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ABSTRACT 
In ship and aircraft turbine rotors, the rotating mass 

unbalance and the different movements of the rotor base are 
among the main causes of vibrations in bending. The goal of 
this paper is to investigate the dynamic behavior of an on-
board rotor under rigid base excitations. The modeling takes 
into consideration six types of base deterministic motions 
(rotations and translations) when the kinetic and strain 
energies in addition to the virtual work of the rotating flexible 
rotor components are computed. The finite element method is 
used in the rotor modeling by employing the Timoshenko beam 
theory. The proposed on-board rotor model takes into account 
the rotary inertia, the gyroscopic inertia, the shear deformation 
of shaft as well as the geometric asymmetry of shaft and/or 
rigid disk. The Lagrange’s equations are applied to establish 
the differential equations of the rotor in bending with respect to 
the rigid base which represents a noninertial reference frame. 
The linear equations of motion display periodic parametric 
coefficients due to the asymmetry of the rotor and time-varying 
parametric coefficients due to the base rotational motions. In 
the proposed applications, the rotor mounted on rigid/elastic 
bearings is excited by a rotating mass unbalance associated 
with sinusoidal vibrations of the rigid base. The dynamic 
behavior of the rotor is analyzed by means of orbits of the rotor 
as well as fast Fourier transforms (FFTs). 

1 INTRODUCTION 
The rotating machines are among the vital parts of modern 

industrial domains and the rotor forms their key component. 
Base excitations of rotating machines can be caused by a 
machine carried on a base affected by ground movement or on-
board moving systems. Rotors mounted on transportation 
systems are mainly excited by the rotating mass unbalance and 

the various motions of their base which can increase their lateral 
vibration and create a dynamic instability phenomenon. 

The rotors are complex systems and their analysis is also 
complex. Many studies concentrated on making a clear 
understanding of the dynamics of symmetric/asymmetric 
rigid/flexible rotor systems supported by linear/nonlinear elastic 
bearings in the case of fixed base because these systems can be 
introduced in the modern industry [1,2]. Berlioz et al. [3] 
observed theoretically and experimentally the lateral 
instabilities of a drill-string parametrically excited under 
rotating conditions. Nandi and Neogy [4] presented an efficient 
analysis of stability for finite element models of asymmetric 
rotors and investigated whether an unstable rotor could be 
stabilized using an isotropic viscous damper. 

Samali et al. [5] used the Monte Carlo simulation to 
simulate the nonstationary earthquake ground motions and to 
determine the statistics of rotating machinery response. In [6], a 
seismic response of a Jeffcott rotor supported by oil film 
bearings to a real seismic wave was examined and its stability 
was investigated by calculating the loci of the disk and journal 
centers. Bachelet et al. [7] investigated the dynamic behavior of 
an asymmetric rotor excited by a base seismic translation and 
developed an original spectral approach in order to approximate 
the rotor response. Da Silva Tuckmantel et al. [8] represented 
the supporting structure (foundation) of a rotating system by 
coupled as well as uncoupled modes. They found that there 
were limitations in identifying the vibratory modes and their 
corresponding damping factors in the system response. Kang et 
al. [9] and Cavalca et al. [10] studied the effect of the flexible 
foundation on the dynamic characteristics of the rotor-bearing 
systems. 

The number of works dealing with the investigation of 
dynamic behavior of a rotor during a harmonic motion of its 
base is quite low. Duchemin et al. [11] applied the method of 
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multiple scales to a simple rotor model under a base sinusoidal 
rotation in order to observe its stability. They presented 
experimental results in order to validate the analytical study. 
Driot et al. [12] described the orbits of a rotor induced by a 
base harmonic rotational movement using numerical methods. 
From their work, the comparison between numerical results and 
experimental investigation was quite satisfactory. El-Saeidy and 
Sticher [13] obtained the responses of a rigid rotor-bearing 
system subjected to rotating mass unbalance plus base harmonic 
excitations along or around lateral directions using analytical 
solutions in the case of linear bearing and a time integration 
scheme in the case of bearing cubic nonlinearity. Das et al. [14] 
performed a numerical simulation of a flexible rotor system 
excited by mass unbalance and rotational periodic motion of the 
base in order to investigate its active vibration control. This 
control was successful for avoiding the lateral parametric 
instability due to the sinusoidal rotation of the base. 

Among all the literature mentioned above, there are 
references studying base-excited rotor systems and whose few 
works deal with the harmonically excited on-board rotors 
[11-14]. Moreover, these references concentrate on the 
investigation of dynamic behavior of either simple rotors (for 
example, Jeffcott rotor [6] and rotors modeled using the 
Rayleigh-Ritz method [11,12]), rotors supported by elastic 
bearings with constant damping and stiffness coefficients (for 
example, [13,14]) or rotors excited by simple motions (rotation 
or translation) of the base. As a consequence, the applications 
proposed in these works are not suitable for realistic ones. In 
this paper, an improved model is presented. Namely, an 
asymmetric rotor is discretized using the finite element method 
based on the Timoshenko beam theory, mounted on 
hydrodynamic bearings linearized with damping and stiffness 
coefficients calculated using the Reynolds equation [15] and 
excited by base combined motions (six types of deterministic 
rotational and translational motions). The rotary inertia, the 
gyroscopic inertia, the shear deformation of shaft as well as the 
geometric asymmetry of shaft and/or rigid disk are taken into 
consideration. By computing the Rayleigh damping coefficients, 
the effect of rotor internal damping is included in the study. The 
application of the Lagrange’s equations using the finite element 
method gives the differential equations of the rotor in bending 
with respect to a noninertial reference frame connected to the 
rotor rigid base. The linear equations of motion point out 
periodic parametric coefficients due to the geometric 
asymmetry of the rotor and time-varying parametric coefficients 
due to the base rotational excitations. These parametric 
coefficients are considered as producers of internal excitation 
and can create lateral dynamic instability. In the presented 
applications, the rotor mounted on rigid or elastic linear 
bearings is subjected to rotating mass unbalance plus to base 
sinusoidal rotation without or with base sinusoidal translation. 
Numerical solutions for the linear equations of vibratory motion 
of the on-board rotor are computed and analyzed by means of 
orbits of the rotor as well as fast Fourier transforms (FFTs). 

2 THEORTICAL ANALYSIS OF AN ON-BOARD 
ROTOR-BEARING SYSTEM 
The rotor generally consists of the disk, shaft, mass 

unbalance, bearing and base. This section includes formulations 
for the rotor components and the equations of motion. 

2.1 Preliminary Calculations 
Three principal coordinate systems shown in Fig. 1 are 

introduced to take into account the movement of the rotor rigid 
base. They are attached to the ground Rg, the rigid base R and 
the moving rotor Rl. 

Figure 1.  REFERENCE FRAMES OF THE ON-BOARD 
ROTOR 

The rotational motions of the rotor base are described by 
the angular velocity vector components ω

x(t), ωy(t) and ωz(t) of 
the rigid base R with respect to the ground Rg projected in the 
frame R. The translational motions of the rotor base are 
described by the coordinates xO(t), yO(t) and zO(t) of the position 
vector OgO projected in the frame attached to the base R. The 
Euler angles ψ(y,t), θ(y,t) and φ (t) (Fig. 2) permit describing 

the orientation of the rotor Rl with respect to its base R. The 
angular velocity vector of the rotor Rl with respect to the ground 
Rg measured in the frame Rl is given by 

, ,
g g l l l

l l
l

T
R R R x y z

RR R R
= + =ω ω ω ω ω ω (1) 

where T is the matrix transposition symbol. The components 

(
lxω ,

lyω ,
lzω ) are formulated as a function of (ψ,θ,φ ) and 

their time derivative as well as (ωx,ωy,ωz). The rotor is 
supposed to rotate at a constant speed Ω. So the spinning angle 

φ  is replaced by Ωt and its derivative φɺ  by Ω (• refers to the 

differentiation with respect to time t). Let us consider a generic 
point C0 on the elastic line of the nondeformed shaft. Its 
coordinates in the frame R are (0,y,0). The translational 
displacements u(y,t) and w(y,t) of the point C0 due to bending of 
the flexible rotor are expressed respectively with respect to the 
Ox and Oz axes of the coordinate system R. 
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Figure 2.  EULER ANGLES 

2.2 Energ y and Virtual Work Calculations 
The kinetic and strain energies are measured from the 

ground and their terms are written with respect to the frame 
linked with the rotor rigid base R. 

Disk.  The disk is assumed to be rigid. Therefore only its 
kinetic energy Td is calculated as follows [7,11] 

( ) ( )1

2 2

g g g g

l l l l
d

T T
R R R Rd

d mO O R R

m
T = +v v ω I ω (2) 

with 
diag diag

d d d d d d d d d

x y z mo di y mo di
m m m m m m m m mI I I I I I I I   = = + −   I (3) 

where md is the mass of the disk, 
g

l

R

O
v  is the translational 

velocity vector of its center and 
dmI  is its principal inertia 

tensor. 
d

x
mI , 

d

y
mI  and 

d

z
mI  are the inertias of the disk mass about 

the Ox, Oy and Oz axes respectively. In addition, 
d

mo
mI  and 

d

di
mI

are used to explain the effects due to the mean inertia of the 
disk mass and those due to the inertia modeling the disk 
geometric asymmetry. Thus when the disk is asymmetric, 

d

x
mI  

as well as 
d

z
mI  are different and the contribution of 

d

di
mI  in them 

is not nil. The translational velocity vector components lO
uɺ , 

lO
vɺ  and lO

wɺ  of the disk center are functions of the components 

(ωx,ωy,ωz) and the coordinates (xO,yO,zO). The final expression 
of the kinetic energy of the disk having a mass center positioned 
at the arbitrary abscissa yd relative to the frame R is then of the 
following form [11] 

( )

( ) ( )( )

2 2 2

2 2 2 2 2

2
1

2

l l l

l l l l l

d d d

d
d O O O

mo x z y y di x z
m m m

m
T u v w

I I I

= + +

+ + + + −

ɺ ɺ ɺ

ω ω ω ω ω
(4) 

Shaft.  The shaft is supposed to be flexible. Therefore it is 
characterized by the kinetic and strain energies and modeled by 
beam elements. The kinetic energy of a shaft can be obtained by 
considering a shaft elementary volume which can be considered 
as a disk of thickness dy. Thus the kinetic energy of a shaft 
takes the following form [7,11] 

( )

( )

( )

2 2 2

0

2 2 2

0 0

2 2

0

2

1
2

2

sh

l l l

sh sh
l l l

sh sh

sh
l l

sh

l

sh sh
sh O O O

l l
mo x z mo y

sh S sh S

l
di x z

sh S

S
T u v w dy

I dy I dy

I dy

= + +


+ + +




+ − 



∫

∫ ∫

∫

ɺ ɺ ɺ
ρ

ρ ω ω ρ ω

ρ ω ω

(5) 

where ρsh, Ssh and lsh are respectively the density, the cross-
section and the length of the shaft. 

sh

mo
SI  and 

sh

di
SI  are respectively 

the mean inertia of the cross-section and the inertia 
characterizing the asymmetry of the shaft. The rigid base 
motion relative to the ground has no influence on the strain 
energy of the shaft because this energy depends only on the 
stresses and therefore on the transverse deflection of the shaft 
with respect to the rotor base R. In addition to the bending 
deformation, the shear effects highlighted by Timoshenko and 
the geometric stiffening effects corresponding to the centrifugal 
stressing due to the base rotational motions are taken into 
account. The strain energy of a shaft is defined by 

2 2

0

2 2

0

2 2

0

2 2

2

2

1

2

sh

sh

sh

sh

sh

lmo
sh S

sh

lmo
sh sh sh

l
di

sh S

di
sh sh sh

E I
U dy

y y

G k S u w
dy

y y

E I dy
y y

u w
G k S

y y

ψ θ

ψ θ

ψ θ

ψ θ

    ∂ ∂
 = +    ∂ ∂    

    ∂ ∂
 + + + −    ∂ ∂    

     ∂ ∂  − −     ∂ ∂    

   ∂ ∂− + − −   ∂ ∂   

∫

∫

∫

( )

( )

( ) ( )

0

0 0

2 2

2 2 2 2

0

cos 2

sin 2

4

sh

sh sh

sh

sh

l

l l

di di
sh S sh sh sh

l
x zsh sh

sh

dy t

u w
E I dy G k S dy t

y y y y

S u w
l y dy

y y

ψ θ ψ θ

ρ ω ω

 
  Ω

  
  

   ∂ ∂ ∂ ∂− − + − Ω    ∂ ∂ ∂ ∂   

    ∂ ∂
 + − + +    ∂ ∂    

∫

∫ ∫

∫

(6) 

where Esh and Gsh are respectively the Young’s modulus and the 
shear modulus of the shaft (Gsh=Esh/(2(1+νsh)) hence νsh is the 
Poisson’s ratio). mo

shk  and di
shk  are respectively the mean shear 

correction factor of the cross-section and that relative to the 
section asymmetry of the shaft. 

Mass Unbalance.  Let us consider a concentrated mass 
unbalance mmu placed at a point Pmu on the disk (ymu=yd) with a 
distance rmu from the shaft geometric center. Its initial angle 

3



with the Oz axis of the frame R at rest is ηmu. The mass 
unbalance is characterized by the kinetic energy computed as 
follows [11] 

( )
2

g g

mu mu

T
R Rmu

mu P P

m
T = v v (7) 

The components of the mass unbalance translational 

velocity vector 
g

mu

R
Pv  are functions of (ωx,ωy,ωz) and (xO,yO,zO). 

Bearing.  Figure 3 shows a simple representation of a 
hydrodynamic bearing which is composed of a fixed journal 
containing a rotating shaft. The points O and Ol=Csep are 
respectively the bearing center and the shaft geometric center. 
The radius, length and clearance of the bearing are respectively 
rbe, lbe and cbe=rbe-rsh where rsh is the shaft radius. At a constant 
speed of rotation Ω of the rotor and for a constant static load Wr 
created by the rotor weight, the shaft geometric center Csep in 
the bearing holds a static equilibrium position defined by the 
displacement vector δbe,sep=<ube,sep,wbe,sep>R

T expressed in the 

frame R or equivalently by the eccentricity ,be be sepe = δ  of the 

shaft center in the journal and the attitude angle φbe between the 
Wr load direction and the line of centers OCsep. 

Figure 3.  SCHEMATIC VIEW OF A HYDRODYNAMIC 
BEARING 

In the present study, the short bearing theory is considered 
(lbe/dbe≤1/8 where dbe=2rbe) and the static solution can be 
reached using the following relations obtained from the 
Reynolds equation with the Gümbel boundary conditions [15] 

( )( )
( )

1
2 2 2 2 2 2

22

16 1

1

be be bebe be
r be be

be be be

r l
W r l

c d

+ −   
= Ω   

−   

ε ε π ε
µ

ε
(8) 

( )
21

4
be

be

be

tg
−

=
επϕ

ε
(9) 

where εbe is the relative eccentricity (εbe=ebe/cbe) and µ is the 
fluid film dynamic viscosity. The nonlinear Eq. (8) is solved by 
an iterative Newton-Raphson method and provides the 
eccentricity εbe and then the static radial displacement ebe of the 
shaft center. The components of the vector δbe,sep are obtained 
by a classical change of basis. The hydrodynamic fluid forces 
Fbe=<Fbe

u,Fbe
w>R

T produced by the bearings and projected in the 
frame R can be obtained by integration of the fluid film pressure 
(Reynolds equation in the dynamic regime) over the bearing. In 
order to apply the Lagrange’s equations, the virtual work δWbe 
of these forces has to be established 

( ),T
be be be be beW = F δ δ δɺδ δ (10) 

If the transverse dynamic displacements δbe=<ube,wbe>R
T of 

the shaft elastic line are supposed to be small in the vicinity of 
the static position δbe,sep, the linear analysis of bearings can be 
applied by constructing a first order Taylor expansion of the 

fluid film forces ( ),be be beF δ δɺ  in the vicinity of the static 

hydrodynamic forces ( ), ,be be sepF δ 0  as follows 

( ) ( ),, ,be be be be be sep be be be be= − −F δ δ F δ 0 c ∆δ k ∆δɺ ɺ (11) 

with 

;
xx xz xx xz
be be be be

be bezx zz zx zz
be be be be

c c k k

c c k k

   
= =   
   

c k (12) 

, ;be be be sep be be= − =∆δ δ δ ∆δ δɺ ɺ (13) 

where cbe and kbe are the damping and stiffness matrices of the 
linearized hydrodynamic bearing (Fig. 4) whose analytical 
expressions can be found in [15]. 

Figure 4.  BEARING DAMPING AND STIFFNESS 
COEFFICIENTS 
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2.3 Equations of Motion 
The finite element method is chosen for discretizing the 

rotor and describing its flexural motion as a function of the 
nodal displacement vector defined by δn=<un,wn,θn,ψn>R

T 
because the rotor has two lateral translations and two rotations 
at each node. The finite element used for the shaft modeling has 
two nodes and the shape functions are based on the Timoshenko 
beam theory. 

The linear equations of motion of the finite element rotor 
model are obtained after applying the Lagrange’s equations to 
the energies for the disk, the shaft finite elements and the mass 
unbalance as well as to the virtual work of the hydrodynamic 
bearings and assembling appropriately the produced matrices 
and vectors. They are written with respect to the noninertial 
reference frame connected to the rotor rigid base R as follows 

( ) ( ) ( ) ( )
( ), ,,

r r r r r r r

be r sep be r sep

t t t t+ + =

+ +

M δ C δ K δ F

F δ 0 K δ

ɺɺ ɺ

(14) 

with M r(t), Cr(t) and K r(t) the mass, damping and stiffness 
matrices with time-varying parameters due to the asymmetry of 

the rotating rotor and to its moving base. rδ
ɺɺ , rδ
ɺ  and rδ  are 

respectively the acceleration, velocity and displacement vectors 
of the on-board rotor-bearin system of dimension 4(nesh+1)×1 
hence nesh is the number of shaft finite elements. Fr(t) is the 
external force vector. In addition, the static hydrodynamic force 
vector Fbe(δr,sep,0) of the bearings is opposite and equal to the 
rotor weight vector ,

rW
d shF . Lastly, δr,sep is the static solution 

vector of the rotor due to the hydrodynamic bearings. 
The matrices of Eq. (14) are expressed in what follows 

( ) ( ) ( )2 2
, , ,cos 2 sin 2c s

r d sh d sh d sht t t= + Ω + ΩM M M M (15) 

( ) ( )
( )

2

2

,
, , ,

, ,
, , ,

cos 2

sin 2
y

g cid g
r be d sh d sh d sh

g s re y
d sh d sh b

t t

t

= + + Ω + Ω Ω

+ Ω Ω +

C C C C C

C C ω ω
(16) 

( ) ( ) ( )
( )

( )

2 2

2 2

2 2 2

2

, ,

, , , , 2
, , , , , , , ,

, 2 , , 2 ,
, , , , , , , ,

, ,
, , ,

cos 2 sin 2
y y x x

y z z x z

y

e c e se
r be sh sh sh

re y re y re gse x
d sh b d sh b d sh b d sh b

re y re gse z re x z
d sh b d sh b d sh b d sh b

re c y
d sh b d sh

t t t

Ω

= + + Ω + Ω

+ + Ω + +

+ + + +

+ +

K K K K K

K K K K

K K K K

K K

ω ω ω ω

ω ω ω ω ω

ω

ω ω ω

ω ω ω ω

ω

ɺ

ɺ

ɺ

ɺ(
) ( )

(

2
2 2

2 2
2 2 2

2
2 2 2

2
2 2

, , , , 2
, , ,

, , , , , ,2 2
, , , , , ,

, , , , , , 2
, , , , , ,

, , , ,2
, , , ,

cos 2

y x

y z x z

y y x

y x z

re c re cy x
b d sh b

re c re c re cy z x z
d sh b d sh b d sh b

re s re s re sy y x
d sh b d sh b d sh b

re s re sy
d sh b d sh b

t

Ω

Ω

Ω +

+ + + Ω

+ + Ω +

+ +

K

K K K

K K K

K K

ω ω

ω ω ω ω

ω ω ω

ω ω ω

ω ω

ω ω ω ω

ω ω ω

ω

ɺ
ɺ

) ( )sin 2x z tΩω ω

(17) 

The subscripts “d”, “ sh”, “ be” and “b” refer to the disk, 
shaft, bearing as well as base respectively and express the 
contribution to the phenomenon represented by the 
corresponding matrix. The superscripts “c2” and “s2” denote the 
geometric asymmetry of the rotor expressed in terms of the 

time-varying trigonometric functions cos(2Ωt) and sin(2Ωt). 
The superscript “id” stands for the rotor internal damping 
introduced by estimating the Rayleigh damping coefficients, “g” 
for the rotor gyroscopic effect, “e” for the shaft elasticity 
corresponding to the bending and shear deformations, “re” for 
the rotational effects due to the base rotations (these effects 
come from the kinetic energies of the disk and the shaft) and 
“gse” for  the geometric stiffening effects corresponding to the 
centrifugal stress due to the base rotations. 

The vector Fr(t) is defined as follows 

( ) ( ) ( ) ( ) ( ) ( )
( ) ( )

( ) ( )
(

) ( )

2

2

1 1

2 2
1 1 1 1

2
1 1

, , , , , ,

, ,

2 2
,

, , , ,2 2
, , , ,

, ,2
, ,

cos 2

sin 2

cos sin

cos

r

r

y y x y

z x z

W c
r d sh mu mub d sh b d sh b

s
d sh b

W c s
d sh r mu mu

c c c cy y x y
mu b mu b mu b mu b

c cz x z
mu b mu b

t t t t t t

t t

W t t

t

ω ω ω ω

ω ω ω

ω ω ω ω

ω ω ω

Ω

= + + + + Ω

+ Ω

= − + Ω Ω + Ω Ω

+ + Ω + +

+ + Ω

F F F F F F

F

V V V

V V V V

V V

ɺ
ɺ

(
) ( )

( )(
( ) ( ))

( )(

2
1 1 1

2 2
1 1 1

, , , 2
, , ,

, , ,2 2
, , ,

, ,

2 2

, ,

sin

2 2

2 2

y y x

y z x z

s s sy y x
mu b mu b mu b

s s sy z x z
mu b mu b mu b

u y z y x z
d sh b O O O O

z x y y z
O O

w x y x y z
d sh b O O O O

y
O

t

x z y z

y x

z y x y

x

ω ω ω

ω ω ω ω

ω ω ω

ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω ω ω ω ω

ω

Ω+ + Ω +

+ + + Ω

− + − + +

− − − +

− + − + +

−

V V V

V V V

V

V

ɺ
ɺ

ɺɺɺ ɺɺ

ɺ

ɺɺ ɺɺɺ

ɺ( ) ( ))
( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

2

2

2

2 2

, , , ,

, , , ,

, , , ,

,
, ,

,
, ,

,
, ,

2 cos 2

2 cos 2

2

x z x y
O

yw x y z yu z x y
d sh b d sh b

x y z z x y
d sh b d sh b

y x x y y z y z
d sh b d sh b

c x z y z
d sh b

c z x x y
d sh b

s x
d sh b

z

t

t

θ ψ

ψ θ

θ

ψ

ψ

ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω ω ω

ω ω ω ω

ω ω ω ω

ω

− − +

− + + −

− + − −

− Ω + + Ω +

− − Ω − Ω

+ + Ω + Ω

+ −

V V

V V

V V

V

V
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(18) 

where Vmu (Fmu(t)), Vd,sh,b (Fd,sh,b(t)) and Vmu,b (Fmu,b(t)) are load 
vectors (force vectors) associated respectively with the mass 
unbalance, the inertia force due to base motions and that due to 
coupling between both phenomena. The superscripts “c1” and 
“s1” signify the components of the mass unbalance force 
expressed in terms of the time-varying trigonometric functions 
cos(Ωt) and sin(Ωt). The superscripts u, w, ψ and θ denote the 
direction of the action force components associated with the 
rotor base motions. 

The transient dynamic motion of the rotor is then obtained 
by solving Eq. (14) by means of the implicit Newmark time-
step integration algorithm based on the average acceleration. 
The static equilibrium position δr,sep is used to initialize the 
transient dynamic problem.  The final integration time is chosen 
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such that the transient effects have disappeared and the steady-
state regime has been reached. 

3 NUMERICAL SIMULATIONS AND DISCUSSION 
The symmetric rotor-rigid/elastic linearized bearing system 

presented in Fig. 5 is subjected to rotating mass unbalance as 
well as to base harmonic rotation without/with base harmonic 
translation: the rotation around the Ox axis is given by 
ω

x=ωx,acos(Ωxt) in rad/s, while the translation along the Oz axis 
is expressed as zO=ZOcos(Ωzt) in m. 

Figure 5.  ON-BOARD ROTOR-BEARING SYSTEM 
CONFIGURATION 

The physical properties as well as the geometry of the rotor 
and the bearings are listed in Table 1. The shaft is discretized 
into eight identical 2-node Timoshenko beam finite elements. 
The disk is located at node 5 and the bearings # 1 and # 2 are 
respectively placed at nodes 1 and 9. The rotor runs at a speed 
of rotation Ω=1200 rpm (20 Hz=mass unbalance frequency). 

The static equilibrium position of the shaft geometric 
center in the fluid film bearings is given by 
δbe,sep=<-5.71×10-5,-1.76×10-4>R

T m. The bearing damping and 
stiffness matrices are expressed in what follows 

3 4

4 4

6 6

6 7

3.50 10 1.08 10
N m s

1.08 10 7.57 10

1.30 10 1.32 10
N m

6.30 10 1.94 10

be

be

 × ×
=  × × 

 × ×
=  × × 

c

k

(19) 

The rotor system is supported either by rigid bearings or 
hydrodynamic ones leading in the case of fixed base either to 
symmetric damping and stiffness matrices with isotropic 
diagonal and cross-coupling terms or to nonsymmetric matrices 
respectively. 

Table 1.  ROTOR AND BEARING DATA 

Disk material density 
Disk radius 

Disk thickness 
Disk location 

Shaft material density 
Young’s modulus of the shaft 

Poisson’s ratio of the shaft 
Shaft radius 
Shaft length 

Mass unbalance 

7800 kg/m3 
0.15 m 
0.03 m 
0.2 m 

7800 kg/m3 
2×1011 N/m2 

0.3 
0.04 m 
0.4 m 

1500 g mm, 0° 

Radius of the bearings 
Length of the bearings 

Locations of the bearings 
Radial clearance of the bearings 

Oil film dynamic viscosity 

0.04 m 
0.01 m 

0 m, 0.4 m 
2×10-4 m 

288×10-4 Pa s 

Figure 6 shows the classical disk orbit due to the mass 
unbalance for rigid bearings and a fixed base. Since the 
matrices of the rotor-bearing system are symmetric and skew-
symmetric with isotropic diagonal and cross-coupling 
components, the dynamic behavior is symmetric and the orbit is 
circular. Its center coincides with the point O (bearing center). 
FFT of the orbit shows that the rotor displacement has an 
amplitude almost of order 1×10-7 m and the same mass 
unbalance frequency (20 Hz). 

Figure 6.  MASS UNBALANCE ORBIT AND ITS z-FFT AT 
THE DISK FOR RIGID BEARINGS AND FIXED BASE 

O 
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Figure 7 gives the disk orbit and z-FFT of the rotor 
vibrations due to the mass unbalance and the base rotation 
around the Ox axis. This rotation generates vectors 
corresponding to force components acting respectively in the 
Ox direction (due to the Coriolis acceleration, i.e., the term 

, ,
y x

d sh b
ψ ω− ΩV  in Eq. (18)) and in the Oz direction (due to the 

tangential acceleration, i.e., the the terms , ,
yw x

d sh bω−V ɺ  and 

, ,
x

d sh b
θ ω−V ɺ  in Eq. (18)). The two transverse displacements 

associated with these force components are different and this 
breaks the asymmetry of the rotor behavior. For the selected 
speed of rotation of the rotor, the z-amplitude is very higher 
than the x-amplitude which remains mostly the same. FFT 
exhibits two frequency components due to the mass unbalance 
excitation (20 Hz) and to the base harmonic motion (80 Hz). 

Figure 7.  DISK ORBIT AND ITS z-FFT FOR RIGID 
BEARINGS AND BASE HARMONIC ROTATION:   

ω
x,a=5×10-2 rad/s AND Ωx=80 Hz 

Figure 8 presents the disk orbit due to the mass unbalance 
effect in the presence of hydrodynamic bearings. The 
nonsymmetric damping and stiffness coefficients make the 
bearings anisotropic and the orbit elliptical with diagonal axes 
defining the phase between the mass unbalance excitation and 
the rotor response. The orbit center coincides with the point Csep 
(static position of the shaft center in the bearings). It is noted 
that the orbit is large compared to that corresponding to rigid 
bearings because of the combination between the bending 
modes of the rotor and the rigid body modes relative to the 
rotor motion in the hydrodynamic bearings. z-FFT indicates that 
the disk vibration has an amplitude of about 7×10-6 m and the 
same mass unbalance frequency (20 Hz). 

Figure 8.  MASS UNBALANCE ORBIT AND ITS z-FFT AT 
THE DISK FOR FLEXIBLE BEARINGS AND FIXED BASE 

Figure 9 displays the disk orbits for hydrodynamic bearings 
during base rotational motions. The orbit characteristics (shape 
and magnitude) change with amplitude and frequency of the 
base harmonic excitation. It should be noted that for very small 
amplitudes and different frequencies, the orbit shapes become 
more complicated with respect to those obtained when the base 
is fixed (see Fig. 9(a)). On the other hand, the base motion 
amplitudes change the x and z orbit magnitudes. z-FFTs exhibit 
two frequency components due to the mass unbalance excitation 
(20 Hz) and to the base harmonic motions (50 Hz or 80 Hz). 
They also show that the displacement amplitude due to the mass 
unbalance excitation (20 Hz) does not roughly change for base 
motions of frequency 50 Hz and 80 Hz, i.e., the influence of the 
base rotations on the mass unbalance excitation (see Eq. (18)) 
can be neglected at the lower amplitudes of the base excitation. 

Figures 10 and 11 display the orbits of the disk and their 
z-FFTs in the presence of mass unbalance forces and of a 
combination of base rotational and translational motions. In 
Fig. 10, the base rotation is kept constant (ω

x,a=5×10-2 rad/s and 
Ω

x=50 Hz) while the base translation has two amplitudes and 
three frequencies. In Fig. 11, the base translation is kept 
constant (ZO=5×10-5 and Ωz=50 Hz) while the base rotation has 
two amplitudes and three frequencies. Increasing the amplitudes 
and frequencies makes the orbits larger and more complicated 
especially when compared with the mass unbalance orbit for a 
fixed base; see Fig. 8. The assumption to have linear behavior 
of the bearing is questionable. FFTs in Figs. 10 and 11 exhibit 
three frequency components due to the mass unbalance 
excitation (20 Hz), to the base harmonic rotation (50 Hz in 
Fig. 10 and 80 Hz in Fig. 11) as well as to the base harmonic 
translation (80 Hz in Fig. 10 and 50 Hz in Fig. 11). 

Csep 
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4 CONCLUSIONS 
A finite element model is presented to analyze the dynamic 

behavior of a symmetric on-board rotor-rigid/hydrodynamic 
bearing system whose base is subjected to sinusoidal rotations 
without/with sinusoidal translations. 

The rotational effects and the geometric stiffening effects 
relative to the centrifugal stressing due to the base rotations are 
taken into account. 

The base rotations create time-varying parametric 
coefficients which can lead to lateral dynamic instability. 

In the case of a rotor mounted on rigid bearings and 
running at the lower speeds of rotation, the base rotation around 
a transverse axis creates an orbit having its greatest magnitude 
in the perpendicular transverse direction. Unlike the previous 
case, the base rotation effects concern the two transverse 
directions when the rotor is supported by hydrodynamic 
bearings. 

It is noted that the shape and the magnitude of the orbits 
can be significantly affected by the base motion frequency and 
amplitude respectively. 

In the case of considerable rotation amplitude compared to 
the speed of rotation of the rotor, it is shown that the mass 
unbalance forces can depend on the base rotation around a 
transverse axis. 

The frequency components due to the mass unbalance 
excitation and to the base harmonic motions appear in FFTs of 
the rotor flexural vibrations. 

In the case of large orbits, the assumption of a linearized 
hydrodynamic bearing model is questionable. A nonlinear 
model is to be considered and the hydrodynamic bearings have 
to be treated as external nonlinear forces acting on the shaft 
within the bearings. 

Figure 9.  DISK ORBITS AND THEIR z-FFTs FOR FLEXIBLE BEARINGS AND TWO AMPLITUDES OF BASE HARMONIC 
ROTATIONS: ωx,a= (a) 10-2 rad/s,   (b) 5×10 -2 rad/s, (Ωx=20 Hz, 50 Hz AND 80 Hz) 

(b) ωx,a=5×10-2 rad/s(a) ωx,a=10-2 rad/s 

Ω
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z 
Ω
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Ω
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20
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Figure 10.  ORBITS AND THEIR z-FFTs AT THE DISK FOR FLEXIBLE BEARINGS AND BASE SINUSOIDAL ROTATION 
(ωx,a=5×10-2 rad/s AND Ωx=50 Hz), COMBINED WITH TWO AMPLITUDES OF BASE SINUSOIDAL TRANSLATIONS:     

ZO= (a) 10-5 m, (b) 5×10 -5 m, (Ωz=20 Hz, 50 Hz AND 80 Hz) 

Ω
x =

50
 H

z 
Ω

x =
20

 H
z 

(b) ωx,a=5×10-2 rad/s(a) ωx,a=10-2 rad/s 

(b) ZO=5×10-5 m(a) ZO=10-5 m 
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Figure 11.  ORBITS AND THEIR z-FFTs AT THE DISK FOR FLEXIBLE BEARINGS AND BASE HARMONIC TRANSLATION 
(ZO=5×10-5 AND Ωz=50 Hz), COMBINED WITH TWO AMPLITUDES OF BASE HARMONIC ROTATIONS:        

ω
x,a= (a) 10-2 rad/s, (b) 5×10 -2 rad/s, (Ωx=20 Hz, 50 Hz AND 80 Hz) 
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