093632 204800 -8192

7500 -819200 -405504 278528 237568

7750 376832 225280 360448 4096

8000 249856 135168 282624 516096

8250 286720 417792 397312 0

8500 159744 241664 315392 360448

8750 401408 327680 266240 32768

9000 339968 -724992 -970752 323584

9250 106496 40960 90112 0

9500 450560 602112 225280 32768

9750 425984 294912 290816 376832

10000 323584 270336 266240 8192

2
7
4

1
1
 A

P
P

E
N

D
IC

E
S

11.4.5 Computational Performance Comparison between Original and Incremental Testing Approaches

Dataset Size A (ms) Ao (ms) B (ms) Bo (ms) C (ms) Co (ms) D (ms) Do (ms)

250 2.121131 2.3214772 2.1144106 2.3199325 2.6054923 2.3108856 1.3076564 0.9973897

500 8.1978924 6.3086134 7.9926757 6.2920378 8.6268013 6.1381153 3.5852018 3.0384333

750 19.1669599 10.6791754 18.0037708 10.1471454 18.9059303 10.3788959 7.8951996 4.6658972

1000 32.8151193 15.0999852 32.2817301 14.3149544 33.4188347 14.59387 14.2619564 6.3043122

1250 51.843355 19.6320347 51.782829 18.7895509 52.0582488 18.9949388 22.561753 8.2836141

1500 75.0367179 24.3383795 74.7958349 23.4240204 75.8231029 23.3381594 32.5905983 10.1369453

1750 103.3021251 29.2259553 102.632663 28.118798 103.9087126 27.9535522 45.2243479 12.2594699

2000 136.1053152 34.0704105 135.5874543 32.9102408 137.3087879 32.9196247 58.3525804 14.7651465

2250 174.7682654 39.4948142 173.7262386 37.9844083 175.923315 37.5923492 75.7844256 16.7341064

2500 217.6239514 44.7579122 217.4988535 43.1627167 219.8100418 42.6504508 93.4561651 19.2062232

2750 273.2851524 50.1647659 267.5252966 48.3107115 274.2543505 48.2990736 114.6944904 21.6638722

3000 322.4277147 56.1471216 319.4072474 53.7633117 320.2797368 54.5122232 136.3386778 23.9249371

3250 380.5875245 61.5078614 378.4219758 59.3450617 382.2504744 61.5991592 161.5018241 26.3754718

3500 446.4783619 66.997542 443.3373372 65.0738188 447.6035129 67.4458331 189.6480015 29.1392337

3750 511.706879 72.9414267 514.0705029 71.4492515 520.4708841 73.7848273 220.2501979 31.6186158

4000 589.9725778 79.0083531 591.7112564 77.3670413 598.0968001 80.2959634 253.5856205 34.7724468

4250 670.8721042 85.3640209 674.7248775 82.8944853 680.0368186 88.0537153 288.9188873 36.8611504

4500 759.0128928 91.9473068 765.2705554 89.5383069 772.2280004 94.6162201 327.1477147 40.1460977

4750 853.3551213 98.4358151 860.8725217 96.0120618 883.4990068 103.0609943 368.9246418 42.903016

5000 954.8093779 104.5196004 964.7089148 102.6967023 974.107296 118.2865162 414.5897301 45.7830836

5250 1062.328443 126.8958611 1071.290858 109.5162142 1157.540748 124.8440606 461.0228689 49.0656324

5500 1174.567447 120.2529596 1189.7846 126.9846921 1306.598238 131.3310059 511.145673 51.9593727

5750 1296.810302 125.7306893 1312.948845 128.5850586 1386.33493 144.2375101 565.3978012 55.5484001

6000 1425.991125 133.5353997 1698.191417 130.4679727 1519.913738 156.5546857 621.4998092 57.8576487

6250 1571.45296 140.7630752 1879.437985 137.7585263 1657.776317 168.3008808 678.0658941 61.6195625

6500 1708.82946 148.1366396 2048.870693 145.6196585 1897.064694 178.0999352 741.0957948 65.6942723

6750 1855.977129 156.7677017 2272.064477 152.9561021 2060.625683 193.8302959 808.4446357 68.2733142

7000 2016.607565 163.6535102 2468.263954 160.6736286 2212.055744 206.7726095 883.0498376 71.9794876

7250 2175.50681 171.6392498 2680.622538 168.8987687 2561.137908 225.4659177 952.4107217 76.4792972

7500 2348.415683 178.8073018 2864.337802 176.9834868 2799.302159 247.7542793 1027.150615 79.8694518

7750 2543.120858 187.5948855 3005.231644 185.0822481 2940.729688 262.3499612 1113.152282 83.3411852

8000 2731.072022 195.559667 3283.582762 193.7304404 3158.815875 287.5864372 1194.861925 87.0561486

8250 2912.222702 205.1578467 3240.96924 202.049403 3520.600259 309.3298002 1281.190706 90.7879625

8500 3130.453128 212.9210193 3605.431754 210.7326892 3912.535619 334.2154761 1372.911803 94.021657

8750 3367.729581 223.631949 3723.995938 220.1550131 4330.491049 363.1418082 1468.950957 97.7400615

9000 3576.096247 233.7543992 3802.624605 228.3274464 4524.246588 385.8108397 1566.136846 101.6817358

9250 3818.797722 243.1498488 3854.005141 237.9274667 5197.440863 408.0126657 1672.440165 106.4492621

9500 4069.977992 253.8723231 4108.646172 246.8324842 5144.947749 440.9294809 1780.491122 110.406726

9750 4339.91405 263.5054274 4342.745546 256.3891297 5965.402563 472.9164355 1887.615766 115.4634155

10000 4584.35188 275.7516997 4630.677551 265.6141127 6460.421876 508.2205174 2008.201329 120.1221319

2
7
5

1
1
 A

P
P

E
N

D
IC

E
S

11.4.6 Memory Comparison between Original and Incremental Testing Approaches

Dataset Size A (bytes) Ao (bytes) B (bytes) Bo (bytes) C (bytes) Co (bytes) D (bytes) Do (bytes)

250 1892352 1892352 1466368 1515520 2068480 1892352 1449984 1454080

500 -520192 -520192 -200704 -225280 -770048 -495616 405504 237568

750 28672 28672 8192 4096 -172032 -159744 86016 151552

1000 0 0 233472 4096 380928 0 520192 253952

1250 118784 118784 249856 0 98304 53248 745472 65536

1500 122880 122880 151552 139264 -135168 0 966656 188416

1750 159744 159744 -4096 167936 360448 479232 -1392640 143360

2000 303104 303104 -90112 196608 45056 32768 970752 147456

2250 155648 155648 253952 151552 204800 126976 -872448 176128

2500 221184 221184 200704 159744 81920 196608 258048 126976

2750 49152 49152 28672 180224 229376 102400 90112 176128

3000 110592 110592 180224 253952 376832 241664 139264 180224

3250 245760 245760 143360 204800 114688 290816 335872 151552

3500 409600 409600 155648 167936 32768 282624 -12288 167936

3750 0 0 147456 0 208896 299008 192512 176128

4000 512000 512000 163840 167936 0 -24576 167936 135168

4250 335872 335872 188416 126976 745472 4096 221184 167936

4500 237568 237568 122880 155648 49152 348160 53248 155648

4750 208896 208896 233472 155648 12288 57344 176128 204800

5000 -274432 -274432 151552 212992 462848 339968 450560 131072

5250 143360 143360 446464 118784 -163840 352256 -4096 180224

5500 380928 380928 61440 598016 499712 266240 110592 167936

5750 204800 204800 581632 339968 -200704 282624 229376 143360

6000 249856 249856 192512 208896 434176 290816 98304 135168

6250 442368 442368 159744 188416 204800 -532480 188416 196608

6500 270336 270336 24576 -36864 65536 0 385024 163840

6750 151552 151552 122880 40960 565248 389120 188416 417792

7000 323584 323584 475136 126976 -503808 327680 139264 278528

7250 299008 299008 294912 1093632 389120 204800 188416 -8192

7500 -819200 -819200 -143360 -405504 1044480 278528 471040 237568

7750 376832 376832 434176 225280 -77824 360448 -327680 4096

8000 249856 249856 294912 135168 -61440 282624 192512 516096

8250 286720 286720 126976 417792 -446464 397312 180224 0

8500 159744 159744 876544 241664 385024 315392 487424 360448

8750 401408 401408 -1101824 327680 376832 266240 131072 32768

9000 339968 339968 630784 -724992 90112 -970752 446464 323584

9250 106496 106496 241664 40960 892928 90112 -81920 0

9500 450560 450560 -397312 602112 -212992 225280 335872 32768

9750 425984 425984 1245184 294912 495616 290816 49152 376832

10000 323584 323584 143360 270336 -139264 266240 139264 8192

2
7
6

1
1
 A

P
P

E
N

D
IC

E
S

11.5 Additional Statistical Results

11.5.1 Debugging Comparison Data

OS Windows Windows Windows Windows

CLI .NET .NET .NET .NET

Type Release Debug Release Debug

Rule Type Driving Driving Driving Driving

Type Execution Time Execution Time Memory Usage Memory Usage

Ruleset Size 4 4 4 4

350 2.2708115 4.7984122 123668 125492

700 6.7068211 13.6877015 123920 123932

1050 11.4093391 22.8257272 122896 122908

1400 16.4235667 33.6709557 124944 124956

1750 21.7416021 42.287626 122844 122696

2100 27.4684932 45.753133 122896 122720

2450 33.2454361 58.0970082 122896 122920

2800 39.5354209 64.9266247 127084 127016

3150 46.0853273 75.723661 122896 122920

3500 53.5157617 90.1459084 122896 122932

3850 59.8879092 96.7866207 122896 122932

4200 67.3466773 108.1861377 122896 122696

4550 75.0248593 126.1768859 122896 122920

4900 83.6507775 132.8685535 122896 122920

5250 91.4086785 151.7547595 131100 131112

5600 99.7602862 163.0050182 122908 122908

5950 109.1481726 176.9747577 122884 122708

6300 117.560076 192.1325016 122908 122696

6650 128.3772642 206.9079621 122908 122908

7000 136.8501832 223.0690923 122908 122932

7350 147.6278337 234.4729184 122856 122908

7700 157.1367263 253.5754819 122908 122616

8050 167.951855 271.8297694 122908 122696

8400 178.9325868 293.0755435 122908 122696

8750 189.6954543 305.6181414 122884 122696

9100 201.4841755 321.9852067 122896 122920

9450 213.0496504 342.0356244 122920 122628

9800 222.4056473 366.334375 122908 122908

2
7
7

1
1
 A

P
P

E
N

D
IC

E
S

11.5.2 Driving and Teaching Comparison Data

PC Laptop Laptop Laptop Laptop Laptop Laptop

OS Windows Windows Windows Windows Windows Windows

CLI .NET .NET .NET .NET .NET .NET

Rule Type Driving Teaching Driving Teaching Driving Teaching

Type Execution Time Execution Time Memory Usage Memory Usage Execution Time (Per Rule) Execution Time (Per Rule)

Ruleset Size 4 6 4 6 4 6

350 2.2708115 6.7355109 123668 162660 0.567702875 1.12258515

700 6.7068211 19.3681432 123920 161144 1.676705275 3.228023867

1050 11.4093391 32.4878015 122896 161388 2.852334775 5.414633583

1400 16.4235667 45.9341657 124944 160876 4.105891675 7.655694283

1750 21.7416021 58.2492159 122844 160888 5.435400525 9.70820265

2100 27.4684932 71.4208377 122896 161912 6.8671233 11.90347295

2450 33.2454361 84.4929088 122896 160848 8.311359025 14.08215147

2800 39.5354209 98.247774 127084 160836 9.883855225 16.374629

3150 46.0853273 110.612434 122896 160900 11.52133183 18.43540567

3500 53.5157617 124.3647354 122896 160900 13.37894043 20.7274559

3850 59.8879092 137.8270234 122896 162948 14.9719773 22.97117057

4200 67.3466773 151.7478355 122896 160900 16.83666933 25.29130592

4550 75.0248593 164.4954714 122896 160900 18.75621483 27.4159119

4900 83.6507775 177.199175 122896 160912 20.91269438 29.53319583

5250 91.4086785 188.9595634 131100 160900 22.85216963 31.49326057

5600 99.7602862 203.4744266 122908 160888 24.94007155 33.91240443

5950 109.1481726 218.2452412 122884 160900 27.28704315 36.37420687

6300 117.560076 232.1783336 122908 160900 29.390019 38.69638893

6650 128.3772642 246.5556372 122908 160888 32.09431605 41.0926062

7000 136.8501832 259.4383615 122908 160912 34.2125458 43.23972692

7350 147.6278337 272.3713778 122856 164996 36.90695843 45.39522963

7700 157.1367263 285.8541732 122908 160888 39.28418158 47.6423622

8050 167.951855 301.7770287 122908 160924 41.98796375 50.29617145

8400 178.9325868 315.2897988 122908 160888 44.7331467 52.5482998

8750 189.6954543 329.7649752 122884 160912 47.42386358 54.9608292

9100 201.4841755 340.6321735 122896 160888 50.37104388 56.77202892

9450 213.0496504 353.0107616 122920 160888 53.2624126 58.83512693

9800 222.4056473 367.3325198 122908 160912 55.60141183 61.22208663

2
7
8

1
1
 A

P
P

E
N

D
IC

E
S

11.5.3 .NET Framework and Mono Comparison

OS Windows Windows Windows Windows Windows Windows Windows Windows

CLI .NET Mono .NET Mono .NET Mono .NET Mono

Rule Type Driving Driving Teaching Teaching Driving Driving Teaching Teaching

Type Execution Time Execution Time Execution Time Execution Time Memory Usage Memory Usage Memory Usage Memory Usage

Ruleset Size 4 4 6 6 4 4 6 6

350 0.940367 2.1356257 2.512043 5.9967929 125480 684032 162672 811008

700 2.4244283 6.1643071 7.1877475 17.2681175 123920 507904 161144 868352

1050 4.1640293 10.2986466 11.9758951 28.7088971 122896 577536 161388 872448

1400 5.9633657 14.5003125 16.7126051 40.06055 124944 675840 160876 880640

1750 7.8493779 18.8311513 21.5240209 51.7900194 122896 892928 160876 487424

2100 9.9428135 23.5770786 26.4473386 63.4245442 122896 446464 161912 983040

2450 12.0693448 28.4929187 31.3082004 74.8445591 122884 286720 160876 606208

2800 14.409064 32.7349734 36.2136692 86.7814866 127016 770048 160876 348160

3150 16.7422045 37.7156676 41.1577076 98.9721839 122908 524288 160888 1064960

3500 19.2503183 42.866005 46.0421899 110.0372197 122908 360448 160924 704512

3850 21.903423 48.1852345 50.9382799 122.455867 122908 286720 162936 393216

4200 24.9346463 53.6688353 55.9422836 134.0914155 122908 196608 160912 360448

4550 27.5042807 58.8736596 60.8706037 147.5382012 122908 716800 160888 253952

4900 30.4847577 64.1276497 65.9459293 156.5253127 122908 491520 160888 1019904

5250 33.5198588 69.9474188 71.0116934 169.9591239 131100 393216 160888 679936

5600 36.7588595 75.976255 76.0632192 181.0123301 122908 319488 160912 552960

5950 40.1552117 82.3122912 81.2392792 194.4971002 122920 253952 160876 462848

6300 43.4988587 88.3417201 86.3857638 207.0985041 122708 192512 160900 307200

6650 46.7029583 95.1026631 91.4367819 219.315664 122908 172032 160888 258048

7000 50.28415 100.7880526 96.5020238 233.4232276 122920 786432 160876 212992

7350 54.036004 107.4059336 101.762502 240.0555882 122908 643072 165008 978944

7700 57.8224444 114.1855473 107.0122109 254.1005611 122908 507904 160888 823296

8050 61.6963958 120.8672123 111.6681824 265.4703642 122908 339968 160912 589824

8400 65.6528581 128.38958 116.9501447 278.1429597 122908 294912 160876 520192

8750 69.8200607 136.010257 122.3060444 290.143252 122908 278528 160912 434176

9100 74.0862254 143.7450961 127.5383723 303.2372554 122908 212992 160900 425984

9450 78.3983528 149.2690066 132.6939145 318.4178241 122908 180224 160900 290816

9800 82.8901948 156.8186315 138.1377541 330.2126064 122908 172032 160900 253952

2
7
9

1
1
 A

P
P

E
N

D
IC

E
S

11.5.4 Mono Cross Platform Comparison

OS Mac Linux Windows Mac Linux Windows

CLI Mono Mono Mono Mono Mono Mono

Rule Type Driving Driving Driving Driving Driving Driving

Type Execution Time Execution Time Execution Time Memory Usage Memory Usage Memory Usage

Ruleset Size 4 4 4 4 4 4

350 3.256027 2.997562 2.8520146 606208 475136 667648

700 9.607472 8.789322 8.3588928 360448 294912 532480

1050 16.264927 15.402301 13.9745554 282624 225280 598016

1400 23.081787 20.964458 19.6221635 356352 258048 634880

1750 30.187402 27.386591 25.8133186 270336 258048 368640

2100 37.184974 33.842762 31.914713 364544 266240 745472

2450 44.721522 40.538606 38.6429681 290816 237568 471040

2800 52.38203 47.411971 45.3683806 253952 229376 241664

3150 60.182381 55.261759 51.3329312 249856 335872 745472

3500 67.696776 62.401649 58.0630355 417792 241664 499712

3850 75.947754 68.675682 65.354792 286720 225280 348160

4200 84.311568 77.546543 72.9895625 270336 245760 245760

4550 92.846972 83.482525 79.6552969 253952 221184 753664

4900 101.436775 91.339421 86.9808264 262144 208896 499712

5250 110.389199 98.796981 94.3014782 299008 319488 503808

5600 118.491398 106.864605 102.1372986 368640 233472 331776

5950 127.546114 114.864416 110.7330398 299008 245760 233472

6300 136.907924 123.099349 119.2910254 282624 233472 217088

6650 146.128813 131.456938 128.1504718 237568 258048 184320

7000 156.119686 140.086192 135.300561 299008 200704 798720

7350 165.568019 148.746469 145.2213854 270336 217088 577536

7700 175.944338 157.638874 154.4275641 253952 225280 421888

8050 186.255216 166.613302 162.6278624 229376 270336 430080

8400 195.027877 175.069012 170.3600927 401408 278528 339968

8750 205.634389 184.309118 179.8047175 327680 249856 282624

9100 216.286848 193.676518 189.6472196 274432 225280 204800

9450 226.796797 203.141792 200.5756898 274432 233472 172032

9800 237.487685 212.779476 210.2036643 282624 217088 172032

11 APPENDICES

280

11.6 Charts

1
1
 A

P
P

E
N

D
IC

E
S

2
8
1

11.6.1 Computational Performance Comparison of the Non-Optimised Method

0

1000

2000

3000

4000

5000

6000

7000

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Dataset Size (Appointments)

Computational Performance Comparison of the Non-Optimised Method

A

B

C

D

1
1
 A

P
P

E
N

D
IC

E
S

2
8
2

11.6.2 Memory Usage Comparison of the Non-Optimised Method

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

M
e
m

o
ry

 U
s
a
g

e
 (

K
B

)

Dataset Size (Appointments)

Memory Usage Comparison of the Non-Optimised Method

A

B

C

D

1
1
 A

P
P

E
N

D
IC

E
S

2
8
3

11.6.3 Computational Performance Comparison Between Both Optimised and Non-Optimised Methods

0

1000

2000

3000

4000

5000

6000

7000

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Dataset Size (Appointments)

Computational Performance Comparison Between Both Optimised and Non-Optimised Methods

A Ao

B Bo

C Co

D Do

1
1
 A

P
P

E
N

D
IC

E
S

2
8
4

11.6.4 Memory Usage Comparison Between Both Optimised and Non-Optimised Methods

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

M
e
m

o
ry

 U
s
a
g

e
 (

K
B

)

Dataset Size (Appointments)

Memory Usage Comparison Between Both Optimised and Non-Optimised Methods

A Ao

B Bo

C Co

D Do

11 APPENDICES

285

11.7 Rule Descriptions

11.7.1 Driving Rules

<?xml version="1.0"?>

<ArrayOfPeriod xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Period xsi:type="WP">

 <Description>

 <Name>DWP</Name>

 <Description>Daily Work Period</Description>

 <PrePosts>

 <PrePost>

 <Pre />

 <Post>DRP</Post>

 </PrePost>

 <PrePost>

 <Pre>DRP</Pre>

 <Post>DRP</Post>

 </PrePost>

 <PrePost>

 <Pre>DRP</Pre>

 <Post />

 </PrePost>

 <PrePost>

 <Pre />

 <Post />

 </PrePost>

 </PrePosts>

 <Contains>

 <Contain>

 <Name>Appointment</Name>

 </Contain>

 </Contains>

 </Description>

 <Rules xsi:type="Comparison">

 <Operation>LessThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>WorkLength</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>8</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Rules>

 </Period>

 <Period xsi:type="WP">

 <Description>

 <Name>WWP</Name>

 <Description>Weekly Work Period</Description>

 <PrePosts>

 <PrePost>

 <Pre>WRP</Pre>

 <Post>WRP</Post>

 </PrePost>

 <PrePost>

 <Pre />

 <Post>WRP</Post>

 </PrePost>

 <PrePost>

 <Pre>WRP</Pre>

 <Post />

 </PrePost>

 <PrePost>

 <Pre />

 <Post />

 </PrePost>

11 APPENDICES

286

 </PrePosts>

 <Contains>

 <Contain>

 <Name>DWP</Name>

 </Contain>

 <Contain>

 <Name>DRP</Name>

 </Contain>

 </Contains>

 </Description>

 <Rules xsi:type="Comparison">

 <Operation>LessThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>DWP.Count</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>6</Description>

 <Type>Number</Type>

 </Value>

 </Values>

 </Rules>

 </Period>

 <Period xsi:type="RP">

 <Description>

 <Name>WRP</Name>

 <Description>Weekly Rest Period</Description>

 <PrePosts>

 <PrePost>

 <Pre>WWP</Pre>

 <Post>WWP</Post>

 </PrePost>

 </PrePosts>

 <Contains />

 </Description>

 <Rules xsi:type="Comparison">

 <Operation>GreaterThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>Length</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>30</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Rules>

 </Period>

 <Period xsi:type="RP">

 <Description>

 <Name>DRP</Name>

 <Description>Daily Rest Period</Description>

 <PrePosts>

 <PrePost>

 <Pre>DWP</Pre>

 <Post>DWP</Post>

 </PrePost>

 </PrePosts>

 <Contains />

 </Description>

 <Rules xsi:type="AndCondition">

 <Conditions>

 <Comparitor xsi:type="Comparison">

 <Operation>GreaterThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>Length</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>8</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

11 APPENDICES

287

 </Comparitor>

 <Comparitor xsi:type="Comparison">

 <Operation>LessThan</Operation>

 <Values>

 <Value>

 <Description>Length</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>30</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Comparitor>

 </Conditions>

 </Rules>

 </Period>

</ArrayOfPeriod>

11.7.2 Teaching Rules

<?xml version="1.0"?>

<ArrayOfPeriod xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <Period xsi:type="WP">

 <Description>

 <Name>S</Name>

 <Description>A shift of work</Description>

 <PrePosts>

 <PrePost>

 <Pre />

 <Post />

 </PrePost>

 <PrePost>

 <Pre />

 <Post>SB</Post>

 </PrePost>

 <PrePost>

 <Pre>SB</Pre>

 <Post>SB</Post>

 </PrePost>

 <PrePost>

 <Pre>SB</Pre>

 <Post />

 </PrePost>

 </PrePosts>

 <Contains>

 <Contain>

 <Name>Appointment</Name>

 </Contain>

 </Contains>

 </Description>

 <Rules xsi:type="AndCondition">

 <Conditions>

 <Comparitor xsi:type="Comparison">

 <Operation>LessThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>Length</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>4</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Comparitor>

 <Comparitor xsi:type="Comparison">

 <Operation>GreaterThanOrEqualTo</Operation>

 <Values>

 <Value>

11 APPENDICES

288

 <Description>Start.Hour</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>9</Description>

 <Type>Number</Type>

 </Value>

 </Values>

 </Comparitor>

 <Comparitor xsi:type="Comparison">

 <Operation>LessThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>Finish.Hour</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>23</Description>

 <Type>Number</Type>

 </Value>

 </Values>

 </Comparitor>

 </Conditions>

 </Rules>

 </Period>

 <Period xsi:type="RP">

 <Description>

 <Name>SB</Name>

 <Description>A break between work shifts</Description>

 <PrePosts>

 <PrePost>

 <Pre>S</Pre>

 <Post>S</Post>

 </PrePost>

 </PrePosts>

 <Contains />

 </Description>

 <Rules xsi:type="Comparison">

 <Operation>GreaterThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>RestLength</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>1</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Rules>

 </Period>

 <Period xsi:type="WP">

 <Description>

 <Name>DWP</Name>

 <Description>A daily work period</Description>

 <PrePosts>

 <PrePost>

 <Pre />

 <Post />

 </PrePost>

 <PrePost>

 <Pre />

 <Post>DRP</Post>

 </PrePost>

 <PrePost>

 <Pre>DRP</Pre>

 <Post>DRP</Post>

 </PrePost>

 <PrePost>

 <Pre>DRP</Pre>

 <Post />

 </PrePost>

 </PrePosts>

 <Contains>

 <Contain>

 <Name>S</Name>

11 APPENDICES

289

 </Contain>

 <Contain>

 <Name>SB</Name>

 </Contain>

 </Contains>

 </Description>

 <Rules xsi:type="AndCondition">

 <Conditions>

 <Comparitor xsi:type="Comparison">

 <Operation>LessThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>Length</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>9</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Comparitor>

 <Comparitor xsi:type="Comparison">

 <Operation>LessThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>S.Count</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>3</Description>

 <Type>Number</Type>

 </Value>

 </Values>

 </Comparitor>

 </Conditions>

 </Rules>

 </Period>

 <Period xsi:type="RP">

 <Description>

 <Name>DRP</Name>

 <Description>A daily rest period</Description>

 <PrePosts>

 <PrePost>

 <Pre>DWP</Pre>

 <Post>DWP</Post>

 </PrePost>

 </PrePosts>

 <Contains />

 </Description>

 <Rules xsi:type="Comparison">

 <Operation>GreaterThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>Length</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>15</Description>

 <Type>Hours</Type>

 </Value>

 </Values>

 </Rules>

 </Period>

 <Period xsi:type="WP">

 <Description>

 <Name>WWP</Name>

 <Description>A weekly work period</Description>

 <PrePosts>

 <PrePost>

 <Pre />

 <Post />

 </PrePost>

 <PrePost>

 <Pre />

 <Post>WRP</Post>

 </PrePost>

11 APPENDICES

290

 <PrePost>

 <Pre>WRP</Pre>

 <Post />

 </PrePost>

 <PrePost>

 <Pre>WRP</Pre>

 <Post>WRP</Post>

 </PrePost>

 </PrePosts>

 <Contains>

 <Contain>

 <Name>DWP</Name>

 </Contain>

 <Contain>

 <Name>DRP</Name>

 </Contain>

 </Contains>

 </Description>

 <Rules xsi:type="Comparison">

 <Operation>LessThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>DWP.Count</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>5</Description>

 <Type>Number</Type>

 </Value>

 </Values>

 </Rules>

 </Period>

 <Period xsi:type="RP">

 <Description>

 <Name>WRP</Name>

 <Description>A weekly rest period</Description>

 <PrePosts>

 <PrePost>

 <Pre>WWP</Pre>

 <Post>WWP</Post>

 </PrePost>

 </PrePosts>

 <Contains />

 </Description>

 <Rules xsi:type="Comparison">

 <Operation>GreaterThanOrEqualTo</Operation>

 <Values>

 <Value>

 <Description>Length</Description>

 <Type>Parameter</Type>

 </Value>

 <Value>

 <Description>2</Description>

 <Type>Days</Type>

 </Value>

 </Values>

 </Rules>

 </Period>

</ArrayOfPeriod>

