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5 Laboratoire de Physique Théorique de la Matière Condensée (UMR CNRS 7600),
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Abstract. Modern developments in microscopy and image processing
are revolutionising areas of physics, chemistry, and biology as nanoscale
objects can be tracked with unprecedented accuracy. However, the price
paid for having a direct visualisation of a single particle trajectory with
high temporal and spatial resolution is a consequent lack of statistics.
This naturally calls for reliable analytical tools which will allow one to
extract the properties specific to a statistical ensemble from just a single
trajectory. In this article we briefly survey different analytical meth-
ods currently used to determine the ensemble average diffusion coeffi-
cient from single particle data and then focus specifically on weighted
least-squares estimators, seeking the weight functions for which such
estimators are ergodic. Finally, we address the question of the effects
of disorder on such estimators.

1 Introduction

Single particle tracking (SPT) can be traced back to the classic studies of Jean
Baptiste Perrin on Brownian motion [1,2]. With the advent of modern experimen-
tal techniques, recent years witnessed an explosion of different approaches aiming at
probing physical and biological processes at the level of a single molecule. A SPT
experiment uses computer-enhanced video microscopy to generate the time series of
the position r1, r2, . . . , rN at times t1, t2, . . . , tN , of an individual particle tra-
jectory in a medium, (see, e.g., [3,4]). Properly interpreted, the information drawn
from a single, or a finite number of trajectories, provides insight into the mechanisms
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and forces that drive or constrain the motion of the particle. Nowadays, single parti-
cle tracking is extensively used to characterise the microscopic rheological properties
of complex media [5], and to probe the active motion of biomolecular motors [6]. In
biological cells and complex fluids, SPT methods have become instrumental in demon-
strating deviations from normal Brownian motion of passively moving particles (see,
e.g., [7–11]).
The reliability of the information drawn from SPT analysis, obtained at high tem-

poral and spatial resolution but at expense of statistical sample size, is not always
clear. Time averaged quantities associated with a given trajectory are usually subject
to large trajectory-to-trajectory fluctuations even for simple diffusion. For proteins
transported in the cell cytoplasm or molecules in aqueous environments in general,
Brownian diffusion is the basic transport mechanism [12]. Notwithstanding that dif-
fusion is ubiquitous in nature, recent studies have suggested that transport on cell’s
membrane [13], as well as in the cytoplasm [11], may not be limited to pure dif-
fusion, although the microscopic origin of anomalous diffusion remains unclear. For
a wide class of anomalous diffusions, described by continuous-time random walks,
time-averages of certain particle’s observables are, by their very nature, themselves
random variables distinct from their ensemble averages [14,15]. For example, the
square displacement time-averaged along a given trajectory differs from the ensemble
averaged mean squared displacement[15–17]. By analyzing time-averaged displace-
ments of a particular trajectory realization, subdiffusive motion can actually look
normal, although with strongly differing diffusion coefficients from one trajectory to
another [15–17] and showing substantial ageing effects [18]. Conflicting results in the
identification of the underlying transport mechanisms and their characterization has
generated in recent years a debate on the most appropriate methodology for the
determination of the diffusion coefficient from SPT data.
Even though standard Brownian motion is much better understood than anom-

alous diffusion, the analysis of its trajectories is far from being as straightforward
as one might think, and all the above-mentioned troublesome problems persist. For
instance, in bounded systems, substantial manifestations of trajectory-to-trajectory
fluctuations in the first passage time phenomena have been recently revealed [19,20].
Standard fitting procedures applied to long but finite d-dimensional Brownian

trajectories unavoidably lead to fluctuating estimates Df of the diffusion coefficient,
which might be very different from the true ensemble average value D,

D =
E
[
B2t
]

2dt
· (1)

Using different fitting procedures, variations by orders of magnitude have been ob-
served in SPT measurements of the diffusion coefficient for diffusion of the LacI
repressor protein along elongated DNA [21], in the plasma membrane [4] or for dif-
fusion of a single protein in the cytoplasm and nucleoplasm of mammalian cells [22].
The dispersion of Df observed from different single particle trajectories results from
the rather complex environments in which the measurements are performed. Each
trajectory will have its own thermal history, particle interactions with different im-
purities, etc. Moreover, the broad histograms for observed D can also be due to blur
and localization errors, intrinsic of any experimental measurements, as discussed in
[23–26].
The broad dispersion of diffusion constant estimates extracted from SPT analysis

raises several important questions: Does an optimal methodology able to determine
the diffusion coefficient from just one single-particle trajectory exist? If the answer
to this question is positive, then what is the performance of such methodology given
the finite length and finite time resolution of the measured trajectory? Clearly, it is
highly desirable to have a reliable estimator even for the hypothetical pure cases,
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such as, e.g., unconstrained standard Brownian motion. Such an estimator must
possess an ergodic property so that its most probable value should converge to the
ensemble average and the variance should vanish as the observation time increases.
This is often not the case and moreover, ergodicity of a given estimator is not

known a priori and has to be tested for each particular form of the estimator. More-
over, the knowledge of the distribution of such an estimator could provide a useful
gauge to disentangle the effects of the medium complexity as opposed to variations in
the underlying thermal noise driving microscopic diffusion. Recently, much effort has
been invested in the analysis of this challenging problem and several important re-
sults have been obtained for the estimators based on the time-averaged mean-square
displacement [27–29], mean maximal excursion [30], or the maximum likelihood
approximation [23,31,32].
In this paper we first review, in Sect. 2, some of the existing statistical methodolo-

gies used to extract the diffusion coefficient of single-particle Brownian trajectories. In
Sect. 3, we focus on a family of weighted least-squares estimators based on single-time
averages that we have recently introduced, and in Sect. 4, we obtain the distribution
function of the estimate Df and study its ergodic properties. When the underlying
dynamics is not Brownian, the ergodicity properties of the weighted least-squares
estimators is not guaranteed. As shown in Sect. 5, where we present new results on
the estimation of the diffusion coefficient of a Brownian particle moving on a random
correlated potential. Sect. 6 contains our final remarks.

2 Estimating the diffusion coefficient of single trajectories

Consider a d-dimensional Brownian process Bt with variance Var [Bt] = 2dDt, and
D as defined in Eq. (1).
We start this section by considering a simple-minded, rough estimate of Df , defin-

ing it as the slope of the line connecting the starting and the end-points Bt of a given
trajectory, namely Df = B

2
t/2dt. By definition E [Df ] = D. A single trajectory diffu-

sion coefficient Df so defined is a random variable whose probability density function
P (Df ) is the so-called chi-squared distribution with d degrees of freedom, namely

P (Df ) =
1

Γ (d/2)

(
d

2D

)d/2
D
d/2−1
f exp

(
−d
2
· Df
D

)
, (2)

where Γ (·) is the Gamma-function. Clearly this distribution diverges as Df → 0 for
d = 1, P (0) is constant for d = 2, and only for d > 2 the distribution has a bell-shaped
form with the finite most probable value D∗f = (1 − 2/d)D. This means that, e.g.,
for d = 3, the most likely value extracted from a single Brownian trajectory is only
Df = D/3.
A more refined method, known as Least-Squares Estimator (LSE), than the previ-

ous one consists in taking not only the starting and end-points, but the least-squares
estimate of the trajectory in the full time interval, say t ∈ [0, T ], namely

FLSE =

∫ T

0

(
B2t − l(t)

)2
dt, (3)

where in the simplest case, the dynamical law is taken as l(t) = 2dDLSEt. Minimizing
(3) with respect to DLSE we obtain the LSE as

DLSE =
3

8dT 3

∫ T

0

B2t tdt. (4)
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Another related method, commonly used in the analysis of SPT, experimental data
consists in the least-squares fitting of the time-averaged square displacement, also
called Mean Square Displacement (MSD) [4,12,22]. For a trajectory followed through
a time interval T , this is defined as

FMSD(t) =
1

T − t
∫ T−t

0

(Bt+s −Bs)2 ds. (5)

At short time lags t→ 0, the time average FMSD coincides with the ensemble average
E
[
B2t
]
, due to the ergodicity of the diffusion processes. However, due to the finite

length of experimental trajectories, the MSD analysis (5), is performed over a large
fraction of intervals t, even when it is clear that the small-t behaviour is often re-
stricted only to a very small interval compared to the total duration of the trajectory
[31]. Replacing B2t by the MSD trajectory FMSD in Eq. (3) we obtain for a linear
dynamical law the MSD estimator

DMSE =
3

8dT 3

∫ T

0

FMSD(t)t dt. (6)

Calculating the MSD is one of the most popular methods for the analysis of SPT
experimental data. However, this method presents a number of fundamental limi-
tations, leading to non reliable estimations of the diffusion coefficient [26]. Some of
these limitations can be improved by considering weighted MSE, with a time depen-
dent weight that takes into account the growth of the variance in time [12]. Other
limitations are rooted to the fact that, differently than the LSE, the MSD estimator
is a two-time function. This fact renders the MSD estimator particularly fragile with
respect to the localization errors intrinsic to the experimental acquisition of the data.
This fragility has been only recently recognized and studied by several authors (see
e.g. [23–26]). With no additional errors, the ensemble average of (5), i.e., the average
of Eq. (5) over infinitely different trajectories, coincides with E

[
B2t
]
[33]. However, in

experimental data, the position of the particle at any given time is acquired during
a finite integration time, yielding a static localization error δ. Since, the localization
error involves the unknown diffusion coefficient D, the ensemble average of Eq. (5) is
modified as [34]

E [FMSD(t)] = 2
(
dDt+ δ2

)
. (7)

Additional dynamic errors due to motion blur reduce the previous expression by
2Dτ/3, where τ is the time interval at which the position of the particle is recorded
[35]. Full consideration of these errors and modeling of the motion blur has been
recently studied in [23–25], and in [26] an optimized version of the least-squares
fitting for the MSD has been proposed. The authors of [26] showed as well that
the variance of this optimized MSE decays inversely proportional to the length of
the trajectory, which means that for very long trajectories, the estimated value of the
diffusion constant becomes trajectory independent. Therefore, this two-time estimator
is ergodic.
A conceptually different fitting procedure has been discussed in [31] which amounts

to maximizing the unconditional probability of observing the whole trajectory B(t),
assuming that it is drawn from a Brownian process with mean-square displacement
2dDt. This is the maximum likelihood estimate which takes the value of D that
maximizes the likelihood of B(t), defined as:

LT =

T∏

t=0

(4πDt)
−d/2

exp

(
− B

2
t

4Dt

)
· (8)



Minimization of the logarithm of LT with respect toD yields the Maximum Likelihood
Estimator (MLE) for the diffusion coefficient of a Brownian trajectory as [31]

DMLE =

∫ T

0

B2t
t
dt. (9)

This estimator was studied in [31] in one dimension, and it was shown that the MLE
is superior to those based on the LS unweighted minimization. As a matter of fact,
the distribution of DMLE not only appears narrower than the distribution of DLSE,
resulting in a smaller dispersion, but also the most probable value of the diffusion
coefficient appears closer to the ensemble average D [31]. More recently, the same
conclusions were obtained in [32] for arbitrary dimensions.

3 Weighted least-squares estimators of the diffusion coefficient

In a recent paper [36], we have studied a family of least-squares one-time estimators
defined as

uα =
Aα

T

∫ T

0

ω(t)B2t dt, (10)

where ω(t) is the weighting function of the form

ω(t) =
1

(t0 + t)α
, (11)

α being a tunable exponent (positive or negative), t0 – a lag time and Aα – the
normalization constant, appropriately chosen in such a way that E {uα} ≡ 1, so that

Aα =
T

2dD

(∫ T

0

t dt

(t0 + t)α

)−1
· (12)

Such a normalization permits a direct comparison of the effectiveness of estimators
corresponding to different values of α.
The estimator uα in Eq. (10) minimizes the least-squares functionals with a weight-

ing function ω(t) = (t0+ t)
−α. Consider a d-dimensional trajectory Bt with t ∈ [0, T ].

To estimate the diffusion coefficient DF from this trajectory, one writes the least-
squares functional of the form

F =
1

2

∫ T

0

ω(t)

t

(
B2t − 2dDF t

)2
dt , (13)

and seeks to minimize it with respect to the value of DF , considered as a variational
parameter. Eq. (13) is a generalized weighted least-squares functional, with a cer-
tain weighting function ω(t), which depending on whether it is a decreasing or an
increasing function of t, will emphasize the short time or the long time behavior of
the trajectory Bt, respectively.
After minimization of F with respect to DF we find that

DF

D
=

(
1

T

∫ T

0

dt ω(t)B2t

)(
2dD

T

∫ T

0

dt t ω(t)

)−1
· (14)

Finally, identifying the denominator with the normalization Aα and choosing ω(t) =
(t0+t)

−α, we recover our definition (10). Furthermore, note that α = −1 corresponds
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to the unweighted LSE and α = 1 corresponds to MLE defined in the previous section.
Therefore, our generalized estimate (10), possesses a nice property to contain, as
particular cases, two other commonly used estimators.
For standard Brownian motion, the lag time t0, corresponding to the time at

which the measurement is started, can be set equal to zero. However, it is useful to
keep the explicit dependence on t0 since it is equal to the resolution ε at which an
experimental trajectory is recorded as ε = t0/T . Moreover, in [32] it was found that
for anomalous diffusion, or for Brownian motion in presence of disorder, t0 plays a
significant role.
In [36], we have studied the family of estimators (10), and determined a unique

value of α for which uα is ergodic, so that the single trajectory diffusion coefficient
DF → D as ε = t0/T → 0. In the next section we briefly sketch the derivation of the
probability distribution function P (uα) and discuss its properties.

4 Distribution of the weighted estimators

The fundamental characteristic property to derive the probability distribution func-
tion P (uα) is the moment-generating function Φ(σ) of the random variable in Eq. (10)
defined as

Φ(σ) = E [exp (−σuα)] , (15)

where σ is positive definite parameter, 0 ≤ σ <∞.
Using the fact that a d-dimensional Brownian motion can be decomposed into a

product of its d one-dimensional components, the generating function can be written
as

Φ(σ) = G(σ)d =

(

E

[

exp

(

−σAα
T

∫ T

0

ω(τ)B2τ (i) dτ

)])d

· (16)

Following [31,32], we introduce an auxiliary functional

Ψ(x, t) = Ext

{

exp

(

−σAα
T

∫ T

t

ω(τ)B2τ dτ

)}

, (17)

where the expectation is for a Brownian motion starting at x at time t. Clearly,
G(σ) = Ψ(0, 0). This functional satisfies the Feynman-Kac type formula

Ψ(x, t) = EdB

{
Ψ(x+ dBt, t+ dt)

(
1− σAαω(t)

T
x2dt

)}
, (18)

where dBt is an infinitesimal Brownian increment such that EdB{dBt} = 0 and
EdB{dB2t } = 2Ddt, and EdB denotes averaging with respect to the increment dBt.
Furthermore, expanding the right-hand-side of the latter equation to second order
in dBt, linear order in dt and performing averaging, we find that Ψ(x, t) obeys the
Schrödinger like equation with a harmonic, time-dependent potential

∂Ψ(x, t)

∂t
= −D∂

2Ψ(x, t)

∂x2
+
σAαω(t)

T
x2Ψ(x, t) , (19)

subject to boundary condition Ψ(x, T ) = 1 for any x.
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The solution of Eq. (19), and thus of the generating function (16), was explicitly
obtained in [36] for α = 2 and α �= 2. In the latter case, the moment-generating
function, to leading order in ε = t0/T , is given by:

Φ(σ) =

[

Γ (ν)

(
σ

χ1

) 1−ν
2

Iν−1
(
2

√
σ

χ1

)]−d/2

, for α < 2, (20)

Φ(σ) =

[

Γ (1− ν)
(
σ

χ2

) ν
2

I−ν
(
2

√
σ

χ2

)]−d/2
, for α > 2, (21)

where ν = 1/(2− μ), Iμ(z) is the modified Bessel function [39] and

χ1 =
d(2− α)
2

and χ2 =
d(α− 2)
2(α− 1) · (22)

For the particular case of α = 2, we find that the moment-generating function is given
for arbitrary ε explicitly by

Φ(σ) =
{ (δ + 1)
2δε(δ−1)/2

[(
1 +
δ − 1
δ + 1

εδ
)
cosh

(√
2aξσ

)

+
δ − 1
2
√
2aξσ

(
1 + εδ

)
sinh
(√
2aξσ

) ]}−d/2
. (23)

First we focus on the variance of the estimator given in (10). The variance Var(uα)
is obtained by differentiating Eqs. (20) or (21) twice with respect to σ and setting
σ equal to zero. For arbitrary α �= 2 the variance to leading order in ε is then given
explicitly by

Var [uα] =
2

d

{
(2− α)/(3− α), α < 2,
(α− 2)/(2α− 3), α > 2. (24)

The result in the latter equation is depicted in Fig. 1 and shows that, strikingly, the
variance can be made arbitrarily small in the leading in ε order by taking α gradually
closer to 2, either from above or from below. The slopes at α = 2+ and α = 2−
appear to be the same, so that the accuracy of the estimator will be the same when
approaching α = 2 from above or below. Equation (24), although formally invalid for
α = 2, also suggests that the estimator in Eq. (10) with α = 2 possesses an ergodic
property.
A word of caution is now in order. Finite-ε corrections to the result in Eq. (24)

are of order of O(ε2−α) for 1 < α < 2, which means that this asymptotic behavior
can be only attained when ε 	 exp (−1/(2− α)). In other words, in principle, the
variance can be made arbitrarily small by choosing α closer to 2, but only at expense
of increasing either the experimental resolution or the observation time T , which is
clearly seen in Fig. 1.
The solid circles in Fig. 1 correspond to numerical results of random walks on a

3-dimensional lattice and computed P (uα) using Eq. (10) from a large ensemble of
trajectories, for different values of α and different resolution ε. For α < 1.5 or α > 2.5,
the variance computed numerically is well described by Eq. (24) and is independent
of ε (Fig. 1). Near α = 2, corrections due to the finite resolution are noticeable, but
the numerics clearly show that the variance of the distribution P (uα) decreases as
ε→ 0.
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Fig. 1. Variance of the distribution P (uα) for different values of α. The dashed curves
correspond to Eq. (24). The symbols correspond to the values obtained from numerical
simulations of 3D random walks for (from light to dark) ε = 5× 10−5 (�), 5× 10−6 (�) and
5 × 10−7 (�). The solid squares correspond to the values for Var [u−1] (LSE) and Var [u1]
(MLE) as indicated by the labels.

We now turn our attention to the distribution function P (uα), which is obtained
by inverting the Laplace transform in Eq. (15) with respect to the parameter σ:

P (uα) =
1

2πi

∫ γ+i∞

γ−i∞
dσ exp (σuα) Φ(σ) , (25)

where γ is a real number chosen in such a way that the contour path of integration
is in the region of convergence of Φ(σ). Since for α �= 2 all the poles of the moment-
generating function lie on the complex plane on the negative real σ-axis [36,37], we
can set γ = 0 in (25) and find, to leading order in ε

P (uα) =
1

π

∫ ∞

0

dz cos (zuα − dφα(z)/2)
ρ
d/4
α (z)

, (26)

where, for α < 2,

ρα(z) = Γ
2 (ν)

(χ1
z

)ν−1 [
ber2ν−1

(
2

√
z

χ1

)
+ bei2ν−1

(
2

√
z

χ1

)]
, (27)

and the phase φ is given by

φα(z) = arctg

[
berν−1

(
2

√
z

χ1

)
ber−1ν−1

(
2

√
z

χ1

)]
, (28)

while for α > 2 we have

ρα(z) = Γ
2 (1− ν)

(χ2
z

)−ν [
ber2−ν

(
2

√
z

χ2

)
+ bei2−ν

(
2

√
z

χ2

)]
, (29)
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Fig. 2. The distribution P (uα) for different α �= 2 in three dimensions. The curves from
the left to the right (darker to lighter) in the left panel correspond to α = −1 (LSE), α = 1
(MLE), α = 3/2 and α = 1.95 (blue), and in the right panel to α = 5, α = 3, α = 2.5
and α = 2.05. The symbols in the left panel correspond to numerical simulations of random
walks in three dimensions. In the inset we show the most probable value u�α as a function
of α.

Table 1. Most probable value u�α and variance of the normalized estimator uα, for different
values of α and ε→ 0.

Estimator u�α Var(uα)

LSE u−1 ≈ 0.44 0.5
MLE u1 ≈ 0.6 ≈ 0.33
Weighted BM u1.95 ≈ 0.94 ≈ 0.032

and

φα(z) = arctg

[
ber−ν

(
2

√
z

χ2

)
ber−1−ν

(
2

√
z

χ2

)]
, (30)

where berμ(x) and beiμ(x) are the Kelvin functions [39].
In Figs. 2 we plot P (uα) in Eq. (26) for three-dimensional systems. Indeed, the

most probable value u� → 1 when α → 2 either from above or from below. Note
that for any exponent α �= 2, u� is smaller than the average value 1. Nevertheless,
already for α = 1.95 (or α = 2.05) we get the most probable value u� ≈ 0.94, which
outperforms the LSE (u� ≈ 0.44) and the MLE (u� ≈ 0.6). For α = 1.95 the variance
Var(uα) ≈ 0.032, which is an order of magnitude less than the variances observed for
LSE (= 0.5) and the MLE (≈ 0.33). Similarly to Fig. 1, finite-resolution corrections
are negligible for α < 1.5 and α > 2.5, and P (uα) is well described by Eq. (20).
For α = 1.95 and finite resolution ε = 10−7, we obtain a broader distribution and
with a smaller u∗ than the corresponding to Eq. (20) for infinite resolution. Note,
however, that the most probable value of P (u1.95) that we obtain at finite resolution
is ≈ 0.84, which outperforms the LSE and MLE for infinite resolution. As a matter
of fact, it is evident from Fig. 1 that for any finite resolution, at least < 5 × 10−5,
the variance of the weighted LSE uα outperforms the unweighted LSE and MLE at
infinite resolution. A comparison between LSE, MLE and our weighted LSE is shown
in Table 1.
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When α = 2 and ε = t0/T small but finite we consider a slightly more general
form for ω(t):

ω(t) =

{
2ξ/t20, for t < t0,

1/t2, for t0 ≤ t ≤ T, (31)

where ξ is a tunable amplitude. For such a choice, the moment generating function
is given explicitly by [36]

Φ(σ) =

(
2 δ ε(δ−1)/2

φ+

)d/2 [
1 +
φ−
φ+
εδ
]−d/2

, (32)

with

φ± = (δ ± 1)
[
ch
(√
2γξσ

)
± δ ∓ 1
2
√
2γξσ

sh
(√
2γξσ

)]
, (33)

where δ =
√
1 + 4γσ and γ = 2/d(ξ + ln(1/ε)). Differentiating Eq. (32), we find

Var[u2] =
4

3d

3 ln(1/ε)− 3(1− ε) + 2(1− ε)ξ + ξ2
(ξ + ln(1/ε))

2 · (34)

Now it is required to minimize (34) with respect to ξ. We note first that Var(u2) is
a non-monotonic function of ξ. However, we find that the optimal value of ξ is, for
arbitrary ε

ξ = ξopt =
(2 + ε) ln(1/ε)− 3(1− ε)

ln(1/ε) + ε− 1 · (35)

This function and its optimal value are shown in Fig. 3. Therefore, corresponding
optimized variance is

Varopt(u2) =
4

3d

3 ln(1/ε)− 4 + 5ε− ε2
ln(1/ε) (ln(1/ε) + 1 + 2ε)− 3(1− ε) · (36)

From Eq. (36) we find that in 3d Varopt(u2) ≈ 0.144, 0.096, 0.082 for ε = 10−3, 10−5,
10−6, respectively. When ε→ 0, Varopt(u2) vanishes as

Varopt(u2) ∼ 4
d

1

ln(1/ε)
· (37)

Therefore, Varopt(u2) can be made arbitrarily small but at expense of a progressively
higher resolution. In the limit ε → 0 the distribution converges to a delta-function.
The estimators with α = 2 are the only, in the family defined by Eq. (10), that possess
this ergodic property.

5 Diffusion in the presence of a random potential

In this section we consider a Brownian motion in a one-dimensional inhomogeneous
energy landscape, where the disorder is correlated over a finite length ξc. This model
gives a simple description of diffusion of a protein along a DNA sequence, for instance,
where the particle interacts with several neighboring base pairs at a time [38]. The
total binding energy of the protein is assumed to be a random variable. When the
particle hops one neighboring base further to the right or to the left, its new energy is
highly correlated to the value it had before the jump. Slutsky et al. [38] modeled this
process as a point-like particle diffusing on a one-dimensional lattice of unit spacing
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Fig. 3. Colour density plot of Var[u2] as a function of ξ and ε. The dashed curve corresponds
to ξopt of Eq. (35), and thus, to the optimal value of Var[u2] for fixed ε.

with random site energies {Ui}, whose distribution is Gaussian with zero mean, vari-
ance η2 and is correlated in space as 〈(Ui−Uj)2〉 = 2η2[1−exp(−|i−j|/ξc)], where ξc is
a correlation length. At each time step, the particle located at some site i jumps to the
left or to the right with probabilities pi ∝ exp[β(Ui−Ui−1)] and qi ∝ exp[β(Ui−Ui+1)],
respectively, where pi + qi = 1. Diffusion is asymptotically normal for any disorder
strength η. Nevertheless, the particle can be trapped in local energy minima for long
periods of time. During an extended intermediate time regime, it is observed that
first passage properties fluctuate widely from one sample to another [38].
In [32], we studied the probability distribution function P (uα) with α = 1 for a

Brownian particle moving in such a disordered potential. There we found that P (u0)
is strongly affected by the strength of the disorder and indeed, the presence of disorder
with short-ranged correlations tends to broaden the distribution of the measured D,
as it presents an additional source of fluctuations.
Here we generalise the study in [32] to different values of α. In Fig. 4 we show

numerical results for the variance Var [uα] for a Brownian particle moving on a disor-
dered potential for different disorder strengths η and different precision ε. As expected,
for a fixed ε, the variance grows in proportion with the disorder strength η. We do
not expect that for these dynamics u2 will be an ergodic estimator of the diffusion
coefficient and as a matter of fact, we cannot say a priori, that there exists a value
α for which uα is ergodic in this case. Nevertheless, it is interesting to note in Fig. 4
that the variance of uα gets smaller around some value α = α

�. Moreover, appar-
ently α� → 2 as η → 0. This behaviour is more evident in Fig. 5 where we show the
dependence of Var [uα] on α for a fixed precision ε = 10

−6 and different strengths
of the disorder η. As before, Var [uα] seems to attain a minimum for a value of α
which moves toward 2 as η → 0. A rough estimation of the optimal value α� from the
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tential, as a function of α for different values of precision: ε = 10−4 (�), 10−5 (�) and 10−6
(�). Each panel corresponds to different disorder strengths as indicated by the labels, and
β = 1. The dashed curve corresponds to the pure Brownian motion (η = 0) for ε = 10−6.
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Fig. 5. Variance Var [uα] for a Brownian particle moving on a disordered potential, as a
function of α for ε = 10−6 and different values of the disorder strength: η = 3 (�), 2 (�), 1
(�) and 0.5 (�). The dashed curve corresponds to the pure Brownian motion (η = 0). In the
inset, a rough estimation of the optimal α� as a function of η. The dashed curve corresponds
to α� = 2− η/5.

numerical data, shows that the dependence of α� on η is consistent with the affine
law α� = 2− η/5, as shown in the inset of Fig. 5.
Finally, to highlight the role of the trajectory-to-trajectory fluctuations, we con-

sider the probability density function P (ωα) of the random variable

ωα =
u
(1)
α

u
(1)
α + u

(2)
α

, (38)

where u
(1)
α and u

(2)
α are two identical independent random variables with the same dis-

tribution P (uα). The distribution P (ωα), introduced recently in [19] (see also [40–42]),
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Fig. 6. Distribution P (ωα) as a function of ω and α, for fixed disorder strength η = 3 and
ε = 10−5. The colour ramp increases from red (small values) to blue (large values).

is a robust measure of the effective broadness ofP (uα), which probes the likelihood of
the event that the diffusion coefficients drawn from two different trajectories are equal
to each other. This characteristic property can be readily obtained via an expres-
sion [43]

P (ωα) =
1

(1− ωα)2
∫ ∞

0

u duP (u)P

(
ωα

1− ωαu
)
· (39)

Hence, P (ωα) is known once we know P (uα).
In [32], we observed in the case α = 1 that for η ≈ 0.8 the distribution P (ω1)

undergoes a continuous shape reversal transition – from a unimodal bell-shaped form
to a characteristic bimodal M -shape one with the minimum at ω1 = 1/2 and two
maxima approaching 0 and 1 at larger disorder strengths. Therefore, indicating that
for η > 0.8 sample-to-sample fluctuations becomes essential and it is most likely that
the diffusion coefficients drawn from two different trajectories will be different. Here
we have computed the distribution P (ωα) for different values of α, η and ε. We have
found that the transition of P (ωα) described above, is robust with respect to α. Fur-
thermore, we have also found that the same transition occurs for fixed strength of
the disorder and varying α. An example of this transition is shown as a surface plot
in Fig. 6. For η = 3, the transition from bimodal to unimodal P (ωα) occurs around
α ≈ 2. This means that in the presence of disorder, among the estimators (10), those
for smaller α present more trajectory-to-trajectory fluctuations than those with
larger α.

6 Conclusions

To summarize, we have discussed different statistical estimators of the diffusion coeffi-
cient of a single (or few) Brownian single-particle trajectories. We have differentiated
between one-time and two-time estimators. In the case of the former, we have dis-
cussed a family of weighted least-squares estimators and showed that for standard
Brownian motion there exist a unique representative of this family u2 that possesses
the ergodic property, meaning that the estimated diffusion coefficient converges to its
true value in the limit of infinite precision ε→ 0.
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Moreover, we have sketched the derivation of the full probability distribution
function of uα in the leading order in ε. For α = 2, we have extracted the optimal value
of the variance as a function of the precision ε, and shown that in the limit ε → 0,
Var [ue] vanishes in proportion of 1/ ln(T ). This means that for practical purposes
the methods based on two-time correlation functions can provide better estimators,
because the variance of the corresponding estimator decays faster, as 1/T , even in
the presence of localization errors [23–26].
Furthermore, we studied trajectories of a Brownian particle moving in a random

potential with short-ranged correlations. Our numerical results suggest that there
exist an optimal value α = α� for which the variance of uα is minimal. We found that
α� converges to 2 inversely proportionally to the strength of the disorder η. Moreover,
we found that the trajectory-to-trajectory fluctuations increase in proportion to η and
are inversely proportional to α. This means that a robust estimator of the diffusion
coefficient for the random motion in disordered potentials is that for which the short
time dynamics is more efficiently emphasized. The question on the existence of an
ergodic estimator of the diffusion coefficient for disordered potentials deserves further
investigation.

CMM is partially supported by the European Research Council and the Academy of Finland.
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