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ABSTRACT

This thesis is concerned with the application of 

expert systems techniques in the field of statistics. An 

expert statistician in industry has a twofold role; 

undertaking the design and analysis of data from complex 

experiments and providing supervision and help for 

research workers who analyse data from simpler designs. 

There is, therefore, a potential role for a statistical 

expert system which could be used by research workers to 

enable them to carry out valid analyses. The expert 

statistician would be freed from the more straightforward 

analyses and would only need to deal with referrals from 

the system and to initially 'tune' the system to their own 

application area. The design and development of such a 

prototype expert system, THESEUS, is the basis of this 

work.

The area of application chosen for the prototype 

system is completely randomised designs with one trial 

factor. It was initially important to limit the area of 

study so that knowledge acquisition for the system would 

be a manageable task. However, once the difficulties in 

developing an expert system have been tackled, much of the 

expertise used in analysing this simple type of study 

could be readily extended to more complex designs.

The knowledge acquisition phase, the most time 

consuming part of developing any expert system, 

concentrated on developing a rational prototype rule base 

by reviewing the available literature, interviewing 

practising statisticians and undertaking workshops where 

the analysis of particular data sets was discussed.

The prototype software is a production rule system 

and is written in Turbo Pascal on an IBM-AT. Pascal was 

chosen because of the need to access statistical routines 

during the consultation process. The prototype uses a 

combination of forward and backward chaining to process
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the rules. Information required by the system can come 

from the user, the data or the rules.

The overall system design also includes facilities 

for entering and editing data, altering and adding 

knowledge and a report generator. Implementation of these 

facilities is not incorporated as part of this thesis.

A small number of trial sites were selected for 

industrial trials in order to validate the system and 

evaluate the results of the local experts 'tuning' of the 

rule base to their own particular application area.
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Chapter One

Introduction



In this introductory chapter the nature of 

statistical practice and the problems with existing 

statistical packages are considered. The concept of 

expert systems and their potential application to 

statistics is discussed. The results of a postal survey 
undertaken in order to obtain some feedback from 

statisticians in industry on the possible role of expert 

systems are also presented. Finally, the governing 
criteria for the research project presented in this thesis 

are discussed.

1.1 Project Aims

The primary aim of this research was the design and 
development of a Statistical Expert System that could be 
used by research workers who are not statisticians but who 
regularly need to carry out statistical analyses. A 
further aim of the project was to develop a system in 
which the expertise contained in the system could be 
easily modified by a 'local expert statistician'.

These aims required research into a number of 
different areas; from expert systems technology and 
knowledge acquisition to the problems of formalising 

statistical strategy and expertise. The main areas of 
research pursued in this project are :-

- The development of a knowledge structure and a 
control mechanism for the system which would be 

appropriate to statistical analysis.

- The selection and application of knowledge 

acquisition methods in a targetted area of statistics.

- The development of a prototype system capable of 

providing help and strategical advice in the analysis of 
completely randomised designs.



1.2 Statistical Practice and Problems

Statistical consultation is a complex and highly 

skilled undertaking requiring expertise in communication, 

analysis and interpretation. In this section we discuss 

the nature of statistical consultancy and the problems 

that can occur. The question of statistics being 

undertaken by non-statisticians is also considered.

It is helpful to consider the work of statisticians 

in terms of the activities they undertake. A statistician 

will need to understand and possibly refine the objectives 

of the research; inspect and possibly modify the data 

(e.g. by transformation); select and apply appropriate 
methods and interpret the results (Hand 1986a, Huber 1985, 

Haux 1985). These activities cannot be expressed as a 
step-wise progression as statistical practice is an 

iterative process. For example, it may be necessary to 
modify the questions or objectives of the research in the 
light of the statistical methods available or the 
application of a method may indicate a need to modify the 
data by transformation. There are potential problems in 
each of these aspects of statistical consultancy. The 

most obvious one being lack of understanding between 
client and consultant. Good communication is essential in 
data analysis; client and consultant must be able to 
understand each other's language (Jones 1980).

A skilled statistical consultant is a highly trained 
and rare resource. A current problem is that with 
increased access to powerful computers and statistical 

packages more experimental data is being collected because 

of the potential for analysis. More seriously, a greater 

amount of analysis is being undertaken by people who are 

not statisticians and who have an inadequate grasp of the 

limitations and suitability of the techniques they are 

applying (Hand 1986b). There are, quite simply, not 

enough statisticians to go round.



1.3 Expert systems

There are almost as many definitions of what an 

expert system is as there are expert systems, for example

"An expert system is a knowledge-based system 
that emulates expert thought to solve significant 
problems in a particular domain of expertise" 
(Sell 1985)

"An 'expert system' is regarded as the 
embodiment within a computer of a knowledge based 
component, from an expert skill, in such a form that 
the system can offer intelligent advice or take an 
intelligent decision about a processing function. A 
desirable additional characteristic, which many would 
consider fundamental, is the capability of the 
system, on demand, to justify its own line of 
reasoning in a manner directly intelligible to the 
enquirer."
(British Computer Society's Committee of the 
Specialist Group on Expert Systems, February 1983)

In general terms, an expert system can be viewed as a 

system which supplies expertise in such a way that a non- 

expert using the system can arrive at decisions similar to 

those of an expert.

1.3.1 Historical Overview

The original motivation for the development of 

computers was to speed up calculation and processing 

especially for tedious or repetitive tasks. The emphasis 

was on speed and the most economical use of the machine 

and the computer was limited to handling numerical tasks 

or processing 'hard and fast' facts. At the same time as 

developments to improve the speed and efficiency of 

computers there has been a growing interest in programming 

computers to handle more difficult tasks; to process 

uncertain facts, to make 'reasoned' decisions as opposed 

to using a brute force approach or where such a brute 

force approach would not lead to a solution. For example 

game playing, especially chess, or diagnosis problems 

where human 'experts' apply their knowledge in terms of

4



heuristics.

The development of the system DENDRAL in the sixties 
marked the beginning of 'expert systems'. Originally, 
DENDRAL was designed to enumerate all possible 
configurations of a set of atoms observing the rules of 
chemical valence; the aim being to hypothesise on the 
possible molecular structure of a compound. Extensions to 
DENDRAL included reducing the set of possible outcomes to 
a set of likely ones using heuristics or rules based on 
chemical facts. A description of the development of 
Dendral is given in a book by Lindsay, Buchanan, 
Feigenbaum & Lederberg (Lindsey et al 1980).

Other early expert systems included MYCIN and 
PROSPECTOR. MYCIN was designed to help the physician to 
diagnose and prescribe for bacterial infections of the 
blood (Shortliffe 1976). PROSPECTOR was developed to aid 
the geologist to assess sites for possible deposits. The 
development of these systems served to illustrate the 
potential usefulness of expert systems in solving 
difficult real-world problems (Duda et al 1979). It was 
the early eighties before any information about research 
into expert systems for statistics was published.

1.3.2 The Nature and Structure of Expert Systems
An expert system requires a knowledge base, methods 

of inference and a control mechanism. The knowledge base 
contains the knowledge about the domain, or area of 
expertise, usually expressed in terms of facts, heuristics 
and rules. Methods of inference are necessary to allow 
the system to make reasoned decisions based on the 
information available and using the knowledge in the 
knowledge base. The control mechanism organises the 
application of the inference methods. Within this 
context, a reasoned decision is one with which the expert 
would agree and should have been reached by only



considering relevant information and doing so in a logical 

order.

A major distinction between conventional software and 

expert systems is that expert systems are process oriented 

rather than results oriented, the way in which a decision 

is reached is just as important as the decision itself.

Areas of application

Expert systems are potentially applicable in a wide 

range of areas, some of which are described in the next 

section. They are particularly useful where experts are 

in short supply or where a common form of expertise is 

required by many. Expert systems can be applied in 

relatively straightforward areas, where the necessary 

expertise is not too extensive but is required by many 

people; for example, a system to give advice on the 

availability of different loan schemes. Knowledge about 

an area such as loans is usually 'available' but poorly 

distributed. The development of an expert system in this 

area would mean that the information would be drawn 

together into a single system which can then be made 

available to many users. Expert Systems may also be 

applicable in more complex problem areas of expertise 

where experts exist but are in short supply. For example, 

process control for an aluminium reduction process where 

expert knowledge is required to know what information is 

relevant, what information to request and to reach a 

decision and act accordingly.

1.3.3 Present Research

ACE is an example of a trouble shooting system 

designed to aid the manager of a telephone network centre 

who is responsible for maintenance and trouble shooting 

(Rauch-Hindin 1988 p293). There is an enormous amount of 

information available and highly trained specialists are



required to identify trouble spots. ACE works through the 

information available in a data base, using the rules in 

the knowledge base and presents a report of potential 

trouble spots and recommended actions for the maintenance 

engineers.

Expert systems have also begun to appear in the 

financial sector (Rauch-Hindin 1988 p302). The system 

ExMarine, developed for Coopers & Lybrand underwriters, 

collects information about applicants and their insurance 

brokers, underwrites the risk, and suggests a premium. 

The system was built using a knowledge acquisition tool, 

FFAST, and an expert system tool, ART. ExMarine uses both 

rules and frames to store knowledge.

An example of an expert system in the area of 

databases is Quist (Rauch-Hindin 1988 p333). The 

knowledge system generates database access strategies 

based on knowledge of the database content and general 

heuristic knowledge about items contained in the database.

Process control is one of the largest growth areas 

for the development of expert systems. An example of this 

is the development of a system for automating the control 

of the kilning stage in the manufacture of cement (Haspel 

& Taunton 1986). The system uses rules expressed in 

linguistic terms that can be easily expressed and 

understood by experienced operators. The system G2 

(Rauch-Hindin 1988 p349) has been developed as a tool for 

building such systems and incorporates a knowledge 

analysis program and a real-time communications-gateway 

module. The knowledge-based component receives data from 

the gateway program, reasons about the data, and offers 

advice about critical process-control points of interest, 

multiple alarms, and diagnosis of trouble spots.

Research has continued in the area of medical 

diagnosis. PUFF (Aikins et al 1984), is a system designed 

to interpret respiratory tests. Interpretation and



diagnosis is based on historic and symptomatic information 
as well as the test data. GLADYS (Spiegelhalter & Knill- 

Jones 1984) is a medical diagnosis system for 

gastroenterology. This system uses information on 
clinical symptoms, collected by computer interview, to 
arrive at a probabalistic diagnosis, suitable treatment is 
then suggested.

1.4 Statistical Expert Systems

The development of interactive statistical software 
incorporating statistical expertise could help to relieve 
the professional statistician of the more routine 
enquiries and also protect the non statistician from 
inappropriate application of statistical methods. 
Research undertaken in the area of Statistical Expert 
Systems is reviewed in Chapter 2. In this section the 
issues raised by the introduction of Statistical Expert 
Systems and the requirements of such systems are 
discussed.

1.4.1 Current Statistical Software

The move towards more 'user-friendly' software and 
the advent of powerful desk-top micro-computers has meant 
that general purpose statistical packages are now 
available to a wide range of users, statistician and non- 
statistician alike. The current software supplies 
numerical or algorithmic expertise in a form that is, 
generally, easy to access and use. It is the 
responsibility of the user to decide on an appropriate 
analysis and to interpret the results.

Undertaking a statistical analysis involves 

determining the questions of interest to the client, 
selecting an appropriate form of analysis and ensuring 

that the necessary conditions and assumptions are met. 
Once an analysis has been carried out, the results need to
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be interpreted and related back to the original questions. 

The statistical software currently available can only help 

with the mechanics of the analysis and not the strategy. 

The misuse or even abuse of statistical methods is 

inevitable when such software is readily available to non- 

statisticians .

Chambers (1981a) in one of the early papers 

discussing Statistical Expert Systems states :

'Statistical software in its present form, made 
widely available by cheap computing, will precipitate 
much uninformed, unguided and simply incorrect data 
analysis. We are obliged to do something to help.'

Hahn (1984) states :

'Thus, capabilities for statistical number crunching 
are no longer limited to a knowledgeable elite, but 
are readily accessible to those with only limited 
training in statistics, and, consequently little 
understanding of the appropriate analyses to perform 
in a given situation and how to interpret the 
results.'

1.4.2 The Role of Statistical Expert Systems

The overall aim of Statistical Expert Systems*is to 

incorporate knowledge about statistical strategy into a 

system, thus supplying users with expertise on both the 

strategy and the number-crunching aspects of the analysis. 

There are potential benefits for both the professional 

statistician and the non statistician.

a) The professional statistician could be relieved of 

some of the more routine enquiries and thus be able to 

give greater time to the more difficult tasks.

b) The non-statistician would be protected to a large 

degree from the inappropriate application of methods and 

the misinterpretation of results, without needing to have 

the relevant statistical expertise.

c) The provision of Statistical Expert Systems could 

also provide an important means of education for non-



statisticians. As they follow the systems working and 

look at the reasons for decisions made, they may, 

consciously or sub-consciously learn more about 

statistical analysis. Education need not be limited to 
non-statisticians. Statisticians themselves may learn by 

using systems which are expert in areas with which they 

are not familiar.

d) The development of Statistical Expert Systems will 
necessitate the thinking through and coding of statistical 

strategy. Many statisticians employ their own particular 

strategy and yet are unable to express the reasoning 
behind the strategy explicitly. There is not necessarily 
a single correct strategy but by exploring and refining 
different strategies a clearer understanding of the common 
aspects of strategy should be gained (Pregibon 1986a).

1.4.3 Requirements of Statistical Expert Systems

Incorporating expertise into statistical software is 
a complex undertaking which involves the problems 
associated with developing expert systems in general and 
problems directly related to applying expert systems 
methods to statistical analysis. The development of an 
expert system requires decisions about the form of 
knowledge representation and the method of inference in 
addition to the well documented problems of knowledge 
acquisition. When applying expert systems methods to the 
area of statistics there are two further important 
considerations. Information required by the system to 
make decisions can come from the data as well as the user, 

thus it is important that the system should be able to 

access the data during the consultation. The other 

consideration is related to the problems of knowledge 
acquisition which is further hampered by the need to 

formalise statistical strategy in a way that can be 
expressed within the system.
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The issues involved in knowledge acquisition are 
considered in detail in Chapter 5 and the design 
requirements for Statistical Expert Systems are discussed 
in Chapter 3.

A number of authors have agreed that the best way 
forward for research into Statistical Expert Systems is 
the development of small-scale systems in specific and 
well defined areas (Nelder 1984, Tukey 1986, Hahn 1985).

1.5 Prototype system

The aim of this project was to design a Statistical 
Expert System and develop a prototype system which could 
be tested in industry. The prototype system, called 
THESEUS, would provide a rulebase to cover a specific area 
of statistics and the inference engine necessary to 
process the rule base. The development of such a system 
requires the design and implementation of knowledge 
structures, the inference engine and the user interface. 
The area of expertise was to be large enough to give a 
realistic insight into the problems of knowledge 
acquisition and small enough to allow sufficient 
consideration to all the aspects of system development. 
Testing the prototype system in an industrial setting 
should enable us to assess both the advantages and 
problems of the different aspects of Statistical Expert 
Systems development. This assessment process was 
considered to be very important as it moves the research 
from being a purely academic exercise to the real world of 
statistical practice.

1.6 Industrial Review

A document outlining the potential role of 

intelligent software in statistics (see Appendix I) was 
sent to a number of statisticians in order to obtain some 
feedback on the potential for statistical expert systems
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and to pinpoint suitable application areas.

1.6.1 Format of the Postal Survey

The document was divided into three sections covering 

the present problems in statistics arising out of the wide 
availability of powerful statistical packages, the 

potential role of software which incorporated expertise 

and finally the general features of such a system.

The document was sent to 57 statisticians who are 

working in the pharmaceutical industry or research 

establishments. The list of statisticians was established 
by a combination of those known by personal contact with 

members of the Statistics Research Group and by looking 

through the Royal Statistical Society List of Fellows. 
Our primary interest was to contact statisticians involved 

in the analysis of scientific experiments rather than 

social surveys or official statistics.

1.6.2 Response

Replies were received from 31 of the 57 statisticians 

and, as anticipated, there was a wide range of opinions. 

In order to give some impression of the overall response 
the replies were categorised as follows :

A) Positive [ 10 replies ]

B) Negative [ 5 replies ]

C) Cautious or Unsure [ 11 replies ]

D) Non-committal [ 5 replies ]

Where quotes have been made from the replies received 

some indication of the nature of the respondents area of 

work is given.

The majority of respondents agreed that the misuse 

and abuse of statistical methods by non-statisticians is a 
serious problem. For example :

12



"...strongly endorse your concern about the use of 

sophisticated statistical software by non-statisticians." 

(Clinical Research Centre)

"There is a growing demand for skilled statistical 

analysis throughout industry, commerce and research 

establishments. Unfortunately there are too many non- 

statisticians analysing data inappropriately" 

(Government Research Institute)

However a cautionary note was given by one respondent

"There is as much danger in non-statisticians being 

over worried by the assumptions of statistical tests as by 
the misuse of methods, evidenced by letters to the BMJ etc 
about authors not vigorously testing every variable for 

non-normality. I fear that 'expert' systems would only 

encourage this unprofitable approach." 

(Department of Community Medicine)

Two of the respondents were in the fortunate position of 
having sufficient statistical resources to deal with all 
statistical analyses undertaken in their company or 

department.

Response to the proposal that a statistical expert system 
could be used both to relieve the statistician of more 

routine tasks and to protect the non-statisticians from 

the inappropriate use of statistical techniques was rather 

more varied. Some respondents were very enthusiastic 

seeing expert systems as the best way forward. The 

majority were cautiously optimistic, being aware of some 

of the possible problems; for example :
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"A truly expert system should encapsulate the 

expert's approach for prescription of the appropriate 

tools to the end user and when developed and implemented 

the system should be capable of training the user nearly 

to the standard of the expert himself. Such a system 

would require enormous effort; moreover, the size and 

complexity of the system may not be of much help to 

strengthen the users motivation...but to begin with a 

system with simple alternatives should not be unwelcome by 

most users." (British Telecom)

There was a consensus of opinion that a general 

statistical expert system would be too complex and 

ambitious a task at the moment; this agrees with Hahn 

(1985) who advocates the development of specialised 

intelligent software.

Several respondents expressed a concern that an expert 

system could be regarded as a substitute statistician and 

that this should be avoided -at all costs; for example :

"We as pharmaceutical statisticians involved in the 

analysis of clinical trials, cannot think of many 

situations where the use of statistics is routine. We 

have found from our experience and often to our dismay 

that what originally appears to be a very routine analysis 

can in fact be much more complicated. ... In situations 

where there is no access to a statistician, the type of 

package you are proposing could possibly be of some use, 

but should not be regarded as a substitute for a 

statistician. " (Pharmaceutical Company)

1.7 Scope and Application Area for a Prototype System 

The main concern of this project is to provide a
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research worker, who is not a statistician, with the 

facility to analyse experimental data, offering protection 

against abuse or misuse of statistical methods.

1.7.1 The End User

The principal end-users of the system have already 

been defined as the research workers who, though expert in 

their own particular fields, are not statistically 

trained. The growing demand for statistical analysis 

throughout industry and commerce, coupled with increasing 

sophistication and availability of statistical software 

leaves statisticians with the ever increasing problem of 

providing an adequate service and monitoring the use of 

statistical methods by non-statisticians in their 

organisation. The possibility of introducing 

'intelligent' statistical applications packages is 

considered as a means of filling the gap and relieving the 

statistician of some of the more routine work.

1.7.2 Application Area

The other major issue was the choice of application 

area for the prototype system. As observed above, Hahn 

(1985) stated that incorporating expertise in a general 

statistical package is a very large problem and that the 

best way forward is the development of specialised 

intelligent software. This was echoed by some of the 

respondents to the postal survey, for example, British 

Telecom.

It was important to choose an area that would be of 

practical use to research workers in industry. At the 

same time it was also important to select an area small 

enough for the knowledge acquisition and construction of 

the system to be a manageable task.

The area chosen was the Analysis of Completely 

Randomised Experiments with One Trial Factor. Data from
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experiments of this type are regularly analysed by 

research workers without statistical help. This area is 

small and well contained; in addition, much of the 

expertise used in analysing this simple type of study will 

readily extend to more complex designs.

1.7.3 Structure of the Thesis

Chapter 2 contains a review of work in the area of 

Statistical Expert Systems which provided some guidelines 

on the necessary design criteria. The logical design and 

structure of the system are described in Chapters 3 and 4. 

Chapter 5 discusses some of the possible approaches to 

knowledge acquisition and the methods used in this 

project.

The next two chapters contain the technical 

information that was necessary for the development of the 

prototype knowledge base. Chapter 6 provides an 

introduction to the concepts involved in hypothesis 

testing about means and the importance of Normal Theory 

assumptions; much of the information in this chapter will 

be relevant in other areas of statistics. Chapter 7 

contains more specific information about statistical 

procedures where there are one, two or several samples to 

be compared.

Having dealt with the design, structure and knowledge 

acquisition for the system, Chapter 8 goes on to discuss 

the development of the system; this chapter also gives 

examples of the system during a consultation. Chapter 9 

deals with the evaluation of the prototype system both 

within the Statistics Research Group and the evaluation 

trials in industry; some recommendations for improvements 

to the prototype system are also given here. In Chapter 

10 an assessment of the project is given and areas for 

future research are identified.
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Chapter Two

A Review of Statistical Expert Systems
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2.1 Introduction

At the same time that expert systems were being 

developed in areas outside of statistics in the late 

sixties and early seventies, the rapidly increasing number 

and availability of statistical packages gave rise to much 

concern about the misuse or abuse of statistical 

procedures.

The concept of statistical expert systems provided a 

potential solution to these problems. The first 

statistical expert systems began to appear in the early 

eighties. This chapter provides a review of some of the 

research undertaken in statistical expert systems.

2.2 Early Days : 1981 - 1984

One of the first statistical systems to incorporate 

expert systems techniques was the RX project (Blum 1984). 

The aim of this project was to design and perform 

statistical analyses in medicine to establish causal 

relationships from a large time-oriented clinical data 

base. The statistical knowledge in RX took the form of a 

'robot' statistician which simply applies all the methods 

it knows in order to try to find evidence of causal 

relationships.

An initial experiment in building an expert system 

for data analysis was undertaken at Bell Labs, based on a 

production rule architecture (Chambers, Pregibon and Zayas 

1981) i.e. the knowledge was expressed in terms of

IF condition THEN action

rules. This system interfaced with the package S, 

providing diagnostic tests to assess the analysis under 

consideration. Chambers proposed some general design 

criteria for a statistical expert system, most importantly 

that the system should aim for a dialogue between client 

and software and not aim at automatic data analysis. A 

list of basic requirements was also given and included the
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need to supply summaries of results, suggestions for 

action and graphical displays.

Research at Bell Labs continued with the development 

of REX (Gale and Pregibon 1982). The aim of REX was to 

assist the novice user in regression analysis by checking 

for violations of assumptions. The strategy used was to 

undertake a model independent scrutiny of the data, to 

assess the model adequacy and to examine the fitting 

method. REX is written in LISP and interfaces with the 

package S. The strategy incorporated in the knowledge 

base was elicited by means of working through examples. 

Other work undertaken in the early eighties included 

research by Hajek and Ivanek, Porter and Lai, O'Keefe , 

Smith, Lee and Hand. The system GUHA 80 ,(Hajek and Ivanek 

1982), was aimed at exploratory data analysis, the 

emphasis being on the formulation of hypotheses. STATPATH 

is a system which employed a binary tree search to 

identify appropriate analyses, (Portier and Lai 1983). 

STATPATH advised on an appropriate analysis and referred 

the user to the relevant package; as such it did not 

access the data. ASA, (O'Keefe 1982) was a system which 

was designed to help a client analyse an experiment which 

has already been designed. BUMP was constructed as an 

interface to the package MULTIVARIANCE, (Smith, Lee and 

Hand 1983). BUMP was not intended as an expert system but 

nevertheless tackled some of the relevant issues. By 

means of a dialogue the system helps the user to define 

the analysis they want, offering help if required. It did 

not tender advice, nor could it explain why a decision has 

been made.

Hahn, in his 1985 review paper, suggested that the 

best opportunities for technical progress seem to be in 

the development of specialised, rather than general, 

applications packages. Much of the subsequent research 

has indeed focussed on specific areas, although some work
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on building intelligent front ends to general statistical 

packages has been undertaken.

2.3 More Recent Work : Post 1985

It is interesting to classify the statistical expert 

systems developed in the mid eighties by the approach 

used. Some systems have been designed primarily as front 

ends to existing statistical software while other systems 

access statistical software to provide the necessary 

numerical computations for a specific area. A number of 

systems do not use existing statistical software and a few 

systems have been written using expert system shells. An 

expert system shell provides, for a specified form of 

knowledge representation, an inference engine and some 

form of explanation and help facilities. The users of 

expert system shells need only express their knowledge in 

the form required by the system.

Table I summarises the information available about 

the development of various expert systems for statistics 

in 1985 and 1986.

2.3.1 SES Which Use Expert System Shells

The work by Oldford and Peters (1986a, 1986b) was 

originally undertaken using the expert system shell 

EMYCIN, although later work has used the expert systems 

building package LOOPS on a Lisp machine. The system 

accesses a statistical analysis packages called DINDE 

which resides on the Lisp machine.

EXPLORA is a system written in LISP, which utilises 

the expert system shell BABYLON, (Klosgen 1986). The SAS 

package is used to provide the necessary numerical 

computations. EXPLORA runs on a Symbolics Lisp machine 

and is used for exploratory data analysis. Both Klosgen 

and Oldford and Peters used an object oriented approach 

where the primary emphasis is placed on the objects within
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the system rather than operations or procedures to be 
undertaken.

Other work in this area includes a front end to the 
package MLP using the shell EXPERT, (Berzuini et al 1986).

2.3.2 Systems Designed as Front Ends to Existing 

Statistical Software

GLIMPSE, designed as a rational front end to GLIM 
(Nelder 1986), is the most well known work in this area. 
GLIMPSE is written using the Prolog shell APES and runs on 
a SUN workstation. GLIMPSE offers advice and help on 
different activities such as data input, data validation, 
model selection and model prediction.

Rochefort is an ambitious project designed to link 
data base management systems and statistical software 
(Hilhorst et al 1987). It is also anticipated by the 
authors that statistical expertise for selection of 
appropriate analysis methods would be included.

Other work in this area includes that described by 
Berzuini et al (1986), mentioned in the previous section,

*

and Jida & Lemaire (1986). The work described by Jida is a 
front end, written in Prolog, to the statistical package 
CHADOC. The front end enables the user to generate the 
necessary command file for CHADOC and also provides a 
semantic analysis of those commands in order to avoid 
invalid analyses.

2.3.3 SES Which Access Statistical Packages

There several systems which fall into this category, 
the best known of which is the system Student, (Gale and 
Pregibon 1984, Gale 1986). Student is written in LISP and 
accesses the statistical package S. Student offers an 
automated learning strategy and is designed to allow a 
professional statistician to construct a knowledge base by 
selecting and working examples and by answering questions.
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STATXPS is an expert system for time-series analysis 

which accesses a statistical package called SCA, (Prat et 

al 1985). Darius (1986) developed an expert system shell 

written in the SAS language. Other work in this area 

includes Carlsen and Heuch (1986), Froeschl & Grossmann 

(1986), Galmacci (1986).

2.3.4 Systems Developed Without an Expert System Shell or 

Statistical Package

Some Statistical Expert Systems have been developed 

using an Artificial Intelligence Language, a Procedural 

language or a combination of both. ESTES is a system for 

Time Series Analysis written in Pascal on a Macintosh, 

(Hietala 1986). ESTES makes full use of the windowing 

facilities available on the Macintosh and is very user- 

friendly providing both textual and graphical explanations 

for statistical terms. The SASS system, (Hakong & Hickman 

1985), is interesting because it is based on intersecting 

sets of properties of statistical techniques. SASS has 

been developed using a Nested Interactive Array Language.

TESS is a system which uses a tree based strategy and 

is written entirely in LISP, (Pregibon 1986b). In order 

to assist the statistician in the task of coding numerical 

routines TESS provides a mini language for statistical 

computations and enables an expert statistician to encode 

their strategy for analysing a particular type of data 

set. Once the knowledge has been encoded the system can 

be used by non statisticians to analyse their data sets.

Other work in this area is described by Esposito et 

al (1986) and Dambroise & Massotte (1986).

23



Chapter Three

Design of a Statistical Expert System
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3.1 Introduction

Any expert system should be able to explain and 

justify its reasoning as well as to offer help and 

guidance throughout a consultation and the design of the 

system should take these as basic requirements. There are 

additional considerations necessary in designing 

statistical expert systems, including the need to access 

data during the consultation; these requirements are 

considered in this chapter. The pattern of consultation 

to be followed by a system and the choice of knowledge 

representation are also discussed and finally a logical 

design for a statistical expert system is proposed.

3.2 Design Considerations for Statistical Expert Systems 

3.2.1 Primary Considerations

When developing an expert system it is important to 

establish both the scope of the system and the prospective 

users of the system before more specific design work can 

be undertaken.

The scope of the system will affect both the choice 

of knowledge representation and the general design of the 

system. An expert system may be focussed on a narrow and 

highly specific domain area or may have a wide domain. 

There is no clear distinction to be made between these two 

possibilities and it is likely that the scope of a 
statistical expert system falls somewhere between them. 

The aim of this project was to develop a software 

framework suitable for expert systems in small and well 

defined areas of statistics. The 'end-user' also needs to 

be considered carefully. There is a wide range of 

possibilities from the expert statistical consultant to 

the statistical novice and it would be difficult to cater 

for all of them in a single system. The statistically 

naive researcher would need extensive help and guidance to 

ensure the appropriate analysis is carried out and to
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interpret the results, whereas experts may want to move 

through the system quickly, looking only at the results 

they are interested in. The aim in this project was to 

develop a system for use by research workers in industry 

who are regular users of statistical techniques.

3.2.2 Design Features

An expert system should be capable of justifying its 

conclusions and telling the user why a particular question 

is being asked. In order to do this it is necessary to 

keep some form of trace of the consultation process that 
can be accessed and understood by the user. In addition a 

statistical expert system should be able to explain 

statistical terms as well as providing help throughout the 

consultation.

As with any software, an expert system needs to be 

structured so that it is easily modifiable, both to allow 

for ease of maintenance of the system and to cope with 
developments in the knowledge base. The concept of a 
dynamic knowledge base is very important in the area of 

statistics for two reasons; to enable new developments in 

the domain area to be included and to allow an expert 

statistician to alter the strategy expressed in the 

system. There is seldom a single correct strategy in any 

given area of statistics and different statisticians often 

use different strategies; thus it is important to have a 

knowledge base which can be altered easily by an expert 

statistician.

Statistical expert systems have two main sources of 

information; the user and the data. Thus in developing a 

statistical expert system it is essential to access 

statistical routines or packages during the consultation 

process as well as providing a flexible and easy to 

understand user interface. This precludes the use of 

existing expert system shells which cannot interface with

26



other software.

A statistical expert system also needs to be able to 
allow for the possibility of multiple objectives; in the 
domain of statistics a researcher often requires the 
answer to more than one question.

The system should be able to recommend the most 
appropriate and most powerful techniques, at the same time 
allowing the user an element of choice between valid 
techniques .

A number of people have considered these features; in 
particular Hand(1985) and Hahn(1985) discuss them more 
fully. Some of these features need to be considered at 
the logical design stage, for example, the need to access 
data during the consultation. The majority of features 
can be incorporated at the software design stage; this is 
discussed in more detail in Chapter 8.

3 . 3 Pattern of Consultation

In order for expert systems to be able to explain and 
justify their reasoning it is necessary that they use a 
pattern of consultation that is comprehensible to the 
user. This does not mean that the expert system must 
mimic the experts actions, rather that it should operate 
in a way that can be explained to, and understood by, the 
user, i.e. it should fit in the 'human window', (Michie 
and Johnston 1984 p70 ) . A Statistical Expert System can 
also offer more facilities than a practising statistician 
because of the speed of processing, for example, running 
several diagnostic tests takes little time for the 
computer but would be rather time consuming for a human 
expert (Hand 1984, Buja 1984).

A great deal of research has been undertaken to try 
and establish how human consultants interact with their 
clients (Hand 1984, Clayden - personal communication). 
Hand suggested that a statistical consultant operates in a
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similar manner to a medical consultant, initially 

generating a set of plausible hypotheses and then trying 

to verify these hypotheses. This has a 'funnelling' 

effect with the consultant trying to reduce the number of 

possibilities and thus limit the search space.

One of the major reasons for the development of 

expert systems stems from the realisation that it is not, 

in general, practical to foresee and check all possible 

eventualities. Many techniques used in expert systems 

concentrate on reducing the number of possibilities to be 

considered as much as possible. Thus it would seem 

appropriate to adopt the broad pattern of consultation 

where the first stage is to establish a subset of 

appropriate techniques and then to consider each of the 

techniques in more detail.

When a technique is being considered for use on a 

particular data set then it is first tested for use on the 

original data. However, if a parametric technique cannot 

be verified for use on the original data then the user may 

wish to try transforming the data. The use of 

transformations can, therefore, affect the flow of control 

within the system. Thus the consultation may be cyclic in 

nature, moving from verification to transformation back to 
verification where parametric techniques are concerned. 

This needs to be incorporated in the system design.

3.4 Knowledge Representation

Having established the scope of the expert system and 

the pattern of consultation the next stage is to decide on 

an appropriate way to represent the knowledge. There are 

three main forms of knowledge representation, rules, 

frames and semantic nets.

Rules are the predominant from of representation used 

in expert systems and take the form

IF condition THEN action or assertion
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These rules may be processed sequentially, forward 

chaining, or by trying rules that would help to establish 

a goal the system is interested in, this is known as 

backward chaining.

Semantic nets are used to represent relationships 

between objects in the domain as links between nodes, they 

are particularly useful where inheritance is important.

Frames are generalised record structures which 

describe a class of objects or events. Slots in the frame 

may contain default values, procedures, actions or even 

pointers to other frames. Like semantic nets, it is easy 

to include inheritance properties when using frames.

It is important to use a knowledge representation 

that is comprehensible to a statistician who wants to 

modify the knowledge base. The choice of representation 

also depends on the scope of the domain. For example, 

where the domain covers a large area, frames may be most 

appropriate as they provide a way of describing families 

of objects.

For this project, the size of domain was 

intentionally limited to small, well defined areas and 

production rules were chosen as the most appropriate 

knowledge representation. The primary reasons for this 

choice were ease of understanding and flexibility in the 

ways in which production rules can be processed. The 

different types of rule and the methods of inference 

adopted in this project are discussed in Chapter 4.

3.5 Logical Design

The construction of software systems is facilitated 

by using a structured design methodology which separates 

the development process into a number of well-defined 

stages. The motivation behind these methodologies is the 

emphasis on the problem definition part and the clear 

separation between the logical and physical design. The
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advantages of a logical design are that it is independent 

of hardware and software considerations and that it allows 

greater interaction between the user and the designer, 

often via easy to understand graphical methods.

Entity analysis was originally proposed as a 

methodology for developing database systems (Chen 1977) 

but it was soon found to be a useful tool in many areas of 

software engineering (Knight et al 1987). Entity 

analysis provides a clear diagrammatic view of the logical 

design of the system and has been used in the design of 
THESEUS. 

3.6 Entity Analysis for THESEUS

Chen's design representation contains three classes 

of things : entities, relationships and attribute. There 

are three different stages in Entity Analysis :

1. Identifying the Entities and the relationships 

between them in diagrammatic form

2. Identifying attributes for each entity

3..Constructing Life-Cycle Diagrams for the status of

each entity.

When the logical design is translated to software code, 

each entity is declared as an array of records where the 

records are defined by the list of attributes for the 

entity. The Life-Cycle diagrams show how the status of 

each entity can change within the system, thus indicating 

the flow of control. The Entity-Relationship diagram 

shows the relationships between the entities and thus 

indicates which other entities must be considered when a 

member of one entity type is being processed .

Figure 3.1 shows the entity relationship model for 

THESEUS. Entities are objects that can be uniquely 

identified, and classified into separate types. The 

entities identified in THESEUS are rules, facts, tests, 

procedures and experimental data; the lines between the 

entity types show the relationships. For example, facts
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Figure 3.1 : Entity Relationship Diagram
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can be set either by the action of a rule or by a 

procedure or by asking the user. This optionality is shown 

by the use of dashed lines; that a fact can only be set in 

one of these ways is shown by the line drawn across the 

three optional relationships, labelled 'set by'. There 

are two relationship lines between tests and rules, a test 

can be part of the condition of a rule or can be set as 

part of the action of a rule.

After the construction of the graphical model, the 

attributes of each entity type are determined, these 

attributes are the properties of the objects which we need 

to record. The attributes for the entities in THESEUS are 

given below :

Entity : FACTS 
Attributes :

- Name
- Setby rule
- Setby procedure
- Setby user
- Dataset
- Status

Possible Values

character string 
TRUE or FALSE 
TRUE or FALSE 
TRUE or FALSE

character string 
UNTRIED, STRUE, SFALSE

CURRENT, UNKNOWN

Entity : TESTS 
Attributes :

- Name
- Parametric
- Dataset
- Chosen-by-user
- Status

Possible Values

character string
TRUE or FALSE

character string
TRUE or FALSE

UNTRIED, LOOK_AT, CURRENT
RECOMMENDED, NOT_VALID

VALID, UNKNOWN

Entity : PROCS 
Attributes :

- Name
- Called-by
- Status

Possible Values

character string
RULES, FINDFACT

NOT CALLED, CALLED
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Entity : DATA INFO Possible Values 
Attributes :

- Name character string
- Form (Algebraic expression) character string
- Mean [1..number of groups] array of real numbers
- Var [1..number of groups] array of real numbers
- Status UNTRIED, CURRENT

ACCEPTED, REJECTED

Entity : RULES Possible Values 
Attributes :

- Identifier character string
- Condition

Any number of
- operator ' ' or 'NOT 1
- fact or test name character string 
pairs

- Action
Any number of
- fact, test or character string 

procedure name
- name_is FACT, TEST, PROC
- action depends on name_is, see Note 1 
triplets

- Status UNTRIED, FIRED, FAILED
SKIPPED, UNKNOWN

Note 1 name is possible values for action
FACT STRUE, SFALSE
TEST LOOK_AT, RECOMMENDED, NOT_VALID,VALID
PROC CALL

Once the attributes have been established the Life- 

Cycle diagrams for the status of each entity are 

constructed, showing how the status of each entity may 

change within the system, see Figures 3.2 to 3.6. For 

example, in the life-cycle for Test status, the first 

change of status is from UNTRIED to LOOK_AT, this reflects 

the first part of the consultation process (establishing a 

list of potential tests). A test can only be considered 

further if its status is already LOOK_AT; if this is the 

case then the test status will, at some stage, become 

CURRENT when the test will be considered more closely. 

The possible outcomes are RECOMMENDED, VALID, NOT_VALID or 

UNKNOWN. RECOMMENDED means that the system considers this 

technique to be the best of the list under investigation.
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If a parametric test becomes VALID, NOT_VALID or UNKNOWN 
the status may return to current if the data is 
transformed. Each Life-Cycle diagram has a node labelled 
ARCHIVED, which indicates that the status does not change 
any further and remains at the value given in the previous 
status node.
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Figure 3.2 ; Life-Cycle Diagram - Rule Status

UNTRIED

* This can only occur in backward chaining rules when the 
data is transformed and some facts need to be re- 
established on the new data set.
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Figure 3.3 ; Life-Cycle Diagram - Fact Status

UNTRIED

* This will occur when the data is transformed and the 
fact is a 'dynamic 1 fact that needs to be re-established 
on the new data set
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Figure 3.4 ; Life-Cycle Diagram - Test Status
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* This only occurs if the data is transformed and the test 
is a parametric test
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Figure 3.5 : Life-Cycle Diagram - Procedure Status
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Figure 3.6 : Life-Cycle Diagram - Data Status
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Chapter Four

Decision Making and Control
in a 

Statistical Expert System
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4.1 Introduction

Once the choice of knowledge representation has been 

made and the form of consultation decided, the next stage, 

after the logical design, is to consider in more detail 

the methods of inference and the control structure to be 

used. Rules can be processed using either forward or 

backward chaining or using some combination of both. In 

general terms the prototype system described here uses 

forward chaining when trying to establish a list of 

possible methods and backward chaining when trying to 

check the validity of methods. Forward and backward 

chaining and the protocol for applying a specific rule are 

described in the next two sections.

During the development of the prototype system the 

general structure described above remained the same, 

however, the actual implementation altered considerably. 

The reasons for such alterations were to decrease the 

amount of time the system had to spend looking through the 

rules and, more importantly, to make progress through the 

system clearer to the user. The development of the 

inference process and control structure is discussed in 

this chapter, and the final method of inference and the 

control structure are described in detail.

4.2 Applying a Rule

Before going any further it is be useful to establish 

the way in which an individual rule of any type is 

processed. Once the system has decided to try to apply a 

particular rule, it considers each part of the condition 

in turn. Each part of the condition must be satisfied 

before the system moves on to consider the next part of 

the condition. As soon as one part fails then the rule is 

failed.

In considering each part of the condition, the system 

will first check whether the status of this fact has

41



already been established as true or false. If the status 

has not been established then the system looks at the 

attributes to find out how to establish the fact. As 

already stated in section 3.6, a fact can be set by asking 

the user, calling a procedure or by trying other rules.

4.3 Forward and Backward Chaining

Forward chaining involves considering each of the 

appropriate rules in turn, working through them 

sequentially and carrying out the actions of those rules 

whose conditions are satisfied.

Backward chaining is carried out by supplying the 

system with a goal to backward chain on. The system looks 

through the rules until it finds one with an action that 

would establish that goal. The system then tries to apply 

that rule. If that rule fails then the system continues 

looking for the next rule which has the goal on the action 

side of the rule. This process continues until the goal 

is established or no more relevant rules can be found.

In the course of backward chaining on a particular 

goal the system may encounter a fact that is not yet known 

and which is set by other rules. When this occurs the 

system suspends backward chaining on the original goal and 

backward chains with this fact as a goal. When the new 

goal has been established the system resumes backward 

chaining on the original goal. Figures 4.1 and 4.2 show a 

simple rule base and an example of backward chaining using 

that rule base.
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Figure 4.1 : Simple Rulebase to Demonstrate Backward Chaining

Rl IF outliers
THEN not_valid test parametric

recommend test nonparametric

R2 IF not outliers and normal^data and variances_equal 
THEN recommend test parametric 

valid test nonparametric

R3 IF not outliers and not normal__data 
THEN not_valid test parametric

recommend test nonparametric

R4 IF not outliers and not variances_equal 
THEN not__valid test parametric

recommend test nonparametric

R5 IF shapiro_wilk_sig5 and not user_says_data_jnormal 
THEN false fact normal_data

R6 IF shapiro_wilk_sig5 and user_says_data_normal 
THEN true fact normal_data

R7 IF not shapiro_wilk_sig5 
THEN true fact nortnal_data

R8 IF Ievene_sig5
THEN false fact variances_equal

R9 IF not Ievene_sig5
THEN true fact variances_equal

outliers - set by
normal_data - set by
variances^equal - set by
shapiro_wilk_sig5 - set by
user_says_data_normal - set by
Ievene_sig5 - set by

the user 
other rules 
other rules 
a procedure 
the user 
a procedure
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Figure 4.2 : Example - backward chaining on 'parametric*

Goal : parametric
Trying rule : Rl ask user about outliers (false)

[rule fails] 
Trying rule : R2 not outliers is true

set up normal__data as a goal
[R2 remains current]

Goal : normal_data
Trying rule : R5 call procedure to set

shapiro_wilk_sig5 (false) 
[rule fails] 

R6 shapiro_wilk_sig5 is false
[rule fails] 

R7 not shapiro_wilk_sig5 is true
[rule fires] 

R7 set normal data to true

Trying rule 

Trying rule 

Action of

Goal : parametric
Trying rule : R2 normal_data is true

set up variances_equal as a goal 
[R2 remains current]

Goal : variances_equal
Trying rule : R8 call procedure to set

Ievene_sig5 (false)
[rule fails] 

Trying rule : R9 not levene_sig5 is true
[rule fires] 

Action of : R9 set variances_equal to true

Goal : parametric
Trying rule : R2 variances_equal is true

[rule fires] 
Action of : R2 recommend parametric test and

valid nonparametric test
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4.4 The Development of an Inference Mechanism
Initially the system was structured so that all the 

rules were stored in one array. The consultation process 
used at first can be summarised as follows :

1. Establish a list of possible methods by forward 
chaining through the rules, only considering those 
rules which contained an action to LOOK_AT a test 
or tests.

2. Verify the methods - set up each test as a goal 
for the system to backward chain on.

3. Return to step 1 - finishing when an empty list is 
returned from the forward chainer.

It soon became apparent that the system was wasting 
time looking through the rule array in order to identify 
the forward chaining rules. Thus the first, and simplest, 
alteration was to separate the forward and backward 
chaining rules. This is carried out when the rule-base is 
picked up by the system, any rule which has an action to 
LOOK_AT a particular test is stored in a separate array. 
This makes no noticeable difference to the user but does 
mean that the system is not wasting time searching to find 
the appropriate rules to forward chain on.

Once the knowledge acquisition was underway and a 
realistic rule base was being tried in the system it soon 
became apparent that dealing with the possibility of 
transformations within the backward chaining rules was 
rather complicated. Rules had to be developed for 
assessing the validity of methods on the original data and 
other rules had to be developed to deal with 
transformations and the possibility of trying more than 
one transformation. Although this was possible it did
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mean that the condition part of some rules became rather 

complex and understanding the path the system was 

following became quite difficult.

This difficulty was overcome by using a two level 

strategy whereby the backward chaining rules apply to the 

current data set only. A higher level of rules was 

introduced which, after a goal has been verified using the 

backward chaining rules, decide whether to move on to the 

next test in the list or whether to transform the data. 

If the data is transformed then the backward chaining 

rules are applied again to verify the status of the test 

under consideration on the transformed data. Thus the 

backward chaining rules may be applied several times in 

the course of verifying a particular technique. 

Three types of rule can now be identified :

I : Forward chaining rules - used to establish a 

list of possible techniques

II : Backward chaining rules - used to verify the 

validity of methods on the current data set

III : Meta rules - used to decide whether to move 

on to the next test in the list or to 

transform the data

4.5 Control Structure

Flow between the different types of rule is effected 

by a control module. The structure is described using 

pseudo code given below.
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REPEAT

forward chain to supply a list of possible tests 

WITH each test in the list 

REPEAT

IF test is not RECOMMENDED yet
THEN backward chain to establish test

search meta rules to set NEXT_TEST to true 
or to false (and transform data)

UNTIL the meta rules have set NEXT_TEST to true 
or current test has been RECOMMENDED

END of WITH each test in the list

ask user whether they wish to consider any 
FURTHER_ANALYSIS

UNTIL FURTHER_ANALYSIS is false or
forward chaining rules supply an empty list

4.6 Forward Chaining Rules

Rules which the system uses to establish a list of 
possible techniques are the most straightforward type. 
The condition part of these rules is usually composed of 
facts relating the basic nature of the data, such as the 

number of groups or the hypotheses of interest to the 
user. These are the only rules which may also have tests 

as part of the condition. This may happen where a 
particular test is used before other techniques are 

considered; for example the ANOVA may be used before 
considering multiple comparisons.

These rules are processed by forward chaining as 

described in section 4.3 . If the condition part of a 

rule contains a test that has not yet been established 

then the status of that rule is set to SKIPPED. Each time 

these rules are considered the system starts at the top of
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the list and works through considering only those rules 

whose status is UNTRIED or SKIPPED. The forward chainer 

stops as soon as one rule has fired. The action part of 

the rule will be to set the status of a number of tests to 

LOOK_AT; thus a list of possible techniques has been 

established.

Examples

R3 IF SEVERAL_GROUPS and
OVERALL_TEST

THEN LOOK_AT TEST ONE_WAY_ANOVA 
LOOK_AT TEST KRUSKAL_WALLIS

SEVERAL_GROUPS is set by calling a procedure which counts 
the number of groups in the data set
OVERALL_TEST is set by asking the user if they wish to 
consider an overall test of significance

R7 IF MULTIPLE COMPARISONS and 
PAIRWISE and 
ALL_COMPARISONS

THEN LOOK_AT TEST NEWMAN_KEULS 
LOOK_AT TEST DUNCANS 
LOOK_AT TEST K_SAMPLE_RANK 
LOOK_AT TEST KRUSKAL_WALLIS_PAIRS

PAIRWISE is set by asking the user whether they wish to
consider pairwise comparisons
ALL_PAIRWISE is set by asking the user if they wish to
look at all possible pairwise comparisons
MULTIPLE COMPARISONS is set by other rules, thus the
system would have to backward chain to establish this
fact.

4.7 Backward Chaining Rules

These rules are used by the system in order to 

establish the validity of a technique by checking the 

appropriate constraints and assumptions. In the logical 

design a distinction was made between two types of fact, 

static facts and dynamic facts. Static facts are 

independent of any transformations of the data set; for 

example, facts relating to the number of groups or to 

outliers. These facts once established cannot be changed
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Dynamic facts are those whose status may change if the 

data is transformed; for example, facts relating to 

normality.

The rules under discussion here may contain a 

combination of both types of fact. Thus these rules 

establish a technique on the current data set, original or 

transformed. These rules may be processed several times 

in trying to establish a particular technique, each time 

with a different transformed version of the data; in this 

case the status of dynamic facts is re-established for 

each transformation of the data. A side effect of these 

rules is that they also set facts used by the Meta rules 

to decide whether a transformation is necessary.

These rules are processed by backward chaining as 

described in section 4.3.

Examples

R26 IF NOT OUTLIERS and
VARIANCES_EQUAL and 
NORMAL_DATA 

THEN TRUE FACT ACCEPT_PARAMETRIC
FALSE FACT TRANS_FOR_NORMALITY 
FALSE FACT TRANS_FOR_VARIANCES 
FALSE FACT ADJUST_FOR_UNEQ_VAR

OUTLIERS, NORMAL_DATA and VARIANCES_EQUAL are all set by 
other rules

R93 IF ACCEPT_PARAMETRIC and
BALANCED

THEN RECOMMEND TEST NEWMAN_KEULS 
VALID TEST DUNCAN 
VALID TEST K_SAMPLE_RANK 
VALID TEST KRUSKAL_WALLIS_PAIRS

ACCEPT_PARAMETRIC is set by other rules
BALANCED is set by calling a procedure which checks that
the sample sizes are equal

R54 IF MORE_THAN_20_OVERALL and
NOT SHAPIRO_WILK_SIG5 

THEN TRUE FACT NORMAL_DATA

MORE_THAN_20_OVERALL is set by calling a procedure which
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counts the total number of observations

SHAPIRO_WILK_SIG5 is set by other rules, this is because 
the form of the Shapiro Wilk test may be to consider each 
group individually or to treat the data as a whole.

4.8 Meta Level Rules

These rules are used to enable the system to decide 

whether to move on to the next test in the list of 

possible tests or to call the procedure which transforms 

the data. They are denoted 'Meta 1 rules because they 

govern, to some extent, the flow of control within the 

system. Meta rules are processed by forward chaining as 

described in section 4.3 . The status of all Meta rules is 

returned to UNTRIED before they are processed again.

Examples

Ml IF NOT PARAMETRIC
THEN TRUE FACT NEXTJTEST

i.e. IF the test that is being considered is nonparametric 
then one pass through the backward chaining rules using 
the original data is sufficient and the system can move on 
to the next test in the list.
The fact PARAMETRIC is set by looking at the attribute 
field for the current test

M4 IF PARAMETRIC and
NOT OUTLIERS and 
TRANS_FOR_VARIANCES and 
MORE_TRANS_TO_TRY 

THEN CALL PROC TRANSFORM

OUTLIERS and TRANS_FOR_VARIANCE are set by the backward 
chaining rules
MORE_TRANS_TO_TRY is set by the procedure TRANSFORM; 
the initial value is TRUE
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Chapter Five

Approaches to Knowledge Acquisition
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5.1 Introduction

The logical design and the methods of inference to be 

used have been established, the next major consideration 

is knowledge acquisition.

It is widely acknowledged that knowledge acquisition 

is a major part in the development of an expert system; it 

is probably true to say that it is the most time consuming 

and labour intensive part of the development program. 

(Duda and Shortliffe 1983, Wittkowski 1986, Gale 1987) 

Duda and Shortliffe in their paper on Expert Systems 

Research summarised the main problems of knowledge 

acquisition as follows :

" The identification and encoding of knowledge 
is one of the most complex and arduous tasks 
encountered in the construction of an expert system. 
The very attempt to build a knowledge base often 
discloses gaps in our understanding of the subject 
domain and weaknesses in available representation 
techniques. Even when an adequate knowledge 
representation formalism has been developed, experts 
often have difficulties expressing their knowledge in 
that form. Thus the process of building a knowledge 
base has usually required a time-consuming 
collaboration between a domain expert and an AI 
researcher."

The usual approach of dialogue sessions between a domain 

expert and a knowledge engineer is not always appropriate 

and research into the problems of knowledge acquisition 

has, to date, concentrated on two different approaches. 

The first approach has been the development of specific 

knowledge acquisition techniques for specific types of 

knowledge (Gammack and Young 1985, Wittkowski 1986).

The other approach to knowledge acquisition is that 

of rule induction where a system is programmed to acquire 

the knowledge. Gale (1987) termed this knowledge based 

knowledge acquisition and it is being used in the 

development of a system called Student which is designed 

to learn strategy from examples. Methods of rule
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induction require a conceptual framework for the domain 

within which knowledge can be structured; the development 

of an appropriate framework can be time-consuming in 

itself. Even when the conceptual framework has been 

chosen the development of rule induction methods is 

technically complex and is outside the scope of this 

project.

In this chapter the different types of knowledge 

involved in statistical expertise are considered and 

different methods of knowledge elicitation that are 

available are discussed. The approach used in building 

the prototype knowledge base for THESEUS is described in 

detail.

5.2 Statistical Expertise

Thisted (1986) gives a useful description of the 

different areas of expertise in statistics :

"The complete expertise of an expert data 
analyst encompasses such areas as mathematical 
statistics; techniques of graphical display and 
analysis; rules of thumb for judging the importance 
of apparent indications; copious examples of bad or 
misleading analyses (coupled with a catalog of common 
errors made by novices, the avoidance of which is 
essential to respectability); methods, both ad hoc 
and those thoroughly grounded in theory, for basic 
operations such as smoothing, assessment of 
variability, and model building; and - perhaps most 
important - knowledge of how and when to elicit 
specific subject matter information from a scientific 
collaborator"

It can be seen that there are many different aspects 

to statistical expertise some of which overlap with other 

disciplines and some which are unique to statistics. For 

example, in the area of clinical trials the statistician 

needs not only expertise relevant to the analysis of the 

data but should also have a thorough understanding of the 

problems of data collection and validation. Such data 

handling problems have much in common with expertise in
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database management systems which are used in many non- 

statistical applications.

In considering the application of expert systems 

techniques to the area of statistics it is helpful to try 

to classify the different types of statistical expertise. 

The aim of this classification is to enable a system 

developer to select both appropriate knowledge acquisition 

techniques and knowledge representation schemes.

Wittkowski (1986), proposed a way of structuring 

statistical knowledge in order to establish appropriate 

knowledge representations. Gammack and Young (1985) 

proposed a general classification of knowledge so that 

appropriate knowledge acquisition techniques could be 

pinpointed; the domain of statistics was used as an 

example. There are some similarities between the two 

classifications. For example, Wittowski's knowledge on 

conceptual problem types seems to correspond with Gammack 

and Young's knowledge of concepts and relations. The 

difference between the classifications stem from the 

reasons for making such classification in the first place, 

Wittkowski f s primary interest was to identify appropriate 

knowledge representation methods whereas Gammack and 

Young's main concern was to pinpoint specific knowledge 

acquisition techniques.

The classification proposed below is based on Gammack 

and Young's generalised structure but has been expanded to 

deal with the specific domain of statistics.

Framework : A statistician will have some form of 

conceptual structure in the domain which will define 

different types of analysis. This knowledge will be used 

to select areas of statistics appropriate to the data 

being considered. For example ANOVA and multivariate 

analysis could be two such areas.
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Concepts : Knowledge about general concepts such as 

hypothesis tests, distributions, confidence intervals and 

degrees of freedom. Such concepts are a necessary 

foundation to understanding and undertaking any analysis.

Procedural Knowledge : Knowledge about the 

availability and requirements of specific statistical 

methods for analysis and assumption checking as well as 

knowledge about graphical representations. For example, 

knowing what methods are available for testing Normality 

and how they are implemented.

Heuristics : Rules of thumb used for judging the 

importance of effects such as violation of assumptions and 

how to handle them. For example, knowing when to let non- 

normality affect subsequent decisions.

Methodological Expertise : This enables the 

statistician to choose the most appropriate method from a 

range of those that could be used. For example, in 

selecting a multiple comparisons procedure when there is a 

control group present and the experimenter is interested 

in pairwise comparisons then Dunnett's test will be chosen 

in preference to Tukey's test.

Communication : Surrounding these different types or 

areas of knowledge is the expertise used in communicating 

effectively with the user. This involves not just 

establishing what the experimenter is interested in 

finding out, but also extracting information about the 

nature of the data that the statistician needs to make 

decisions about the most appropriate analysis. This may 

not be regarded as knowledge in the usual Expert Systems 

sense but is nevertheless included here because of the 

influence it should have in developing the knowledge base
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as well as in the design of the expert system.

Each of these areas of knowledge involves both 

'technical' and 'professional' knowledge. 'Technical' 

knowledge is hard, factual knowledge obtainable from text 

books and the literature. 'Professional' knowledge is 
judgmental, experience related and considerably more 

difficult to elicit and represent, covering decisions such 

as when to allow unequal variances to affect subsequent 
decisions. An example of this is deciding to try 

transforming the data if Levene's test for unequal 
variances is significant at the 5% level.

5.3 Problems Encountered in Knowledge Acquisition

Knowledge acquisition for expert systems has, in the 

past, relied heavily on informal interviews between a 

knowledge engineer and a domain expert. The aim of such a 

process is to translate the information supplied by the 

domain expert into some predetermined format and so 

develop a prototype knowledge base. This knowledge base 

is then refined by a cyclic process of evaluation and 

modification. This approach demands a very high level of 

commitment and enthusiasm from the domain expert. The 

problem with this is that domain experts, because they are 

experts, often have little time to spare. Thus it is 

important to try and develop methods of knowledge 

acquisition which optimise the time spent with the domain 

expert.

The knowledge engineer, who has the problem of 

transferring the knowledge from the domain expert to the 

knowledge base, also has to ensure that an appropriate and 

powerful enough form of knowledge representation is used. 

A great deal of time can be wasted trying to manipulate 

knowledge in order to make it fit a particular 

representation; this is a well known disadvantage of
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expert system shells (Bell 1985). Domain Experts often 

find it difficult to articulate their decision making 

processes and face further problems of recognition and 

interpretation when trying to understand and evaluate the 

performance of the knowledge base.

Expertise in any domain will contain different types 

of knowledge (section 5.2 discussed the different types of 

knowledge in statistics). The development of a knowledge 

base should be a process of identifying these different 

types, choosing an appropriate knowledge representation 

scheme and then employing knowledge elicitation procedures 

appropriate to the application.

5.4 Knowledge Elicitation Techniques

There are a number of methods available for aiding 

knowledge elicitation many of which have been borrowed 

from other fields such as questionnaire design and 

industrial psychology. An overview of the main methods is 

given in this section.

5.4.1 Interviews

Interviewing methods are most helpful in the initial 

stages of knowledge acquisition for establishing the main 

concepts and components of the domain as well as defining 

the terminology used. In any area of knowledge 

acquisition structured interviews can be helpful in 

ensuring that the domain of interest is covered as 

completely as possible. However in order to cover the 

domain in a structured interview it is essential to have a 

clearly defined model of that domain. Such a model will 

probably be derived by initial interviews or some other 

method. It is interesting to note that domain experts 

often forget to state relevant knowledge and only remember 

it when the expert system behaves wrongly, Welbank (1983). 

The limitations of interviewing become more apparent when
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the domain expert is trying to evaluate the prototype 

knowledge base and trying to establish what distinguishes 

the performance of the expert from the inferior 

performance of the system.

5.4.2 Protocol Analysis

Protocol analysis involves observing and recording 

the action of the domain experts as they work through 

scenarios. This method has the advantage that the task 

situation is completely natural and the task can be done 

exactly as it normally is. The merit of this approach is 

that it gives the knowledge engineer a process to model. 

As the prototype knowledge base begins to take form then 

more specific scenarios or examples can be used to find 

out how the expert deals with special situations.

There are disadvantages in protocol analysis which 

are summed up in the report by Welbank (1983) p23 :

"The subject cannot verbalise as fast as he reasons, 
which makes for important deficiencies in the type of 
material collected. He may not report what is 
obvious to him. He may leave out steps in his 
reasoning. Most importantly he does not naturally 
give 'if x, then y 1 type rules, or explain his 
reasons for deciding to do one thing rather than 
another. He may not have time to explain even if he 
is asked to."

Protocol analysis is very time-consuming and is a skilled 

and difficult task. A good understanding of the domain is 

essential for analysing the protocols accurately. 

Protocol analysis has most often been used as a way of 

comparing what experts say they do with what they actually 

do. (Nii 1984)

The knowledge acquisition in REX (Gale 1987) was 

undertaken using a form of protocol analysis where the 

expert (Pregibon) kept records of his own analyses and 

then studied the records to abstract a description of what 

he was doing. In this situation, where the knowledge
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engineer is the domain expert, the most effective use of 

protocol analysis can be made.

5.4.3 Multi-Dimensional Scaling Methods

The basis of scaling methods is to identify 

similarities among objects so that they can be grouped 

conceptually. The repertory grid, Easterby-Smith (1981), 

which has its roots in personal construct psychology, is 

probably the most well known of the scaling methods. The 

repertory grid method works by collecting a set of objects 

in the domain and presenting them to the expert in groups 

of three. The expert is asked to identify in what way two 

of the three are alike and different from the third. This 

process is continued until all possible groups of three 

have been considered. An example is given in the paper by 

Burton and Shadbolt (1987) :

"As an example, if we were trying to analyse a 
domain of motor cars, we might choose a Porsche and a 
BMW as the two similar elements, and a Skoda as the 
dissimilar. We could then label our construct 
'price'. Next time round we might choose a Rolls 
Royce and an Austin as similar elements, as opposed 
to a Porsche. This construct could be labelled 
'country of origin'. By asking for many constructs 
we gradually build a map of the domain"

The grid developed through this process is analysed by 

cluster analysis. There are many variations on the 

repertory grid method, however all repertory grid methods 

take a long time to administer, analyse and interpret, 

even when there are only a small number of objects.

Other multi-dimensional scaling methods exist where 

elements or objects are rated on a series of dimensions. 

The analysis then reveals similarities, differences and 

clusters of objects. These other methods are complex and 

have not found wide acceptance as knowledge acquisition 

techniques.

Repertory grid methods are particularly useful where
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there are small number of closely related concepts and 

expertise is required to discriminate between them. 

Gammack and Young (1985) applied this method to elicit 
knowledge about different types of probability 

distribution and the extract below summarises their 
findings in this area:

"The method first produced the 'objective' 
distinctions one might expect to find in textbooks, 
with such dimensions as 'continuous v discrete'. 
However it also gave more subjective, experientially- 
based criteria such as the dimension 'useful-in- 
modelling v common-test-statistic'. An hierarchical 
cluster analysis applied to the data yielded known 
families of distributions, such as the closely 
related F, gamma and log gamma distributions which 
were highly matched."

5.4.4 Concept Sorting

Concept sorting is applicable-when there are a large 

number of concepts within the domain and some form of 

structure is required for them to become manageable. In 

basic terms, concept sorting works by initially 

establishing a list of the concepts required to cover the 

domain and then asking the expert to sort the concepts 

into different groups, describing what each group has in 

common. The result of this exercise is to enable the 

concepts to be structured in some hierarchical fashion.

The main difference between concept sorting and 

scaling methods is that concept sorting results in a 

structure or framework (meta knowledge) and scaling 

methods provide a way of discriminating between objects at 

a lower level.

5.5 Knowledge Acquisition in statistics

Gammack and Young (1985) suggested some appropriate 

elicitation methods for the different types of knowledge, 
using the domain of statistics as an example, but these 

assumed the knowledge engineer to be unfamiliar with the
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field of statistics. Much of the existing work in 
statistical expert systems has been undertaken either by 
statisticians or by people with at least a basic grounding 
in statistics. The consequence of this was that knowledge 
engineers were, to some extent, their own experts; and 
formulating a reasonable set of rules to incorporate 
technical expertise could be undertaken by a review 
process of their own knowledge and literature reviews. 
This is contrary to Nii's (1984) heuristic that the 
knowledge engineers cannot be their own experts. However, 
this has been possible, to some extent, in the area of 
statistics :

"Expert data analysts have not sat down with trained 
knowledge engineers so that the latter could encode 
their expertise. Yet we seem to have made some 
progress, perhaps even considerable progress. Why? 
Part of the answer is that statisticians, or at least 
data analysts, are already in part knowledge 
engineers; what they do on a daily basis is to elicit 
and to apply private expertise from experts in a 
ground domain, using a collection of techniques, 
strategies, heuristics, and tools for doing so." 
(Thisted 1986)

Depending on the level of expertise of the knowledge 
engineer, a certain amount of professional expertise can 
also be incorporated in the knowledge base. The 
acquisition of the professional knowledge may be further 
facilitated by the use of more specific knowledge 
acquisition techniques and the possible methods are 

summarised in table II.
The balance between the use of review processes and 

the use of specific knowledge acquisition techniques 
depends on the knowledge engineer's level of expertise in 
the domain area. An academic base provides a good 
starting point for developing a reasonable prototype 
knowledge base containing technical expertise and some 
professional expertise. This knowledge base can then be
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Table II : Types of

Type of Knowledge

Framework

Concepts

Procedural

Heuristics

Methodological

Communication

Knowledge and Acquisition Techniques

Knowledge Elicitation 
Techniques

Concept sorting 
Interviewing

Repertory Grid 
Interviewing

Protocol Analysis

Protocol Analysis 
Structured Interviews

Sorting tasks 
Scaling methods

Interviewing 
Protocol Analysis

*

*

* Knowledge about concepts and procedural knowledge are 
primarily technical in nature and can thus be elicited 
through literature reviews. The acquisition of 
professional knowledge .in these areas is generally a 
case of verifying the correctness and completeness 
of the knowledge established in the literature reviews.

62



evaluated and modified by 'local experts'. The advantage 

of this approach is that while it still requires a certain 

level of commitment from local experts, it is far less 

time consuming than the conventional dialogue sessions. 

It also takes into account the variation both within and 

between application areas.

5.6 Knowledge Acquisition in THESEUS

The selected area of application for THESEUS was the 

analysis of data from experiments based on the completely 

randomised design; this incorporates One-Way Analysis of 

Variance and Multiple Comparisons. The reasons for this 

choice have been discussed in Chapter 2.

As the application area chosen is a small, well 

defined one the knowledge acquisition does not need to 

involve the 'framework' knowledge described above to any 

great extent but does involve all the other types. Each 

of the different types of knowledge involves both 

technical and professional expertise. Some types of 

knowledge such as procedural knowledge can be regarded as 

primarily technical in nature whereas knowledge about 

heuristics is mostly professional.

The knowledge acquisition for the prototype knowledge 

base of THESEUS was approached by using a combination of 

literature reviews, semi-structured interviews and 

workshops (a form of protocol analysis).

Once the prototype knowledge base had been built a 

process of evaluation and refinement was undertaken 

involving practicing statisticians. The first stage of 

the evaluation process was to evaluate the default 

knowledge base with respect to technical correctness, any 

problems encountered meant altering the default rulebase. 

The second stage of the evaluation was modification of the 

rulebase by practicing statisticians to include their own 

professional expertise.
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5.6.1 Reviews

Literature reviews and small scale investigations 

were undertaken in order to establish a core of technical 

knowledge and to form a consistent and rational default 

rulebase. The review areas included the following :

- Hypotheses of interest to the client

- Choice of multiple comparison procedures

- Handling outliers

- Use of transformations

- Criteria used for checking assumptions

Members of the Statistics Research Group at Thames 

undertook to review different areas; the results of the 

review into selection of multiple comparisons procedures 

is given in Chapter 7. The selection of appropriate 

multiple comparisons procedures is predominantly 

professional expertise. However there are a large number 

of review papers which use simulation techniques to 

compare different methods in order to increase the 

technical knowledge in these areas. These review papers 

can be considered a formalised sorting method where the 

researchers have ideas about which methods are appropriate 

under which circumstances and are using simulation 

techniques to extend their knowledge in the area.

5.6.2 Interviews

A series of interviews with practicing statisticians 

was undertaken with the purpose of gaining a general 

insight into the thinking that guides the statistician and 

the heuristics used, rather than the precise elicitation 

of rules. Recognising that there is a considerable chance 

of leading experts into pre-conceived knowledge 

structures, the interview format was structured with the 

aim of allowing the expertise to flow unhindered. A 

loosely structured interview protocol was prepared to
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ensure that coverage of the relevant knowledge areas was 
complete while allowing the contributors to describe 

fully, in their own ways, their approaches to data 
analysis. The interview schedule covered such areas as 
attitudes to outliers, rigidity/flexibility on normality 
assumptions and homoscedasticity, use of transformations 
and the selection of test procedures.

Selecting statisticians from those who responded 
favourably in our initial postal survey of 57 
statisticians, predominantly in the pharmaceutical and 
chemical industries and in research institutions, seven 
such interviews were undertaken. The information gathered 
demonstrates more than anything else the large variability 
between statisticians handling similar types of study. 
For example two statisticians, from different 
institutions, who present results to the same regulatory 
authority, have completely different approaches to the use 
of transformations. The one never uses transformations 
while the other regularly uses square root or logarithm 
transformations.

There was a distinct vagueness about multiple 
comparisons, with each statistician quoting his own 
favourite test, but being unclear about its use in 
relation to his client's hypothesis. None of the 
statisticians used any tests for normality; some justified 
this on the basis of sample sizes. At least one used the 
same argument for not investigating the problem of unequal 
variances. A feature which came through very markedly was 
the decision to keep everything a simple as possible in 
the interests of their clients' understanding.

5.6.3 Workshops
A series of statistical workshops was organised in 

which different approaches to the analysis of data sets, 
provided in advance, were presented and discussed. The
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participants in the workshops were members of the 

Statistics Research Group at Thames Polytechnic. All the 

data sets presented required a comparison between 

treatment groups; for example, comparing the weekly food 

consumption of rats in different treatment groups in a 

toxicology study.

The idea behind these workshops was to encourage the 

participants not just to analyse the data but to try and 

explain the way in which their decisions were made. It 

was also hoped that discussion between participants would 

help to identify reasons for any differences in approach.

Some of the approaches to analysis presented were 

chosen primarily on the basis of theoretical 

considerations; other approaches were chosen bearing in 

mind the clients' need to understand the analysis.

The discussions in the workshops highlighted several 

interesting aspects of the analysis of completely 

randomised designs. The effect of using the ANOVA as a 

preliminary screening test was discussed at some length; 

although this seems a reasonable approach, where it is not 

actually required it can cause unnecessary conservatism. 

The use of multiple range techniques is always a source of 

debate and there was no consensus of opinion about their 

validity. Decisions about normality and homoscedasticity 

usually relied on visual methods, with formal tests being 

occasionally employed where visual inspection was 

inconclusive. Any outliers were usually detected on 

Normal or Residual plots; where they were sufficiently 

extreme to cause concern, the data was often analysed both 

with and without the offending values.

The workshops were successful in initiating dialogue 

about different approaches to the analyses although 

participants rarely found time to write down their 

thoughts and conclusions after the discussions. Some 

notes were taken during the workshops but these were of
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necessity rather brief, conclusions were jotted down but 
it proved very difficult to keep a written note of the 
dialogues.

In retrospect, this form of introspective protocol 
analysis probably has greatest value in two areas. 
Firstly in understanding the different strategies used and 
where similarities exist between them. Secondly in 
dealing with unusual,specific situations it could be 
beneficial to use such workshops to identify appropriate 
ways of dealing with these situations. In order to gain 
the maximum information and benefit from the workshop 
sessions, it would probably be necessary to record them 
as well as taking notes.

5.6.4 Prototype evaluation and modification

The interviews, described in section 5.6.2, clearly 

showed that there are many possible approaches to any 

given analysis. The consequence of this is that the local 

experts need to understand sufficient about the knowledge 

representation and inference methods used to enable them 

to modify the knowledge base to their own specification.

The expert system was sent to a number of test sites 

where the collaborating statistician was asked to evaluate 

the prototype knowledge base and then to try modifying the 

knowledge base. These industrial trials are described in 

more detail in Chapter 9. Listings of the knowledge base 

used by the prototype systems are given in Appendix II.

This evaluation process is regarded as an important 
part of the development of the knowledge base, both in 
checking the technical core of knowledge and in 

incorporating professional expertise.
The next two chapters describe the core of technical 

knowledge that was established for the prototype knowledge 
base and are the results of some of the knowledge 

acquisition described in this chapter.
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Chapter Six

Statistical Knowledge - I 

Hypothesis Testing About Means
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6.1 Introduction

In this chapter the nature of hypothesis testing for 

inferences about means and the criteria by which these 

tests can be assessed is discussed. The effects on 

different test statistic distributions of departures from 

Normal Theory assumptions is covered; some of the methods 

for detecting and correcting for such departures are 

given. Finally the approach chosen for the prototype 

system is discussed.

The theory covered in this chapter is relevant to 

many areas of statistics providing a technical core of 

knowledge and some pointers to the particular situations 

where professional knowledge plays an important part.

6.2 Hypothesis Testing 

6.2.1 Introduction

Hypothesis testing is the process of inferring the 

truth of a hypothesis when data is obtained from a survey 

or randomised experiment. The actual data or sample, x, 

that we have is regarded as being one of many possible 

samples that may have been obtained. The set of all 

possible samples that may have been obtained is the sample 

space, S. The data will be assumed to have been generated 

by a probability distribution of a specified form, but 

unknown exactly. The form of the distribution will be 

written f(x,9), let the parameters, 9, considered belong 

to a parameter space, Q. A statistical hypothesis will 

say that the data is actually generated by parameters 

within some subset w. The null and alternative hypotheses 

will be
H0 : 9   w v H^: 9 6 fl-w

where 9 is the true parameter value generating the data. 

For example, if we want to test whether our data is from a 

Normal distribution with mean 17 and variance 1 against 

the alternative that it is from some other Normal
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distribution of variance 1 our question revolves around 

the single parameter u. In this case n is the set of real 

numbers and w={17}; but we would usually write

H0 : u=17 v H]_: u<>17

The classical problem of hypothesis testing is to test H0 

given the data and we must decide to accept or reject HQ 

after examining the data. The set of all samples, S, is 
divided into two subsets

A : Those samples where we decide not to reject HQ

R : Those samples where we decide to reject HQ 

Any particular test of HQ amounts to a choice of the 
rejection region, R. There are many ways of choosing R, 

the first priority is usually to choose R so that the 

sample only has a small chance of occurring in R when HQ 
is true, this is restricting the probability of a Type I 

error. A Type I error occurs if HQ is rejected when it is 

true, a Type II error occurs if HQ is not rejected when it 

is false. We try to choose R so that the probability of a 

Type I error, P(R/HQ), is at some small specified level, 
called the significance level, denoted by a.

Results of hypothesis tests are often expressed in 
terms of a P-value rather than a stated significance 
level. The P-value is the probability under the null 

hypothesis of obtaining a result equal to or more extreme 

than the test statistic calculated. The smaller the P- 

value is then the less likely it is that the null 

hypothesis is true.

There are many regions, R, with a given significance 

level, a, the problem is to decide on the 'best'. The 
concept of a 'good' or 'best' test is usually defined in 

terms of reducing the Type II error, or, equivalently, 

increasing the power. The power of a test is the 

probability of rejecting HQ when it is false, ( 1 - p(Type 

II error) ). Thus power in a test corresponds to 

sensitivity to a false HQ. The power depends on the
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actual parameter 9 in H^ model and a power function can be

defined as follows

P(9) = p(rejecting HQ when the parameter is 0)

= p(R/6)

For 9   w then P(9) = a

The Neyman-Pearson Lemma (Neyman & Pearson 1933), for 

testing simple hypotheses where the parameter space 

consists of only two values, tells us that the most 

powerful test, with significance level a, should be based 

on the likelihood-ratio. The likelihood function is the 

likelihood of the data observed given certain values of 

the parameters for the distribution of the data. The 

likelihood-ratio is the ratio of the likelihood functions 

for the observed data given the parameters specified by 

the alternative hypothesis and the null hypothesis. 

This gives some confidence in using likelihood ratio tests 

in more realistic problems.

To summarise, in hypothesis testing the first stage 

is the selection of appropriate hypotheses. It is 

sometimes possible to restrict the size of the parameter 

space fl by imposing some restriction on the data from 

prior information. As an example, consider the one sample 

situation where the hypotheses are

H0 : u = u 0 v H! : u <> u 0

then fl is the set of real numbers and w = {UQ}. However 

if it is know a-priori that the mean will be equal to or 

greater than the theoretical value then the alternative 

hypothesis becomes H^ : u > UQ and Q is the set of real 

numbers greater than UQ. Restricting the parameter space 

in this way can result in tests that are more sensitive 

for finding these more specific effects. However, a 

cautionary note, there is always the risk that the 

restriction made on the parameter space may not be valid. 

Thus, in an expert system it would be essential to ensure 

that any restriction required by a statistical method does
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actually hold.

Once the hypotheses have been selected then the 

statistician, or expert system, needs to decide on an 

appropriate test statistic. The choice of Normal Theory, 

Nonparametric or Robust procedures should be dependent on 

the nature of the data.

6.2.2 Properties of Hypothesis Tests

In applied statistics there are additional 

considerations to power (discussed in the previous 

section) when comparing different test statistics. Many 

tests use approximations to the distributions of the test 

statistic for simplicity, this means that the stated 

significance level, a, is also approximate. A test is 

said to be conservative if the true level of significance 

is less than that stated, in practice this means that a 

test is less likely to identify a true alternative 

hypothesis. Similarly a test is said to be liberal if the 

true level of significance is greater than that stated. 

This is a can be a more dangerous situation as it 

increases the chance of falsely accepting the alternative 

hypothesis i.e. detecting 'differences' that do not exist. 

The danger, or otherwise, of using a liberal test is 

dependent on the area of application. For example, in 

toxicology it is very important to detect differences that 

are present. The possibility of declaring some 

differences as significant when they are not is not so 

important. It is better to declare a compound toxic with 

an increased chance of being wrong than declare a compound 

safe when it may be toxic.

The sizes of samples can also have an important 

effect on the behaviour of a test-statistic. Efficiency 

is a relative term and is used to compare the sample size 

of one test with another under similar conditions. If the 

two tests have the same significance level and the same
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power when testing the same hypothesis then the relative 
efficiency is the ratio of the larger to the smaller 

sample size. It is also the case that as sample size 
increases then the power of a test, its ability to detect 
real differences, will also increase. The degree of 
improvement for a given increase in sample size also 

varies between test statistics. Thus it is possible to 
have two test-statistics, one of which performs better 
when the sample sizes are small and the other which 
performs better for larger samples. The power of both 
increase with increased sample size but the relative 
improvement for the latter test-statistic is greater than 
for the former.

The possibility of two kinds of error has already 
been discussed (Type I & II), however, Kimball (1957) 
proposes the concept of a Type III error. This type of 
error occurs when a false null hypothesis is rejected in 
favour of the wrong alternative and usually results from 
inadequate communication between the statistician and the 
client. This may be of particular concern in Statistical 
Expert Systems and so developers need to be aware of the 
dangers of providing the 'right f answers to the wrong 
questions. This situation could arise for two reasons. 
The system may not have sufficient understanding of the 
clients particular problem (i.e. selecting incorrect 
hypotheses of interest). The system may not be 'smart' 
enough to realise that the problem is not within the its 
scope and so tries to push the data into an analysis it 

does know about.

6.2.3 Different Types of Hypothesis Tests

Hypothesis tests can be divided into three main 
types, Normal Theory tests, Nonparametric tests and Robust 
tests. Normal Theory methods, which are usually based on 
maximum likelihood, likelihood ratio or some approximation
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to one of these, are the most powerful methods provided 

certain assumptions hold. Thus Normal Theory methods are 

preferable to other methods when they can be used. 

Two of the most important, and certainly the most studied, 

distributions associated with Normal Theory procedures are 

the t-distribution and the F-distribution.

The t-distribution is associated with tests related 

to sample means when the variances are not known, the 

standardized deviate is calculated using the estimated 

variance and this test statistic follows the t 

distribution. As degrees of freedom increase the t 

distribution tends towards the standard normal 

distribution. The t distribution is important where there 

are small samples because it adjusts the estimated 

variance by taking into account the sample size.

The F distribution is associated with inferences 

about variances, for example in Analysis of Variance. The 

F test statistic is a ratio of variances estimates which 

follows the F distribution and depends on the degrees of 

freedom for each estimate of the variance.

Difficulties arise when one or more of the 

assumptions are not true and it is in this situation that 

Nonparametric or Robust techniques may be preferred.

Nonparametric methods are usually based on either 

ranks or signs of the observations in the sample and have 

simple assumptions, more easily satisfied than those for 

Normal Theory methods. The majority of Nonparametric 

techniques require only that the observations actually 

have an underlying distribution. Some methods, notably 

those that depend on the signs of the observations also 

require that the underlying distribution be symmetrical. 

Hypothesis tests about means become tests of location in 

Nonparametric methods. There is a subtle difference here 

as hypothesis tests about means based on Normal Theory 

assume that the populations are Normally distributed; in
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the case of Nonparametric methods the only assumptions 

about the population distributions is that they exist. 

Thus it is possible in testing for location, using 

Nonparametric methods, to have a true null hypothesis 

where the populations come from completely different 

distributions but have the same location parameter.

Nonparametric methods are more widely applicable than 

Normal Theory methods and are most useful when some of the 

assumptions of those methods do not hold. Nonparametric 

methods can be applied when the data is Non-Normal or 

heteroscedastistic. They are also useful if there are 

outliers present and the experimenter does not want to 

exclude them from the analysis.

There is also a group of procedures based on 'robust' 

estimators. Robustness can be defined as signifying 

insensitivity to small deviations from the assumptions, 

where primary concern is concentrated on distributional 

robustness (Huber 1981). Robust estimators are much 

closer to the classical Parametric ideas than to the 

Nonparametric concepts, these robust procedures are often 

assessed in terms of their efficiency relative to the 

classical Parametric procedures. The median is an example 

of a robust estimator but its relative efficiency where 

the data is Normal is quite low in comparison with the 

mean. There are a number of different types of robust 

estimators denoted as M, L and R estimates. M estimates 

are maximum likelihood estimates; L estimates are based on 

a linear combination of order statistics; R estimates are 

derived from Rank tests.

In this project attention has focussed on the use of 

Normal Theory procedures for quantitative data. In 

certain circumstances nonparametric procedures may be more 

powerful, especially when some of the assumptions of the 

Normal Theory procedures do not hold and so they have been 

included as 'safety nets'.
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6.3 Standard Normal Theory Assumptions

Most of the statistical procedures in common usage 

are based on statistical models which rarely hold true 

exactly. The standard assumptions for parametric or 

Normal Theory procedures can be summarised as follows :

1. The observations are a random sample from a 

Normally distributed population

2. Observations are independently distributed within 

samples

3. Where samples from two or more populations are 

being considered then it is necessary to assume 

that the population variances are equal

Chapter 10 of Scheffe (1959) considers in some detail the 

effects of departures from these assumptions. Subsequent 

simulation studies have sought to establish the degree of 

sensitivity to these assumptions. This is discussed in 

the following sections.

6.4 Non-Normality
There are two parameters that are usually used to 

describe the Non-Normality in distributions encountered in 

practice, namely skewness and kurtosis, for the Normal 

distribution these are both zero. For a distribution that 

is heavier in one tail than the other the coefficient of 

skewness is non zero, for example, the exponential 

distribution is positively skewed. Non zero kurtosis 

occurs when the tails of the distribution contain either 

more (positive kurtosis) or less (negative kurtosis) than 

the tails of the Normal distribution, the t distribution 

exhibits positive kurtosis.

For large samples, Non-Normality does not cause major 

problems because of the effect of the Central Limit 

Theorem which has the result that if X.^ is a random 

variable with almost any mean jj-^ and variance o^ 2 . the
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distribution of the sample mean is approximately Normal 

for large enough sample size. However, the size of sample 

required for the Central Limit Theorem to have sufficient 

effect will depend on the degree of Non-Normality (Miller 

1986 p5-6).

6.4.1 Effect of Non-Normality on the t-test

The distribution of a sample mean, x , tends rapidly 
with increasing n to N(u,<j2/n) where E(x)=u and

even for extreme Non-Normality. Skewness and kurtosis 

have no effect on the expected value of the sample 

variance, E(s^), but do have some effect on V(s 2 ). 
However computer simulation has shown that the 

distribution of t statistic is only affected by extreme 

values of skewness and kurtosis (Pearson and Please 1975).
In the one-sample t-test the effect of Non-Normality 

on the P-value varies: for positive kurtosis the t-test 

becomes conservative and for negative kurtosis the t-test 

becomes liberal. The one-sided test is much more 
sensitive to the effects of Non-Normality than the two- 

sided test. Where sample sizes are small, the effect of 
Non-Normality is much more marked. Of course, defining 
what is meant by small is not that straightforward. It is 
context related and depends on the nature of the data, if 
data has more inherent variation then larger samples will 

be necessary. The decision about what constitutes a small 

sample is dependent on the domain and the statisticians 

own experience and judgement. Any expert system needs to 
be able to cater for this, preferably by allowing the 

local statistician to 'tune' the knowledge base 

accordingly.
In the two-sample situation, assuming equal variances 

and equal skewness and kurtosis between samples, Non- 

Normality has little effect, especially when the sample
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sizes are equal. In general the two-sample test is less 
sensitive than the one-sample test to Non-Normality. 
Where the sample sizes are not equal the effects are much 

the same as in the one-sample case. More serious 
distortion of the P-values can occur when the skewness of 
both samples is not the same; fortunately this does not 
seem occur too often in practice (Miller 1986 p43).

6.4.2 Effect of Non-Normality on the F-test

Lack of Normality has very little effect on the F 

statistic, even less than the two-sample case using the t 
statistic, again this has been verified by computer 

simulation (Pearson and Please 1975) who showed that the 
P-values are only distorted where there is extreme Non- 

Normality occurring in small samples. However if an 

experiment design is badly unbalanced having samples of 

very different sizes then skewness can affect the P- 

values.

6.4.3 Detecting Non-Normality

One of the simplest ways of detecting Non-Normality 

is by the use of Normal probability plots; data from a 
Normal distribution will give a straight line plot. If the 
distribution is skewed then the plot will show marked 

curvature at one end. If there is non zero kurtosis then 
the curvature will occur at both ends of the plot. Normal

 

probability plots are very useful for giving the 
experimenter an idea of the nature of the data but 
obviously a decision about Normality based on these plots 

is subjective.
The Shapiro-Wilk test for Non-Normality has been 

shown to be one of the most effective tests available even 
for relatively small samples (Shapiro, Wilk and Chen 1968, 
Dyer 1974, D'Agostino & Stephens 1986 p 405)
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6.4.4 Correcting Non-Normality

Although tests based on Normal Theory are robust for 

validity, they may not be the most powerful for non- 

Normal distributions and they are not necessarily the most 

efficient (Miller 1986 p81).

It may be helpful to try transforming the data to 

convert it to a sample that is approximately Normal. 

However some statisticians prefer not to transform the 

data as it is not always easy to interpret what the 

results on the transformed data actually mean. Normal 

probability plots are very useful as they can give an 

indication of a suitable transformation; for example, 

positively skewed positive data will often come closer to 

an underlying Normal distribution if a logarithmic or 

square root transformation is applied.

An alternative approach for handling Non-Normality is 

to use Nonparametric or Robust procedures, these have 

already been discussed briefly in section 6.2.3 .

6.5 Unequal Variances

As with Non-Normality, unequal variances have little 

effect on the t or F test statistics where the sample 

sizes are equal. In the case of the F test unequal 

variances may result in a slightly increased P-value. 

However where the sample sizes are unequal the effect is 

far more serious for both distributions.

If the largest variance is associated with the 

smallest sample then the P-values are reduced making the 

tests more conservative. However if the largest variance 

is associated with the largest sample the F test will 

become liberal, this is often more dangerous as it can 

result in increasing probability of a Type I error, i.e. 

claiming that there is a difference when the null 

hypothesis is true.
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6.5.1 Detecting Unequal Variances

It is very difficult to decide whether or not the 
variances are equal, primarily because standard Normal 
Theory tests such as Bartlett's or Cochran's, are 
extremely sensitive to Non-Normality. However there are 
robust tests available, the most well known being 
Levene's test (Levene 1960). If there are several groups 
then plotting the standard deviations against the means 
should show up any relationship such as the variances 
increasing with the means.

6.5.2 Correcting for Unequal Variances

Transformations are very useful for correcting 
unequal variances, provided that there is some 
relationship between the means and the variances. The 
nature of the relationship between the means and 
variances can give a good indication of an appropriate 
transformation. For example, where variances are 
increasing linearly with the means then a logarithmic 
transformations may be most helpful; if the relationship 
is more curved then the square root transformation is a 
possibility.

However, where there is no discernable relationship 
between the means and variances then the application of a 
transformation is not likely to improve the variance 
heterogeneity. Nonparametric methods are useful when a 
transformation cannot be found or the experimenter does 
not want to use transformations, see section 6.8.

If the data is interval scale data or where there is 
no discernable relationship between the variance and the 
mean then nonparametric techniques are more appropriate.

6.6 Outliers
The possible presence of outliers needs to be 

considered carefully as there are several ways in which,
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if they are true outliers, they can violate the Normal 
Theory assumptions and affect the analysis of the data. 
Outliers can be defined as :

'An observation (or subset of observations) which
appears to be inconsistent with the remainder of that
set of data' (Barnett and Lewis 1984)

It is possible, and quite common, that human error or 
ignorance can result in incorrect recording of data, such 
mistakes can sometimes be traced and corrected. However 
where this is not the case an outlier may be an extreme 
value from the population that the sample has been drawn 
from or a contaminant value from another distribution. 
Deciding the origin of an outlier, however, is frequently 
impossible, there are many possibilities but no clear ways 
of discriminating between them.

6.6.2 Effect of Outlying Values

An outlier that is due to mis-recording and is not 

detected will distort both the mean and the variance of 

the sample, the variance is usually more severely 

affected, the extent of the effect depends on the sample 

size. This can disguise any treatment effects that may be 

present as well as causing some of the problems associated 

with unequal variances, see section 6.5.

Outliers that are extreme values or contaminants will 

cause similar problems but may also violate some of the 

Normal Theory assumptions. If the outlier or outliers are 

extreme values then it is possible that the assumption of 

Normality does not hold and the data actually comes from a 

different distribution. Where outlying values are 

contaminants then the assumptions that the observations 

are identically distributed is violated and this will 

seriously affect any inferences made because of the 

distortion of the mean and variance.

The presence of outliers, from whatever source, can
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obviously have a serious effect on the analysis of data 

and it is advisable to detect and deal with such values at 

the beginning of the analysis.

6.6.3 Detecting and Handling Outlying Values

There are two approaches to dealing with outliers, 

the use of procedures which can accommodate such values or 

the detection and possible removal of the outlying value.

Procedures which accommodate outliers are designed to 

draw valid inferences without being seriously affected by 

the presence of outliers. 'Robust 1 statistics, where 

robustness signifies insensitivity to small deviations 

from the assumptions (Huber 1981), can be very useful for 

handling data that may contain outliers; however they may 

not be particularly robust when the outliers are 

contaminants. Barnett and Lewis discuss in some detail 

both general robust methods and more specific 

accommodation procedures.

The second approach, of testing and possibly 

rejecting an outlier or outliers requires some criteria of 

relative discrepancy for deciding when an observation is 

an outlier. Visual methods, although relying on the 

observers judgement, can be very useful. Outliers will 

often show up clearly on a Normal plot, the presence of 

several apparent outliers on such a plot may indicate Non- 

Normality or a mixture of distributions. Plots of fitted 

against observed values are also useful in showing 

possible outliers. There is a multitude of tests 

available for testing extreme values, see Chapter 6 of 

Barnett and Lewis, the more well known methods include 

Dixon's and Grubb's methods.

If some observation has been classified as an 

outlier, either by visual inspection or the application of 

some test procedure (or a combination of both), the 

experimenter has to decide what to do with the value.
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Erroneous measurement or miscalculation is the easiest to 

handle as it can sometimes be traced and either remeasured 

or the observation scrapped. Where this is not possible, 

or where the outlier is an extreme value or contaminant, 

then the experimenter has a range of options open which 

include treating the outlier as a missing value or using 

robust or nonparametric methods.

6.7 Dependence

There are two main types of dependence which can 

arise in the applications considered here. The first type 

of dependence is that caused by blocking effects. This 

can occur when the data has been collected in sub-groups; 

for example, the data may have been collected on different 

days. Such factors are referred to as nuisance factors 

and may have no effect at all but this cannot be assumed. 

If the blocks are unbalanced, for example if more 

observations are collected one particular day, then the 

error variance will be distorted. The easiest and most 

effective way of detecting and dealing with such block 

effects is to remodel the design into a higher way 

classification.
The other main type of dependence can come from a 

sequence effect either in time or space. If observations 

are taken serially in time then observations close 

together in time may be stochastically dependant. 

Similarly, observations that are taken from physically 

adjacent or close sites may be dependant because of some 

local effect or even interaction between sites.

The presence of serial correlation in data has a 

substantial and serious effect on both Normal Theory and 

nonparametric procedures, greatly distorting the P- 

values. It is possible to test for serial dependence by 

calculating the serial correlation and plotting pairs of 

observations; for example, plotting the pairs (yi^yi+i) to
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check for sequence effect of lag 1. Little is known about 

correcting for serial dependence. It is possible, where 

there are only one or two groups, to substitute the 

correlation coefficient in the expressions for the 

variances, provided the samples are large enough (Miller 

1986 p36,63).

In the context of expert systems the facility to 

detect a need for using a higher way classification should 

be considered in the design. For example, if the 

observations have been collected in blocks such as days or 

by location, then it may be worth remodelling the 

experimental design to take these block into account.

6.8 Assumption Checking in THESEUS

In the prototype version of THESEUS attention was 

concentrated on checking for outliers, Non-Normality and 

heteroscedasticity. Checking and correcting for 

dependence beyond remodelling the design if it is 

suspected, is difficult and was not incorporated in the 

prototype. There is a facility to view the data, which 

includes Normal plots, and is available at any stage of 

the consultation. This facility is provided to assist the 

user in making decisions about the nature of the data such 

as checking for Non-Normality or looking for possible 

outliers.

6.8.1 Outliers

The procedure for detecting and handling outliers or 

extreme values is fairly simple in the first stage of 

THESEUS. If each treatment group has more than 25 

observations then the decision about outliers is left 

entirely to the user. For smaller sample sizes, Dixon's
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test is run and the user is then asked to make a decision 

based on the outcome of the test and the users own 

knowledge of the data.

6.8.2 Normality

Although Non-Normality is not regarded as a 

particularly important problem it is checked anyway, the 

user being given the option of overriding any decision the 

system might make. For very small samples (less than 10 

observations overall) the decision is left to the user. 

For large samples (more than 25 observation overall) the 

Shapiro-Wilk test is run on each group separately; for 

smaller samples the observations are treated as a single 

group. In all cases the Shapiro-Wilk test is run on 

standardised values of the form

observed value - group mean 
variance

If the observations are treated as a single group then the 

standardisation uses the estimate of variance from the 

ANOVA if the variances are equal and the individual group 

variances otherwise.

6.8.3 Homoscedasticity

It is usually easier to correct for suspected 

heteroscedasticity than it is to test for it (Miller 1986 

p92). However, two tests have been incorporated to help 

the user make a decision. The variances are only declared 

equal by the system if Bartlett's test at 1% and Levene's 

test at 5% do not show evidence of unequal variances. If 

either test does show some evidence then the user is asked 

whether they wish to override this evidence or not.

6.9.4 Transformations

If the data has been found to be Non-Normal or to 

have unequal variances then the user is asked whether they
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are prepared to try a transformation. If the user is 

opposed to the use of transformations then one of the 

nonparametric methods will be recommended.

If a transformation is to be undertaken then the user 

is offered a list of possibilities to choose from. The 

system transforms the data and then repeats the decision 

process described above to see if the transformed data is 

satisfies the Normal Theory assumptions. If a 

transformation has not been successful then other 

transformations can be tried if the user so desires. If 

no suitable transformation can be found then the Normal 
Theory methods will be rejected in favour of nonparametric 

methods.
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Chapter Seven

Statistical Knowledge - II 

Analysis of One-Dimensional Data
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7 . 1 Introduction

Chapter 6 provided an overview of the concepts 

relevant to hypothesis testing about means; this chapter 

reviews specific statistical methods appropriate to the 

analysis of data where there is one, two or several 

treatment groups. The discussion is limited to 

quantitative data from studies where the interest is in 
comparisons between the means of the treatment groups. 
Attention has been concentrated on the Normal Theory 

methods; nonparametric methods have not been considered in 

detail, but have been included as they can often be used 
where the Normal theory methods cannot. The aim of this 
review is to supply sufficient information for the 

development of a rational prototype knowledge base for a 
statistical expert system. Where Normal Theory methods 
are discussed, only assumptions which are additional to 
those specified in the previous chapter are stated. 
Assumptions relevant to Nonparametric methods are stated 
as each method is discussed.

Notation

x-ji is the jth observation from group i 
i = 1(1 )t where t is the number of treatment groups 
i = 0(l)t-l if there is a control group present 
j = 1(1 )n^ where n^ is the number of observations in 

group i

x.^ is the mean for group i
u^ is the population mean for group i
s^ is the standard deviation for group i
a.* is the population standard deviation for group i
N total number of observations (
SD pooled estimate of the common standard deviation

In the single sample case the subscripts for treatment 
groups are dropped.
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7.2 Analysis for a Single Sample

In this situation the researcher is interested in 

finding out whether or not the mean of the data differs 

from some hypothesised value. The likelihood ratio test 

of HQ : u = UQ vs H1 : u <> UQ leads to 

Student's t statistic

(x - u)

which has Student's t distribution with n-1 degrees of 

freedom. With increased sample size the t statistic tends 

towards a Normal distribution due to the effect of the 

Central Limit Theorem.

Where some of the assumptions have been violated it 

may be possible to use a nonparametric test. The Wilcoxon 

signed rank test, where the differences (observations - 

hypothesised value) are ranked according to their absolute 

magnitude, can be used in the one-sample situation. The 

test statistic is

SR+ = 0}

where
r^ = rank of absolute value of the ith observation
z i = U0

1 if z ± > 0 
I{z ± > 0} =

'0 if z ± < 0

The probabilities p{SR + = r} can be generated through 
recursive schemes, tables are readily available for 
samples of up to 20 observations. For larger samples a 
normal approximation can be used

SR+ -

n(n+l)(2n+l)/24 ]

The only assumptions required for this test are that 

the data is a random sample from a continuous, symmetric 

distribution and that the observations are independently
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distributed.

7.3 Analysis for Two Samples

Where there are two treatment groups the experimenter 

usually wants to compare the two groups in order to detect 

whether there is any significant difference between them. 

Under the condition of equal variances the likelihood 

ratio test of HQ : u^ = u 2 vs H1 : m <> u 2 leads to 

the t statistic

t = (X 1 -x 2 )/(n 1 n2 )

where Sp is the pooled variance calculated using

: + (n 2 -l)s 2 2

+ n2 - 2)

The assumption of equal variances is a rather severe one 

and where this is the only assumption violated one 

possible approach is to use the approximate Aspin-Welch 

statistic

t = x l - X2

s 2 2 /n 2 )

with the degrees of freedom calculated using the 

approximation

S1 2 /n 1 s 2 2 /n 2

s 2 2 /n 2 (n 2 -l)

For both the t statistic and the Aspin-Welch 

approximation, the t distribution tends towards the 

standard Normal distribution as sample size increases

The nonparametric Wilcoxon rank test can be used
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where some of the Normal Theory assumptions do not hold. 

The only assumptions required are that the data are random 

samples from a continuous distribution and that the 

observations are independently distributed. The Wilcoxon 

statistic can be calculated in more than one way, the 

Mann-Whitney form is given here

U = 2 2 I{y 1± > y 2 .j}

i = 1,2,..n x j = 1,2,..n 2 
where

1 if y 1± > y 2 -j
x <yii > Y2j> =

0 if y 1± < y 2 j

Tables are available which give the probabilities 

associated with values as small as U. For large samples a 

normal approximation can be used

U* = U - (n x n2 /2)

n 1 n2 (n 1 + n2 + 

which has an approximately Standard Normal distribution.

7.4 Analysis for Several Groups - Overall Test

Where there are several treatment groups the simplest 

type of experimental design or layout is the completely 

randomised designed where treatments are randomly 

allocated to experimental units. This one-way design is 

very flexible, allowing any number of treatments and any 

number of replicates, although the number of replicates 

should only be varied with good reason as this can affect 

subsequent analysis. Analysis of the one-way design is 

straightforward, even with unequal replication or missing 

data. The loss of information due to missing data is 

smaller than with any other design because of the 

relatively large degrees of freedom associated with the 

error term in the ANOVA.
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The major disadvantage of the completely randomised 

design is that any variation between experimental units is 

not considered separately from the experimental error. 

The error can be reduced by using a different design if 

the experimental units can be handled in groups. For 

example, in field testing of new varieties of crop there 

may be a great deal of variation between plots in a field 
because of different drainage characteristics. In this 

sort of situation the randomised block design where the 

plots in the field are divided into blocks and treatments 

are randomly allocated to plots within each block is 
useful.

The completely randomised design is most useful in 
laboratory experiments where the material or units to be 
tested are homogeneous and so a higher way design is 
unnecessary. It is also very useful where an appreciable 
number of missing values may occur because of the easy 
extension to unequal sample sizes and the large degrees of 

freedom associated with the error term in the ANOVA. 
Small scale investigations, where using a more complex 
design would reduce the error degrees of freedom and so 
reduce the sensitivity of the experiment, can be analysed 

using the completely randomised design.
The model for the completely randomised design can be 

expressed as :

Yij = U + <*i + 6 i: j 

u = overall mean
= u + a^ denotes the mean of the ith population 

is the random or unexplained variation

The parameters are constrained by 2(^0^) = 0 

Where there are several treatment groups, the experimenter 
is usually interested in constructing point and interval 

estimates for the group means or in testing hypotheses
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about these means.

The likelihood ratio approach leads to the standard 

one way analysis of variance

Source of 
Variation

Treatments 

Error

Degrees of 
Freedom

t-1

N-t

Sum of 
Squares

«£j - x) 2 

Xi) 2

Total N-l S2(x ± j - x) 2

The significance test of the hypothesis that all the a-^ 

are equal is undertaken by referring the ratio of the mean 

treatment sum of squares and the mean error sum of squares 

to F tables on (t-1,N-t) degrees of freedom.

There is often misplaced interest in this

significance test, as it is often known a-priori that the 

treatment effects cannot all be equal. What is more 

important is to see where the differences between the 

treatment effects lie; the issue of multiple comparisons 

is dealt with in some detail in the following sections. 

The ANOVA table is useful because it gives a summary of 

the data, showing the amount of variation attributable to 

the treatment effects. The ANOVA table also supplies an 

estimate of the pooled variance which is usually required 

in procedures used to assess possible structures between

treatments.
The Kruskal-Wallis one-way analysis of variance 

nonparametric method can be used in situations where the 

Normal Theory assumptions do not hold. The Kruskal- 

Wallis -test requires only that the data are random samples 

from a continuous distribution. The test is carried out 

by ranking all the samples from the smallest to the 

largest in a single series. The rank sums for each 

treatment groups are calculated (HI), each R± has a
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limiting Normal distribution and so the statistic 

H =

is approximately distributed as a Chi-square with t-1 

degrees of freedom provided none of the treatment groups 

are too small. Special tables are required for small 

samples .

7.5 Introduction to Multiple Comparisons

As already mentioned, the experimenter will rarely be 

satisfied with a simple statement about whether some 

difference between treatment means exists but is 

interested in finding out where such differences arise. 

Thus the experimenter may wish to make a number of 

statements about the treatment groups, hence the term 

multiple comparisons. O'Neil and Wetherill (1971) state 

that there is still much confusion as to what the basic 

problems of multiple comparisons are, what the various 

procedures achieve and what properties should be 

considered!
As an introduction to the issues involved in multiple 

comparisons, consider a situation where there are two 

means. If the experimenter constructs 95% confidence 

intervals for each mean then each interval has a 

probability of 0.95 of including the corresponding true 

population mean. However the joint probability that both 

intervals simultaneously contain their respective 

population means is (0.95x0.95) iff the two means are 

totally independent. If there is some dependence between 

the means then the joint probability is greater than or 

equal to 1 - (1-0.95) - (1-0.95) (this follows from 

Boole's inequality P(A U B) <= P(A)+P(B) ). In multiple 

comparisons these two confidence intervals could be 

considered a family of statements and the aim of multiple 

comparisons methods is to control the joint probabilities,
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under the null hypothesis, for such families.

There is considerable debate between statisticians 

about whether or not this is an appropriate approach, 
especially when the null hypothesis is almost certainly 
false (Nelder commenting on O'Neil & Wetherill 1971); this 
is discussed further in section 7.7. Even where 

statisticians consider the general principle in multiple 
comparisons of controlling the joint probabilities to be 
acceptable, there is still much debate about exactly what 
constitutes a family.

7.6 Error Rates and Families

Consider a family of statements F = { S f } where 
N(F) is the number of statements in the family and let 
NW(F) be the number of incorrect statements in the family. 
The error rate for the family is

NW(F)
Er{F) =       (assume N(F) is finite) 

N(F)

The error rate is a random variable whose distribution 
depends on the multiple comparisons procedure used and its 
underlying probability structure. Thus to assess the 
overall merit of a multiple comparisons procedure some 
global, non-random parameter of the distribution of the 
error rate must be selected. The two criteria most 
commonly used are the probability of a non zero family 
error rate and the expected family error rate.

7.6.1 Probability of a non zero family error rate
Many of the multiple comparison methods available 

control this error rate, it is often called the 
experiment-wise error rate in the literature. It is

denoted by
P(F) = P( NW(F)/N(F) > 0 )

= P( NW(F) > 0 )
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There is no distinction here between families with only 

one incorrect statement and families with one or more 

incorrect statements. As the family size increases then 

the greater the probability becomes that one of the 

statements will be wrong; thus the probability associated 

with each statement will have to be smaller in order to 

maintain the required overall level for the family. As 

this probability error rate creates an all or nothing 

situation for families, great care should be given to just 
what constitutes a family, see section 7.6.3.

The Bonferroni inequality gives a bound on P(F) 

related to the individual statement probabilities

Let a f = P( I(S f ) = 1 ), f = 1,2,...,N(F)

and I(Sf ) = ( 1 if Sf is incorrect
I 0 if Sf is correct

then 1 - P(F) >= 1 - a2 - ... - aN(F)

That is P(j|[I(S f ) =0] ) >= 1 - ( I(S f ) = 1 )

This expression becomes an equality when the 
statements are independent .

7.6.2 Expected Family Error Rate

The expected family error rate or comparison-wise 

error rate is denoted by

E{F} = E{ NW(F)/N(F) } assuming finite N(F) 
This error rate is directly related to the marginal 

performances of each of the statements in the family.

Let a f = P( I(S f ) = 1 ) = E{ i(S f ) }, f =1, 2, . . . , N( F)

then E{F} = +«N( F)

N(F)

Statements can be grouped together in a family where their 
dependence is difficult to assess, and the family's
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expected error rate will be known exactly from the 

behaviour of the individual statements. Thus if an 

overall significance level, p, is required for the family 

the procedure to be used must be constructed so that each 

statement has a probability 1-p. In fact any combination 

for which a 1 +a2 +..-+a N( F ) = pN(F) will result in the 

appropriate error rate.

Where the number of statements in the family is 1 

then the expected error rate and the probability error 

rate are equal. Without any knowledge about the structure 

of the dependence between the statements, the only 

relation between the two error rates is given by

E{F} <= P(F) <= N(F) . E{F>

The expected family error rate gives exact results 

for combining dependent statements into one family, 

however, the probability error rate has a reasonable 

bound, shown in the Bonferroni inequality, where the 

number of statements is small. The advantage of using the 

probability error rate is that it provides a known degree 

of protection for the entire family and an upper bound on 

the expected proportion of mistakes.

7.6.3 Families
The concept of what constitutes a family is very 

subjective. The two extremes are to consider each 

statement a family or to consider all statements made over 

a lifetime a single family.
The basic premise of simultaneous statistical 

inference is to give increased protection to the null 

hypothesis. Yet it is not always the null hypothesis which 

is true, and attention must also be given to the error 

rates under the alternative hypothesis by considering the 

power function of the test. However it is an inescapable 

fact that as the error rates are forced down in one 

direction they must increase in the other, i.e increased
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protection of the null hypothesis results in decreased 
power and vice versa.

The introduction of families further complicates this 
issue. As family size increases then confidence intervals 

widen and the power is reduced. To increase power, either 
the size of family must be reduced or sample size or error 
rate increased.

Miller (1981) states that he usually considers a 
family to be the individual experiment of the researcher, 
which could include, for example, two-way classification 
analysis of variance, comparison of a half-dozen mean 
values and perhaps a regression analysis. Included in 
this is the requirement of reasonable power against 
reasonable alternatives with reasonable protection for the 
available sample size. An individual experiment means a 
related group of observations collected through an 
autonomous experiment and whose analysis will fall into a 
single mathematical framework. There are no hard and fast 
rules for where the family lines should be drawn, and the 
statistician must rely on his own judgement for the 
problem at hand.

7.7 Controversy Over the use of Multiple Comparisons
There is considerable debate among statisticians 

about whether multiple comparison methods should be used 
at all and the paper by O'Neil and Wetherill(1971) with 
the subsequent discussion is a good example of the 
controversy over their use. O'Neil and Wetherill recommend 
the use of multiple comparisons where the problem is one 
of fundamental exploration with the aim of discovering the 
underlying mechanism affecting the results. Some 
statisticians maintain that such fundamental exploration, 
where there is no prior pattern, is best approached using 
other methods (see Placketts and Nelders response to the 
O'Neil and Wetherill paper). In addition there is concern
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over the use of methods which are designed to protect 
against incorrect rejection of the Null hypothesis when it 
almost certainly the case that the Null hypothesis is 
false anyway and Type II errors are far more likely to 
occur.

Chew (1976), although advocating the use of multiple 
comparison methods, begins by clearly stating some of the 
abuses of these methods. In the case of the completely 
randomised design the main abuse is to apply multiple 
comparison techniques where the treatments are different 
levels of the same treatment. In this case regression 
analysis or curve-fitting would seem to be more 
appropriate. Even this is open to some debate as the 
experimenter may be more interested in finding out the 
lowest level at which there is a response (Williams 1971).

7.8 Classification of Multiple Comparison Methods
The majority of multiple comparison methods are based

on the following basic techniques or inequalities.
Repeated Normal Statistics : For a 2 unknown these are
separate t tests
Maximum Modulus Method : This method involves finding the
constant c such that

P( max[ !Y! ,|Y 2 | ] <= c ) = 0.95
YJ_ are independent and Normally distributed with

means u^ and variance = 1
The condition of independence means that the constant c is
given by the 1-(1-0.95) 2 percentage point of the Normal
distribution. When a 2 is unknown the t-distribution is

used.
Scheffes Chi-squared Projections : these are based on the 
Chi-squared statistic Y-^ 2 + Y2 2 - Intervals are obtained 
by projections of the bivariate Chi-squared region 
Multiple Modulus Method : This is an extension of the 
maximum modulus method and are performed by testing in
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successive stages. The effect of multiple modulus tests 
is to enlarge the decision regions for means different 
from zero at the expense of the situations where one of 
the means is zero.

Bonferroni Inequality : This has already been stated in 
section 7.6.1

Sidaks Multiplicative Inequality : (Sidak 1967) Let Y = 

( Y]_, Y2,   . . , Yk ) be the vector of random variables having 
the k-dimensional normal distribution with zero means, 

arbitrary variances a^ ak ^ / and an arbitrary 

correlation matrix R =(Pi-j}. Then for any positive 

numbers C;L, ck

P( |X 1 |<=c 1 , ... , |x k |<=c k ) >= ITT P( |X ± | <= ) 
Sidaks Uncorrelated-t Inequality : (Sidak 1967) This is 

related to the multiplicative inequality above but with 
independent X (i.e. zero correlation). Suppose that s is a 
positive random variable, independent of X^ then

P(|x 1 |/s <= G!,..., |x k |/s <= ck ) 
>= ITf P( |X ± |/s <= c ± )

There is a wide range of methods available and these 
can be classified according to the hypothesis of interest 
to the experimenter. The different hypotheses are 

classified below and the main multiple comparison methods 

available are briefly introduced. Nonparametric methods 
have not been considered in detail in this review but are 

included as they can sometimes be applied in situation 

where Normal Theory methods cannot.

Pairwise (No control) : The experimenter may be interested 

in a small number of pairwise comparisons between 

treatment groups or all possible pairwise comparisons. 

Much of the work undertaken in multiple comparisons has 

concentrated on pairwise comparisons. The Least 

Significant Difference (LSD) and Protected LSD (Fisher
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1935) are based on the repeated Normal statistics, the 

latter requires a preliminary significant F test before 

any comparisons are made. The LSD and PLSD control the 
comparison-wise error rate.

The Tukey test (Tukey 1952), which can be extended 

for contrasts, is based on the Maximum Modulus Method and 
uses the Studentised Range tables, however it requires 

equal replication and equal variances and thus many 
adaptations have been proposed to deal with these 
problems. The Tukey-Kramer test (Kramer 1956)is a 

straightforward adaptation of the Tukey test for unequal 
replication. Other extensions of the Tukey test for 

handling unequal sample sizes were proposed by Spjotvoll & 
Stoline (1973), Genizi & Hochberg(1978). Hochberg (1974) 
and Gabriel(1978) also proposed similar methods based on 
Sidaks multiplicative inequality.

A number of methods have been proposed for the case 

of unequal variances. Games and Howell (1976) suggested a 

method which uses the Studentised range and an 

approximation for the degrees of freedom, Welch (1938). 

Tamhane's (1979) method uses Students-t distribution and 

is based on Sidak's multiplicative inequality. A further 

test, T3 was proposed by Dunnett (1980b) as an adaptation 

of Tamhane's procedure based on Sidak's uncorrelated-t 

inequality. Dunnett (1980b) also proposed a method, C, 

which is based on the weighted average of Students-t 

suggested by Cochran(1964).

In addition to the methods already described there 

are two multiple range methods, Duncans (Duncan 1955) and 

Newman-Keuls (Newman 1939, Keuls 1952), which are based on 

the multiple modulus method. The error rate for these 

tests is rather difficult to define as it is neither 

comparison-wise nor experiment-wise. The error rates are 

controlled for each subset of means being considered.

There are two Nonparametric methods which can be used
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for testing pairwise comparisons, the Steel-Dwass test 

(Steel 1960, Dwass 1960) and the Kruskal-Wallis test 

(Nemenyi 1963). The Steel-Dwass test is based on pairwise 

rankings and requires equal replication and special 

tables. The Kruskal-Wallis test is based on ranking 

across all treatment groups, it does not require equal 

replication and uses the Studentised Range tables. The 

Kruskal-Wallis test is very versatile as it can also be 

used as a Nonparametric analog to the One-Way ANOVA, using 

the Chi-squared tables when the samples are large enough, 

as well as comparisons with a control, using Dunnett's 
tables.

Contrasts (No control)

The most commonly used contrasts are linear contrasts 

of the general form Sc^y^ where £c^=0, however it is 

possible to test non-linear contrasts such as quadratic 

or polynomial contrasts. In this review only linear 

contrasts are considered. Scheffe's (1953) method based 

on his F projections uses the F tables and can be adapted 
for unequal sample sizes. Brown & Forsythe (1974) 

proposed a further adaptation for the case of unequal 

variances. A method based on the Bonferroni inequality 

(Miller 1981 p67) which uses Student's-t distribution can 

also be used for testing linear contrasts. The t values 

are required at significance levels not usually available 

in standard tables and Dunn(1959) computed necessary 

values.
Note : If the experimenter wishes to test designed 

contrasts, that is, contrasts decided on before the 

experiment, then orthogonal F tests will be the most 

powerful and should be used where possible.

Comparison with control : When a control group is present 

there are two different situations
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i) Treatment groups are different levels of a single 
factor, for example, different dose levels of a drug. The 
experimenter may wish to test for monotonic ordering or to 
find the lowest dose for which there is a response or 
possibly to fit a response curve. The latter requires 
regression techniques but certain specialised multiple 
comparison methods are available for the other two 
possibilities.

Bartholomew (1961) proposed a method based on Maximum 
Likelihood estimates used to test for monotonic 
alternatives. Williams (1971, 1972) suggested a more 
specific technique, also based on Maximum Likelihood 
estimates, for finding the lowest dose at which there is a 
response. Shirley (1977) proposed a Nonparametric analog 
to Williams' test which uses the tables developed by 
Williams.

ii) Treatment groups are different factors; for 
example, different varieties of a crop. In this situation 
the experimenter is usually interested in comparing each 
treatment group with the control.

Dunnett (1955) proposed a test for pairwise 
comparisons with a control group which requires equal 
replication. The statistic is a multivariate analog of the 
t distribution and special tables are required. The Many- 
One Rank method (Steel 1959) provides a Nonparametric 
version of Dunnett ? s test. The Kruskal-Wallis 
Nonparametric method can also be adapted for comparisons 

with a control group.

7.9 Simulation Studies
In order to compare the different multiple 

comparisons procedures properties of power and robustness 
as well as the conservativeness of the procedure should be 
considered, Stoline(1981). Practical issues such as ease 
of use and availability of tables are also important. A
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great deal of research has been undertaken in studying the 

robustness and power of the F-distribution and the t- 

distribution (see Chapter 6) to departures from Normal 

Theory assumptions. However, little is known about the 

robustness and power of the Studentised Range, the 

Studentised Maximum Modulus or the Many-one t statistics. 

Practically no work on the robustness and power of these 

statistics has appeared in the literature (Miller 1981 p 

102,108). Simulation studies, which are empirical 

investigations into the behaviour of the different methods 

under different conditions, provide a very useful way of 

comparing techniques.

Due to the large numbers of papers on the subject of 

multiple comparisons, attention has been focussed on the 

review and simulation papers. Original methodology papers 

are only referred to where methods have not been included 

in simulation studies. This section provides an overview 

of some of the simulation papers.

7.9.1 Carmer & Swanson 1973

Carmer and Swanson compared ten multiple comparison 

methods for pairwise comparisons. The Type I, Type II and 

Type III error rates and the correct decision rates were 

compared. Type III error rates were defined by Carmer and 

Swanson as the probability of declaring one treatment 

superior to another when the reverse is true. The methods 

compared by Carmer and Swanson were the Least Significant 

Difference (LSD), protected LSD (Using preliminary F at 

0.01, 0.05, 0.10 significance levels), Tukey, Newman- 

Keuls, Duncan, Scheffe and two Bayesian approximations 

attributed to Waller and Duncan (1969). Data for 1000 

Completely Randomised Block experiments were generated for 

each of 88 combinations of 22 means and four different 

numbers of replications.
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Conclusions

In the conclusions Carmer and Swanson state that 

although Scheffe, Tukey , Newman-Keuls and the PLSD with a 

preliminary F test at 0.01%, all provide excellent 

protection against the Type I errors they are rather 

conservative, and the ability to detect real differences 

should have a high priority. The LSD and PLSD with 

preliminary F test at 0.1% do not give sufficient 

protection against Type I error. The choice between the 

remaining procedures is not easy, Duncan's method gives 

better protection against Type I errors but is less 

sensitive in detecting real differences than the two 

Bayesian approximations or the PLSD with a preliminary F 

test at 0.05%. 

Comments

Referring to Carmer and Swanson's Table 3 of observed 

comparison-wise and experiment-wise Type I error rates, it 

can be seen that the Bayesian approximations and Duncan's 

methods control the comparison-wise error rates adequately 

but not the experiment-wise error rates. If the 

statistician wishes to control the experiment-wise error 

rates then in fact the Tukey methods seems, from Table 3, 

to give the best protection against Type I errors without 

becoming liberal.

7.9.2 Thomas D.A.H. 1973

The simulation study reported by Thomas compared 

several methods for pairwise multiple comparisons as well 

as four methods for constructing confidence intervals 

about a single mean. The pairwise comparison methods 

compared were the Protected Least Significant Difference 

(PLSD), Tukey, Scheffe, Dunn (Bonferroni), Newman-Keuls 

and Duncan. A non significant F value precluded further 

testing except for Dunn's method and Duncan's method. The 

methods were carried out on sets of 5, 10 and 20 means

105



each of four results. 
Conclusions

Thomas concluded that the PLSD gives insufficient 
protection to the null hypothesis. Duncan's test was 
preferred because it gave adequate protection against Type 
I errors but was less conservative than the other methods. 
Comment

The undue conservatism noted by Thomas for some 
methods could be related to the use of a preliminary F- 
test as a filter. Performing a preliminary F test may 
miss important single effects that get diluted (averaged 
out) with other effects (Dunnett and Goldsmith 1981).

7.9.3 Tamhane 1979

In this study, Tamhane compares procedures for 

multiple comparisons in the equal and unequal variance 

case. The methods reviewed included procedures proposed 

by Spjotvoll, Hochberg, Ury and Wiggins, Games and Howell, 

three proposed by Tamhane, Brown and Forsythe and finally 

Spj0tvoll and Stoline. The sampling experiments were 

conducted for all pairwise differences of the means for 

sets of 4 and 8 means. Selected contrasts for the set of 

8 means were also considered. The sample sizes ranged 

from 7 to 13. For each set of treatment means eight 

(<j2,n) configurations were studied, 1000 experiments were 

run for each configuration. 

Conclusions
Tamhane concluded that the Tukey procedure and 

Hochberg's procedure are robust and conservative for 

pairwise comparisons in the equal variance case. In the 

unequal variance case the Games and Howell procedure gives 

the shortest intervals but can be liberal. One of the 

Tamhane procedures gives slightly wider intervals than the 

Games and Howell but does not suffer from liberality. 

Where contrasts are required the Brown and Forsythe
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procedure was recommended. The Brown and Forsythe method 
is based on the Scheffe projections adapted for unequal 
variances.

7.9.4 Dodge and Thomas D.R. 1980

This simulation study is particularly interesting 

because it included nonparametric procedures in the 

comparison. The Normal Theory methods considered were the 

LSD, PLSD, Tukey, Duncan, Newman-Keuls, Scheffe and the 

Bonferroni method. The nonparametric methods were k- 

sample ranking or pairwise sample ranking analogues of the 
Normal Theory methods. The simulation considered five 
different scale-location parameter families (Uniform, 

Normal, Logistic, 4th power and Extreme value); it did not 

include the unequal variance situation. Independent sets 
of 1000 trials were generated for each of 32 different 

combinations of numbers of treatment groups and numbers of 

equal pairs between treatment groups. 

Conclusions

The Normal Theory procedures were found to be robust 
with regard to Type I error rates. The k-sample ranking 
procedures were considered to be extremely conservative, 
hence methods based on pairwise rankings were preferred. 
If strict control of experiment-wise error is regarded as 

essential then the LSD, PLSD and multiple range methods 

should be rejected. The Scheffe method was found to be 

more conservative than the Bonferroni or Tukey methods.

7.9.5 Dunnett 1980a

This is the first of a pair of papers on pairwise 

comparisons and considers the equal variances, unequal 

sample size situations. Methods proposed by Spjotvoll and 
Stoline, Hochberg, Gabriel, Genizi and Hochberg and Tukey- 

Kramer were compared. Millers suggestion of using the 

harmonic mean was also included. The simulation was in
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two parts, the first of which was to calculate the error 

rates for the Tukey-Kramer intervals for varying sample 

sizes. Sets of 4, 6 and 10 means were considered and 

10,000 simulations undertaken for each configuration. The 

second stage of the simulation was to consider a set of 6 
treatment means and varying sample sizes. 25,000 

simulations were undertaken for each combination and the 
different procedures were compared. 

Conclusions

The results of Dunnett's simulation clearly show that 
the use of the harmonic mean resulted in inflated a values 
as soon as the ratio of sample sizes moves out of the 
range 0.25 to 1.25. Gabriel's procedure was also found to 
be liberal although it performed better than the harmonic 
mean, only becoming liberal if the sample size ratio was 
more than about 8. All the other methods were 

conservative with the Tukey-Kramer method giving the 
levels closest to a = 0.05 and so providing the shortest 
intervals. This simulation study put to rest fears about 
the approximate nature of the Tukey-Kramer methods showing 
that adequate protection is given to the null hypothesis.

7.9.6 Dunnett 1980b

This simulation study dealt with the case of unequal 
variances. The Games and Howell method and the Tamhane 

procedure which came out the best in Tamhane's 1979 study 

were compared along with two newer methods denoted C and 

T3. For the simulation, sets of 4 and 8 treatment means 
were chosen with equal replication. For the set of 4 
means, some unequal sample sizes were also included. Each 
configuration of different variances was simulated 10000 

times. 

Conclusions

The results of Dunnett's study showed that the Games 

and Howell procedure can be liberal and that the T3
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intervals are always shorter than the T2. For large 

degrees of freedom, the C method has shorter intervals 

than the T3. From Dunnett's Table 3, the C procedure 

seems to be better for sample sizes in excess of 25.

7.10 Selection of Multiple Comparison Method

The selection of an appropriate multiple comparison 

procedure depends upon information on the hypothesis of 

interest and the nature of the data. Ideally the 

experimenter requires the most powerful possible method 

that also provides sufficient protection against wrong 

decisions. It is apparent from section 7.8 that there are 

a multitude of methods to choose from. In this section we 

discuss the different techniques. This discussion is based 

on the simulation papers summarised in section 7.9 and 

some of the many review papers available.

The discussion has been divided into sub-sections 

according to the hypothesis of interest. Some of the 

methods have been extended for testing other hypotheses; 

for example, Tukey's test can be extended to test linear 

contrasts. However it is clear that methods are generally 

most sensitive when applied to the hypothesis they were 

originally designed for. For example, Scheffe's test is 

more sensitive for testing contrasts and Tukey's test is 

more sensitive for testing pairwise comparisons (Miller 

1981 p63, Dodge and Thomas 1980, Scheffe 1959).

Many of the Normal Theory methods have been found to 

be robust for Non Normality (e.g. Scheffe 1959, Dodge and 

Thomas 1980, Brown 1974), but these methods may not be the 

most powerful for Non Normal distributions. Miller (1986) 

suggests that the use of transformations to improve 

Normality or the use of other methods may lead to more 

efficient procedures for Non Normal distributions.
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7.10.1 Pairwise Comparisons

The Protected Least Significant Difference method 

(PLSD), which requires a significant F test before it is 

used, is probably the most familiar of multiple comparison 

methods. It is applicable to unbalanced designs, is very 

easy to use and has sensitivity as good or better than 

other methods. The preliminary F test guards against 

falsely rejecting the null hypothesis when it is true. 

However, when the null hypothesis is false, the PLSD gives 

no increased protection to that part of the null 

hypothesis which remains true (Miller 1981). Thus the PLSD 

has low Type II errors but high Type I errors, the 

simulation studies which include the PLSD bear this out 

(Carmer and Swanson 1973, Thomas 1973, Dodge and Thomas 

1980); the reviews papers reiterate this problem (e.g. 

Cornell 1971, Gill 1973). Where this method is not 

protected by a preliminary F test then the experiment-wise 

error rate increases still further.

Where an experiment has equal replication and equal 

variances then the Tukey method has been shown to provide 

the shortest intervals whilst protecting the experiment- 

wise error rate (e.g. Carmer & Swanson 1973, Miller 1986). 

Of the methods capable of handling unequal replication in 

the equal variance case, the Tukey-Kramer produces the 

shortest intervals (e.g. Dunnett 1980a, Stoline 1981).
 

If the condition of equal variances does not hold 

then there are a number of possible methods available. 

Dunnetts (1980b) simulation study, which picks up from 

Tamhanes (1979) study, shows that the T3 and C methods 

provide the shortest intervals. The C method provides 

shorter intervals than the T3 method where the number of 

degrees of freedom is large.
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Multiple Range Methods

The multiple range methods are used for comparing all 

pairs of means but cannot be used for constructing 

confidence intervals. There is much discussion about the 

use of multiple range methods and the principle objections 

are usually to the definition of the error rates which are 

neither experiment-wise nor comparison-wise. This choice 

of error rate also makes comparisons between multiple 

range and other methods rather difficult.

A further disadvantage of the multiple range tests is 

that the power of testing all pairs of means is subject 

to the magnitude of the other means. O'Neil and Wetherill 

(1971) note that techniques based on ranges can be 

constructed to have precise error rate properties but if 

standard significance levels are used the techniques are 

too conservative and so lack power. Such methods are also 

rather sensitive to deviations from distributional 

assumptions.

In Duncan's test the probability of a Type error 

increases with the number of means being compared, raising 

the question of- whether sufficient protection is being 

given to the Null hypothesis or not. The increasing 

levels for a do make the procedure more powerful. Newman- 

Keuls test is less powerful and more conservative.

It is difficult to find a consensus of opinion about 

the use of multiple range methods. For example Gill(1973) 

considers that the evidence against Duncan's method is so 

incriminating that use of the test should be discontinued 

and yet considers the Newman-Keuls to offer sufficient 

protection to the experiment-wise error rate and greater 

sensitivity then Tukey's method. Thomas(1974) says that 

he would undoubtedly choose Duncan's method for pairwise 

comparisons because of its power.

Spjotvoll and Stoline, Hochberg, Kramer and Duncan 

have all suggested ways in which the methods could be
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extended to allow for unequal variances or sample sizes 
but in doing so all distributional properties are lost 
(O'Neil and Wetherill 1971) 
Nonparametric Methods

The two best known Nonparametric methods for testing 
pairwise comparisons are the adapted Kruskal-Wallis test, 
where the observations from all groups are ranked and the 
Steel-Dwass methods which rank only the two groups being 
compared. The Kruskal-Wallis method is very versatile and 
requires less ranking than the Steel-Dwass. However, the 
major drawback of the Kruskal-Wallis method is that the 
outcome of a comparison between two groups depends on the 
ranking of the observations in the other groups. In 
addition it is very difficult to construct confidence 
intervals in the Kruskal-Wallis method. In general the 
Steel-Dwass method is preferred (Miller 1981, Dodge and 
Thomas 1980).

7.10.2 Contrasts

If at all possible, designed comparisons should be 
used rather than comparisons selected post-data, primarily 
because more powerful methods can be used (Gill 1973, Chew 
1976). Linear contrasts which are orthogonal can be 
tested by partitioning the degrees of freedom for 
treatments in the ANOVA table. If non-orthogonal 
contrasts are required then the Bonferroni method can be 
used.

Where the experimenter wishes to test linear 
contrasts that were not designed before the experiment, 
Scheffes method can be used. Scheffe's method controls 
the experiment-wise error rate for all possible contrasts; 
as an experimenter is usually interested in a few selected 
contrasts, the Scheffe method is rather conservative. The 
Bonferroni-t method can also be used to test linear 
contrasts and may yield shorter intervals where there are

112



a small number of comparisons (Miller 1981 p69, Gill 

1973). The method proposed by Brown & Forsythe for the 

unequal variance case is recommended by Tamhane(1979).

7.10.3 Techniques for Specific Purposes

A number of methods have been developed specifically 

for dealing with particular situations, usually where one 

of the treatment groups is a control group. Two different 

situations were considered in section 7.8, where treatment 

groups are different levels of a single factor and where 

treatment groups are different factors. Where a 

specialised technique can be applied it tends to perform 

better than one of the more general techniques already 

considered. 

Different Factors

Where the treatment groups are different factors and 

the experimenter is interested in comparing each group 

with a control then Dunnett's test is the most sensitive 

(Miller 1981 p62, Cornell 1971, Gill 1973) although it 

does require equal replication and equal variances. The 

nonparametric analog to Dunnett's test is the Many-One 

rank test; the Kruskal-Wallis test can also be adapted for 

comparing groups with control. The comparison between 

nonparametric methods based on pairwise ranking and those 

based on ranking over all treatment groups has already 

been made in section 7.10.1. 

Different Levels of a Single Factor

If the treatment groups are different levels of a 

single factor, for example, different dose levels of a 

single compound, then procedures proposed by Bartholomew 

or Williams may be appropriate. However, if interest is 

centred on estimating the dose level at which the response 

attains a given magnitude, it may be more appropriate to 

use regression methods (Chew 1976, Williams 1971).

Bartholomew's method is a test of the null hypothesis
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against the alternative hypothesis of monotonic ordering. 

Williams(1971) states that Bartholomews test is superior 

to those tests which have no order assumptions but that it 

is not designed to perform best against the most important 

alternatives in the dose response situation. 

Williams(1971) method is designed to find the lowest dose 

at which there is evidence of a response.

In his 1971 paper Williams used simulation methods to 

compare his method with other methods including 

Bartholomew's. The results suggested that, on the whole, 

Bartholomew's test is the most powerful. William's test 

performs better when the number of observations in the 

control group is increased and is also more robust against 

departures from the assumption of monotonic ordering. 

Shirley(1977) proposed a nonparametric version of 

William's method which was modified slightly by 

Wlliams(1986).

7.11 Approach used in THESEUS

The prototype rulebase in THESEUS is not intended to 

provide knowledge on all the possible methods available- 
for analysing data in a given situation. Rather, it is 

intended to supply a rational rulebase which covers the 
domain adequately. In other words, to be able to suggest 

or recommend methods which are appropriate in the 

different situations which come within the scope of the 

domain.

7.11.1 One Sample
In the single sample case the preferred test is the 

t-test provided there are no outliers and the data is 

Normal. For samples with more than 25 observations the 

Normal approximation is used provided there are no 

outliers. The Wilcoxon Signed Rank test is used if there 

are outliers present or, for samples of size less than 25,
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the data is Non-Normal and no suitable transformation can 

be used.

7.11.2 Two Samples

Where there are two samples the preferred test is the 

two-sample t test provided there are no outliers, the data 

is Normal and the variances are equal. For samples of 

size greater than 25 the Normal approximation is used, 

provided there are no outliers, with a pooled estimate of 

variance if the variances are equal or separate variances 

if not.

For samples with less than 25 observations, Normal 

data but with unequal variances the Aspin-Welch method may 

be used. In this situation the users are asked whether 

they wish to transform the data. If the answer is no then 

the Aspin-Welch method will be recommended.

The Wilcoxon Rank test is used where there are 

outliers present or where a suitable transformation cannot 

be used when the data is Non Normal or the variances are 

unequal.

7.11.3 Several Groups

The user is offered the opportunity of carrying out 

an overall test for a difference between treatment groups 

but the overall test is not regarded as a precondition to 

further testing except where a method specifically 

requires it. The usual overall test is the ANOVA which is 

recommended provided there are no outliers and the data, 

or some transformed set of the data, is normal with equal 

variances. The Kruskal-Wallis test is recommended if the 

ANOVA cannot be used.
Within THESEUS, multiple comparison methods are 

initially considered according to the hypothesis of 

interest and the nature of the treatment groups.
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Table III Initial Choice of Multiple Comparison 
Technique

Hypothesis of Normal Theory 
interest methods

Nonparametric 
methods

Some pairwise Tukey
Tukey-Kramer
T3
C

K-sample-rank 
Kruskal-Wallis

All pairwise Newman-Keuls 
Duncan * i

K-sample-rank 
Kruskal-Wallis

Contrasts 
(post-data)

Scheffe 
Bonferroni

Designed 
Contrasts

Linear Contrasts 
Bonferroni

Many-one Dunnett Many-one rank
comparisons *2 Bonferroni

Lowest Dose 
response * 

Williams Shirley

Notes :
*1 If all pairwise comparisons are required then 

the user is asked whether they wish to use multiple range 
methods; if not the methods for some pairwise comparisons 
are considered.

*2 The many-one comparisons are only considered 
if there is a control or standard treatment group present 
and the user wishes to compare each treatment group with 
the control.

*3 The lowest dose response hypothesis is only 
considered if the treatment groups are different levels of 
a single facor and the user is interested in finding out 
the lowest level at which there is evidence of a response.
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Table III summarises the initial choice of methods to be 

considered. Once a list of possible methods has been 

established then THESEUS works by establishing whether the 

Normal Theory assumptions hold (see section 6.9). If this 

is the case then the Normal Theory method can be applied 

with appropriate methods for unequal sample sizes being 

employed where possible. The specialised T3 and C methods 

are used when the only Normal Theory assumption violated 

is that of equal variances; the T3 method is used when the 

sample sizes are less than 25 and the C method is 

recommended otherwise. The value of 25 is based on the 

results given in Table 2 of Dunnett(1980b). 

The Bonferroni method appears in several sections of Table 

I above because of its great versatility. 

When the choice is between the Sheffe and Bonferroni 

method the Bonferroni method will be recommended if there 

are only a few comparisons to be made. When the user is 

considering designed contrasts the Bonferroni method is 

recommended if the contrasts are not orthogonal. 

When the user wants to tests treatment groups with the 

control and the sample sizes are not equal then the 

Bonferroni test may be recommended.
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Chapter Eight

Development of the Prototype System
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Once a logical design had been developed for the 

system, see Chapters 3 and 4, and the knowledge 

acquisition was underway, see Chapter 5, the next stage is 

to design and implement the software. As already 

mentioned in section 3.5, each entity in the system is 

declared as an array of records where the records are 

defined by the attribute lists for each entity. The Life- 

Cycle diagrams proposed for each entity define the flow of 
control within the software code.

In this chapter the choice of implementation language 
and the software structure are discussed. The expert 
system user requires other facilities to be available 
during the consultation process and the design and 

incorporation of these is covered. Finally the way in 
which the system interacts with the user is specified and 
an example consultation is given. The consultation 
process has already been described in some detail in 
Chapter 4.

8.1 Choice of Language
Once the system had been designed and the knowledge 

acquisition was underway it was necessary to decide on the 
implementation language, for this prototype there were two 
major constraints. The system was to be developed on an 
IBM-AT compatible machine, this was chosen because if the 
system is to used by research workers in industry it is 

necessary to use a machine that they will have access to. 
The other major constraint is the need to access the data 
during a consultation in order to carry out statistical 
tests. When the software development for this project 

began none of the Artificial Intelligence languages such 
as Prolog or Lisp, that were available on the IBM-AT, 

could access other languages or packages. Such languages 
are rather hostile for writing statistical routines and 
thus it was necessary to use a procedural language. By
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using a procedural language the library routines could be 

picked up where available and others coded as required. 

Pascal was chosen as the implementation langauge because 

of the ease with which user-defined records can be 

utilised, thus enabling the easy definition of entities 

within the system. An additional benefit of Pascal was 

its recursive capability, this meant that developing the 

code for Backward Chaining was not too difficult.

8.2 Overall Structure

The system overall comprises a number of modules, 
each of which has a unique function. Communication 
between modules is effected by means of standard format 

text files created by each module. Figure 8.1 shows the 

modules within the system.

Central to the system is the rule base processor or 

the expert system part, the structure of this has already 
been described in Chapter 4. Surrounding this rule base 
processor are the rule base editor, a data entry section 
and a report module. There is also a routine interface to 
provide access to statistical routines.

The rule base editor supplies a file of rules which 

can be picked up by the expert system. The editor enables 

an expert user to enter, delete and modify rules.

The data entry module allows the system user to enter 
and edit data, performs basic descriptive analyses and 

conducts a dialogue with the user to ensure that both the 
user and the system are satisfied with the representation 
of the data. This dialogue also serves to ensure that the 

data under consideration comes within the scope of the 

system. The rule-base processor works through the rules 

using a combination of forward and backward chaining, 

accessing the routine interface and reporting intermediate 

results as appropriate. This module has only been 

implemented in part and does not yet contain the dialogue
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Figure 8.1 : Component Modules of the Sy«t<
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section. The routine interface allows the system to 

perform statistical tests on the data both during a 

consultation and once a particular analysis has been 

selected.

The report module provides the results of analysis 

for the user and allows them to structure output in an 

appropriate way, accessing intermediate results as 

required, this module has not yet been implemented.

8.3 User Interface

The prototype system presents the user with a split 

screen consisting of two windows. The top window keeps 

the user informed of the state of the consultation 

process. The bottom window is used for interacting with 

the user and will display menus or questions or requested 

information during the consultation. The split screen 

format can be seen in Figure 8.2. There is also a status 

bar at the bottom of the screen which displays information 

on the rule-base and data set in use. When the system is 

being run in test mode the information about the data set 

is replaced by information on the rules being tried.

User control of the system is effected by means of 

menus. The main menu allows the user to pick up a rule- 

base and data set, to look at the data and also permits 

access to the trace and log facilities. Each facility 

that can be called during a consultation provides a simple 

menu of options for the user to choose from. The main 

menu also provides the point of access to a consultation.

During a consultation, when the system wishes to ask 

the user for information, a question will be shown in the 

bottom screen. The user is offered a number of possible 

responses, Figure 8.2 shows an example of a question 

screen.
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8.4 Facilities

In order to assist the user a number of facilities 

are provided. A user can request help or to ask why a 

particular question is being asked at any stage during the 

consultation. Within the prototype system described here 

facilities are also provided for the user to look at the 

trace arrays or log files as well as to look at the 

current data set. The system can be run in test-mode so 

that modifications to the rule-base can be tested.

8.4.1 Help Facility

The help facility is available whenever the system is 

asking the user for information. Help is provided on a 

key-word basis, the user can specify any text string and 

the system will try and find help text on that string. A 

list of available help can be provided on request. Unless 

the user specifies otherwise then help is supplied for the 

question the system is currently asking. Figure 8.3 and 

8.4 show the initial help screen and an example of help 

text.
The help text is stored in random access tables; the 

location for help on a particular text string is generated 

by calculating a 'hash 1 function from the text string. 

The use of random access files means that little time is 

wasted searching for help text.

8.4.2 Trace Arrays
The trace arrays hold information about the status 

changes for the entities in the system. There are three 

trace arrays that can be accessed by the user, the goal 

trace, the rule trace and the action trace.

The action trace is the easiest to understand and 

contains a list of the actions of rules that have been 

carried out when a rule has fired. An example of 

information in the action trace is shown in Fig 8.5
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Figure 8.3 : Example of the Help Facility -
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Figure 8.5 ; Example of the Action Trace

Name
Test or 
Fact Action

From Rule 
Rule Type

ONE_WAY ANOVA TEST
KRUSKALJrfALLIS ANOVA TEST
OUTLIERS " FACT
SHAPIROJtfILK SIG5 FACT
NORMAL_DATA ~ FACT
VARIANCES_EQUAL FACT
ACCEPT PARAMETRIC FACT
TRANS FOR_VARIANCES FACT
TRANS~FOR_NORMALITY FACT
ADJUST_FOR_UNEQ_VAR FACT
ONE_WAY_ANOVA TEST
KRUSKAL_WALLIS_ANOVA TEST
NEXT TEST FACT

LOOK_AT
LOOK_AT

FALSE
FALSE

TRUE
TRUE
TRUE

FALSE
FALSE
FALSE

RECOMMEND
VALID

TRUE

R3 
R3 

R35 
R47 
R54 
R61 
R26 
R26 
R26 
R26 
R76 
R76 

M3

F 
F 
B
B 
B 
B 
B 
B 
B 
B 
B 
B 
M

Figure 8.6 t Example of Part of a Rule Trace

Rule Type Part of condition
Already Part Rule Data 

Set by Set Satisfied Status Set

Rl
R2
R3
R3

R76
R22
R30
R31
R32
R32
R33
R33
R34
R34
R34
R35
R35
R35
R22
R22
R36
R37
R48
R48

F
F
F
F
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B

NOT

NOT

NOT

NOT
NOT

NOT
NOT
NOT
NOT

NOT
NOT

NOT

ONE GROUP
TWO GROUPS
SEVERAL GROUPS
OVERALL~~TEST
ACCEPT PARAMETRIC
OUTLIERS
MAX GROUPS I ZE GT 25
MAX GROUPS I ZE~GT 25
MAX GROUPSIZE GT 25
DIXONS SIG 5
MAX GROUPSlZE GT 25
DIXONS SIG 5
MAX GROUPSIZEJ3T_25
DIXONS SIG 5
USER SAYS OUTLIERS
MAX GROUPSIZB_GT_25
DIXONS SIG 5
USER SAYS OUTLIERS
OUTLIERS
NORMAL DATA
MORE THAN 10_OVERALL
MORE THAN~10~OVERALL
MORE THAN 10JDVERALL
MORE THAN 20JDVERALL

FPROC
FPROC
FPROC

USER
RULE
RULE

FPROC
FPROC
FPROC
FPROC
FPROC
FPROC
FPROC
FPROC

USER
FPROC
FPROC

USER
RULE
RULE

FPROC
FPROC
FPROC
FPROC

NO
YES
YES
NO
NO
NO
NO
YES
YES
NO
YES
YES
YES
YES
NO
YES
YES
YES
YES
NO
NO
YES
YES
YES

NO
NO

YES
YES

-
-
NO
NO

YES
NO

YES
NO

YES
YES

NO
YES
YES
YES
YES

-
NO
NO

YES
NO

FAILED
FAILED

-
FIRED

-
-

FAILED
FAILED

-
FAILED

-
FAILED

-
-

FAILED
-
-

FIRED

-
FAILED
FAILED

-
FAILED

ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
ORIGINAL
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The rule trace keeps track of the rules that the 
system tries to apply. Fig 8.6 gives an example of part 
of a rule trace. For each part of the condition of a rule 
tried by the system a new line is entered into the rule 
trace. The trace stores information on the rule and its 
status as well as on the part of the condition and where 
the system needs to look to establish that part. 
Information on the current data set is also stored. If the 
data is transformed then the system will retry some rules 
on the transformed data.

The goal trace keeps track of the goals that the 
system tries to backward chain on. In the first instance 
these goals are the tests that the system has decided it 
wants to consider. Other goals will be facts the system 
needs to establish the status of a test. Figure 8.7 gives 
an example of part of a goal trace. The goal trace stores 
information on the rules tried and the status of the goal. 
The data set that the goal is being established on is 
also recorded. The hyphens used to the left of the goal 
name specify the depth of recursion. A single hyphen 
denotes that the backward chainer has been called to try 
and establish the status of a test. Further hyphens 
denote recursive calls to the backward chainer while it is 
still trying to establish a test.

Trace arrays are only stored for the current run; if 
the user starts a new consultation within the system the 
trace arrays are all re-initialised. When the user leaves 
the system the current trace arrays are written to a text 

file.

8.4.3 Log Files
Three text files are created during a consultation to 

provide information on the progress of the consultation. 
These files can be accessed during the consultation and 
can also be printed out after the consultation has
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Chapter Nine







Table XV : Response to Queationnairre

Selecting a Technique

Trace















Figure 9.2 ; Snapshot 1 Figure 9.3 ; Snapshot 2

one-way-anova 
current (R76)

one-way-anova 
current (R76)

accept parametric 
current (R22)

accept parametric 
current (R22)

outliers 
current (R30)

outlier*
FALSE ( R35)

normal-data 
current (R36)



Figure 9.4 : Snapshot 3 Figure 9,5 ; Snapahot 4

on*-way-anova 
currant (R76)

one-way-anova 
current (R76)

accept parametric 
current (R22)

accept parametric 
current (R22)

out lien 
FALSE (R35)

normal-data 
current (RS2)

outllera 
FALSE (R35)

normal-date 
current (R52)



Figure 9.6 i Snapshot 5 Figure 9.7 : Snapshot 6

outliers
FALSE (R3S)

one-way-anova 
current (R76)

accept parametric 
current (R22)

normal-data 
TRUE (R54)

 haplro-wllk-slgS 
FALSE (R4?)

variances-equal 
current (R55)

outliers
FALSE (R35)

one-woy-anova 
current (R76)

accept parametric 
current (R22)

normal-data 
TRUE (R54)

ahaplro-*llk-sl05 
FALSE (R47)

variances-equal 
TRUE (R61)



Figure 9.8 ; Snapshot 7 Figure 9.9 ; Snapahot 8

outll«ra
FALSE (R35)

one-way-anova 
currant (R76)

accept parametric 
TRUB (R26)

normal-data 
TRUB (R54)

ahaplro-wllk-alg5 
FALSE (R47)

varlancea-equal 
TRUB (R61)

outllera
FALSE (R35)

on*-way-anova 
RECOMMEND (R76)

accept parametric 
TRUB (R26)

normal-data 
TRUB (R54)

shaplro-wilk-algS 
FALSE ( R47)

variances-equal 
TRUB (R61)
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Appendix I







APPLICATIONS PACKAGES



Appendix IX





R2 IF TWO.GROUPS

OVERALL.TBST 
THEN ONBJfAYJlNOVA (TEST) LOOK AT





R22 XF NOT OUTLIERS AND 
NORMALJ>ATA AND 
NOT VARIANCES EQUAL AND 
USBRJUSRBB^TOJTRANS

THEN ACCBPT_PARAMBTRIC (FACT) FALSI 
TRANS.FORJIORMALITY (FACT) TRUt 
TRANS_FOR_VARIANCBS (FACT) FALSE 
ADJUST_FOR_UNBQ_VAR (FACT) TRU1

R23 XF NOT OUTLIERS AND
NOT VARIANCBS.BQUAL AND 
NORNALJ)ATA AND 
NOT VSBRJUJRBE TO.TRANS 

THEN ACCBPT^PARAMBTRIC (FACT) FALSE
TRANS_FOR_VARXANCBS (FACT) FALSE 
TRANS^FORJIORMALXTY (FACT) FALSE 
ADJUST_FORJJNBQ_VAR (FACT) TRUE

R24 XF NOT OUTLIERS AND
NOT VARIANCES EQUAL AND 
NOT NORMALJ>ATA AND 
USER.AGREE TO TRANS

THEN ACCEPT FARANBTRXC (FACT) FALSE 
TRANS_FOR NORMALITY (FACT) TRUE 
TRANS.FOR VARIANCES (FACT) TRUE 
ADJUST_FORJJNEQ_VAR (FACT) FALSE

R25 XF NOT OUTLIERS AND
VARIANCES EQUAL AND 
NOT NORKAL_pATA AND 
USEJtJtCRBE^TOJTRANS 

THEN ACCBPT.PARAMBTRIC (FACT) TRUE
TRANS_FOR VARIANCES (FACT) FALSE 
TRANS.FORJIORMAHTY (FACT) TRUE 
ADJUST_FOR_UNEQ_VAR (FACT) FALSE

R26 XF NOT OUTLIERS AND
VARIANCES EQUAL AND 
NORMAL J>ATA 

THEN ACCEPT PARAMETRIC (FACT) TRUE
TRANS.FOR VARIANCES (FACT) FALSE 
TRANS.FOR NORMALITY (FACT) FALSE 
ADJUST_FOR_UNBQ_VAR (FACT) FALSE

R27 XF NOT OUTLIERS AND
VARIANCES EQUAL AND 
NOT NORMAL_pATA AND 
NOT USBR_AGRBEjrO_TRANS



R32 IF

R33 IF

R34 IF

R35 IF









R65 IF

R66 IF

R67 IF
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R71 IF

R72 IF

R68 IF MORB THAN_25_OVERALL AND
ACCBPT_PARAMETRIC

THEN NORMAL_POOLBD_VAR (TBST) RECOMMEND 
NORMAL_SBPARATB_VAR (TBST) VALID 
TWO_SAMPLBJT (TBST) VALID 
ASPINJIELCH (TBST) VALID 
TWO_SAMPLB_WILCOXON (TBST) VALID

R69 IF NOT MORB_THAN_25_OVBRALL
THEN NORMAL.POOLBD VAR (TBST) NOT_VALID

NORMAL_SBPARATB_VAR (TBST) NOT.VALID

R70 IF NOT MORE_THAN_25_OVERALL AND
ACCBPT_PARAMETRIC

THEN TWO SAMPLE T (TBST) RECOMMEND 
ASPINJtELCH (TBST) VALID 
TWO_SAMPLB_WILCOXON (TBST) VALID

MORB_THAN_25_OVBRALL AND 
NOT ACCBPT_PARAMBTRIC AND 
NOT ADJUST_PORJJNBQ_VAR 

THEN NORMAL POOLED VAR (TBST) NOT VALID
NORMAL_SBPARATB_VAR (TBST) NOT_VALID 
TWO_SAMPLB_T (TBST) NOT_VALID 
ASPIN.WBLCH (TBST) NOT.VALID 
TWO_SAMPLB_WILCOXON (TBST) RECOMMEND

MORB_THAN_25_OVBRALL AND 
NOT ACCBPT.PARAMBTRIC AND 
ADJUST FOR_UNBQ_VAR AND 
NOT USBR_AGRBBjrOJTRANS

R73 IF

R74 IF

R75 IF







R96 





PACTS USED IN RULE BASE ANOVA3

Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by - 
Set by -

Rule
Rule
Rule
Rule
Rule
Procedure
User
User
User Rule
Procedure
Procedure
Procedure
Procedure
Rule
User
Rule
Procedure
Procedure
User
User Rule
User Rule
Rule
User
Procedure
User
Rule
Procedure
Procedure
Procedure
Procedure
Procedure
User
Procedure
Rule
User
User
User

User
User
User

TEST NUM GROUPS

TEST_NUM_GROUPS 
TEST NUM GROUPS

TEST TOTAL OBS

TEST_BALANCED
SHAPWILK_ALL_RMS
SHAPWILK_BY_GROU:
SHAPWILK_ALL_GSD
LEVENESJTEST

TEST GROUP SIZE
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