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ABSTRACT

In this paper, we present an analytical method to investigate

the behavior of a two degrees of freedom oscillator excited by

dry friction. The system consists of two masses connected by

linear springs. These two masses are in contact with a driving

belt moving at a constant velocity. The contact forces between

the masses and the belt are obtained from Coulomb’s friction

laws. A set of periodic solutions involving a global sticking

phase followed by several other phases where one or both

masses are slipping, are found in close form. Stability

conditions related to these solutions are obtained.

INTRODUCTION

Vibrating systems excited by dry friction are frequently

encountered in technical applications. These systems are

strongly non-linear and they are usually modeled as spring-mass

oscillators. This paper is the continuation of the work [1], where

we present an analytical method to investigate the behavior of a

two degrees  of freedom oscillator with dry friction. In this

former paper, two kinds of periodic solutions  including stick

slip phases were found. In the following, a new kind of periodic

motion is investigated, involving for each period a global stick

phase [2] for each masses, followed by several other phases

where one or both masses are slipping.

NOMENCLATURE

C,D,H,Γ  = 4by 4 matrices depending on time.

21
, FF  = dry friction forces.

fcba
JJJJJ ,,,,  = Jacobian matrices.

21
,, KKK  = stiffness matrices.

V = belt velocity.

21
, kk = springs stiffness.

21
,mm = blocks mass.

t’ = time.

t = non dimensional time.

dcba
tttt ,,, = non dimensional times of switches.

21
,uu = non dimensional friction forces.

21
,

rr
uu = non dimensional static friction forces.

21
,

ss
uu = non dimensional sliding friction forces.

)4,..1(, =Σ i
i

= switching surfaces.

χ = non dimensional stiffness.

η = non dimensional mass.

321
,,, ωωωω = eigenfrequencies.

DESCRIPTION OF THE MODEL

 Figure 1: Coupled oscillator with dry friction.

The system consists of two masses 
21

,mm connected by linear

springs of stiffness 
21

, kk (Fig.1). These two masses are in

contact with a driving belt moving at a constant velocity. The

contact forces 
21

,FF  between the masses and the belt are

obtained assuming Coulomb’s friction laws.
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The motion equations are written in the following form
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The friction forces are obtained from Coulomb’s laws
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are the sliding and the sticking

friction forces.

PREDICTION OF THE OSCILLATIONS EXHIBITED BY

THE SYSTEM.

The dynamical behavior of this piecewise linear system is very

complex and includes slip or stick oscillations of the masses.

 All possible motions of the system are composed of several

phases of slip motion for the both masses, stick motion of 
1

m

and slip motion of 
2

m  or  vice versa  and at last, stick motion for

the two masses.

For each kind of motions, the close form solution is obtained.

Global slipping phase: The equations of motion in this case are
written as :
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The solution is given by 
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The 4 by 4 matrix )(tH  is obtained in analytical form [1], by a

modal analysis of the system (3) (see also Appendix A)
Slip-stick motion:(slip motion of 

1
m ,stick motion of 
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The solution is obtained from a modal analysis of (5), [1].

0
)()( ZttZ Γ=  (6)

The 4 by 4 matrix )(tΓ is given in analytical form (Appendix A)

Stick-slip motion:(stick  motion of 
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The solution [1] is given by

0
)()( ZtCtZ =  (8)

 The 4by 4 matrix )(tC ( Appendix A) is obtained by a modal

analysis of (7).

Global sticking phase
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The solution in this case is written as
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PERIODIC SOLUTIONS INCLUDING A GLOBAL

STICK PHASE.

In contrast with the periodic solutions investigated in [1], a new

kind of periodic orbits is found, which includes a  sticking

phase for both masses, followed by three other phases where

one or two masses are slipping. For each parts of the motion,

the solution is obtained in analytical form. The instants of  the

transitions between one part of the motion to another one are

obtained by writing the switching conditions.

A transition from  slip to stick motion occurs if at some instant,

the velocity of the mass reaches the velocity of the belt and if at

this time, the restoring force applied to the mass is smaller  than

the corresponding static friction force.

A transition from stick to slip motion  occurs if at some instant,

the restoring force applied to the mass reaches the value of the

static friction force.

Let us assume that at t=0
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For 
a
tt <<0 , the two masses perform a stick motion given by

(10). This motion ends when  one of the restoring forces applied

to the masses reaches the limiting value 
ri

u . For all the motion,

the restoring force applied to the second mass is constant

(
102012

zzzz −=− ). A transition occurs at
a
tt = , when the

restoring force applied to the first mass reaches its limiting

value. Let us define:
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For a new period of time : 
baa
tttt +<< ,

1
M performs a slip

motion, while 
2

M is still in stick motion:

aa
ZtttZ )()( −Γ=  (13)

This motion ends at 
ba
ttt += , when the restoring force applied

to the second mass reaches its limiting value. Let us define
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A new phase occurs for 
cbaba

tttttt ++<<+ , related to a

global slip motion of the system, defined by

bba
ZtttHtZ )()( −−=  (15)

This motion ends at 
cba

tttt ++= , if at that time
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For 
dcbacba

tttttttt +++<<++ , the first mass performs a

stick motion ( Vz =
1
' ), while the second one performs a slip

motion

)(,)()(
cbacccba

tttZZZttttCtZ ++=−−−= (17)

A periodic motion of period 
dcba

tttt +++  is obtained if

0
)( ZttttZ

dcba
=+++  (18)

The obtained periodic motion depends of 6 parameters:

dcba
ttttzz ,,,,,

2010
 and the switching conditions (12), (14),

(16), together with the periodicity conditions (18) provide 6

scalar equations for the determination of these parameters. This

new periodic motion is a generalization of the solution II

obtained in [1]: this last solution is a particular case of this new

solution for 0=
a

t .

STABILITY OF THE PERIODIC SOLUTION.

The dry friction oscillator considered in this paper is not

smooth, with a phase space dimension varying between two

(global stick motion) and four ( global slip motion). Due to the

presence of discontinuities in the equations of motion, the

stability of the periodic solutions cannot be investigated by the

classical linearization method An alternative way [3] consists to

use Poincarre maps modeling. The phase space is partitioned

into four configurations (Fig.2).

 Figure 2: Phase space

At the boundaries (
0410

,.., Σ≡ΣΣΣ ) between two adjacent

configurations, the system switches from one configuration to

another. Within each configuration, the close form solution is

known
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The switching moments

),,,()4,..,1(
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are obtained as solution of the switching conditions. A

Poincarre map from )(
0

Σ  to )(
0

Σ is defined as
14

.. PPP oo= ,

where 
k

P is a local mapping between )(
1−Σ

k
and )(

k
Σ defined by

)4,..,1(),()()()(:
111
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ϕ   (20)

 The  obtained periodic solutions are related to the fixed points

of this map. The stability of these fixed points depends on the

eigenvalues of the Jacobian matrix J of the map.

If one  eigenvalue of J  (at least) is outside the unit circle, the

fixed point of the map is unstable and the corresponding

periodic solution is also unstable. If all the eigenvalues lie

inside the unit circle, the fixed point of the map is stable, but the

corresponding periodic orbit is only conditionally  stable, with

0Σ
1Σ 2Σ 0Σ

1ϕ 2ϕ Mϕ t
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respect to some particular perturbations of the initial conditions

leading to the same kind of switches.

Let us introduce small  perturbations into the  initial conditions

0000
', zz leading to a periodic solution

tt vudzyxdzdzzzdzzz ),(',),(,''',
0000000000

==+=+=  (21)

Moreover, the new initial conditions are assumed to lie in the

map of the phase space defined by

0..,''
21

==== vueiVzz  (22)

If the initial perturbations yx,  are small, the restoring forces

applied to the masses are smaller than their limiting values, and

the perturbed motion is a global stick motion given by:
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This motion ends at 
aa

dttt += , when the restoring force

applied to the first mass reaches the limiting value 
1r

u .

))(()(
000

dZZdttDdttZ
aaaa

++=+  (24)

Assuming small perturbations

0',,
'

)(')()()(
000

=







=








=

+=−+=

a

a

a

a

a

a

a

aaaaaaa

dz
y

x
dz

dz

dz
dZ

dtZtDdZtDtZdttZdZ

 (25)

The value of 
a

dt is obtained from the condition
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The next step is a slip stick motion given by:
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This motion ends at 
bbaa

dttdttt +++= , when the restoring

force applied to the second mass reaches the limiting value 
2r

u .
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Assuming small perturbations
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The value of 
b

dt is obtained from the condition
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A new step is a global slip motion given by

))(()(
bbbbaa

dZZdttdtttHtZ +−−−−=  (33)

A transition occurs at 
ccbbaa

dttdttdttt +++++= , when the

velocity of the first mass reaches the velocity V of the belt, the

restoring force applied to this mass being less than its limiting

value for small perturbations.
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0..

,)('
1

=
=+++++

c

ccbbaa

uei

Vdttdttdttx
 (35)

It results

,







=

















b

b

c

c

c

c

u

x
J

v

y

x

4



( )
( )
( )

VzzkkVzkk

zz

V
kjitHH

HkHHHkHH

HkHHHkHH

HkHHHkHH

J

ccc

cc

cijij

c

/)(
~~

,/'
~~

,
~

),3,2,1,(),(

~
,(

~

~
,(

~

~
,(

~

2113212

21

1

11321323134241

11223323122221

11113323111211

−==

−
===



















++++

++++

++++

=

χη

χ
 (36)

The last step is a stick slip motion given by
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This motion finishes at

ddccbbaa
dttdttdttdttt +++++++= , when the

velocity of the second mass reaches the velocity of the belt.
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The linear correspondence between the initial and the final

perturbations is then obtained
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The stability of the periodic solution depends on the

eigenvalues of the matrix J. If all these eigenvalues lie inside

the unit circle, the periodic solution is conditionally stable. If

one of them at least is outside this circle, the periodic solution is

unstable.

The eigenvalues of the J matrix are the roots of the equation

0)det()( =−≡ IJP λλ  (42)

J is a singular matrix

0)det(

),det()det()det(

=
=

ab

abcf

JJ

JJJJJ
 (43)

It results that: ))(()( JtrP −= λλλ
The periodic solution  is conditionally stable if 1)( <Jtr .

Otherwise, the periodic solution is unstable.

NUMERICAL VALIDATION

The periodicity conditions (18) gives the following equations
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These periodicity conditions include the last switching

condition (16).

From (44), we deduce two compatibility conditions
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The relation (45) provides two equations linking the time

duration (
dcba

tttt ,,, ) of each part of the motion; from (44), we

deduce the value of 
0

z

02

1

10
')( zNINz −−−=  (46)

Inserting this result in the switching condition (12) and (14), we

obtain two new relations for the determination of the

parameters
dcba

tttt ,,, . Several conditions about the results

obtained by this numerical method must be fulfilled: for

example, the computed  values of the time duration

dcba
tttt ,,, must be positive numbers.

For the following values of the data:

8587.0,7844.2,1,8.0
21

===== eeVηχ ,

we obtain

1958.2,8921.0

,34.2,5.1,2,6784.0
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The corresponding behavior of the system is shown on Figures

3,4. Each parts of the system’s motion during one period are

shown on these figures ( curves O1a1, O2a2: global sticking

motion; curves a1b1,a2b2: slip stick motion; curvesb1c1,b2c2:

global slipping motion; curves c1d1,c2d2: stick slip motion) .

 Figure 3: Time history of the masses.

 Figure 4: Phase plots of the system.

CONCLUSION

The system considered in this work is a non smooth system in

presence of discontinuities of forces and motions. The

corresponding dynamical model is nonlinear.

However, the system can be partitioned into different

configurations. Within each configuration, the dynamical model

is linear and the analytical solution  of the motion equations is

available. It results that, even in the case of multi degrees of

freedom systems, it is possible to obtain the solution of these

non-linear systems by patching the solutions of the successive

configurations. Due to the presence of discontinuities, the

stability of the periodic solutions cannot be investigated by the

classical methods used for smooth systems. An alternative way

consists to use a Poincarre map modeling. However, this

method gives only some results about the conditional stability

of the solution.
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APPENDIX A: MATRICES CH ,,Γ .









=

13

21

HH

HH
H )3,2,1(1 =ΛΛ= − iBH

ii

)2,1(),sin(),cos(

,

0

0

,
0

011

'

13

2

2

1

1

2

2

1

1

21

===

=





















=









=








=Λ

itstc

BB
s

s

B

c

c
B

iiii
ωω

ω

ω

λλ

 (47)

21
,ωω are the roots of the characteristic equation

,0)det( 2 =− ωIK )2,1(,
1

=







= i

i

i λ
ψ

0)( 2 =−
ii

IK ψω .  (48)

)3,2,1(,, 1

13

21 =ΣΣ=Γ








ΓΓ
ΓΓ

=Γ − i
ii

γ

'

132

1

,
0

0sin

,
10

0cos
,

10

1

γγγ

γ
χ

=







=









=








=Σ

t

t

t

 (49)

,
13

21









=

CC

CC
C  (50)

6











=Π=ΠΠ= −

11

01
),3,2,1(

1
iAC

ii

χηω
ω
ωω

==

















=







=

2'

13

21

,

,)sin(
0

0

,
)cos(0

01

AA

t

t

A
t

A

APPENDIX B: CONSTRAINTS

Several constraints must be fulfilled all along each parts of the

motion and the obtained parameters (
dcba

ttttzz ,,,,,
2010

) are

related to a realistic solution if some constraints are true.

First, we need to obtain

0,0,0,0 >>>>
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tttt   (51)
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The numerical  values obtained for the parameters

(
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ttttzz ,,,,,
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) fulfill almost all these constraints,

excepted the constraint including the value of 
21

,
rr

uu . The

solution depending only on 
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For the numerical validation, we obtain

6645.1,0678.0
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uu .

The first condition is always verified: ( 7844.2
11

=> eu
r

)

The other constraints are the following:

For
a

tt <<0

2122212111
)(2,2 ezzueezzue

rr
<−<−<−<− χχ  (54)

From

)()(

)1)(()1(

102012

1201021

zzzz

ttVeVtzzzz
a

−=−
−−+=−+−=−

χχ
χχχχ

 (55)

we deduce

1212010
ezzzz <−<− χχ  (56)

Taking into account (52), (53),(55) and (56), the constraints

(54) are fulfilled.

For 
baa

tttt +<<

212221
)()(2,' ezzthueVz

r
<−≡<−< χ  (57)

The first constraint is fulfilled (Fig.4). On the other hand

0)'()''()('
112

>−=−= zVzzth χχ

The function )(th is an increasing function on the interval

baa
tttt +<<

2222
)(,)(2 etthethue

baar
=+<<−  (58)

The constraint (57) is satisfied.

For 
cbaba

tttttt ++<<+ , the constraint

VzVz <<
21
',' is fulfilled ( Fig.4)

For 
dcbacba

tttttttt +++<<++

Vzezzue
r

<<−<−
212111
',2 χ  (59)

The second condition is fulfilled (Fig.4). Let us consider

21
)( zzth χ−=

0''')('
221

>−=−= zVzzth χχ  (60)

The function )(' th is an increasing function of t on the interval

(
dcbacba

tttttttt +++<<++ ) . From

2010
)( zztttth

dcba
χ−=+++  (61)

we conclude that the first condition (59) is fulfilled.
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