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Abstract:

    This work presents the dynamic modelling of a

multibody systems in cross form constituted of a

central body which is connected four flexible arms, at

each end of arm is connected a rotor. A particular

attention is given to the influence of flexibility on the

dynamic behaviour of system. For elaborate the

complete dynamic model, one consider the sub-

structuration technique in using the Lagrangian

approach based on the relatives coordinates method of

central body. One establishes then the mathematics

equations permitting to obtain the dynamic model of

motion for the simulation and the control study. The

aerodynamic loads and the gravity force are taking

into account for the dynamic complete model. At the

end, one considers the case of stationary flight of a

miniature Quadrotor. The numerical results permit to

simulate the motion of Quadrirotor in flight. But also

to compare the flexible and rigid model in order to

resort the flexibility effects.

Keywords: modelling, flexible multibody systems,
Lagrangian dynamics, sub-structuration, UAV,

aerodynamic.

INTRODUCTION:

The dynamic modelling of a mechanical system in

flight presents some difficulties due to the topology

of the system but also the take into account of

aerodynamic loads, above all when this one is

considered as multibody system [3], [4], [12], [13],

[14], [17] and [19]. For this purpose, several

techniques are proposed in the literature. However

the presence of the flexible substructures constitutes

an inherent problem of the behaviour study of those

machines. For that it is necessary to add the effects

of aerodynamic loads in the case of flying objects. It

should be noted that, the presence of the various

joins between different substructures of the

multibody systems make more complex the

modelling of such systems. A complete dynamic
1

model permitting to take into account those different

aspects would be a considerable advantage for the

behaviour study of the engine.

The multibody systems were considered for a long

time as a group of rigid bodies linked with  springs

and dampers[10], [11], [23], and the structural

flexibility of bodies are not considered. We should

precise that the majority of these studied multibody

systems are industrial robots, in general very

massive and slow enough to justify the neglecting of

the structural deformation. However, the changes of

technology impose new constraints to multibody

systems. The missions become more and more

complex. In industry for example, we can remark an

extensive use of fast and light arm robots, and in

astronautics or aeronautics the flying objects possess

long and light components. It is necessary in these

cases to take into account the deformations of these

components.

In aeronautics, the integration of the flexibility of

the blades, particularly those of helicopters conduct

to the lightening of the structures. This permits to

these engines to be more operational for all possible

missions. However, the growth of the rotating speed

of the rotor increases the risks of vibration of these

lights structures, and also the problem of sound

nuisance. So the analysis of the dynamic behaviour

of a helicopter which take into account the

flexibility structural effect permits to construct

numerical computational codes necessary to

optimize the motion one part, and to establish a

control strategy other part.

In this way, Houbolt and Brooks [9], conduct an

original study, proposing an analytical model for the

dynamic behaviour of an isolated blade in void.

They establish the equations of motion of the blades

without aerodynamic effects but with the

conservation of the higher order terms due to cutting

effort and to rotating inertia. This study opened the



way for several works based on analytic approaches.

Vyas and Rao [22] improve this study by

considering the variable speed of rotation of the

blades. Culp and Murthy [5] subject an original

resolving method of these equations by introducing

an integration matrix.

Another technique of modelling of flying vehicles

use the Kirchoff equations. This method were used

firstly by Meirovitch [15], then Tuzcu and

Meirovitch [21] to elaborate the dynamic model of

robot with arborescent chains.

In this work, we establish the dynamical model

of Quadrotor called XSF, which is assumed as a

multibody system. We consider the XSF as a

structure in cross form with a central body

connected to flexible components.

For that, we consider firstly each substructure

individually. We define kinematic quantity of each

substructure in the local reference frame of central

body. The mathematical equations traducing the

motion of each one are obtained by using the

Lagrangian variationnal method. The external loads

acting on the quadrirotor are defined by the virtual

work principle. We introduce the deformation of

flexible components by a modal synthesis based on

Rayleight-Ritz method. We retain uniquely the pure

deflexion modes for the deformation of the flexible

components. The aim object in this work is the

development of a model combining lightness and

accuracy with respect to computation time. The

wished algorithm has to be precise, integrating the

flexibility of components and the inertial coupling

between the overall motion and the deformation. We

conclude by numerical examples comparing our

algorithm to a rigid body model of the XSF, to show

how it is important to take into account the

flexibility in such light flying objects.

MATHEMATIC MODEL:

The kinematic description of all components of

Quadrirotor will be established in the inertial

reference. In order establish those mathematics

expressions, one use the three orthonormal bases.

One assume that the XSF Quadrirotor is a multibody

system constituted by a central body ( )cB

assimilated at a rigid cylinder which is solidly

connected four flexible arms ( )
jfB with

( 1,2,3, 4)j =  assimilated each one at a

deformable tubular beam. At extremity of each

flexible arms is connected a rotor blades system

( )
jb

hB  assimilated at a embedded deformable thin

rectangular beam free. A rotor blade system is

constituted by two blades ( 1,2)b =  symmetrically

connected at a rotor. Consider the XSF shown in

Fig.1. The kinematic of Quadrirotor is defined in
2

( ) { , , , }g g g gT x y zℜ =
� � �

 assumed as inertial

reference or Galilean reference. One defines by

( ) { , , , }c c c c cO x y zℜ =
� � �

 the local reference linked

at central body, where cz
�

 is the descending vertical

axis, cx
�

 the longitudinal axis belong of ( )
jfB   for

2j =   and cy
�

the longitudinal axis belong of

( )
jfB for 1j = . In reality the presence of the

flexible structural in the Quadrirotor system imply

the superposition of flexible motion on the rigid

motion for obtain the overall motion of each sub

structure. A some formulation for dynamical

analysis of the flexible structure use the floating

reference approach for define the motion of the

flexible body [4], [17]. In using the floating

reference approach one can to define the boundaries

conditions that permit to express the space functions

of the modal deformation in using the discretization

finite element method based on nodal deformed or

the continuum modal function technique of the

flexible body. Last ( ) { : , , }
j j j j jf f f f fO x y zℜ =

� � �

denote the floating local reference attached at

( )
jfB , 

jfO  is the contact point of each flexible

arm with central body.

( ) { : , , }
j j j j jh h h h hO x y zℜ =

� � �
 denotes the floating

reference of each propeller, 
jhO  the contact point

with flexible arm. In this study we will not mention

the case of the joints for each articulation treated in

[13.]. An other fact in the dynamic study of the

mechanic system is take account of different attitude

of central body. He is important for define the

behaviour of Quadrirotor in flight. The rotation of

central body around its centre inertia is define by

Euler angle expressed by ( , , )ϕ θ ψ  such as ϕ  is

the rotation angle due to the roll motion, θ  the

rotation angle of the pitch motion and ψ  the

rotation angle of the law motion. After to have

define the sequence rotation such as: rolling-

pitching and lace, on express by cA  the matrix of

passage of the local reference ( )cℜ  to the reference

inertial frame ( )gℜ  given by:

c

c c s c s

A s s c c s s s s c c s c

c s c s s c s s s c c c

θ ψ θ ψ θ

ϕ θ ψ ϕ ψ ϕ θ ψ ϕ ψ ϕ θ

ϕ θ ψ ϕ ψ ϕ θ ψ ϕ ψ ϕ θ

 −
 

= − + 
 + − 

 (1)

where: 

cos ; sin

cos ; sin

cos ; sin

c s

c s

c s

ϕ ϕ

θ θ

ψ ψ

ϕ ϕ

θ θ

ψ ψ

= =

= =

= =



1. Presentation of the XSF Model

Figure 1.  Representation of the UAV.

The XSF is a micro UAV (Unmanned Aerial

Vehicle) represented by a quadrirotor of 68 cm x

68cm of total size. It is designed in a cross form and

made of carbon fibre. Each tip of the cross has a

rotor including an electric brushless motor, a speed

controller and a two-blade ducted propeller. In the

middle one can find a central cylinder enclosing

electronics namely Inertial Measurement Unit,

onboard processor, GPS, radio transmitter, cameras

and ultrasound sensors, as well as the LI-POLY

batteries.

The operating principle of the XSF can be

presented thus:

Rotors {1} and {2} (see Fig. 1) turn clockwise, and

the rotors {3} and {4} (see fig. 1) turn in the

opposite direction to maintain the total equilibrium

in yaw motion. The equilibrium of angular velocities

of all rotors done, the UAV is either in stationary

position, or moving vertically (changing altitude).

A characteristic of the XSF compared to the

existing quadrirotors, is the swivelling of the support

{6} of the rotors {2} and {4} around the pitching

axis 1x
�

 thanks to two small servomotors. This

permits a more stabilised horizontal flight and a

suitable cornering (see Fig.2).

2. Dynamic model

The dynamic model of the XSF with rigid and

flexible components is based on the Multibody

Systems Dynamics (MBS). The modelling of rigid

or flexible bodies in a MBS has been extensively

used for robotics and terrestrial systems see [6] and

[20]. In this approach we use the substructuration

1x
�

1y
�

1z
�(4) (1)

(3) (2)
3

methodology to study the dynamics of quadrirotor

because of the presence of several elements. This

substructuration method consists with the

subdivision of the UAV in elementary bodies

interconnected by kinematics joints such as shown

in figure 2. In this study, we consider the central

body as reference body for establishes the dynamic

model of the whole system.

Let us considers the Fig. 2, the substructures {5-

8} are a flexible arm, and witch substructures {5}

and {7} are connected to the central body by a fix

joint. However {6} and {8} is connected by a

revolute joint around the 1x
�

axis. The substructure

{1-4} is the subsystem rotor-two blades, such as the

rotor is the rigid body and the blades are a flexible

body. At each free extremity of the arms {5}, {6},

{7} and {8} is connected the axis of the identique

components {1-4} by revolute joints around the 1z
�

axis.  The whole of the system is in spangled form

with a central body. We considered that the

multibody system of the Quadrirotor helicopter is

composed by a four identical systems made up a

flexible fuselage and a rotor-two flexible blades

system.

Thus, initially we begin our study with the study of

system fuselage-rotor-blades. To establish the

dynamic equations of this system. In this first step,

we establish the mathematical equations of the

fuselage and the rotor-blade system separately. In

the second step we take account the revolute joint

between the fuselage and the rotor-blades system by

a multipliers Lagrange technical.

  To establish the complete dynamic equations of the

XSF we deduct the dynamical of the others bodies

by symmetric properties such as that will be

developed in the continuation.

2.1 Kinematics of MBS

Figure 2.  Kinematic scheme of MBS.

1y
�

1z
�

1x
�

{6}

{5}

{1}

{2}

{3}

{4}

{8}

{7}



Let us consider that cO  is the origin of the local

reference frame of central body ( )cB . The location

of an arbitrary point cP  of ( )cB with respect

( )cℜ  is given by:

c
c O cY R d= +  (2)

where: 
c

OR  represent the position of origin cO  and

cd  the local position of  cP . In using ( )cB  as the

reference body, one writes the vector position

appertaining to other components of Quadrirotor

such as:

j c j j
f O cf fY R d u= + +  (3)

( )
j c j j j j j jb b b

h O cf fh fh h h hY R d d u A d u= + + + + +

(4)

where : 
j

fu is the vector of flexible displacement of

arm, 
j

cfd  express the local position of the contact

point between ( )cB  and ( )
j

fB . 
j

fhd is the local

position of the contact point between ( )
j

fB and

( )
jb

hB , 
j

fhu  its displacement vector due to the

flexibility effect 
jb

hd  express the vector of local

position of blade and 
jb

hu its vector flexible

displacement. Last use consider the position of blade

express by Equ. 4, 
j

hA  represent the matrix of

cosine direction of the azimuthally angle of blade

around of rotation axis given by:

. .
j f j hj j

h uA A A Aβ ψ=  for 1,3j =  (5)

.
j f hj j

h uA A Aψ= for 2, 4j =  (6)

If we consider the rotation of the propeller with

respect to its corresponding arm, we denote 
jhA  the

rotation matrix of ( )cℜ  with respect to ( )
jhℜ . In

fact such as shown in Fig. 2, the rotors {1} and {3}

have the possibility of swivelling around the

longitudinal axis of arm to which they are connected

(i.e. around cx
�

 local axis). That is permit to define

the elementary rotation matrix 
j

Aβ  ( 1,3)j =

representing the swivelling angle jβ  such as:

20 20
jhβ− ° ≤ ≤ ° .
4

1 0 0

0

0

j j j

j j

A c s

s c

β β β

β β

 
 
 = −
 
 
 

 (7)

with :

sin
j jsβ β= ; cos=

j jcβ β

Let us consider the hypothesis of small deformations

for each deformable substructure. We consider

uniquely the pure deflection motion of a beam. This

permits to write the matrix 
f j

uA expressing the

rotation of element associate at the section due to

the deformations of the beam given by:

f fj j
u uA I ε= − �  (8)

where I  express the identity matrix

, ,

,

,

0

0 0

0 0

f f f fj j j j

f f fj j j

f fj j

y x z x

u z x

y x

u u

u

u

ε

 
 
 =
 
 −
 

�  (9)

,

f j

f fj j

j

y

y x

f

u
u

x

∂
=

∂
, ,

f j

f fj j

j

z

z x

f

u
u

x

∂
=

∂
correspond to

the deformations of the beam in regard of 
jfy
�

 and

jfz
�

 axis of ( )ℜ
jf .

h j

Aψ  is the matrix of direction cosines due to the

rotation of the blades such as:

0

0

0 0 1

h hj j

h h hj j j

c s

A s c

ψ ψ

ψ ψ ψ

− 
 

=  
  
 

 (10)

with:

sin
h jj

hsψ ψ= ; cos
h jj

hcψ ψ=

We can to write the velocity vector of a material

point of substructure as follows:

�

�

( )

( )

( )

( )

c

j c j j j

j c j j jb

j j j j jb b b

j j j jb b

T

c O c c

T

f O cf f c f

T

h O fh f c fh

T

h h h c h h

T

h h h h

V V d

V V d u u

V V d u u

A d u A u

A d u

ω

ω

ω

ω

ω

= +

= + + +

= + + +

+ + +

+ +

�

� � �

� � �

�

(11)



where:

cω represents the angular velocity of local reference

frame ( )cℜ of  ( )cB with respect to inertial

reference frame ( )gℜ  which can to write as:

c c cGω = Θ  (12)

with:

cG the transformation matrix of angular velocity

cω in derivation of Euler angles with respect to time

such as:

1 0

0

0

c

s

G c c s

s c c

θ

ϕ θ ϕ

ϕ θ ϕ

 
 

= − 
 − 

(13)

2.2 Discretization of the beam

We use the discretization based on the Rayleigh-

Ritz method for define the vector of flexible

displacement of each arm and each blade. We use

the linear theory of beam such as the flexible

displacement is only on the vertically and lateral

direction i.e. ( , )
j ji iu x t  :

1

( , ) ( ) ( )
j j j j j

n n

i i i i i

n

u x t x q t
µ

φ
=

=∑   (14)

1

2

1

3

0

( , ) ( ) ( )

( ) ( )

j j j j j

j j j

n n

i i yi i yi

n
n n

zi i zi

u

u x t u x q t

u x q t

µ

φ

φ
=

     = =          

∑  (15)

j

n

yiφ  and
j

n

ziφ : represents the spatial modal functions

define according to lateral and vertically axis

represented by an interpolation function that will be

developed in the next section.

j

n

yiq  and 
j

n

ziq : are the flexible coordinates systems.

In this work, we consider the flexible arm like a

tubular flexible beam fixed with a mass with the

end, the blades of the rotor are considered as a free

fixed thin beam. The numerical values of the sharp

modes selected are consigned in the following table

such as:

Mode

retained

Flexible arm Rotor

propeller

k1 1.014 1.875

k2 4.007 4.096

k3 7.050 7.855
5

In considering the firth modes, then we write the

flexible displacement vector in compact form as:

( , )
j j j ji i i iu x t q= Φ (16)

Where:

1 2 3

1 2 3

0 0 0 0 0 0

0 0 0

0 0 0

j j j j

j j j

i yi yi yi

zi zi zi

φ φ φ

φ φ φ

 
 

Φ =  
 
  

(17)

1 2 3 1 2 3

j j j j j j j

T

i yi yi yi zi zi ziq q q q q q q =   (18)

2.3 Kinetic energy

The kinetic energy of flexible body can be

written as:

( )

1
( ) ( )

2j j j j
i j

T

i i i i
B

T V V dm= ∫ (19)

ii
dm  is the elementary mass of body ( )

jiB and

jiV its velocity vector expressed above.

Let us consider the whole of system, the global

expression of kinetic energy is given by:

4 2

1 1
j jb

c f h

j b

T T T T
= =

  
= + +  

  
∑ ∑ (20)

Where:

cT represent the kinetic of central body ( )cB , 
jfT

is the kinetic energy of each arm and 
jb

hT the kinetic

energy of each blade.

The motion of multibody system is represented by a

system of coordinates constituted of six freedom

degrees of rigid motion introduced by a central body

( )cB and 6 ( )
j jb

f hn n× +  freedom degrees of

From the formulation of motion of the overall

system depending of the variables of motion, one

write the expression of kinetic global in form:

1

2

T
T r Mr= � �  (21)

with :

r�  is the derivation of r with respect to time such

as:



c j jb

T

O c f hr R q q = Θ   (22)

expressing the characteristics variables of motion

M is the mass matrix of system, which can be

formulated by the following expressions:

f hj jb

f hj jb

f f f hj j j jb

h hj jb b

RR R Rq Rq

q q

q q q q

q q

M M M M

M M M
M

symetric M M

M

Θ

ΘΘ Θ Θ

 
 
 
 =
 
 
  

(23)

The elements of mass matrix can be obtained from

equations (19) and (20) into take account the

formulation of variables of motion such as defined

in (22). One writes so that the expression of each

sub mass matrix in following form:

4 2

( ) ( ) ( )
1 1

[ ( )]
j jb

c f hj jb

RR c f h
B B B

j b

M dm dm dm
= =

= + +∑ ∑∫ ∫ ∫
4

( ) ( )
1

4 2

( )
1 1

( )

j j
c f j

j j jb b
h jb

T T

R c c f f
B B

j

T

fh h h
B

j b

M d dm a dm

a a dm

Θ
=

= =

= +

+ +

∑∫ ∫

∑∑∫

� �

� �

with:

�( )

j j j

j j j j

j j j jb b b

f cf f

fh cf fh fh

h h h h

a d u

a d d u

a A d u

= +

= + +

= +

�� �

� �� �

� �

4

( ) ( )
1

4 2

( )
1 1

( ( )( ) )

j j j
c f j

j j j j jb b b
h jb

T T

c c c f f f
B B

j

T

fh h fh h h
B

j b

M d d dm a a dm

a a a a dm

ΘΘ
=

= =

= +

+ + +

∑∫ ∫

∑∑ ∫

� � � �

� � � �

2

( ) ( )
1

( )
f j j j jj b

f hj jb

Rq f f fh h
B B

b

M dm dm
=

= Φ + Φ∑∫ ∫

( )

2

( )
1

( ( ) )

f j j jj
f j

j j j jb b
h jb

q f f f
B

fh h fh h
B

b

M a dm

a a dm

Θ

=

= Φ

+ + Φ

∫

∑ ∫

�

� �
6

( )h j j jj b bb h jb

Rq h h h
B

M A dm= Φ∫

( )
( )

h j j j j jj b b bb h jb

q fh h h h h
B

M a a A dmΘ = + Φ∫ � �

( )

2

( )
1

( )

f f j j jj j
f j

j j jb
h jb

T

q q f f f
B

T

fh fh h
B

b

M dm

dm
=

= Φ Φ

+ Φ Φ

∫

∑ ∫

( )f h j j j jj j b bb h jb

T

q q fh h h h
B

M A dm= Φ Φ∫

( )h h j j jj j b b bb b h jb

T

q q h h h
B

M dm= Φ Φ∫ (24)

Let us consider the different hypothesis on small

displacement of the deformations modular and the

length of the beam such as:

1
u

x
� ,

1u∆ � ,

 The elastic energy of each flexible component can

be expressed as:

1

2f f j j jj j

T

q q f f fU q K q=  (25)

1

2h h j j jj j b b bb b

T

q q h h hU q K q= (26)

where:

jfK and 
jb

hK represents the stiffness matrix of

each flexible arm and each blade respectively such

as:

2 2

2 20

f j j

j j j j

j j

T

l f f

f f f f

f f

K E I dx
x x

   ∂ Φ ∂ Φ
   =
   ∂ ∂   

∫  (27)

2 2

2 20

h j j jb b b

j j j jb b b b

j jb b

T

l h h

h h h h

h h

K E I dx
x x

   ∂ Φ ∂ Φ
   =
   ∂ ∂   

∫

(28)

In considering the variables of motion of overall

system represented by the column vector r
expressed by Equ. (22), we can write the elastic

stiffness matrix of flexible component as follows:



0 0 0 0

0 0 0 0

0 0 0

0 0 0

j

jb

f

h

K
K

K

 
 
 

=  
 
  

 (29)

 2.4 Equation of Motion of the Body

From the Lagrangian formalism expressed by:

T U= −�  (30)

where:

� is the Lagrangian of system, T  and U  the global

kinetic and elastic energy respectively write above.

In using the variational method based on the

principle of virtual works, we can write the

formulation of equations of motion in function of

the coordinates system. We write the following

equation:

exd T T U
Q

dt r r r

∂ ∂ ∂     
− + =     

∂ ∂ ∂     �
 (31)

exQ : is the generalized force vector acting on the

body that we will develop in the next section.     

We obtain the dynamic equation in this form:

1

F

( )

F  ( , )

c c c

c

j j

i j ij j

j j

c c

O O O

T

c c c

c O c c

i i

q i u

i i

d
A

dt V V R

d
V G

dt V

K q i f h
t q q

ω

ω
ω ω

−

 ∂ ∂ ∂
+ − =  ∂ ∂ ∂ 

 ∂ ∂ ∂ ∂
+ + − = Μ 

∂ ∂ ∂ ∂Θ 

   ∂ ∂∂
   − + = =
   ∂ ∂ ∂   

� � �
�

� � � �� �

� �

�

(32)

where F  is the resultant force vector acting on the

Quadrirotor and it includes the weight, the resultant

aerodynamic force, obtained by integrating the

aerodynamic density force over the entire surface of

each blade; M  is the resultant moment vector about

cA and it includes the moment due to aerodynamic

forces only; F
i j

u is the force due to elastic

phenomena of each flexible component of  the

Quadrirotor. Equations (32) are hybrid in the sense

that the first two are ordinary differential equations,

describing the translation and rotation of the

Quadrirotor whole, and the last one is a partial

differential equation, describing the elastic

displacement of a typical point on each deformable

component.
7

                                       

2.5 Generalized forces

The total force acting on the Quadrirotor in the

central body reference frame is:

4

1

F (F F )
j j jh L D

j

mg A
=

= + +∑  (33)

where:
2

1

F F .
j j jb b

L L L

b

z
=

=∑ : express the aerodynamics

forces vector in the blade local reference frame.
2

1

F F .
j j jb b

D L D

b

x
=

=∑ : express the drag force vector

in the blade local reference frame

g : is the gravity acceleration vector

m : is the mass of Quadrirotor

2

( )
1

M ( ) ( F F )
j j j jb b b

h jb

T

fh h L D
B

b

a a d d
=

= + +∑∫ � �

(34)

( )
F ( F F )

f j j jj b b b
h jb

T

u fh L D
B

d d= Φ +∫  (35)

( )
F ( F F )

h j j j jj b b bb h jb

T T

u fh h L D
B

A d d= Φ +∫   (36)

We obtain the corresponding expression of

generalized forces vector acting on the Quadrirotor

helicopter

( ) F M F
i j

T
ex T

uQ  =
 

 (37)

2.6 Aerodynamic forces and torques

In this part, we will define the characteristics of

the aerodynamic forces and torques issued from the

blade theory.

The blade behaves as a rotating wing. Each

element of the blade dr. is in contact with the

airflow with a speed RV  and according to an angle

of attack α . One call pans the axisymmetric

hooding of the hub, interdependent of the propeller

in rotation. In the plan of the propeller, the pan

is defined by the radius PS .

Assuming in Fig. 3 F
jb

LdL d= and F
jb

DdD d= .

Each elementary section of the blade of width dr

creates a lift F
jb

Ld  and a drag F
jb

Dd , such as:



2

2

1
F

2

1
F

2

jb

jb

L air L R

L air D R

d C V dS

d C V dS

ρ

ρ


=


 =


(38)

Figure 3. Description of forces applied on the blade.

where airρ  is the air density, LC  and DC

represent adimensional coefficients of lift and drag

depending mainly on the angle of attack α .

( )α γ= − Φ .

The XSF will hover or move at low speed, we can

assume that the thrust F  for a b blades propeller can

be written as:

2 2

0

2 2

0

F ( ) ( )
2

F ( ) ( )
2

P

j j

P

j j

S

L air h L

S

D air h L

b
r c r C r dr

b
r c r C r dr

ρ ω

ρ ω


=





=


∫

∫

 (39)

Or simply: 

2

2

F

F

j j

j j

L L h

D D h

k

k

ω

ω

 =


=

 (40)

Lk  and Dk are the coefficient of bearing pressure.

The computation of the lift coefficient is often

complex. Moreover marginal swirls at the tip of the

blade can modify significantly the theoretic values

of some aerodynamic parameters.

It is thus essential to elaborate an experimental

process, which will enable us to determine precisely

the coefficient Lk  as well as the limits of validity of

the equation (40).
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Figure 4. Testing bench of the thrust.

Let us denote RI ω  the kinetic moment of the rotor.

The gyroscopic effects of the rotating elements are

introduced in the model as follows:

MGy RI ω= ∧ Ω  (41)

These gyroscopic effects appear especially if an air

disturbance create a change in roll or pitch angle,

and when we swivel the arm {5} and {6}. The

gyroscopic moments are introduced in the global

model (32) as generalised forces.

3. Simulation and numerical Results

The XSF is intended to move in an urban

environment. Three kinds of manoeuvres are

privileged: yaw rotation, vertical ascension, and

translational displacement along the 1x
�

 axis.

In the first numerical test, we present the simulation

of a vertical motion. Two models are considered. In

the beginning we make the assumption that the XSF

is a rigid body, subjected to external and gravity

forces, and we compare the results with those of the

full Lagrangian flexible model. The external forces

applied on the XSF are gravity force and

aerodynamic forces, which are function of the

rotation speed of the rotor blades,

here:

607.37 /
jh rd sω = ,

2.2M kg=   is the mass of the UAV,

0.23l m=   the length of each arm.
91.15 10E Pa= ×  Young modulus

2in = : shape mode retained for each flexible body



The numerical simulation is based on the “semi

explicit stable” Newmark method and developed in

MATLAB
®
.

Figure 5. Comparison of aerodynamic

forces acting on flexible and rigid model

Figure 6: Comparison of global motion.

The figure 5 represents the aerodynamic forces

which acting on each rotor for the rigid and flexible

model of XSF.

 The figure 6 shows the global displacement of the

centre mass of central body namely cO . The blue-

dashed line shows the influence of the flexibility in

comparison with the same arm supposed rigid in a

hand and with the rigid Newton-Euler model

developed in [8] in the other hand.

In the second test we simulate a full manoeuvre of

the XSF in an urban environment. In the beginning

it should rise to an altitude of 2.55 m corresponding

roughly to its cruise altitude when exploring

villages. Then we swivel the rotors (1) and (3)  to

permit the horizontal displacement along the x-axis.

After that we impose a “square” trajectory

composed by four quarter of turn followed by
9

horizontal displacements. The different motions

were controlled by a sample P.I.D. law.

Figure 7: Trajectory of the XSF in urban mission.

The figure 7 shows the evolution of the position of

the XSF centre of gravity in this mission. In a first

approach we do not optimise the transition between

one kinds of motion to another. This will be benefit

to minimise the used energy.

4. Conclusion and future works

The equations of motion for manoeuvring flying

structure in urban environment are non-linear due to

the large body motion and the flexibility of some

components. The model presented in this paper

takes into account this non-linearity and includes the

effects of flexibility, and the aerodynamic and

gyroscopic effects. Then, the complete dynamic

model of Quadrirotor is govern by six freedom

degrees of motion of rigid body and the

( )
j jb

f hn n+  freedom degrees of motion of flexible

components. That is an advantage in the numerical

resolution of system.

We have considered one deformation mode for each

flexible component. In this work, the flexible bodies

were considered as a beam in pure deflexion. The

dynamic model contain the non linear terms

generated by the coupling between the rigid motion

and the flexible motion. The contribution of flexible

terms in the mass matrix conduct at no constant

contrary to most models met in the literature.

In the part, consecrated to numerical simulation,

we have showed the effect of flexibility of

component on the dynamic behaviour of Quadrirotor

such as shown by the figures. We have also showed

the effect of flexibility in application of a control

force in the rigid and flexible model case. The

results obtained in the cadre of modelling by the

relative coordinates method permit to observer the
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effect of flexibility in this dynamic modelling of

XSF Quadrirotor. The model shows the influence of

the flexibility in reference to total rigid body models

widely used in this field. This model will be

completed later by the introduction of the

aeroelasticity at the blades.
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