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Abstract 

Antimicrobial and cell-penetrating peptides have inspired developments of abiotic membrane-

active polymers that can coat, penetrate, or break lipid bilayers in model systems. Application 

to cell cultures is more recent, but remarkable bioactivities are already reported. Synthetic 

polymer chains were tailored to achieve i/ high biocide efficiencies, and selectivity for 

bacteria (Gram-positive/Gram-negative or bacterial/mammalian membranes), ii/ stable and 

mild encapsulation of viable isolated cells to escape immune systems, iii/ pH-, temperature-, 

or light-triggered interaction with cells. This review illustrates these recent achievements 

highlighting the use of abiotic polymers, and compares the major structural determinants that 

control efficiency of polymers and peptides. Charge density, sp. of cationic and guanidinium 

side groups, and hydrophobicity (including polarity of stimuli-responsive moieties) guide the 

design of new copolymers for the handling of cell membranes. While polycationic chains are 

generally used as biocidal or hemolytic agents, anionic amphiphilic polymers, including 

Amphipols, are particularly prone to mild permeabilization and/or intracell delivery.  

 

Introduction 

Controlled perturbation of lipid membranes upon interaction with macromolecules is of 

enormous importance, both to fundamental studies in membrane biophysics and to practical 

applications including developments of cost-effective antimicrobial compounds (Munoz-

Bonilla A et al. 2012), design of drug-loaded particles (Hu XL et al. 2009; Liechty WB et al. 

2010; Nicolas J et al. 2013), or advanced biofunctional capsules (Allen TM et al. 2013; 

Matile S et al. 2011; Torchilin VP 2012; Yessine MA et al. 2004) that prevail in the currently 

approved drug-delivery systems. Various water-soluble compounds can be used to affect lipid 

membranes and cell membranes properties. They generally belong to the class of amphiphilic 

molecules, having a significant affinity for both aqueous and apolar environments. For 

instance, detergent molecules partition into lipid bilayers and can break membranes, or 

solubilize membrane proteins, when their concentration reaches critical values (le Maire M et 

al. 2000). Amphiphilic copolymers, and specifically Amphipols, share many similarities with 

detergents (self-assemblies into micelle-like globules, hydrophobic binding, binding to 

interfaces, solubilization of lipids and membrane proteins) (Popot JL et al. 2011), (Giusti F et 

al. 2012) and form mixed assemblies with detergents and lipids (Ladaviere C et al. 

2002),(Popot JL et al. 2011). It is thus not surprising that they could similarly be used as a 

tool to control cell membranes. Amphiphilic block copolymers may also affect cell 

membranes, (Huin C et al. 2011; Yang Z et al. 2008) but to date most studies on this latter 

class of macromolecules were done in vitro on model lipid bilayers.  



In vitro, model systems based on mixtures of polymer and liposomes have been extensively 

investigated and their properties are summarized in recent reviews (Tribet C et al. 2008) 

(Binder WH et al. 2003; Schulz M et al. 2012). Hydrophilic polymers attached to lipid 

bilayers were shown to form a protective (repulsive) corona that enhanced the circulation time 

of liposomal formulations in vivo, and may substitute for glycolipids and glycoproteins. 

Interactions between lipid-anchored macromolecules confer also to the layer above the 

membrane, high viscosity and/or visco-elastic properties, and affect budding or invagination. 

Non covalent attractions between lipids and segments in macromolecules can locally perturb 

the composition of bilayers (formation of domains), lipid organization (scrambling, 

translocations), or stabilize local curvatures (e.g. formation of pores). Poly(propylene oxide)-

b-poly(ethylene oxide) block copolymer, usually noted PPO-PEO, can be incorporated in 

DPPC membranes and lead to a transition from a fluid lipid phase to a more rigid liquid-

condensed (LC) one. Infrared Reflection Absorption Spectroscopy and Brewster Angle 

Microscopy allowed to get insight into the molecular organization of the lipid membrane in 

the presence of artificial block copolymers (Amado, 2008; Amado, 2009) or diblock peptides 

(Blume, 2013; Travkora, 2013). Mixed lipid/polymer membranes are generally not 

homogeneous and demix into lipid-rich clusters and polymer-rich domains. The effect of 

polymer to lipid ratio, and bilayer fluidity or rigidity on completion of the phase separation 

has been documented (Chemin, 2012; Le Meins 2013; Olubummo 2013). In contrast, the 

mixing with lipids is more easily made homogeneous with Amphipols and a variety of other 

amphiphilic macromolecules having short hydrophobic side groups (and no long hydrophobic 

block), including natural and non natural amphiphilic peptides and anti-bacterial peptides 

(Epand RF et al. 2011).   

In general, interaction between polymers and lipid membranes proceed from complex 

interplay between hydrophobic binding, coulombic contributions, self-assemblies, and 

possible additional effects (e.g. effect of structural constraints) that are specific to the case of 

peptides (e.g. due to secondary/tertiary folding, (Khandelia H et al. 2008)) or block 

copolymers. Amphiphilic peptides represent the class of macromolecules that could be design 

with the highest degree of control (chain length, sequence, folding) (Bechinger B et al. 

2012a). In comparison, the synthetic amphiphilic copolymers are devoid of secondary 

structure, and present higher polydispersity in length and poor control on their sequence. 

Nevertheless, when they are used to permeabilize or break model liposome membranes, it is 

difficult to point to any clear advantage of peptide-based agents over synthetic copolymers. 

Subtle selectivity may emerge from application of these compounds onto more complex 



membranes, and specifically on cell membranes. The present mini-review is focused on 

reporting recent works that implemented polymer-controlled perturbation on the membranes 

of living cells, which is mostly achieved with non-blocky, amphiphilic copolymers including 

peptides and amphipol’s relatives. Here we review recent and still emerging works, on 

synthetic polymers (i.e. abiotic) with brief parallel summaries of their commonalities with 

peptide tools that are actively developed nowadays. The first section illustrates promising 

applications of polymer-controlled functions of interest for biomedical purposes. The second 

section lists the variety of responses achieved on cell membranes, with emphasize on the 

parameters enabling to optimize their properties, specifically the molecular determinants of 

polymer translocation and formation of polymer-stabilized pores. Though it is certainly 

oversimplification, recent articles proposed interesting classification of polymers of various 

chemical natures on the basis of their hydrophobic/hydrophilic balance. This point of view 

guided development of stimuli-controlled modulation of the polarity or degree of ionization of 

polymer chains as a general route to achieve remote control on cell penetration or on toxicity, 

which is described in the last section of this review. 

 

I. Representative uses of copolymers to manipulate cells 

 

One recognizes nowadays three main domains of application involving polymers as 

disruptive agents, or modifiers of the cell membranes properties: encapsulation, biocides, and 

cell penetration.  Coating of cells with macromolecules (that may reach condition of complete 

encapsulation) is generally sought to avoid contacts with immune systems or with deleterious 

interfaces. Biocidal and cell-penetrating agents are both macromolecules that bind membranes 

tightly, which in turn contributes to their internalization and/or formation of pores (Scheme 

1). Below are summarized works that look promising for applied developments and that have 

in particular reached the stage of studies or implementation in vivo. 

Coating the cell periphery with polymers 

The various methods proposed in literature to attach polymers on the outer surface of 

living cells can be classified according to the nature of polymer interaction with the cell 

membrane, including: i) attachment of macromolecules, typically fluorescent ones for in vivo 

imaging of membrane proteins upon recognition of a polymer end-function (see (Relogio P et 

al. 2013)), or orthogonal covalent chemistry on recombinant substrates (see (Devaraj NK et 

al. 2012)); ii) adsorption of copolymer (adsorption often proceeds from hydrophobic 



anchoring of one or several hydrophobic moieties of the chain into lipid bilayers) (Guo ZJ et 

al. 1995), or with mammalian cells (Teramura Y et al. 2007), (Yook S et al. 2012)) ; or iii) 

electrostatic binding and assembly of polyelectrolytes multilayers onto the cell surface 

(Fakhrullin RF et al. 2012; Teramura Y et al. 2010). In the latter case, composite polymer 

layers are usually obtained on the basis of successive deposition of polymers of unlike ionic 

charges onto the cell surface (a method called “layer by layer” deposition, LbL). Non-toxic 

capsules made by similar techniques, and loaded with drugs, are promising carriers in 

pharmaceutical applications (De Koker S et al. 2012). As regard cell encapsulation, the 

earliest attempts used immobilized (and dead) human red blood cells (RBC) as well as 

Escherichia coli bacteria as sacrificial template for the elaboration of polymer hollow capsules 

(Neu B et al. 2001). Then living yeast cells were successfully encapsulated (into alternated 

layers of poly(allylamine hydrochloride) and poly(styrene sulfonate sodium salt)) (Diaspro A 

et al. 2002). The polyelectrolyte multilayers can be further functionalized with biomolecules 

for instance to improve Langerhans islets transplantation (Totani T et al. 2008) or doped by 

nanoparticles thereby enabling membrane labeling (application on fungi is reported  

(Fakhrullin RF et al. 2009)). An interesting application, showing that mild adhesion of LbL 

assemblies could be achieved, was developed on macrophages by Rubner et al. (Swiston AJ 

et al. 2008; Swiston AJ et al. 2010),(Doshi N et al. 2011). Macrophages were safely loaded 

with micrometer-large polyelectrolyte patches that form sorts of “backpacks” possibly 

containing drugs (Scheme 1). Cells bear such patches for days, which makes the cells an 

active “partners” for carrying and targeting therapeutics. 

 

In general, polymer coats have been used to isolate cells from interaction with the 

external medium and specifically to escape the immune system, mostly for applications in cell 

or organ transplantation. Other yet marginal applications relate to tight adhesion onto tissue, 

for instance in intranasal delivery of vaccines (cationic nanogels carrying protein antibodies 

can stick to the nasal epithelium and are effectively taken up by mucosal dendritic cells) 

(Nochi T et al. 2010), encapsulation of biotechnologically relevant microorganisms such as 

bacteria (Franz B et al. 2010), or protection of mammalian cells in biosensors (e.g. MELN 

cell line used for estrogen detection (Germain M et al. 2006)). Lots of efforts were put on 

encapsulation, or surface modification, of pancreatic islets. To this aim, diffusion of small 

molecules, ions, and water must be preserved in the polymer layer(s), while the layer must 

represent a strong barrier against proteins with diameters above a few nanometers in diameter. 

Encapsulation can preserve cell viability, activity and in particular the capacity to release 



insulin upon glucose stimulation. The strategies listed below and illustrated in Scheme 1 have 

reached a significant degree of achievement: conjugation of PEG on the cell surface 

(Teramura Y et al. 2013), adsorption of amphiphilic polymer bearing alkyl side chains 

(Totani T et al. 2008), adsorption of lipid-conjugated poly(ethylene glycol) (Teramura Y et al. 

2007),(Yook S et al. 2012), LbL encapsulation(Krol S et al. 2006; Wilson JT et al. 2011) or a 

combination of hydrophobic anchoring and LbL encapsulation (Miura S et al. 2006). 

Similarly, polymers were attached to red blood cells with the aim of screening interaction 

with plasma protein and producing a “universal” blood. PEG coupling (Scott MD et al. 1997) 

or LbL self assembly (alginate:lipid-modified chitosan (Mansouri S et al. 2011)) were 

successfully employed to mask antigens at the red blood cell surface and escape 

immunological rejection, while preserving the ability to carry oxygen. Finally, mesenchymal 

stem cells could also be encapsulated in a polyelectrolyte multilayer based on hyaluronic acid 

and poly(L-Lysine) that maintain cell viability (Veerabadran NG et al. 2007), (Garg P et al. 

2012). 

 

Permeabilization of cell membranes, biocide activity 

In a context of persistence of incurable nosocomial infections by multi-resistant 

bacteria, it is desirable to search for new antibiotics, disinfectants, and antibacterial materials 

for usage in household, healthcare, functional textiles, and food packaging. A vast variety of 

polymers bearing cationic moieties, such as ammonium, guanidinium, sulfonium or 

phosphonium, are tailored to this end (for recent reviews on polymer biocides, see (Munoz-

Bonilla A et al. 2012; Siedenbiedel F et al. 2012), and on peptides (Futaki S et al. 2002), 

(Fillon YA et al. 2005) ). Molecular and spatial structures of polymeric biocides were initially 

inspired from cationic amphiphilic antimicrobial peptides (AMP, cf infra) that are known 

since decades to facilitate pore opening in bacterial membranes. Not surprisingly, most 

synthetic copolymers that are lacking the well-defined sequence of AMPs, and do not fold 

into stable secondary structures, are typically less specific and of poorer efficiency than 

peptide biocides. Successful optimizations (cf infra) of these abiotic compounds were 

motivated by opportunities to produce them more economically and at larger scale compared 

to peptides. It is not yet possible to predict the exact properties of such molecules from their 

mere chemical structure. However, the general trends is a gradual variation of properties 

across a polymer series (e.g. upon increasing the density of hydrophobic groups in polymer 

chains), enabling one to maximize the bacterial killing activity, while avoiding toxicity on 

mammalian cells (in practice, author’s checked either the absence of permeability of red 



blood cells, or day-long viability of mammalian cells in 2D cultures). Among parameters 

affecting biocide activity, recent studies illustrate the role of charge density/hydrophobicity 

ratio in random copolymers (e.g. statistic distribution of cationic and hydrophobic/philic units 

in polyacrylic derivative (Paslay LC et al. 2012), or poly(ethyleneimine) (He YC et al. 2012), 

or poly(oxetanes) (Chakrabarty S et al. 2011)) (cf Table 1 for the general structure of the 

poly(acrylic) backbones). The length of an hydrophobic spacer introduced between the 

cationic charge and the polymer backbone also affects efficiency (Palermo EF et al. 2012). 

The minimum inhibitory concentration (MIC) reached with optimal compounds, as low as 1-5 

g.mL
-1

, compares with 0.5-10g.mL
-1

 determined with AMPs (Chakrabarty S et al. 2011; 

Meng XT et al. 2012). There are even a few examples of antibacterial synthetic copolymers 

that display unexpected selectivity against Gram-negative vs Gram-positive bacteria, as for 

example poly(norbonene)-based compounds (Lienkamp K et al. 2009) and methacrylate 

copolymer with a pendant dodecyl-quaternized ammonium moiety (Dizman B et al. 2004). 

 

In comparison, peptides biocides are generally not more selective than non-peptidic 

copolymers. Among membrane-interacting peptides, different classes have been described 

according to their intrinsic biological activity that include antimicrobial, anti-cancer or cell 

penetration. In this paragraph, we consider antimicrobial peptides. Such peptides are known 

since 70 years, and are generally based on sequences of less than 30 amino acids with a 

dominant cationic amphipathic pattern. Although examples of negatively charged peptides 

were reported (Paulmann M et al. 2012), membrane-active peptides are generally cationic 

(containing Lys and Arg residues) and also contain hydrophobic (Ala, Val, Leu, Ileu, Trp, 

Phe) amino acids, leading to the general assumption that electrostatic interactions represent a 

key step in the binding process of these peptides to biological membranes. A well-studied 

membrane-active peptide is melittin (NH2-GIGAVLKVLTTGLPALISWIKRKRQQ-

CONH2), isolated from the bee venom. This peptide is active against Gram-positive and 

Gram-negative bacteria but it has also strong hemolytic activity against red blood cells. 

Melittin is an amphiphilic peptide with a hydrophobic amino-terminal domain [1-20] while 

the carboxy-terminal [21-26] region is hydrophilic and positively charged at biological pH. 

Interestingly, taken separately, the two domains do not show any hemolytic activity, a result 

that highlights the requirement for a favorable hydrophobic:hydrophilic balance (>1) in the 

amino acid content of the peptide, to induce membrane perturbation (DeGrado WF et al. 

1982). Being water-soluble, melittin binds to negatively charged bacteria (Mollay C et al. 

1976) and also zwiterionic eucaryote cell membrane phospholipids (Mollay C et al. 



1973),(Georghiou S et al. 1982). The positively charged melittin targets the membrane from 

the aqueous phase and partitions into zwitterionic phosphatidylcholine bilayers. It was shown 

that formation of nonpolar hydrophobic interactions between melittin and phospholipids 

represent a key step for the stabilization of the peptide/phospholipid complex. Magainin-2 

(NH2-GIGKFLKKAKKFGKAFVKILKK-CONH2) was isolated from amphibian skin 

(Zasloff M 2002)  and is also a cationic and amphiphilic antimicrobial peptide, but with much 

less hemolytic activity than melittin (Unger T et al. 2001). By contrast with melittin, the two 

types of amino acids are not clustered within identified domains but are spread over the whole 

sequence of the peptide. In the case of magainin-2, binding and insertion of the peptide into 

the lipid bilayer is predominantly driven by electrostatic interactions (Wieprecht T et al. 

1999). Thus, the two peptides, melittin and magainin-2 are characterized by an interfacial 

model of interaction with membranes that are representative of most of AMPs (Wimley WC 

2010). Despite their similarity in terms of charges and non-polar amino acid content, the 

interfacial differences in the mode of action of melittin and magainin-2, clearly show that 

subtle interactions, conformational motion and kinetics should be accounted for to 

characterize the formation and the stabilization of peptide /phospholipid complexes. Sequence 

adjustment, variation of charge, hydrophobicity and amphiphilicity, and/or propensity to fold 

into helices have been studied on several antimicrobial peptides, and led to significant 

selectivity between Gram-negative and Gram-positive bacteria (Giangaspero A et al. 2001). 

Some antimicrobial peptides have also killing activity on cancer cells, in addition to their 

biocide action (Hoskin DW et al. 2008) [http://aps.unmc.edu/AP/main.php]. Their killing 

activity to bacteria or cancer cells may result from irreversible perturbation of the cell 

membrane integrity, or from intracellular targets of the peptides.(Riedl S et al. 2011) For 

instance the host defense-like lytic peptide D-K6L9 (NH2-LKlLKkLlkKLLkLL-CONH2, 

where bold lowercase letters are D-amino acids) induces necrosis of tumor cells via a 

membrane depolarizing lytic process.(Papo N et al. 2006) Besides, buforin IIb 

(RAGLQFPVGRLLRRLLRRLLR) has been described as an anticancer histone H2A-derived 

peptide. Buforin IIb crosses without damage cancer cell membranes and induces 

mitochondria-dependent apoptosis (caspase 9 activation and cytochrome c release into the 

cytosol).(Lee HS et al. 2008)  

 

Cell-penetrating polymers 



Some water-soluble polymer chains are capable to bind to lipid membranes, and to 

turn after binding into a form that becomes solubilized in the hydrophobic interior of the lipid 

bilayers, and eventually translocates and penetrates into the cytosol. Cell-penetrating peptides, 

CPP, are known since 20 years, and can cross membranes within any cell type, without 

causing irreversible damage to the cell membrane (Milletti F 2012). On the other hand, 

completely abiotic macromolecules are also developed and have reached now penetration 

efficiencies that compare with CPP. Most of these CPP-mimics are cationic and contain both 

guanidine and hydrophobic side groups (Tsogas I et al. 2007),(Tezgel AO et al. 2011). But 

amphiphilic polyanions of various chemical structures have also been identified as cell-

penetrating agents (Ho VHB et al. 2011; Torchilin VP 2012; Yessine MA et al. 2004). CPPs 

and abiotic penetrating polymers usually have no deleterious action inside cells, although 

some CPP can interact with cellular proteins such as actin (Delaroche D et al. 2010). An 

intriguing increase of phosphorylation (by IB kinases) upon penetration of abiotic 

polypropylene oxide together with specific sequences of DNA was however reported (Yang Z 

et al. 2008). Innovative drug delivery systems were based on cell-penetrating peptides (Koren 

E et al. 2012). The general therapeutic strategies implement CPPs or other polymers under the 

form of conjugated drug molecules that hopefully carry their load (oligonucleotides, DNA, 

SiRNA, peptide, protein, contrast agents, drugs) into the cytosol. Covalent attachment to 

CPPs includes disulfide, amide, thiazolidin bonds (Zorko M et al. 2005). Alternatively, non 

covalent complex assemblies are formulated to contain both CPPs and the drug or 

polynucleotides of interest (Deshayes S et al. 2012),(Crombez L et al. 2009),(Andaloussi SE 

et al. 2011). With abiotic polymers, applications macromolecular agents are at an earlier stage 

of development, although amphiphilic polyanions are promising pH-triggered systems 

(Yessine MA et al. 2007). Note that we refer here to molecular penetration, and not to the vast 

field of nanoparticles formulation that has reached a remarkable importance in pharmaceutical 

sciences and in studies of cell transfection. Those drug, or DNA, cargoes (often polymer 

micelles, capsules, or colloid particles) are basically tailored to optimize drug loading, 

enhance the blood circulation time, and to protect drugs from degradation in endosomes. Cell 

penetration of such polymeric particles may however significantly differ from a molecular 

translocation, and for instance could proceed from active endocytosis and natural permeability 

of the endosomal membrane to the drug of interest (Hu XL et al. 2009; Nicolas J et al. 2013). 

In the case of diblock copolymers containing one cationic and one neutral (typically 

poly(ethyleneoxide)) block, stabilization of pores in lipid membrane by the polymer chain 

may however  contribute to the efficiency of transfection. (Huin C et al. 2011) 



 Although numerous CPPs are positively charged, the amino acid composition, and 

sequence polarity, or hydrophobicity of these peptides is broadly defined 

(http://crdd.osdd.net/raghava/cppsite/index.php) and a general rule for identifying efficient 

sequences is lacking. In addition, complex sensitivity to environment is at play. For instance 

the anionic (and amphiphilic) peptides called pHLIP enables tumor targeting thanks to their 

abrupt solubility transition near physiological pH that triggers penetration into mammalian 

cells upon a local pH variation of less than 0.5 pH units (Andreev OA et al. 2010; 

Weerakkody D et al. 2013). The most used cell-penetrating peptides are Tat 

(GRKKRRQRRRPQ, derived from the transcription transactivator of (TAT) the human 

immunodeficiency virus, (Vives E et al. 1997)), Penetratin (RQIKIWFQNRRMKWKK, 

derived from the Antennapedia homeodomain of drosophila (Derossi D et al. 1994)), and  

oligoarginine (Rn, designed peptides, (Mitchell DJ et al. 2000),(Futaki S et al. 2001)). These 

peptides deliver different types of cargoes into cells or in vivo (Koren E et al. 2012),(Nakase I 

et al. 2012a). For instance, doxorubicin conjugated to Tat or Penetratin induces apoptosis of 

human breast cancer cells (Aroui S et al. 2009), or leads to tumor growth suppression (Nakase 

I et al. 2012b). Topical uptake of Cyclosporin A is enhanced when the molecule is conjugated 

to R7 peptide, and results in the inhibition of dermatitis inflammation process (Rothbard JB et 

al. 2000). 

 

II. Controlling the interaction with cell membranes, from mild attachment to poration 

and permeabilization. 

 

To identify the relevant molecular determinants, i.e. parameters that play a role in 

polymer:membrane interaction, a common strategy consists in optimization of the chemical 

structure of polymers.  For example, varying the composition of polymer chains that contain 

two or more different functional groups affords gradual variations of properties, and is readily 

achieved by controlled synthesis. Typical studies investigated the relationship between cell-

binding propensity (or toxicity) and the density of a particular side group in linear segments 

of the chains (e.g. ammonium, guanidinium, aromatic, n-alkyl side groups, etc). Alternatively, 

the cell responses (including cell death) to variation of the composition of polymers provided 

indirect indications of the importance of hydrophobicity, charge, or hydrogen bonds. 

Additional and experimentally accessible determinants include i/ steric repulsion that hampers 

binding (e.g. upon introducing large repulsive polyethyleneglycol, PEG, (Stratton TR et al. 

2011)), ii/ spatial distribution of functional groups (e.g. upon variation of the architecture of 

http://crdd.osdd.net/raghava/cppsite/index.php


branched chains, or dendrimers), and iii/ chain length. The main conclusions drawn from 

these studies are summarized for abiotic polymers in the section IIa. Obviously in the case of 

peptides, similar approaches can focus on specific effects of sequences, and stereochemistry 

of amino acids. This case is briefly discussed in part IIb. Finally, and not surprisingly, polarity 

(or hydrophobicity) of segments in the polymers is a recognized criterion that deserves 

attention. In section IIc, we present both experimental studies and modelization of 

hydrophobically-driven penetration of chains inside bilayers. This last section illustrates also 

how the simplicity of a rational based on hydrophobic/hydrophilic balance has in practice 

been exploited to achieve on/off control on perturbations of cell membranes upon stimuli-

triggered switch of responsive chains. 

 

II.a Synthetic copolymers 

 Due to the exploration with synthetic polymers of a variety of monomers having very 

different chemical natures, results obtained with synthetic chains should help to identify the 

main determinants of the function of interest. In practice, adsorption, penetration or biocide 

activities were obtained with either neutral, anionic, or cationic polymers, and with polymer 

chains containing different amount of hydrophobic groups, either aliphatic or aromatic. There 

is accordingly no specific chemical group associated with one class of behavior. The essential 

feature in all optimization strategies of copolymers is rather the combination of typically two 

monomer “units” of unlike polarity/hydrophilicity, namely a water-soluble unit and one unit 

prone to associate with lipids (e.g. anionic with hydrophobic, or cationic with 

neutral/hydrophilic). Within a set of homologous macromolecules, the gradual variation of the 

fraction of the two “units” modulates gradually the interaction with membranes, which makes 

properties of polymers to evolve from weak and reversible adsorption, toward tight and long-

lasting adsorption (as used in coating application), penetration, selective-biocide and finally 

non-selective biocide activity. Although exploration of the full window of properties listed 

above was usually not assessed for each set of copolymers, the correlation between higher 

density of cationic, or hydrophobic moieties, and tighter association is generally obeyed. It 

has been validated for the somewhat heterogeneous list of compounds commented in the 

following paragraphs (see illustrations of structures in Table 1a). 

 

II.a.1. Hydrophobic/hydrophilic balance 

As regards hydrophobically-modified neutral chains, pullulan adhesion (Guo ZJ et al. 

1995), or endocytosis of pullulan cationic derivatives (Ayame H et al. 2008)) were 



strengthened by increased degree of hydrophobic modification. Similarly, tissue adhesion 

could be enhanced upon increasing the degree of hydrophobic side groups in gelatin-based 

glues (Matsuda M et al. 2012). End-functionalized PEGs containing lipid(s) at their chain 

end(s) also showed obvious strengthening of binding, while turning from mono- to 

difunctional chains. Monofunctional chains are rapidly removed/desorbed from the cell 

surface, with no uptake in the cytoplasm, when cells are subjected to dilution or washing steps 

(Teramura Y et al. 2008). But PEG with two oleyl ends may act somewhat cooperatively to 

stably agglomerate dilution-resistant cell-spheroids (Ito M et al. 2009),(Rao Z et al. 2013). 

Moreover, if  the polymers carry several hydrophobic anchors, the binding appeared 

significantly more stable: Teramura and coll. (Teramura Y et al. 2008) randomly grafted 

(neutral) poly(vinyl alcohol) copolymer carrying multiple n-alkyl side groups (PVA-alkyl) 

that tightly adsorb on the whole surface of cells, at short time after supplementation of the cell 

culture medium with the polymer. Despite removal of the excess unbound chains by washing, 

PVA-alkyl was slowly gathered into patches on cell surface, or was taken up into the 

cytoplasm (Teramura Y et al. 2008). Anionic copolymers obey similar trends as the neutral 

ones. Yessine et al. showed the increase of the efficacy toward membrane breakage, and sp. 

endosome escape, with increasing hydrophobicity of poly(glycolic acid-co-octadecylacrylate) 

(Yessine MA et al. 2004), or alkyl-modified poly(ethylacrylate) (Chen T et al. 2004) (Table 

1a). Stayton et al. did similar studies on poly(styrene-co-maleic acid) derivatives (Henry SM 

et al. 2006). Studies in Ronjung Chen’s group showed that poly(acrylamide) derivatives 

(namely poly(Lysine)-phtalamide) bearing amino-acide pendant groups obeyed the same rule 

in that hydrophobicity (due to phenylalanine grafts) brought better penetration in cell 

spheroids (Ho VHB et al. 2011) (Khormaee S et al. 2013), or more pronounced perturbation 

of model lipid layers (Zhang SW et al. 2011). Ishihara and coll. similarly tailored the 

hydrophobicity of polymeric derivatives of phospholipids to achieve control on cell 

penetration, here for fluorescent labeling (Goda T et al. 2010; Ukawa M et al. 2010). Finally, 

the larger range of hydrophobicity studied on homologous model systems was presented in 

the work by C. Ladaviere, F. Vial et al. that increased the degree of random n-alkyl grafting 

(octyl or dodecyl groups) on poly(acrylic) chains. These copolymers added to liposome 

solutions affected properties of the liposomes by i/ dilution-resistant attachment of chains 

containing a few mol% hydrophobes, ii/ permeabilization and stabilization of nanometer large 

pores with more hydrophobic chains, iii/ membrane disruption upon increasing further their 

hydrophobicity by either decreasing pH, or decreasing the charge density of the copolymers. 

In practice, the authors achieved controlled formation of lipid lateral domains in egg-PC 



bilayers (Ladaviere C et al. 2002), membrane buddings, poration (Vial F et al. 2007), and 

lipid solubilization into polymer mixed micelles (Vial F et al. 2009; Vial F et al. 2005). 

 

II.a.2. Effect of cationicity 

We turn now to cationic chains that adhere to negatively charged cell surfaces by 

coulombic attraction, irrespective of the presence of other functional groups such as 

hydrophobic ones. Here, due to a lack of clear identification of the mechanism of binding, the 

term coulombic attraction gather all observed trends toward association of polyelectrolytes 

with membranes of unlike ionic charge, that may include electrostatic effects and entropic 

ones (release of counter-ions) Exposure of cell surface to polycations raises problems of 

toxicity. The cytotoxicity of polycationic macromolecules is influenced by different 

properties of the polymer such as molecular weight, charge density and nature, and 

macromolecular chain flexibility (Munoz-Bonilla A et al. 2012), (Fischer D et al. 2003), 

(Chanana M et al. 2005). With synthetic polycations commonly used in transfection studies 

(poly(ethylenimine), poly(L-lysine), poly(diallyl-dimethyl-ammonium chloride), 

diethylaminoethyl-dextran, poly (vinyl pyridinium bromide)) higher molecular weight and 

higher charge density induce higher toxicity on mammalian cells. Similar effect exists with 

natural chains, as longer aminoethyl-modified chitosan show enhanced porogenicity and 

biocide activity compared to its shorter relatives (Meng XT et al. 2012). But this simple trend 

may not be valid for antimicrobial activity. It has been suggested that molecular weight 

affects selectivity of antimicrobial amphiphilic polycations for Gram-positive vs Gram-

negative bacteria (Lienkamp K et al. 2008), and that increasing chain length may decrease 

activity against S. Aureus because long macromolecules are better trapped in the negatively 

charged murein layer of this bacteria. Thus generalization from toxicity studies must be 

considered with caution. Higher rigidity decreases the cytotoxicity (presumably because rigid 

macromolecules encounter difficulties to fully adsorb into the cell membrane) (Chanana M et 

al. 2005). Among the most studied cationic polymers, Poly(ethylene imine) (PEI) and poly(L-

Lysine) (PLL) display the highest charge density and thus are the most toxic polycations 

(N.B. dendrimers may also reach higher charge densities than PEI). But the toxicity of PLL 

can be modulated by the composition of the buffer, during the cell-coating process. Cell 

viability was accordingly preserved in the presence of K+ in the buffer , which enabled 

reduced interaction between polyelectrolytes in LbL capsule preparation. In this case, 

incomplete encapsulation could be the origin of the higher cell survival rate (Germain M et al. 

2006). With the aim of full encapsulation of cells in LbL (which requires preparation of a first 



homogenous cationic layer around the cells), one way to reduce toxicity is to reduce 

accessibility of cations upon grafting cell-repellant poly(ethylene glycol) (PEG) chains on the 

amine groups, or elsewhere in the polycation chain (Mansouri S et al. 2011; Wilson JT et al. 

2011). In model liposomes, sterically-controlled formation of lateral domains of (anionic) 

lipids were convincing proof of possible balance of coulombic attraction by PEG-PEG 

repulsion (Pashkovskaya AA et al. 2006). In cell cultures, however, the exact role of steric 

hindrance is not understood. Variation of the fraction of primary amines (vs secondary and 

tertiary ones) should be considered, and is clearly involved in biocide activity (Paslay LC et 

al. 2012). It has been shown that primary amines enhance complexation with the phosphate 

groups of lipids and increase bilayer’s permeability (Palermo EF et al. 2011). Molecular 

modeling highlighted in addition a possible change in conformation of polycations upon 

increasing the degree of grafting of PEG. Starting from a extended coil, the chain containing 

higher PEG density turns into a more compact globular structure(Wilson JT et al. 2011) 

which may explain a lower accessibility of its charges, and thus lower  toxicity (Fischer D et 

al. 2003; Hong SP et al. 2006). In practice, the grafting ratio of PEG can be optimized to 

decrease markedly toxicity while preserving the ability to bind on cells, thus such chains are 

good precursor for encapsulation by LbL methods. Whereas the remarks above apply also to 

guanidinium-containing polymers, the peculiar properties of this cationic group are now 

clearly identified (Cooley CB et al. 2009; Hennig A et al. 2008; Holowka EP et al. 2007; 

Mattheis C et al. 2013; Tezgel AO et al. 2011). Guanidinylation of polymer chains speeds up 

cytotoxicity, and affords better penetration of highly hydrophilic polymers in cells by energy-

independent pathways. Enhanced penetration compared to macromolecules bearing amine 

groups presumably comes from the ability of guanidine group to form hydrogen bonds with 

phosphate ions, stabilizing complexes with phospholipids (Rothbard JB et al. 2004; Rothbard 

JB et al. 2005), and references in (Tribet C et al. 2008). Accordingly, guanidinium-containing 

copolymers are promising carriers for cytosol delivery of small molecules with high water 

solubility (due to their high charge density), and high efficiencies modulated by competitive 

interaction with anionic counterions, such as ATP or heparin (Hennig A et al. 2008). 

 

II.a.3. Amphiphilic polycations 

Finally as for neutral or anionic chains, the introduction of hydrophobicity in 

polycations reinforces their propensity to bind and penetrate lipid membranes. In its fruitful 

quest for synthetic mimics of antimicrobial peptides, the group of Kenichi Kuroda has 

published systematic studies of the variation of structural parameters of polycations (Palermo 



EF et al. 2009b) (Kuroda K et al. 2009). Although the mechanism of antimicrobial activity is 

debated, and may differ significantly from a simple permeabilization (Sovadinova I et al. 

2011b), exponential decrease with linear incorporation of hydrophobic monomers in the 

chains of both minimum inhibitory concentration and HC50 (concentration of half hemolysis 

of red blood cells) clearly confirmed the importance of hydrophobic moieties. It is interesting 

to note that the distribution of hydrophobes in the polymer chains affected hemolysis more 

than antimicrobial activity. Dibloc copolymers (one hydrophobic and one hydrophilic bloc) 

had similar biocide activity as random ones (containing the same monomers in similar amount 

per chain), but essentially no hemolytic activity (Oda Y et al. 2011). Authors suggest that 

because dibloc copolymers come into solution under the form of stable micelles, with all 

cationic groups pointing in the periphery of the hydrophobic core, they may essentially bind 

to cell by coulombic interaction (they can trigger hemagglutination). In contrast, random 

copolymers were bound by both coulombic and hydrophobic interaction, which renders these 

polymers more hemolytic. A different family of chains has been developed by G. Tew and 

coll. Based on original poly(oxanorbornene) derivatives, with one or two pendant group(s) per 

repeat unit to modulate both hydrophobic and cationic densities (Hennig A et al. 2008; 

Lienkamp K et al. 2009; Lienkamp K et al. 2008; Som A et al. 2012; Tezgel AO et al. 2011). 

These polymers obeyed the same rules as the acrylic derivatives discussed above, in that 

increasing the density of a given hydrophobic side group improved biocide activity, and 

finally turned the polymers into hemolytic (non-specific cell permeabilizers). These trends 

were correlated with permeabilization of model lipid vesicles, confirming that the affinity for 

lipids plays a major role (Gabriel GJ et al. 2008). Interestingly, the role of the aliphatic or aryl 

nature of hydrophobic side groups were compared on the basis of their biocide efficiency, and 

apparent hydrophobicities (as determined by reverse phase chromatography) (Som A et al. 

2012). It appeared somewhat surprisingly that transduction activity was not solely dominated 

by hydrophobicity, but rather that aromaticity played a crucial role. Despite a markedly lower 

retention of the corresponding monomer on reverse-phase chromatography, phenyl-modified 

polymers showed significantly higher activity than aliphatic-modified macromolecules of 

comparable size (i.e. when both monomers were carrying hydrophobic side groups with the 

same number of carbon atoms), and inverse correlation with hydrophobicity and biocide 

activity were observed in a set of polymers modified with aromatic side groups (Som A et al. 

2012). Tew and colleagues Also report observation of an optimal length for n-alkyl side 

groups that presumably betrayed a contribution of intra-chain hydrophobic collapse (polymers 



containing high densities of long alkyl groups may prefer to form micelle-like globules 

remaining in water) (Lienkamp et al., 2008).  

 

II.b. Structure-properties relationship for peptides 

II.b.1.The  predominant role of composition  

Linear membrane-active peptides are generally unstructured in water solution, and adopt 

secondary structure when they bind to membranes. Various secondary structures (-helical, 

-sheet, cyclic, globular, random coil) have been described for both antimicrobial and cell-

penetrating peptides. Studies of antimicrobial and cell-penetrating peptides show that there 

are no preferred secondary structures that correlate with their membrane activity. It is also 

important to note that the folding state adopted on the membrane depends on peptide 

concentration or peptide/lipid ratio, a property that confers to some membrane-active peptides 

a chameleon-like behaviour. For example Penetratin adopts an -helical structure at low 

peptide:lipid ratio and shifts to a -sheet with increasing density (Magzoub M et al. 2002). 

These different conformations of penetratin could be observed also in cells (Ye J et al. 2010). 

The nature of amino-acid (ionic, hydrophobic, polar) in the primary sequence appears 

more important than secondary structure to explain the effect of peptides on membrane 

organization. Whatever the class of peptides with antimicrobial, anticancer or cell-penetration 

activity, their sequence typically contains cationic and hydrophobic residues (with a few 

exceptions such as Glu- and Asp-rich, pHLIP (Andreev OA et al. 2010; Weerakkody D et al. 

2013) or Dermcidin peptides that are anionic). Positively charged peptides interact with 

bacteria or mammalian cells by electrostatic and hydrophobic association, at least at the onset 

of binding. For mammalian cells, peptides have to diffuse through the glycocalyx in the 

extracellular matrix. In this context, multiple routes of entry of CPPs have been described, 

that include active endocytic pathways (clathrin-dependent, caveolin-dependent, 

macropinocytosis) and temperature-independent translocation. The question of the peptide 

release from intracellular endocytic vesicles has been extensively studied within the last years 

and endosomolytic activity (escape from endosomes at acidic pH) of cell-penetrating peptides 

have been correlated with hydrophobicity (Madani F et al. 2013). Coulombic effects are also 

involved in targeting lethal activity of peptides against cancer compared to non-cancer 

mammalian cells. As a result of the multiple modifications of cancer cells, the outer 

membrane leaflet of cancer cells displays excess anionic phosphatidylserine and/or of 

glycosylated species such as sialic acid or heparan sulfate, and have a more negative 



membrane potential, a more acidic pH in the cell environment (Riedl S et al. 2011),(Harris F 

et al. 2013). It appears that cell killing by AMP through necrosis (cell membrane lysis) or 

apoptosis (lysis of mitochondria) both depend on the presence of anionic lipids in the outer 

leaflet of the membrane bilayer. A similar importance of surface charge is valid for cell-

penetrating peptides (CPP). At the cell-surface, these peptides interact first with negatively 

charged glycosaminoglycans. These proteoglycans are possible portals for entry into cells. 

The influence of GAGs on the entry was shown qualitatively,(Suzuki T et al. 2002),(Console 

S et al. 2003),(Poon GMK et al. 2007) and could be measured quantitatively (Jiao CY et al. 

2009),(Alves ID et al. 2011a),(Walrant A et al. 2011),(Bode SA et al. 2012), (Bechara C et al. 

2013). In the absence of glycocalix, simulations show that hydrogen-bonds and anion-cation 

pairing between the bilayer and arginines or lysines are the key determinants of the 

association of penetratin (Pourmousa M et al. 2013). In addition, tryptophans but not 

phenylalanine makes hydrogen-bonds with the phosphate group of lipids (Pourmousa M et al. 

2013). These results are in good agreement with experimental observation of [W48F] 

Penetratin mutant entering less in cells than their parent peptide (Derossi D et al. 1994). 

Charge-pair interactions and hydrogen bonds are also crucial in the cell-penetrating properties 

of oligoarginine sequences. In this case, guanidinium moieties form bidentate hydrogen-bonds 

with the phosphate groups of phospholipids, and makes the peptide capable to partition in the 

membrane bilayer and migrate to the inner leaflet, along with the membrane potential 

(Rothbard JB et al. 2004). Of major interest is a recent work by Nakase and collaborators 

(Nakase I et al. 2012c), who report the transformation of an antimicrobial peptide into a 

plasma-membrane permeable one. In this study, all lysyl residues of the KLA antimicrobial 

peptide (KLAKLAKKLAKLAK) were replaced by arginine, and the peptide shows no longer 

antimicrobial activity but gains cell-penetration properties and can accumulate into 

mitochondria. This result highlights the importance and the contribution of guanidinium side 

chains in the fine tuning of membrane-active peptide activity. 

 

II.b.2.Role of hydrophobicity on peptide penetration in the membrane.   

Kinetics and thermodynamics of binding of all membrane-active peptides are crucial 

parameters to understand how peptides reversibly or irreversibly perturb the organization of 

biological membranes. In this regard, lessons from the antimicrobial peptides, are important 

guides for the whole field of membrane-active peptides. A striking example is provided by a 

kinetic and thermodynamic study on Melittin, a peptide that is known to form pores in 



zwitterionic membranes and on Magainin that does not, although the two peptide sequences 

are similar in their amino acid composition (Papo N et al. 2003). Electrostatic interactions 

may or not govern the initial step of the peptide binding to the membrane. For instance, the 

rate of association of Magainin is increased (≈10-fold) while the rate of dissociation is 

decreased (≈10-fold) when the peptide binds anionic lipids compared to zwitterionic ones. 

Once bound, insertion kinetics of Magainin within the hydrophobic core or into the inner 

surface of the bilayer is similar with anionic and zwitterionic bilayers, indicating that this 

second step is no longer driven by electrostatics (Papo N et al. 2003). In addition, Magainin 

has little preference for anionic bilayers compared to monolayers, a point that has been 

interpreted as a hint of predominant parallel adsorption on the membrane surface (Bechinger 

B et al. 1993).  Uncomplete insertion of Magainin into anionic bilayers advocates for a 

translocation requiring the presence of pores rather than the direct crossing of individual, 

membrane-soluble peptides (Matsuzaki K et al. 1995). Formation of pores is also in line with 

antibacterial activity. By contrast, Melittin binds with similar association and dissociation 

rates onto anionic and zwiterrionic bilayers (Papo N et al. 2003). In the case of zwitterionic 

lipids, the peptide has much higher affinity for bilayers than monolayers, suggesting a deep 

insertion. These results suggest that hydrophobic interactions are involved in Melittin / 

membrane binding (Vogel H et al. 1986). Melittin induces pore formation in zwitterionic 

membranes and has detergent-like properties in anionic membranes and hemolytic and 

bactericide effects (Ladokhin AS et al. 2001).  

As for antimicrobial peptides, membrane models have been proposed to understand 

how cell-penetrating peptides interact with the lipid bilayer and the main ones are illustrated 

below. Penetratin (RQIKIWFQNRRMKWKK) does not bind to specific phospholipids, since 

the same partition constant was measured, irrespective of anionic/zwitterionic lipid ratio 

(Persson D et al. 2004). Penetratin interacts and lies parallel with the surface of the lipid 

bilayer (Magzoub M et al. 2002), while tryptophans are not well buried into the bilayer core 

(Berlose JP et al. 1996),(Christiaens B et al. 2002),(Brattwall CE et al. 2003). Similarly Tat 

peptide (GRKKRRQRRRPQ) cannot insert into the hydrophobic bilayer, and the peptide 

binds at the membrane surface via electrostatic interactions, just tight enough to change the 

conformation of anionic phospholipid polar heads (Ziegler A et al. 2003). Other cell-

penetrating peptides, including R9 (RRRRRRRRR), RW9 (RRWWRRWRR) and RL9 

(RRLLRRLRR), behave differently. RW9 and R9 have high efficiency to enter into cells, 

while RL9 is poorly internalized, a rather striking observation since the replacement of Trp 

with Leu led to a peptide of higher hydrophobicity (Walrant A et al. 2011). RW9 and R9 have 



similar interactions with anionic phospholipids. They destabilize the gel phase state of the 

lipid bilayer, affect the packing of the fatty acid chains and insert loosely into the hydrophobic 

core of anionic membranes, while RL9 inserts deeper but does not affect the packing of the 

acyl chains (Walrant A et al. 2011),(Walrant A et al. 2012). In addition, R9 and RW9 can 

influence the membrane curvature while RL9 does not. Thus, it appears from these few 

examples of cell-penetrating peptides, that a deep insertion/hydrophobic binding in the 

membrane bilayer is not always required for translocation of the peptides. Although all these 

membrane-active peptides look similar in terms of their physico-chemical properties, they 

clearly have a finely tuned mode of interaction with, and action on the membrane. 

 

II.c. Controlling the degree of polymer insertion in membranes: a basic principle of stimuli-

responsive systems. 

 

At supramolecular scales, the effect produced by polymers on properties of lipid 

membranes can be described by variation of membrane’s equilibrium curvature, of bending 

moduli, of partition or binding constants of macromolecules, of lipid ordering or in other 

terms shift in lipid phase transition. Irrespective of the chemical class of membrane-active 

polymers, these parameters govern the stability of membranes. Except for cases involving 

peptide self-organization into well-defined assemblies, it is thus not surprising that the models 

of perturbation by either peptides or abiotic amphiphilic chains share many similarities. The 

reader is referred to reviews that recall well-known models of polymer insertion in bilayers 

and porogenicity ((Binder WH 2008) and (Alves ID et al. 2011b), and Scheme 2). As regard 

permeabilization, or translocation mechanisms, peptides have been the purpose of 

significantly more studies than abiotic macromolecules. The recognized effects of peptides on 

membrane properties are briefly recalled in the following. Citations of available results on 

abiotic chains are also inserted in this paragraph, when tentative mechanisms could be 

proposed in conditions similar to that established with peptides.  A well-accepted view is that 

at low concentration, an antimicrobial peptide binds to the membrane, modifies lipid 

organization and alters membrane structure. Upon increasing AMP concentration and 

lipophilicity, a breakpoint is reached, that enables translocation. Above a threshold 

concentration in the bilayer (peptide:lipid of ca. 1:500 to 1:50 mol/mol), AMPs become 

membrane-disruptive (Nguyen LT et al. 2011). Similar concentration and affinity threshold 

are reported for cationic abiotic biocides (see above). Several structures of pores were 

suggested for AMPs (Scheme 2): the barrel-stave model proposes that a pore is formed with 



peptides standing parallel with one another to form the inner “wall” of the pore. In toroidal-

pores, no specific peptide-peptide alignment is required. Instead, peptides modify the local 

curvature in a cooperative manner, which locally stabilizes highly curved, peptide-rich, 

toroidal shapes. Other models suggest that peptides become antimicrobial when they can 

“carpet” the lipid surface, which results as for detergents in gradual enhancement of the 

propensity to form highly curved structures. These three models have obviously inspired the 

mechanisms (not yet fully validated) proposed in the case of abiotic chains, devoid of 

secondary structures (Binder WH 2008), (Tribet C et al. 2008). Note that an individual AMP 

may “utilize” different mechanisms depending on the experimental conditions. Studies 

suggested that Melittin forms transmembrane pores in zwitterionic lipid bilayers via a barrel-

stave mechanism (Vogel H et al. 1986) but acts as a detergent in negatively charged 

membranes (Ladokhin AS et al. 2001). AMPs were splitted into two classes depending on 

their mechanism of action being pore-dependent or pore-independent. As recently pointed 

out, all membrane-active peptides should however be seen as a single family (Bechinger B et 

al. 2012b), since the early classification was essentially based upon the biological functions, 

and did not consider gradual variation of interaction with biological membranes. One 

attractive model is that all peptides may be ranked on a common scale depending on the 

perturbation energy achieved on membrane bilayers (Last NB et al. 2013).  First, upon simple 

adsorption, this perturbation comes from the lateral tension induced on the membrane, due for 

instance to the fact that peptide binding causes changes in the packing of polar head groups 

and acyl chains of lipids. Lateral tension increases the frequency of occurrence of membrane 

thinning, and/or formation of defects decreasing the energy of pores (N.B.: tension is released 

by opening a pore). Second, membrane-active peptides could recruit and cluster specific 

membrane lipids (Scheme 2), and thus locally evokes membrane thinning and defects. The 

intrinsic kinetics to partition between surface and defect regions would represent fundamental 

physico-chemical mechanism controlling the biological activity (cytotoxicity, translocation). 

  

Presumably because abiotic chains generally lack the capacity to form well-organized, 

rigid structures, it is generally assume in this case a more direct correlation between the 

propensity of polymer segments to associate with lipids and membrane penetration, or 

translocation. This point of view found recent experimental validation in vitro, on model 

liposomes with non-ionic chains (Yaroslavov AA et al. 2006) (Demina T et al. 2005), or 

cationic polymers on monolayers studied by X-ray scattering (Hu K et al. 2013). Recent 

Monte Carlo simulation of homopolymer:bilayer association show that there is an adsorption 



transition at a threshold polarity of the chain. Close to this threshold both the translocation 

probability and the permeability of the membrane with respect to solvent are enhanced 

(Werner M et al. 2012). In another molecular dynamic simulation of a cationic 

poly(amphiphile), Palermo et al. showed that the chain backbone can be anchored flat in the 

subsurface of lipid bilayers upon increasing monomer’s hydrophobicity (Palermo EF et al. 

2012). Flat conformation of adsorbed chains and orthogonal penetration of n-akyl side groups 

in the lipids was experimentally validated on lipid monolayers by advanced interfacial 

spectrophotometry (Avery CW et al. 2011). Finally, comparison of the membrane curvature 

induction, and variation of phase transition diagrams of lipids upon adsorption of abiotic or 

peptidic antimicrobial compounds (Ishitsuka Y et al. 2006) also suggests that these 

chemically remote macromolecules may be closer than expected from the point of view of 

membrane energetics. To finally present an homogenous sketch of the field, it is interesting to 

compare polymers of different chemical structures on an hydrophobicity scale (Figure 1 (Hu 

K et al. 2013) and refs therein).  Hu et al. averaged water-octanol partition, LogP, of the 

constitutive monomers of antimicrobial lysine-rich peptides, or cationic derivatives of 

poly(acrylate), in order to plot resulting values (N.B. sequence-independant averages) as the 

x-axis in a diagram ranking efficient biocides. Synthetic random copolymers appear in Figure 

1 to be of similar or slightly higher hydrophobicity in general than macromolecules in the 

peptide family.  In contrast, poly(acrylate) chains were found significantly more cationic, with 

an average charge densities up to four time that of peptides of similar efficiency.  Obviously, 

charge-charge repulsion occurred in flexible random copolymers has a marked impact on 

chain extension, that in turn may hamper hydrophobic collapse and penetration in lipid layers. 

Suitable pre-orientation of charged moieties, e.g. facial distribution, due to folding of peptides 

may be responsible of this large apparent shift. It is important to note however that the 

averaging, not only masks details about important contribution of sequences, but even for 

random copolymers, does not properly reflect the accessibility of side groups of the polymers. 

For example, increasing hydrophobicity should favor self-assemblies of amphiphilic chains 

into micelle-like globules, as for Amphipols. Though systematic studies are missing, it seems 

that self-assemblies represent another threshold for polymer:lipid interaction: in the case of 

cationic derivatives, non-monotonous variation of biocide (and hemolytic) efficiencies with 

increasing hydrophobicity was tentatively ascribed to formation of highly hydrophilic 

globules with cationic groups in their outer shell (Kuroda K et al. 2009) (Sovadinova I et al. 

2011a). In a somehow opposite observation, micellar assemblies of polyanionic amphiphiles, 

belonging to the family of Amphipols, were shown to solubilize lipid vesicles, whereas 



relatives of lower hydrophobicity could not and were only adsorbed in the bilayers (Ladaviere 

C et al. 2002; Vial F et al. 2009). 

   

Of practical interest, the recognition of critical switch by the charge/hydrophobicity 

ratio enabled the design of polymers affording the remote control of membrane destabilization 

(or permeabilization) with stimuli-responsive macromolecules. These macromolecules 

contain hydrophobic anchors to bind to the membranes and most importantly are close to poor 

solvent conditions. A wide variety of stimuli-responsive macromolecular structures have been 

tested in liposome formulations, under the form of amphiphilic copolymers (Yessine MA et 

al. 2004), (Pack DW et al. 2005), (Hoffman AS et al. 2002). The membrane breakage is 

generally obtained near a threshold pH or temperature conditions that make the polymer to 

abruptly undergo a transition from water-soluble into water-insoluble coil–globule 

conformation (Yessine MA et al. 2004),(Roux E et al. 2003). Typically, polymers containing 

carboxylic acids side groups are hydrophilic at high pH (>7) under their polyanionic form (cf 

Table 1b), but turn into water-insoluble globules when pH is decreased below the pKa of the 

monomer units (typically 5.5-6.5, or in vivo at the pH of late endosomes). These polymers 

become abruptly insoluble upon neutralization (Yessine MA et al. 2004),(Thomas JL et al. 

1996),(Chen T et al. 2004). Amphipol A8-35 and A8-75 belong to the family of pH-

responsive polyanions. Our results indicate that A8-75 is typically a pH-dependant cell 

permeabilizer, whereas the more hydrophobic A8-35 slowly solubilizes lipids and breaks 

membranes at acidic pH (Vial F et al. 2009; Vial F et al. 2007; Vial F et al. 2005). On the 

other hand, temperature-responsive polymers have been tailored to trigger bilayer 

permeability above a threshold temperature.  Such systems are based on solubility transition 

of N-isopropylacrylamide units (Ringsdorf H et al. 1993) (Kim JC et al. 2002), propylene 

oxide units (Chandaroy P et al. 2002) (Firestone MA et al. 2005), or organophosphazene 

(Couffin-Hoarau AC et al. 2004). In all cases, the monomers become less hydrated at 

temperatures above 35–40 °C (i.e. the lower critical solubility temperature, LCST, of the 

chains). Finally, light is a clean, versatile trigger that enables spatial and temporal control. To 

date only one example of biocompatible light-responsive polymer permeabilizer has been 

published (Sebai S et al. 2010; Sebai SC et al. 2012) (Figure 2 and Table 1b). But other  

photosystems exist (they are yet toxic or not efficient in cell culture condition). 

Biocompatibility issues have motivated the development of stimuli-responsive polymers of 

diverse chemical structures, in order to optimize responses in serum (Francis MF et al. 2001) 

for cell agglomeration (Iwasaki Y et al. 2013) permeabilization of mammalian cells, or 



biocide activity (see Figure 2 for illustrations on T-responsive and light-responsive polymers, 

or for pH-triggered ones: (Henry SM et al. 2006),(Lackey CA et al. 1999),(Eccleston ME et 

al. 2000),(Kusonwiriyawong C et al. 2003)). The exact origin of stimuli-controlled membrane 

disruption is to date largely conjectural. It is likely that insoluble segments of the chains 

penetrate inside the bilayers and introduce defects in their organization by a deep inclusion of 

ethoxy or carboxy groups in the apolar lipid core (Ferri JK et al. 2005),(Ringsdorf H et al. 

1993). In addition, polymers forming micelles in water are presumably capable of stabilizing 

the rim of fragments of lipid bilayers with local curvatures below 3–4 nm. 

 

Conclusion 

Recent experiments implemented synthetic copolymers in cell cultures and evidenced 

that abiotic macromolecules are interesting substitutes of peptides for controlled cell 

permeabilization, or biocide activity. On the other hand, mild polymer coats were tailored to 

prepare “decorated” cells that escape recognition by the immune systems, or are imparted 

with better resistance to external stress. There are several motivations to use macromolecules 

as tools to manipulate the membrane of cell (Teramura Y et al. 2010). First, macromolecular 

systems facilitate a combinatorial approach, connecting several functions and independent 

regions in polymer chains (or assemblies) in order to target, carry, and deliver activation or 

contrast agents at specific location (Shokeen M et al. 2011),(Relogio P et al. 2013). Second, 

the properties of one macromolecule can gradually be tailored by variation of the density of 

(re)active moities per chain, and of the chain architecture, enabling one to control its 

interaction (attractive or repulsive) at nanometer distances (e.g. to achieve for instance 

stealthiness, or stimuli-triggered responses). The range of molecular backbones that are 

studied to this purpose is becoming large (poly(acrylate) or acrylamide, polynorbornene, 

poly(styrene), polyamides, modified natural polysaccharides, etc)  and simple chemistry 

affords in most family of macromolecules large variations of structural parameters (e.g. chain 

length, charge density, hydrophobicity of aliphatic or aromatic side groups). Because this 

chemical variety has not yet been fully explored, one may consider that developments of 

synthetic polymers for cell manipulation are in their infancy. Basic guiding rules on structure-

properties relationships have however emerged from the data available, and point to the 

importance of amphiphilicity of polymers. 

Researches aiming at optimization of biocides, which are by far the most developed 

field among researches on polymer-controlled cell, clearly point to critical roles of both 



cationic charge density, and hydrophobicity. It appeared possible to compensate the lower 

specificity of synthetic macromolecules (compared to peptides) by a subtle balance between 

fraction of ammonium and alkyl side groups, in order to achieve low hemolytic activities but 

high antibacterial (MIC < 10 g/L) activities. Surprisingly the hydrophobic density of 

efficient copolymers does not differ significantly from the one of antimicrobial cationic 

peptides. As for peptides, peculiar enhancement of membrane penetration can be found upon 

introduction in the chains of guanidinium side group, or phenyl ones, likely because of 

formation of complexes with lipids. The recognized importance of the amphiphilic nature of 

cationic artificial biocides does not however suffice to conclude that hydrophobic attachment 

of polymers in lipid membranes is required. Based on years of investigation of the rich 

complexity of cell-penetrating peptides and antimicrobial peptides, it is known that multiple 

steps and several mechanisms are involved in the penetration of macromolecules into cells, 

including contributions of association in the glycocalix, or with specific lipids. It is however 

clearly established with model liposomes that amphiphilic polycations (showing biocide 

activity) bind tightly to lipid bilayers and may translocate when their structure reaches a 

critical hydrophobicity. On the other hand, upon hydrophobic self-assemblies into micelle-

like globules, synthetic cationic polymers become markedly less toxic and loss their 

hemolytic activity. High hydrophobicity, such as the one reached in Amphipol, favors a full 

collapse/sequestration of the hydrophobic segments into the core of globules, which in turn 

markedly modify interaction between polymer and cells. In the case of anionic Amphipol, 

hydrophobic collapse makes the chain capable of solubilizing lipids, which may accelerate 

membrane breakage in model liposomes. The hydrophobic:hydrophilic balance at the level of 

either the monomers, or in the whole polymer chain is thus an essential criterion, though 

monotonous correlation with activity on membranes shall not be expected. 

Neutral or anionic chains, and preferably amphiphilic ones, are essentially used as 

drug-delivery agents or for mild cell coating, suggesting that they are markedly less toxic than 

cationic ones. Additional functions may be brought by side groups that respond to external 

stimuli (light, pH or temperature shift) and enables one to trigger solubility transition. This 

was successfully exploited to control endosomal escape, or to target cell penetration upon 

exposure to light or to low pH. Stimuli-controlled polymers include poly(acrylic acid) 

derivatives belonging to the family of Amphipols and undergoing a transition from water-

soluble chains to cell-penetrating ones with decreasing degree of ionization (typically upon 

decreasing pH below 5.5-6.5). Membrane breakage and lipid solubilization occurs when they 

self-associate into micelles. Peptides are also developed as pH-responsive. Future 



developments and sequence adjustments will certainly enable subtle sensitivities to specific 

biomembranes and environment conditions. In comparison, the chemistry of stimuli-

responsive abiotic polymers is not yet suited to design highly specific systems, but its larger 

toolbox affords new modes of targeting. The adjustment of abrupt transition upon 

stimulations, specifically using light, can reach high spatial and temporal resolution. It makes 

no doubt that ongoing progress in the design of bioactive, stimuli-responsive chains for cell 

manipulation will be actively pursued with the aim to develop abiotic tools for cell therapies, 

cultures of stem cells (immuno-protection, controlled differentiation), and for studies 

requiring high spatial control on cell perturbations. 
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Scheme 1. Drawing of different modes of cell-surface modification and the corresponding 

applications. (A) from top to bottom, covalent attachment, coulombic binding (monolayer or 

LbL multilayers), and hydrophobic anchoring of polymers to obtain protective encapsulation 

(e.g. PEGylation), poration or apoptosis upon binding of either polycations or highly 

hydrophobic polyamphiphiles; (B) preparation of polyelectrolyte multilayers under the form 

of micrometer-large patches, “backpacks”, attached to macrophage cell carriers: a polymer 

multilayer film is deposited on glass patterned with photoresist, dissolution of the photoresist 

leaves intact the fragments of the film that have been deposited on glass. After cell seeding, 

the adhesion between glass and LbL patches is released by a temperature shift leaving in 

solution cells attached to one LbL patch. (redrawn from (Swiston AJ et al. 2008; Swiston AJ 

et al. 2010)) 
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Scheme 2 : Drawing of polymer assemblies with lipids that are typically proposed in the 

literature to illustrate the origin of permeabilization and/or membrane ruptures occurring upon 

polymer adsorption (A) synthetic (abiotic) copolymers, reprinted with permission from 

(Binder WH 2008) Copyright 2008 WILEY-VCH Verlag GmbH&Co.KGaA, Weinheim, (B) 

models of peptide insertion in lipid membranes. 

  



    Table 1a. Characteristic structures of amphiphilic polymers tailored by adjustment of hydrophobicity to either 

coat, translocate, permeabilize cells, or kill bacteria. The generic names given in column 3 refer to the main 

chain, parent polymer without hydrophobic or other functional pendant groups.  
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endocytosis (Teramura Y et al. 2008) 
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aggregation. (Miura S et al. 2006), (Rao 

Z et al. 2013; Teramura Y et al. 2013) 
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Poly(acrylate), or methacrylate, or 
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endosomal escape at low pH. (Yessine 

MA et al. 2007; Yessine MA et al. 

2004), (Chen T et al. 2004) 
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poration in (Vial F et al. 2009; Vial F et 

al. 2007; Vial F et al. 2005) 
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et al. 2006) 
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penetration, mechanism still debated (Ho 

VHB et al. 2011), (Khormaee S et al. 

2013) 
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Poly(oxanorbornene) and poly 

(norbornene).  Antimicrobial activity 

with selectivity modulated by 

hydrophobicity / cationicity ratio 

(Lienkamp K et al. 2009; Lienkamp K et 

al. 2008; Som A et al. 2012; Tezgel AO 

et al. 2011) 
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al. 2009b) 

 

 

Pegylated poly(lysine) (or not shown 

poly(ethylene imine)) for mild cell 
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et al. 2011),(Wilson JT et al. 2011) 
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Table 1b. Characteristic structural determinants of stimuli-responsive polymers. 
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pH-triggered penetration in mammalian 

cells (detailled structures in table 1a, 

polystyrene-co-maleic anhydride from 

(Ho VHB et al. 2011)) or  pH-responsive 

endosomal escape in mammalian cells 

(poly(acrylic acid) derivatives from 

(Henry SM et al. 2006), (Yessine MA et 

al. 2004)), or poly(lysylphtalate) 

derivatives with pH-sensitive hemolytic 

activity (Chen R et al. 2009) 

          

 

 

 

Temperature-triggered biocide, (Iwasaki 

Y et al. 2013; Mattheis C et al. 2013; 

Mattheis C et al. 2012) 
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Figure 1: Average hydrophobicity (based on logP, octanol:water partitioning) and cationic 

density in biocides polymers belonging to the class of either peptides or poly(acrylate) 

derivatives. Reprinted with permission from (Hu K et al. 2013) Copyright 2013 American 

Chemical Society. 
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Figure 2. Stimuli-responsive amphiphilicity of polymers controlling cell membranes. (A) 

temperature-triggered biocide activity, samples from 2 to 7 correspond to increasing fraction 

(from 10 mol% to 54 mol%) of the amino-monomer in the copolymer also shown in Table 1 

with transition temperature being in the range 32°C-36°C;(Mattheis C et al. 2012) (B) light-

triggered penetration of peptides in cell. Other possible stimuli include temperature or pH. 

(Sebai S et al. 2010; Sebai SC et al. 2012). Reprinted with permission from (Binder WH 

2008), and (Mattheis C et al. 2012) Copyright 2012 WILEY-VCH Verlag GmbH&Co.KGaA, 

Weinheim. 
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