
HAL Id: hal-00783548
https://hal.archives-ouvertes.fr/hal-00783548

Submitted on 6 Jun 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution| 4.0 International License

Dynamics of coupled oscillators excited by dry friction
Madeleine Pascal

To cite this version:
Madeleine Pascal. Dynamics of coupled oscillators excited by dry friction. Journal of Computational
and Nonlinear Dynamics, American Society of Mechanical Engineers (ASME), 2008, 3 (3), pp.20–26.
�10.1115/1.2908272�. �hal-00783548�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archive Ouverte en Sciences de l'Information et de la Communication

https://core.ac.uk/display/31543621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.archives-ouvertes.fr/hal-00783548
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1

t
b
s
n
T
s
i
c
m
p
t
o
a
c
o

2

b
d
F

l

H
l

Madeleine Pascal

Dynamics of Coupled Oscillators Excited by Dry 
Friction

In this paper, we present an analytical method to investigate the behavior of a two-degree-of-freedom oscillator excited by dry friction. 
The system consists of two masses connected by linear springs. These two masses are in contact with a driving belt moving at a 
constant velocity. The contact forces between the masses and the belt are obtained assuming Coulomb’s friction law. Two families of 
periodic motions are found in closed form. The first one includes stick-slip oscillations with two switches per period, the second one is 
also composed of stick-slip motion, but includes three switches per period. In both cases, the initial conditions and the time duration of 
each kind of motions (stick or slip phases) are obtained in analytical form.
Keywords: coupled oscillators, dry friction, periodic motions, analytical method, stick-slip motion
Introduction
Vibrating systems excited by dry friction are frequently encoun-

ered in technical applications, including turbine blade joints, ro-
ot joints, electric motor drives, wheel rail coupling of mass tran-
it systems, and brake systems. These systems are strongly
onlinear and they are usually modeled as spring-mass oscillators.
hey have been the subject of several investigations �1,2�. In the
implest case of a one-degree-of-freedom system �3�, an analytical
nvestigation of the system’s behavior, including periodic motions,
hatter, and chaos, have been performed. In the case of
ultidegrees-of-freedom systems �4�, only the numerical ap-

roaches have been used. In this work, our attention is focused on
he analysis of an undamped self-excited two-degree-of-freedom
scillator with dry friction. We assume Coulomb’s friction law
nd, by using the method already presented in Ref. �5� for a
oupled oscillator with impact, periodic motions with stick-slip
scillations are obtained by analytical methods.

Model
The system �Fig. 1� consists of two masses m1 ,m2, connected

y linear springs k1 ,k2. These two masses are in contact with a
riving belt moving at a constant velocity �0. Friction forces
1 ,F2 act between the masses m1 ,m2 and the belt.
This two-degree-of-freedom oscillator is governed by the fol-

owing differential system:

MẌ + KX = R, X = �x1,x2�t, R = �F1,F2�t

M = �m1 0

0 m2
�, K = �k1 + k2 − k2

− k2 k2
�

X = X�t��, Ẍ =
d2X

dt�2 �1�

ere, F1 ,F2 are the contact friction forces obtained from Cou-
omb’s laws:

�0 − ẋi � 0, Fi = Fsi sign��0 − ẋi� �i = 1,2�

�0 − ẋ1 = 0
1

F1

= ��k1 + k2�x1 − k2x2 if ��k1 + k2�x1 − k2x2� � Fr1

�Fs1 if ���k1 + k2�x1 − k2x2� � Fr1 �� = � 1� 	
�0 − ẋ2 = 0

F2 = �k2�x2 − x1� if �k2�x2 − x1�� � Fr2

�Fs2 if �k2�x2 − x1� � Fr2 �� = � 1� 	 �2�

Fs1 ,Fs2 are the friction forces when slip motion occurs, while
Fr1 ,Fr2 are the static friction forces. �Fsi�Fri�

The systems �1� and �2� are normalized using

t = �3t�, �3 =
k1 + k2

m1
, �o�� =

d�o�
dt

From Eq. �1�, it follows

x1� + x1 − �x2 = u1, � =
k2

k1 + k2
, 	 =

m1

m2

x2� + �	�x2 − x1� = 	u2, ui =
Fi

k1 + k2
�i = 1,2� �3�

3 Prediction of the Oscillations Exhibited by the Sys-
tem

The coupled oscillator system excited by dry friction is mod-
eled as a piecewise-linear system. The dynamical behavior is very
complex and includes slip or stick oscillations of the masses. All
possible motions of the system are composed of several phases of
slip motion for both masses, stick motion of m1, and slip motion
of m2 or vice versa and at last, stick motion for the two masses.
For each kind of motions, the close form solution can be obtained.

3.1 Slip Motion of the Two Masses. This motion is related to
the following initial conditions: xi0 ,xi0� �V �i=1,2�, �V=�0 /�3�.
The motion of the oscillators is given by the solution of Eq. �3�
with ui=usi �i=1,2�:

Z+�t� = H�t�Z0
+, Z+ = �X − d0

X�
�, Z0

+ = Z+�0�, X = �x1,x2�t

�4�

H =
H1H2

, H = 
B 
−1 �i = 1,2,3�
�
H3H1

� i i
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 = � 1 1

�1 �2
�, B1 = �c1 0

0 c2
�, B2 =�

s1

�1
0

0
s2

�
�

B3 = B1�, ci = cos��it�, si = sin��it� �i = 1,2� �5�

here �1 ,�2 are the roots of the characteristic equation:

det�K̃ − I�2� = 0,

K̃ = � 1 − �

− �	 �	
�, I = �1 0

0 1
� �6�

i= � 1
�i

� �i=1,2� are defined by �K̃− I�i
2��i=0.

At last, d0= �d01,d02�t is the constant part of the solution

d01 =
us1 + us2

1 − �
, d02 =

us1

1 − �
+

us2

��1 − ��
�7�

he Hi matrices fulfill the following properties �5�:

H1
2 − H2H3 = I

HiHj = HjHi �i, j = 1,2,3� �8�
everal variants of this slip-slip motion exist:

Z−�t� = H�t�Z0
−, Z− = �X + d0

X�
� �9�

elated to initial conditions xi0 ,xi0� �V �i=1,2�.

Y+�t� = H�t�Y0
+, Y+ = �X − d̄0

X�
�, d̄0 = �d̄01, d̄02�t

d̄01 =
us1 − us2

1 − �
, d̄02 =

us1

1 − �
−

us2

��1 − ��
�10�

elated to initial conditions x10� �V ,x20� �V.

Y−�t� = H�t�Y0
−, Y− = �X + d̄0

X�
� �11�

elated to initial conditions x10� �V ,x20�V.

3.2 Slip Motion of the First Mass and Stick Motion of the
econd Mass. This motion is related to the following initial con-
itions:

x10� � V, x20� = V, ��x20 − x10� � ur2

he motion equations are given by

x1� + x1 − �x2 = us1, x2� = 0 �12�
he solution of this linear system is obtained in analytical form:

Z̄+�t� = �t�Z̄0
+, Z̄+ = �X − �0

X�
�, Z̄0

+ = Z̄+�0� �13�

 =
1 2

,  = �� �−1 �i = 1,2,3�

Fig. 1 Coupled oscillators with dry friction
�
3 1

� i i

2

� = �1 �

0 1
�, �1 = �cos t 0

0 1
�, �2 = �sin t 0

0t
� ,

�3 = �1�, �0 = �us1,0�t �14�

For the i matrices, the following properties hold:

1
2 − 23 = I, i j =  ji �i, j = 1,2,3�

�1 − I���0 − d0� = 0, 3��0 − d0� = 0 �15�

The solution can be also formulated as

Z+�t� = �t�Z0
+, Z+ = �X − d0

X�
� �16�

One variant of this solution is related to the initial conditions:

x10� � V, x20� = V, ��x20 − x10� � ur2

3.3 Stick Motion of the First Mass, Slip Motion of the Sec-
ond Mass. This motion is related to the following initial condi-
tions:

x10� = V, x20� � V, �x10 − �x20� � ur1

and to the following motion equations:

x1� = 0

x2� + �	�x2 − x1� = 	us2 �17�

The solution is given by

Z̃+�t� = C�t�Z̃0
+, Z̃+ = �X − e0

X�
�, Z̃0

+ = Z̃+�0�, C = �C1 C2

C3 C1
�

Ci = �Ai�
−1 �i = 1,2,3�, � = �1 0

1 1
�

A1 = �1 0

0 cos��t�
�, A2 = � t 0

0
sin��t�

�
�, A3 = A1�

e0 = �0,
us2

�
�t

, �2 = �	 �18�

As for the i matrices, the following properties hold for the Ci
matrices:

C1
2 − C2C3 = I

CiCj = CiCj �i, j = 1,2,3�

�C1 − I��e0 − d0� = 0, C3�e0 − d0� = 0 �19�

Eq. �18� can be formulated as

Z+�t� = C�t�Z0
+, Z+ = �X − d0

X�
� �20�

One variant of this solution is related to the initial conditions

x10� = V, x20� � V, �x10 − �x20� � ur1

3.4 Stick Motion of the Two Masses. This last case is related
to the initial conditions:

x10� = x20� = V, �x10 − �x20� � ur1, ��x20 − x10� � ur2

The two masses perform a stick motion given by:

X = X0 + tX�, X� = X� �21�
0 0
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Periodic Motions With Transitions Between Slip and
tick Motions
A transition between slip and stick motions occurs if at least

ne of the velocities of the masses reaches the velocity of the belt.
n this case, the eventual transition depends on some criteria re-
ated to the restoring force applied to the mass �i.e., on Coulomb’s
aws �2��. A detailed description of the analytical predictions of
he stick and nonstick motions for a one-degree-of-freedom
amped and forced oscillator with dry friction can be found in
ef. �6�. In the following, periodic solutions including two or

hree transitions between each kind of motions are obtained in
nalytical form.

4.1 Solution I: Periodic Motion With Two Transitions per
eriod. Let us assume that at t=0,

x10� � V, x20� = V, ��x20 − x10� = ur2 �22�

rom Eq. �3�, we deduce x2��0�=	�u2−ur2�.
A motion with u2=us2 gives x2��0��0; hence for t�0, x2� is a

ecreasing function of t, and for some period of time �0� t���
2��V. The motion of the oscillators is given by Eq. �4�.

This motion finishes at time t=�, if x2c� =x2����=V. Let us as-
ume that Xc=X��� ,Xc�=X���� are given by

Xc − d0 = − �X0 − d0�, Xc� = X0� �23�

rom Eq. �4�, it follows that X0 ,X0� are deduced from the condi-
ions:

�H1 + I��X0 − d0� + H2X0� = 0

H3�X0 − d0� + �H1 − I�X0� = 0

Hi = Hi��� �i = 1,2,3� �24�

his system provides four scalar equations for the determination
f the three unknown parameters x10,x10� ,� �x20,x20� are deduced
rom conditions �22��. Taking into account the properties �8� of
he Hi matrices, these equations are not independent and reduce
nly to two scalar equations. From Eq. �23�, we deduce

��x2c − x1c� = − ��x20 − x10� + 2��d02 − d01� = − ur2 + 2us2 � ur2

�25�

t results that for t��, ���x2−x1���ur2, and the first mass per-
orms a slip motion while the second one performs a stick motion.
rom Eq. �16�, the solution is written in the following form:

Z+�t� = �t − ��Zc
+, Zc

+ = EZ0
+, E = �− I 0

0 I
� �26�

his motion ends at t=�+T, when ��x2−x1� reaches the limiting
alue ur2. This condition is fulfilled if we assume that xi��+T�
xi0 ,xi���+T�=xi0� , �i=1,2�.
It results to the following conditions:

�1 + I��X0 − d0� − 2X0� = 0

− 3�X0 − d0� + �1 − I�X0� = 0

i = i�T� �i = 1,2,3� �27�

aking into account the properties �15� of the i matrices, these
our scalar equations are not independent and reduce only to two
calar conditions. It results that Eqs. �24� and �27� provide four
calar equations for the determination of the four parameters

10,x10� ,� ,T. To each solution of these equations, a periodic mo-
ion of the coupled oscillators of period �+T, with two transitions
er period, is obtained.
In conclusion, the initial conditions and the duration times of

3

the slip motion � and of the stick motion T related to a periodic
solution �with one slip-slip mode and one slip-stick mode per
period� are obtained from the system

x20 =
VT

2
+ d02, x10 = x20 −

ur2

�

x10� = �V + cot�T

2
�us2 − ur2

�
+

VT

2
�1 − ���

�H11 + 1��us2 − ur2

�
+

VT

2
� + H12�VT

2
� + H13x10� + H14V = 0

H21�us2 − ur2

�
+

VT

2
� + �H22 + 1��VT

2
� + H23x10� + H24V = 0

H1 = �Hij� �i, j = 1,2�, H2 = �Hij� �i = 1,2; j = 3,4�
�28�

However, to obtain a realistic solution, the results deduced from
system �28� must fulfill the conditions

� � 0, T � 0, x1� − V � 0, x2� − V � 0 �0 � t � ��

z1 � ��x2 − x1� − ur2 � 0

z2 � ��x2 − x1� + ur2 � 0 �� � t � � + T� �29�
An interesting property of symmetry can be found for this solution
�see Appendix and Ref. �7��:

Z�t� = EZ�� − t�, 0 � t � �/2

Z�t� = EZ�2� + T − t�, � � t � � + T/2
It seems that a similar periodic solution without this property can-
not be found for any set of data. It is not difficult to show that
dissymmetrical periodic solutions such as Solution I can be found
only for some particular values of the data.

4.2 Solution II: Periodic Solution With Three Transitions
per Period. Let us assume that at t=0,

x10� = x20� = V, x10 − �x20 = ur1, ��x20 − x10� � ur2 �30�

For some period of time �0� t���, the motion is composed of a
slip motion for m1�u1=us1 ,x1��V� and a stick motion for m2:

Z+�t� = �t�Z0
+ �31�

A transition occurs at t=� if

��x2c − x1c� = ur2, xic = xi���, �i = 1,2� �32�

For a new period of time ��� t��+�1�, the the two masses un-
dergo a slip motion:

Z+�t� = H�t − ��Zc
+, Zc

+ = Z+��� �33�

Again, a switch occurs at t=�+�1 if

x1d� = x1��� + �1� = V, �x1d − �x2d� � ur1, xid = xi�� + �1�

�i = 1,2� �34�

For �+�1� t��+�1+T, the first mass undergoes a stick motion,
while the second one undergoes a slip motion:

Z+�t� = C�t − � − �1�Zd
+, Zd

+ = Z+�� + �1� �35�

A periodic solution of period �+�1+T is obtained under the con-
ditions

Z+�� + �1 + T� � C�T�Zd
+ = Z0

+ �36�

This condition includes the relation x1d� =V.
The obtained periodic solution depends on the four parameters:
x20 �the other initial conditions are obtained from Eq. �30��, and
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,�1 ,T �time duration of each part of the periodic solution�. On
he other hand, the conditions �32� and �36� provide five scalar
quations for the determination of these parameters. It results that
n contrast to the periodic Solution I, this new solution is obtained
nly for some particular set of the data, which includes
,	 ,V ,usi ,uri , �i=1,2�. The periodicity condition �36� gives the

ollowing equations:

N1�X0 − d0� + N2X0� = 0

N3�X0 − d0� + N4X0� = 0

N = C�T�H��1���� − I4 = �N1 N2

N3 N4
�

I4 = � I 0

0 I
�, X0� = �V

V
� �37�

rom Eq. �37�, we deduce two compatibility conditions:

M11 + M12 = 0, M21 + M22 = 0

M � �M11M12

M21M22
� = N1

−1N2 − N3
−1N4 �38�

he relations �38� provide two equations linking the time duration
� ,�1 ,T� of each part of the motion. From Eq. �37�, we deduce the
alue of X0−d0:

X0 − d0 = − N1
−1N2X0� �39�

his last result, together with Eq. �38�, gives four scalar equations
or the determination of the parameters x20,� ,�1 ,T in terms of the
ata. Inserting these values in the condition �32�, a compatibility
ondition for the existence of such a periodic solution is obtained.
his compatibility condition provides, for example, the value of
r2, in terms of the data �� ,	 ,V ,ur1,usi , �i=1,2��.

Numerical Applications
Numerical validations will be made by using the MATLAB pro-

ram for several values of the data � ,	 ,V ,ur1 ,usi �i=1,2� and for
ach kind of periodic motions.

Solution I. From Eq. �28�, the time duration � of the slip motion
s obtained from the condition

F��� � a11 + a12 − ��a21 + a22� + B�1�2

+ �1 − � + B�a22 + �a21��cot�Ba21 − 1

a21 + a22
�

= 0 �40�

a11 = d��1�2 − �2�1�, a12 = d��1 − �2�

a21 = d�1�2��2 − �1�, a22 = d��1�1 − �2�2�

d =
1

�2 − �1
, B =

us2 − ur2

�V
, �i = �i cot��i�/2� �i = 1,2�

�41�
or the following values of the parameters:

� = 0.4001, 	 = 4, V = 0.6773, us1 = 0.0127

us2 = 0.5, B = − 2.4994

e obtain �=2.65, T=2.2407.
The corresponding behaviors of the two masses are shown on

igs. 2 and 3.
The constraints

x� − V � 0�0 � t � ��
1

4

z1 = ��x2 − x1� − ur2 � 0

z2 = ��x2 − x1� + ur2 � 0, �� � t � � + T�
are checked on Figs. 4 and 5.

Solution II. For �=0.5, 	=1, V=1, us1=us2=1, ur1=3.4983, we
obtain �=2, �1=1.651, T=3.651, ur2=1.3569.

The corresponding behavior of the system is shown on Figs. 6
and 7.

The constraints

p1 � ��x2 − x1� + ur2 � 0

Fig. 2 Phase portrait of the slip-stick orbit „first mass…

Fig. 3 Phase portrait of the slip-stick orbit „second mass…
Fig. 4 Constraint x1�−V<0



a

p2 � − ��x2 − x1� + ur2 � 0, �0 � t � ��

q1 � x1 − �x2 + ur1 � 0

q2 � − x1 + �x2 + ur1 � 0 �� + �1 � t � � + �1 + T�

re checked on Figs. 8 and 9.

Fig. 5 Constraints z1<0,z2>0

Fig. 6 Phase portrait of the first mass „Solution II…
Fig. 7 Phase portrait of the second mass „Solution II…

5

6 Conclusion
Two kinds of periodic solutions for a two-degree of-freedom

oscillator excited by dry friction have been obtained in analytical
form. These two solutions differ by the number of switches oc-
curring during one period. In Ref. �4�, similar solutions have been
obtained by numerical methods. However, in the work performed
in Ref. �4�, the friction model is not Coulomb’s friction law.

The investigation of other kinds of periodic motions will be the
subject of future researches, together with the analysis of the sta-
bility of the obtained periodic motions.

Appendix: Symmetry of the Solution
For 0� t�� /2,

Z�� − t� = H�� − t�Z0

From the identies

H�� − t� = H�− t�H���, Z��� = H���Z0 = EZ0, H�− t�E = EH�t�
it results to

Z�� − t� = EH�t�Z0 = EZ�t�

In particular, for t=� /2, this relation gives

Z��/2� = EZ��/2�
Hence, the following relation holds:

Fig. 8 Constraints p1>0,p2>0
Fig. 9 Constraints q1>0,q2>0
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R

X��/2� = d0

similar property of symmetry is obtained for the other part of
he solution ��� t��+T�. In particular, X��+T /2�=d0.
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