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Abstract: An in vitro method for the time-resolved quantification of acid-mediated tooth 

demineralisation has been developed and evaluated against putative non-permanent 

protective formulations based on a series of poly(alkyl methacrylate)s. Using a 

thermostatted carousel, dentally relevant substrates consisting of hydroxyapatite discs or 

sections of bovine teeth have been exposed to aqueous citric acid under controlled 

conditions, before and after being treated with the polymeric coatings. The dissolution of 

phosphate was monitored by the determination of 
31

P by Inductively Coupled Plasma—

Mass Spectrometry and by the spectrophotometric phosphovanadomolybdate method. 

Dose-response plots constructed for both groups of treated substrates have revealed that the 

coatings significantly reduce erosion rates but are less effective at inhibiting tooth 

demineralisation than the standard fluoride treatment. The approach has enabled an 

evaluation of the erosion-protection efficiency of each coating. 

Keywords: tooth demineralisation; ICP-MS; phosphovanadomolybdate;  

poly(alkyl methacrylate); erosion-protection coating 
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1. Introduction 

 

Early stage dental erosion involves the reversible demineralisation of enamel through the 

dissolution of calcium hydroxyapatite (HA) and related substituted apatitic mineral phases by acids of 

non-bacterial origin [1-3]. In healthy individuals, the potentially deleterious effects of dietary acids on 

dental hard tissues are mitigated by the continuous production of saliva, whose inherent buffer 

capacity serves to raise pH in the oral cavity whilst at the same time diluting the acid challenge and 

promoting clearance [4]. Salivary proteins also play an important role in protecting teeth from acid 

insult, by being adsorbed selectively onto the tooth surface in the form of a tightly bound thin film. 

The salivary pellicle (thickness 0.1–1.0 µm depending on location and maturity) provides a significant 

barrier to acid attack on the underlying mineral surface [5,6]. The widespread use of fluoride in 

dentifrice formulations has been largely responsible for the marked decline in the incidence of dental 

caries in many populations over the last 40 years, but there are indications that this decline has slowed, 

while over the last 10 years dental erosion has become a clinical concern [7,8]. In particular, high 

levels of erosive wear have been observed in children and adolescents [9,10]. Risk factors include diet 

and social deprivation; but erosion and associated wear appear to be associated primarily with 

developed nations. Although consumption levels of acidic soft drinks has been positively correlated 

with increased levels of erosion, subjects exhibiting inappropriate consumption patterns are likely to be 

at highest risk [11,12]. Awareness by individuals and provision of timely advice by health care 

professionals are considered to be at least as important as therapeutic intervention in preventing 

progression of bulk tissue loss which in extremis can lead to complete loss of function [13]. 

The aetiology of dental caries requires the presence of bacterial plaque as one of several 

prerequisites, while dental erosion does not involve bacteria [9,14]. Early caries lesions form in the 

sub-surface of the tooth due to the presence of an overlying plaque layer; erosive lesions, by contrast, 

are surface defects formed by “top-down” demineralization [15]. Progression of early erosive lesions 

results in the formation of concavities, the appearance of which is accelerated by abrasive damage or 

by attrition-induced wear. Caries and erosion, however, do both involve acid-mediated 

demineralisation: in the case of caries the source is plaque acid, whilst in erosion the acid challenge 

derives from the stomach and/or from diet; acids associated with dental erosion are markedly more 

aggressive than plaque acids [12,15]. 

Fluoride is known to be highly efficacious in inhibiting the development of caries, and does so by 

substituting for -OH groups in HA, Ca10(PO4)6 (OH)2. This results in the formation of partially or fully 

fluoridated apatitic phases, Ca10(PO4)6Fx(OH)2-x, whose resistance to acid-mediated dissolution is 

much greater than that of the parent non-fluoridated apatite [16-19]. Fluoride also enhances 

remineralisation of early caries lesions by promoting mineral uptake as the less soluble fluoridated 

apatitic phase. The same fluoride chemistries apply in the case of dental erosion, but unlike dental 

caries, where there is a wealth of longitudinal clinical data supporting the efficacy of sodium 

monofluorophosphate and ionic fluorides, such as sodium fluoride (NaF) [20], evidence supporting the 

use of fluoride as an anti-erosion agent is currently limited to in vitro and in situ clinical studies [21]. 

The current view is that higher doses of fluoride may be required to achieve clinically significant 

levels of erosion control compared with that required in the prevention and management of dental 

caries [21-23]. The most convenient access to fluoridated medicaments is through the over-the-counter 
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availability of dentifrices and rinses. The levels of fluoride contained in these are dictated by the  

anti-caries monographs of regulatory agencies. In the absence of a specific anti-erosion monograph, 

and given the concerns for fluorosis associated with the use of higher levels of fluoride in children, 

technologies that augment the anti-erosion efficacy of medicaments containing fluoride at current 

concentrations (900–1,500 mg/kg for dentifrices and 90–450 mg/kg for mouth rinses), are of particular 

interest for future development.  

In vitro erosion models have been effective in establishing the relative erosion potentials of foods 

and drinks, factors affecting these potentials, and the effects of specific interventions on the 

physicochemical properties of dentally-relevant substrates subject to acid insult. Data from such 

models indicate broad effects and trends, and the models are valuable tools for the screening of 

potential inhibitors of acid demineralisation. Due to the strict regulatory environment associated with 

the acquisition, processing, tracking, storage and disposal of human teeth, alternative substrates such 

as HA powder, beads or discs have been employed as non-biological enamel substitutes. Enamel and 

dentine specimens prepared from bovine incisors have also been widely used, because they can be 

acquired from the same stock at similar age (typically 30 months). Despite the differences between the 

histology of human and bovine teeth (the latter being more porous), the literature indicates a good 

correlation between the behaviour of human and bovine specimens in both caries and erosion  

models [24,25]. A simple means of determining the extent of erosive demineralisation is through the 

analysis of released phosphate using a single-point phosphovanadomolybdate assay. However, this 

spectrophotometric method does not (by definition) monitor the progression of erosion; furthermore, 

the assay is not specific to orthophosphate since linear condensed phosphates also react with the 

vanadomolybdate reagent. A pH-stat model has been used to monitor erosive demineralisation in real 

time, and to investigate the effect of specific interventions such as the pre-treatment of HA discs with 

fluoride, or modification of the erosive challenge itself by addition of film-forming polymers [26]. 

This model, however, may be difficult to employ for multiple specimens.  

Driven by the need to develop a rapid and time-resolved experimental method, a thermostatted 

carousel has been used in the present study to provide a controlled environment in which citric  

acid-mediated erosion of HA discs and of pre-prepared sections of bovine teeth could be  

monitored by discontinuous sampling and subsequent determination of released phosphate. The 

phosphovanadomolybdate assay and the determination of 
31

P by Inductively Coupled Plasma-Mass 

Spectrometry (ICP-MS) have been used for this analysis; the sensitivity and precision of these 

techniques are compared for this application. The protocol for the experimental method aims to 

facilitate the longitudinal monitoring of multiple erosion experiments (n = 12) that are conducted in 

parallel under identical conditions of temperature and stirring rate. The methodology is used to 

evaluate the anti-erosion efficacy of a series of biomedically relevant poly(alkyl methacrylate) coating 

materials [27]. 

2. Material and Methods 

2.1. Substrates 

A single batch of HA discs (diameter 12.5 mm, thickness 1.0–1.3 mm; ca. 0.46 g) was supplied by 

Himed HiMed, (Old Bethpage, NY, USA). Prior to use, discs (n = 6) were etched ×2 in 500 mL  
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of 10 g/L citric acid (adjusted to pH 3.5) for 30 min at room temperature. Excess acid was removed by 

rinsing with deionised (DI) water before storage in a humidified atmosphere. 

Decay-free bovine incisors were sterilised by immersion in 50 g/L NaOCl for 2 min, followed  

by 300 mL/L H2O2 for a further 2 min. Thereafter, specimens were stored in 9 g/kg NaCl for a 

maximum of six weeks. Tooth sections (ca. 15 mm ×10 mm ×5 mm; 1.52 g) were cut from the buccal 

aspect using an Isomet™ 1000 precision saw (Buehler
®

, Düsseldorf, Germany). Since one larger face 

of each specimen consisted of exposed dentine whilst the other was unpolished enamel, some 

variability was to be expected both within and between the specimens [28,29]. The amorphous smear 

layer, formed by cutting, was removed by placing the tooth sections in 100 g/L citric acid (pH 2.2)  

for 2 min. After rinsing in DI water, the specimens were stored in sterile saline. Extracted human 

molars and pre-molars were stored in an aqueous solution of saturated thymol for up to two weeks 

after removal of the roots and pulp. Prior to use, teeth were thoroughly rinsed with DI water and 

visually examined for evidence of damage, decay and white spot lesions. Transverse sections of 

coronal dentine, 100 µm in thickness, were cut with an Isomet 1000 precision saw and etched (citric 

acid, 100 g/L; 2 min) to remove the smear layer. Specimens (bovine and human) were sputter-coated 

with a palladium-gold alloy before imaging using scanning electron microscopy (SEM) at an operating 

potential of 10 kV (Jeol JSM 6100, Welwyn Garden City, Hertfordshire, UK). Imaging of uncoated 

bovine specimens was performed by atomic force microscopy (AFM) in contact mode, using a 

MultiMode Nanoscope IV Scanning Probe Microscope (Digital Instruments, Santa Barbara,  

CA, USA). 

Typical SEM images of transverse sections of human and bovine dentine are shown in Figures 1(a) 

and 1(b) and an AFM image from bovine dentine is shown in Figure 1(c). Tubule diameters in the 

bovine specimens (1.7–2.6 μm, c.f. lit. [30-33] 1.8–3.5 μm) were similar to those observed in human 

specimens (2.2–3.3 μm, c.f. lit. [30-33] 1.9–4.0 μm). Tubules in bovine specimens were less closely 

packed (3.1 × 10
4
 mm

−2
, c.f. lit. [30-33] 2.1 × 10

4
−3.5×10

4
 mm

−2
) than those in human specimens  

(7.9 × 10
4 

mm
−2

, c.f. lit. [30-33] 2.1 × 10
4
–8.3 × 10

4
 mm

−2
). AFM images, Figure 2, also established an 

optimum time of 2 min for exposure of freshly cut sections to citric acid (100 g/L), just sufficient for the 

removal of the smear layer and of debris within tubules. Longer exposures resulted in the formation of 

craters in the tubule structure whereas shorter exposures did not completely remove the smear layer. 

Figure 1. Transverse sections of etched (100 g/L citric acid, pH 2.2, 2 min) human and 

bovine coronal dentine (deep layer): SEM images ×2,000 (a) human dentine, (b) bovine 

dentine; AFM image (c) bovine dentine. 

 

(a)    (b)    (c) 
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Figure 2. AFM images of bovine dentine (different areas) pre-etched (100 g/L citric acid, 

pH 2.2) for 10 s, 2 min, 3 min and 30 min.  

 

2.2. Polymer Emulsions and the Coating of Specimens 

Poly(alkyl methacrylate)s were supplied by Sigma-Aldrich (Poole, Dorset, UK or Schnelldorf, 

Germany). The generic structure of these polymers and associated acronyms are shown in Figure 3, 

and their key physicochemical parameters summarised in Table 1. PBMA and PEMA were obtained as 

solids whilst POMA, PLMA, PHMA, PHxMA were supplied as solutions in toluene. Pure samples of 

solid polymers were recovered by repeated precipitation from cooled methanol. 

Emulsions (28 g/kg) were prepared by adding each polymer (450 mg) in solution (dichloromethane 

(PEMA) or diethyl ether (PBMA) or low-boiling petroleum ether, 3.0 g) drop-wise (2 min) into 

aqueous sodium dodecyl sulphate (SDS, Acros Organics, 5 g/kg, 15 g) under sonication (Ultrasonic 

Processor, amplitude 37%, 7 min). The organic solvent was evaporated from each batch by stirring at 

ca. 5 K above the solvent boiling point for 4–6 h. To compensate for the concurrent evaporation of 

water, 500 µL aliquots of DI water were added at 30 min intervals (after cooling to ambient 

temperature) to give a final mass of 15.45 g. To determine the dry mass, the aqueous phase was 

removed following separation by centrifugation at 4,000 rpm for 5 min. Particle sizes were determined 

using a Coulter N4MD Sub-Micron Particle Analyser (Beckman Coulter, High Wycombe, 

Buckinghamshire, UK) with multiple scattering angle detection and size distribution analysis yielding 
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the diameters and SDs indicated in Table 1. HA discs and bovine tooth specimens were coated by 

immersion (2 min) in the appropriate polymer-containing emulsion, followed by rinsing with DI water. 

Figure 3. Poly(alkyl methacrylate)s. n = 1 poly(ethyl methacrylate), PEMA; n = 3 

poly(butyl methacrylate), PBMA; n = 5, poly(hexyl methacrylate), PHxMA; n = 11, 

poly(lauryl methacrylate), PLMA; n = 15, poly(hexadecyl methacrylate), PHMA; n = 17, 

poly(octadecyl methacrylate), POMA.  

CH
3

O O

CH
2

CH
3

n

 

)m(

 

Table 1. Poly(alkyl methacrylate)s: surface energy (g) [34]; glass transition temperature 

and average relative molar mass (Tg, RMM; data supplied); latex particle sizes (d) with 

standard deviation (sd). 

Polymer Code RMM g/mJ/m
2
 Tg/°C d (sd)/nm 

Poly(ethyl methacrylate) PEMA 515,000 33.6 65 197 (8) 

Poly(butyl methacrylate) PBMA 337,000 28.8 20 74 (12) 

Poly(hexyl methacrylate) PHxMA 400,000 23.1 −5 94 (3) 

Poly(lauryl methacrylate) PLMA 576,400 19.1 −70 91 (7) 

Poly(hexadecyl methacrylate) PHMA 200,000 - 15 91 (5) 

Poly(octadecyl methacrylate) POMA 170,000 17.6 −100 73 (14) 

2.3. Acid Demineralisation In Vitro 

The demineralisation experiments were performed using a 12-station synthesis carousel supplied by 

Radleys Discovery Technologies (Saffron Waldon, Essex, UK). Untreated pre-weighed HA discs or 

bovine enamel sections were individually placed on a wire mesh support at a fixed distance above the 

stirrer bar in a reaction tube containing 15.0 mL of 10 g/L citric acid adjusted to pH 3.75 thermostatted 

to 37 °C. The baskets were then lowered so that the specimens were fully immersed in the erosive 

medium; typically 4-6 specimens were employed for each experiment. Samples (100 mL aliquots) for 

the determination of dissolved phosphate were taken at 5 or 10 min intervals up to 40 min. Specimens 

were then removed, rinsed with DI water, and immersed in the test treatment (28 g/kg polymer  

latex; 120 s, 20 °C), DI water negative control or one of a range of benchmark control treatments 

comprising 250–2,000 mg/kg fluoride as NaF. In the latter case exposure times of both 30 s and 120 s 

were employed. Together with a fresh portion of erosion medium (15.0 mL), the treated specimens 

were then returned to a cleaned tube in the reaction carousel. Discontinuous sampling and subsequent 

analysis of phosphate and phosphorous by spectrophotometry or ICP-MS respectively were used to 

create plots of dissolution as a function of time and thus dissolution rate. The efficacy of the treatment 

to inhibit erosive demineralisation was determined by using each specimen as its own control. Using a 
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one-way ANOVA with a post hoc Fisher test statistical analysis of the results was performed to 

compare the effects of the putative protective treatments with that of the fluoride control. 

2.3.1. Determination of Dissolved Phosphate with Vanadomolybdate Reagent 

Samples (100 µL) of phosphate-containing erosion medium were transferred to a 96-well 

microplate. Using a multipipette for simultaneous additions to all wells, samples were mixed  

with 100 µL of vanadomolybdate reagent (VWR, Lutterworth, Leicestershire, UK) and allowed to 

stand for 5 min, after which the absorbances were measured (Wallac Victor
2
 1420 Multilabel  

Counter, 450 nm, 1 well per second). Using the same procedure for standard solutions (KH2PO4 > 99%, 

dried) a calibration plot over the phosphorus concentration range 10–60 mg/L was linear (R
2
= 0.9996) 

but with a significant positive intercept (no reference cell). This calibration was used for calculating 

concentrations of phosphorus in the erosion media. A further calibration using a 1 cm pathlength cell 

with matched reference in a dual-beam spectrophotometer over the concentration range 0.1–2.3 mg/L 

was linear through the origin yielding values for A450 in the range 0.002 to 0.068; R
2
 = 0.9999. 

Allowing for a minimum net absorbance of 0.005, the lowest reliable estimation level was ca. 0.2 mg/L 

in 1 cm cells or 0.5 mg/L using the microplate reader. 

2.3.2. Determination of 
31

P by ICP-MS 

The analysis of dissolved phosphate as 
31

P by ICP-MS necessitated the elimination of [
14

N
16

O
1
H]

+
 

and/or [
15

N
16

O]
+ 

from the experimental protocol [35] by using HCl (analytical grade for trace analysis) 

rather than HNO3, and HPLC grade water for all procedures. All glassware and equipment was 

cleaned in 30 g/L HCl and subsequently rinsed ×3 with DI water. Each 100 µL sample was added  

to 14 g of 6 g/L HCl. Using an Agilent ICP-MS 7500 operating in standard mode with argon as carrier 

gas, a linear calibration (R
2
 = 1.000) was obtained for 

31
P using acidified (6 g/L HCl) phosphate 

solutions (Spex CertipreP 1,000 ppm 
31

P, Fisher Scientific; diluted to 1–110 mg/L). Allowing for the 

background response, the lowest reliable estimation level of 
31

P in the diluted samples was ca.5 mg/L. 

3. Results 

3.1. Comparison of Analytical Methods 

The rates of erosion of individual untreated dental specimens by citric acid (10 g/L, pH 3.75; 37 °C) 

have been measured by analysis of dissolved phosphorus, for comparison with rates obtained under the 

same conditions but after exposure of the same specimens to a putative protective treatment: the  

“in vitro demineralisation method”. These data have been used to assess the variability of specimens 

and to compare the two methods of analysis of aqueous samples for dissolved phosphate, the data are 

summarised graphically in Figure 4. 

For HA discs, the initial rates of erosion were almost constant (0 to 10 min: as observed  

1.24 ± 0.08 mg/L min, relative to the mass of the specimen 0.041 ± 0.002 mg/g min, relative to the area 

from the dimensions 5.6(±0.3) × 10
−5

 mg/mm
2
 min), decreasing by ca. 15% over each complete time 

profile (20 to 30 min: 1.06 ± 0.01 mg/L min, 0.035 ± 0.001 mg/g min, 4.8(±0.1) × 10
−5

 mg/mm
2
 min). 

For bovine tooth sections the initial rates of dissolution were higher (8.0 mg/L min estimated from a 
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tangent to curve (i) at the origin, Figure 4; average over 0 to 5 min 5.8 mg/L min, 0.058 mg/g min,  

1.6 × 10−4 mg/mm2 min). In all experiments the highest total amounts of dissolved phosphorus  

after 30 min were equivalent to 4.6(±0.9)% of the mass of the HA specimens and 2.5(±0.3)% of the 

mass of the of bovine tooth specimens. The corresponding proportions reacted of citric acid were 

estimated respectively as 6(±1)% and 11(±1)%. 

Figure 4. Measurements of phosphorus released as phosphate by erosion with citric acid  

(10 g/L, pH 3.75; 37.0 °C) of untreated dental specimens: (i,●) bovine dentine (ICP-MS), 

(ii,■) hydroxyapatite discs (ICP-MS), and (iii,♦) hydroxyapatite discs 

(phosphovanadomolybdate complex absorbance); n = 15, error bars represent standard 

deviations. 

 

0

20

40

60

80

0 10 20 30

Time / min

C
o

n
ce

n
tr

at
io

n
 o

f 
P

 /
 m

g
/m

L (i) 

 

0

10

20

30

40

0 10 20 30

Time / min

C
o

n
ce

n
tr

at
io

n
 o

f 
P

 /
m

g
/m

L
(ii) 

(iii) 

 

In comparing the erosion results from the two methods (15 HA specimens each), Figure 4 lines (ii) 

and (iii)), the errors were similar for results from both analytical methods (coefficients of variation,  

cv, 16–26% for ICP-MS and 18–25% for the phosphovanadomolybdate method). The mean values 

were consistent to within 5–11%, such that pairs of data at each time point did not differ significantly 

(‘t’ test for null hypothesis, p < 0.01). The errors in data were smaller for the results for bovine tooth 

specimens (cv 10–15%).  

3.2. Effectiveness of Fluoride as Erosion-Inhibiting Agent 

To compensate for the variability in the erosion rates of dental specimens under controlled 

conditions, the effects of protective treatments have been assessed in vitro by comparing measurements 

made before and after their application. Dissolution by citric acid (10 g/L, pH 3.75; 37 °C) was 

monitored by sampling at intervals over 30 min. The method was evaluated by using it to measure the 

effects of treating specimens with fluoride ion. Dose-response plots (n = 4 for each experiment) were 

constructed for HA discs that had been immersed (30 s or 120 s) in water or in aqueous sodium 

fluoride (fluoride
 
ion

 
concentrations 250–2,000 µg/g).  

Treatment with fluoride ion (300 µg/g, 120 s) reduced the rate of erosion by 40 ± 10% over 0  

to 5 min, increasing to 70 ± 20% over 20 to 30 min, Figure 5(a), reflecting the considerably reduced 

rate of erosion of the treated sample. Inhibition was increased by the use of higher concentrations of 
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fluoride ion but the effect of using the longer treatment exposure time was much greater (Figure 5(b)). 

The proportional reductions in sampled phosphorus concentrations at each time point show lower 

variability (cv 8–22%) than the absolute values (cv 20–32% both before and after treatment).  

Figure 5. (a) Release of phosphorus (ICP-MS) from HA specimens (n = 4) into citric acid 

(10 g/L, pH 3.75; 37.0 °C) (i) before treatment, (ii) after immersion (120 s) in aqueous NaF 

(F
-
 = 300 mg/mL); (b) Fluoride dose response (37 °C) of HA discs as determined by 

phosphate analysis (n = 4, bars represent standard deviations): treatment time 30 s, fluoride 

ion concentrations (µg/g) A = 2,000, B = 1,000, C = 250, D = 0 (phosphovanadomolybdate 

spectrophotometry); treatment time 120 s, fluoride ion concentrations (µg/g) E = 300  

(ICP-MS)—direct comparisons were made in two stages (i) between groups A, B, C and D 

(for different fluoride concentration after 30 s treatment), and (ii) between groups C and E 

for (for different treatment times at fluoride concentration of 300 µg/g). 
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3.3. Effectiveness of Poly(alkyl methacrylate) Coatings as Anti-Erosion Agents  

Poly(alkyl methacrylate)s were selected as putative erosion-protection coatings because of their 

established good film-forming characteristics and of their affinity for the tooth surface [36]. For 

systematic investigation, the study employed a homologous series of polymers with glass transition 

temperatures in the range −100 to +65 °C and surface energies in the range 17–34 mJ/m
2
, Table 1. For 
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each specimen the inhibition of erosion was assessed from the relative initial rates of dissolution of 

phosphorus (average over 0–5 min) before and after coating. Relative rates of dissolution  

over 20–30 min were also obtained.  

For HA specimens, erosion was slightly enhanced by pre-immersion in water, Table 2. Relative to  

this, significant inhibition of erosion was shown by specimens coated with PBMA (32% initially, 

decreasing to 22%) and PHxMA (24% initially, decreasing to 20%), Figure 6(a,b) and Table 2. Erosion 

also appeared to be inhibited by coating with PHMA (ca. 9% initially) but the standard deviations were  

too large for the effect to be significant. The polymers PLMA and POMA formed coatings with very slight 

inhibiting effects while any effect of PEMA coatings was undetectable. For comparison, the inhibition  

by fluoride ion (300 mg/g) was 43% over 0–5 min increasing to 73% over 20–30 min, Figure 5(a). 

Figure 6. Release of phosphorus (as phosphate) from dental specimens exposed to citric 

acid (10 g/L, pH 3.75; 37 °C): untreated specimen - - - -, treated specimen. (a) HA discs 

treated with PBMA (28 g/L, 120 s; ICP-MS), (b) HA discs treated with PHxMA (28 g/L, 

120 s; ICP-MS), (c) Bovine teeth sections treated with PBMA (28 g/L, 120 s; 

phosphovanadomolybdate), (d) Bovine teeth sections treated with PHxMA (28 g/L, 120 s; 

phosphovanadomolybdate). 
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Table 2. Reduction in initial rate of release of phosphorus (as phosphate, 0–5 min) from 

treated dental specimens relative to the untreated controls (n > 4) in erosion experiments 

over 30 min.  

Specimen Treatment (120 s) Fractional reduction in initial rate of erosion (SD) 

 300 µg/g F−  0.38 (0.07) a 

 Water  −0.05 (0.07) 

 PEMA  −0.02 (0.07) 

 PBMA  0.27 (0.07)a 

HA PHxMA  0.19 (0.08)a 

 PLMA  0.05 (0.10) 

 PHMA  0.09 (0.10) 

 POMA  0.02 (0.08) 

 300 µg/g F−  0.37 (0.04) 

 Water  0.19 (0.02) 

 PBMA  0.35 (0.02)b 

Bovine tooth section PHxMA  0.23 (0.05)c 

 300 µg/g F− + PBMA  0.35 (0.01)b 

 (i) PBMA (ii) 300 µg/g F−  0.35 (0.02)b 

 300 µg/g F− + PHxMA  0.33 (0.06)b 

For HA specimens a denotes that the mean value is significantly different (p < 0.01) from that of 

the water control; for bovine tooth sections b denotes that the mean value is not statistically 

different (p < 0.05) from the fluoride control; c denotes that the mean value is not statistically 

different (p < 0.05) from the water-treated control (one-way ANOVA with a post hoc Fisher’s test). 

 

In erosion tests using bovine tooth sections prior to treatment, Figure 6(c,d), dissolved phosphorus 

concentrations initially increased rapidly, reaching 40 mg/L after 10–15 min, but dissolution 

progressively slowed thereafter. Following measurements to establish baseline erosion rates [37], 

immersion of the specimens in water (120 s) appeared to inhibit erosion considerably, Table 2. The 

inhibition (fractional reduction in initial erosion rate) due to PBMA was similar to that given by 

fluoride ion (Table 2) and to that found using HA discs (F
-
 250 µg/g, 30 s; Figure 5(b)). Treatment 

with PHxMA also apparently inhibited erosion but the effect was not significantly greater than the 

inhibition by water. The effects of combined or sequential treatments with fluoride and PBMA or 

PHxMA were very close to those for single treatments with fluoride, Table 2. Longer term effects  

(10–30 min) could not be assessed from the measurements made. 

 

4. Discussion 

 

4.1. Comparison of Analytical Methods 

 

The precision, consistency, the scatter of experimental data and the lower detection limits have been 

compared for the two analytical methods. In both methods samples were taken using 100 mL 

micropipettes. In the phosphovanadomolybdate method micropipettes were also used for adding the 

complexing reagent, whereas in ICP-MS each sample was diluted with a precise, relatively large, 

amount of aqueous HCl. Absorbances were measured to ±0.001, giving precision in the range 0.2–2%. 
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In ICP-MS, counting rates were reproducible to <2%; other contributions to error arising from 

procedures are likely to be relatively small. The observed errors in the HA disc erosion experiments 

(cv, 16–26%; similar for the two methods) were much greater than 2%, while the differences (5–11%) 

between comparable mean analytical values were not significant. Therefore up to 8% of the variability 

may be attributed to the HA discs. For erosion experiments using bovine tooth specimens, the errors 

were smaller–indicating that these specimens were less variable than the HA discs. As used for these 

experiments, there was little to choose between the two analytical methods, which have different 

potential problems of interference. Samples for ICP-MS were, however, diluted by 1:140 whereas for 

the phosphovanadomolybdate method the dilution factor was 1:2. Therefore, allowing also for the 

minimum detection levels obtained, the ICP-MS method would be more sensitive by a conservative 

factor of ca. 40. This method could be used for measuring much lower levels of dissolved phosphate, 

for example from erosion experiments either over shorter time scales or using smaller dental samples.  

 

4.2. Poly(alkyl methacrylate) Barrier Coatings 

New agents or technologies incorporated into dentifrices and/or mouth-rinses in future may play an 

important role in enhancing the anti-erosion efficacy of the formulation. Ideally, these technologies 

should be fluoride-compatible since anti-caries activity is a key benefit of modern dentifrices and 

rinses, and the available in vitro and in situ studies suggest fluoride may be clinically relevant as an 

anti-erosion active. Although the polymeric materials investigated here are intended to form protective 

barrier coatings that protect the underlying mineral from acid attack, the established in vitro and in situ 

anti-erosion efficacy of fluoride effectively dictates its adoption as the positive/benchmark control in 

anti-erosion studies. The homologous series of poly(alkyl methacrylate)s investigated in the present 

study are characterised by a range of glass transition temperatures, and surface energies of deposited 

films; both exhibit decreasing trends with increasing pendent-chain length. With the exception of 

PEMA, the relative efficacy of each coating as an inhibitor of acid erosion of HA discs was also lower 

for the polymers with longer pendent chains, as indicated in Table 2. The behaviour of PEMA may be 

due to the poor film-forming characteristics of this polymer. Its Tg is higher than the temperature used 

for film deposition and its latex particle sizes exceeded 100 nm (Table 1), which is the maximum for 

the deposition of good quality films [36]. 

Data from the citric acid-mediated dissolution of untreated HA discs showed a progressive general 

decrease in erosion rate of 10–20% over each 30 min assay as shown in Figure 5(a). Since erosion 

might have been expected to accelerate due to a progressive increase in accessible area as the external 

surface became pitted, this decrease probably reflected the reducing aggressiveness of the challenge as 

the citric acid was consumed and calcium and phosphate were released. Throughout each assay the 

dissolution of HA discs after their treatment with PBMA or PHxMA was significantly less (p < 0.01) 

than that of the corresponding controls (before treatment). These consistent and statistically significant 

results identify PBMA or by PHxMA as potentially useful anti-erosion agents that may offer 

additional efficacy benefits to fluoride-based formulations, or new fluoride-free formulations. 

That the initial rate of erosion relative to dimensions was approximately three times higher for 

bovine tooth sections than for HA discs is consistent with the tooth sections’ greater exposed surface 

area, which was associated with the corrugated surface of a cut dentine surface together with the 



Polymers 2011, 3                            
 

326 

porosity associated with the tubules (Figure 2). Pre-etching of the enamel is also likely to have 

increased its surface area. Additional factors are possible, however, since the dissolution of biological 

HA is dependent on the molar ratio of calcium to phosphorus in the sample [38] and also because 

biological apatite is both more soluble and susceptible to partial transformation to other phosphate 

phases [39]. Further, the size and perfection of HA crystals may influence the rate of erosion, since 

smaller or less perfect crystals are more susceptible to dissolution [40]. Finally, the presence in 

biological apatite of carbonate ions and of other impurities may impact upon solubility [41,42]. The 

greater susceptibility of dentine to erosive demineralisation is well known and has been attributed to a 

combination of its porosity and its relatively small crystallites of HA [29]. Although the experiments 

showed that ca. 11% of the available citric acid had been consumed over the course of each assay  

(30 min), the decrease in the rate of erosion during the control measurements appeared to exceed what 

might have been expected from the changes in composition of the liquid phase. The rapidly declining 

rate of erosion of dentine (Figure 6(c,d)) may be due to the gradual build up of a collagen mat on the 

surface. This would explain the apparent inhibiting effect of water: after the control measurements the 

specimens would have become partially protected. The suitability of bovine- tooth specimens to act as 

their own controls in these experiments therefore becomes questionable. As a consequence, data 

obtained using these substrates may only be treated as indicative of trends in dissolution behaviour. 

Nevertheless, significant inhibition by PBMA of citric acid mediated erosion is confirmed. Treatments 

with both fluoride and a polymer coating produced similar inhibition to that with fluoride alone. 

Therefore although enhanced inhibition was not shown, neither was there any indication of 

incompatibility between the treatments. 

5. Conclusions 

Towards the development of an in vitro technique for the time-resolved quantification of  

acid-mediated tooth demineralisation, a method that monitors the release of phosphate from dental 

specimens has been used to evaluate, in comparison with the standard fluoride treatment, the relative 

efficiencies of protective coatings formed from a series of poly(alkyl methacrylate)s. To facilitate 

reproducibility and the control of experimental conditions, up to 12 dissolution assays were performed 

at the same time using a thermostatted carousel with automated sampling. Using HA discs and sections 

of bovine tooth, significant inhibition of demineralisation was shown by coatings of PBMA and 

PHxMA. The degree of protection offered by these two coatings was lower than that conferred  

by 300 mg/kg fluoride, and the present study indicated no significant improvement in erosion 

protection associated with combining the two treatments.  
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