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Copulae on products of compact Riemannian manifolds

P. E. Jupp

School of Mathematics and Statistics, University of St Andrews, St Andrews KY16 9SS,
UK

Abstract

One standard way of considering a probability distribution on the unit n-
cube, [0, 1]n, due to Sklar (1959) [A. Sklar, Fonctions de répartition à n
dimensions et leur marges, Publ. Inst. Statist. Univ. Paris 8 (1959) 229-
231], is to decompose it into its marginal distributions and a copula, i.e. a
probability distribution on [0, 1]n with uniform marginals. The definition
of copula was extended by Jones et al. (2014) [M.C. Jones, A. Pewsey, S.
Kato, On a class of circulas: copulas for circular distributions, Ann. Inst.
Statist. Math., to appear] to probability distributions on products of circles.
This paper defines a copula as a probability distribution on a product of
compact Riemannian manifolds that has uniform marginals. Basic properties
of such copulae are established. Two fairly general constructions of copulae
on products of compact homogeneous manifolds are given; one is based on
convolution in the isometry group, the other using equivariant functions from
compact Riemannian manifolds to their spaces of square integrable functions.
Examples illustrate the use of copulae to analyse bivariate spherical data and
bivariate rotational data.

Keywords: Bivariate, Convolution, Homogeneous manifold, Markov
process, Uniform distribution, Uniform scores
2013 MSC: 62H11

1. Introduction

An n-copula is a probability distribution on the unit n-cube, [0, 1]n, which
has uniform marginals. An n-copula and n probability distributions on R
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together determine a probability distribution on Rn with n-dimensional dis-
tribution function, H, defined by

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), (1)

where C is the n-dimensional distribution function of the copula and F1, . . . , Fn
are the cumulative distribution functions of the distributions on R. Sklar’s
theorem [27] states that (i) any n-dimensional distribution function, H, has
the form (1) for some C and F1, . . . , Fn, (ii) if F1, . . . , Fn are
continuous then C is unique. Thus copulae can be used (a) to generate
families of multivariate distributions by coupling together distributions with
given marginals, (b) to decompose any multivariate distribution into (i) its
marginal distributions and (ii) a copula, which describes the dependence
structure. Comprehensive accounts of copulae are given in the books of Joe
[9] and Nelsen [23].

The use of copulae in (1) to relate multivariate probability distributions
to their marginal distributions has been generalised from [0, 1]n to products
of Polish product spaces by Scarsini [26]. This approach requires the choice
of linearly ordered increasing classes of subsets of each of the spaces in the
product. No such classes are required in the approach taken here.

Copulae on the circle, called ‘circulae’, have been developed by Jones,
Pewsey & Kato [12], who pay particular attention to a method of construct-
ing circulae using convolution, special cases of which had appeared in [10],
[8], [11] and [28]. The aim of this paper is to extend the idea of circula to
a concept of copula on compact Riemannian manifolds, which are the main
sample spaces considered in directional statistics.

Section 2 concerns uniform distributions on compact Riemannian mani-
folds and considers the existence and uniqueness of homeomorphisms general-
ising probability integral transformations, in that they transform given prob-
ability distributions into the uniform distribution. Copulae on compact
Riemannian manifolds are defined in Section 3, and various equivalent
formulations are given. Section 4 considers two general constructions of
copulae on compact Lie groups and their coset spaces. One of these extends
the convolution construction in [12] of circulae; the other is based on the
Sobolev mappings used in directional statistics. Examples involving paired
data on the sphere and on the rotation group, SO(3), are given in Section 5.
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2. Uniform distributions and uniform scores

2.1. Uniform distributions

Let X be a compact Riemannian manifold. Then the Riemannian metric
determines the volumes of infinitesimal cubes, and so equips X with a unique
uniform probability measure, νX . If φ : X → X is continuous and µ is a
probability distribution on X then φ∗µ denotes the image measure given by
(φ∗µ)(A) = µ(φ−1(A)) for all measurable subsets A of X .

Proposition 1. For any probability distribution µ on X such that the density
of µ with respect to νX is continuous and positive, there is a homeomorphism
φ of X such that φ∗µ = νX . If X = [0, 1] then there is a unique such φ
with φ(0) = 0. If X is the circle, S1, and a base-point θ0 and an orientation
of S1 are specified then there is a unique orientation-preserving such φ with
φ(θ0) = θ0.

Proof. The homeomorphism φ can be constructed using the probability
integral transformation in coordinate neighourhoods, as in the first of the
proofs in [22] for the case in which µ has a smooth density. �

For X = S1, Jones et al. [12] point out that it is convenient to take θ0 to
be the mode (assumed unique) of µ. If the dimension of X is greater than 1
then the homeomorphism φ is not unique, even if φ is required to keep some
given point fixed. The following proposition shows that, in some cases, there
is a canonical choice of φ. First recall that, if X is compact, connected and
without boundary, and x0 is any point in X then the exponential map from
the tangent space, TXx0 , at x0 into X defines a maximal system of Riemann-
ian normal coordinates around x0 as follows. The inverse of this coordinate
system maps the open set {(t,v) : 0 ≤ t < rv,v ∈ T1Xx0} diffeomorphically
onto an open set U of X by (t,v) 7→ exp(tv). Here T1Xx0 denotes the set of
unit tangent vectors at x0 and

rv = sup{t : there is a unique minimising geodesic from x0 to exp(tv)}.

See, e.g. Sections VII.6 and VII.7 of [2] or Section II.C of [6]. It follows
from nullity of the cut locus (see, e.g. Lemma 3.96 of [6]) that X \ U has
measure zero. Thus absolutely continuous probability distributions on X
can be identified with absolutely continuous probability distributions on
{(t,v) : 0 ≤ t < rv,v ∈ T1Xx0}. In particular, such a distribution induces
a marginal distribution on T1Xx0 .
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Proposition 2. Let µ be a probability distribution on X such that the density
of µ with respect to νX is continuous and positive. Let x0 be a point of X . If
the distribution induced by µ on the unit tangent sphere T1Xx0 is the same as
that induced by νX then there are (i) an open set U in X such that X \U has
measure zero, (ii) a unique homeomorphism φ : U → U , such that φ∗µ = νX ,
and φ sends each geodesic ray in U that starts at x0 into itself.

Proof. The homeomorphism φ is constructed using the probability
integral transform along each geodesic. The open set U is given by U =
{(t,v) : 0 ≤ t < rv,v ∈ T1Xx0}, and φ is defined by φ(exp(tv)) = exp(uv),
where Fv(t) = Fv,0(u), Fv and Fv,0 being the cumulative distribution funct-
ions of t conditional on v given by µ and νX , respectively. �

Example 1. Let X be S2 and µ be the Fisher distribution with mean direct-
ion µ and concentration κ. Then calculation shows that the homeomorphism
φ of Proposition 2 is φ(x) = uµ +

√
(1− u2)/(1− t2) (I3 − µµT) x, where

t = xTµ, u = (2eκt − eκ − e−κ) / (eκ − e−κ) and I3 denotes the 3× 3 identity
matrix.

Example 2. Let X be SO(3) and µ be the matrix Fisher distribution with
density proportional to exp {tr (κXTM)} for κ ≥ 0 and X,M in SO(3).
Since the geodesics through I3 in SO(3) are rotations of constant speed about
fixed axes, calculation shows that for the homeomorphism φ of Proposition 2,
MTX and MTφ(X) have the same rotation axis, and that the rotation angle,
u, of MTφ(X)is related to the rotation angle, t, of MTX by

F̃0(u)/F̃0(π) = F̃κ(t)/F̃κ(π),

where F̃κ(θ) =
∫ θ

0
e4κ cos2(ω/2) sin2(ω/2)dω.

2.2. Uniform scores

The following discrete version of Proposition 2 can be useful in data ana-
lysis. Let x0 be a base-point of X and suppose that the uniform distribution
is symmetric about x0, in the sense that, in the normal coordinates (t,v), v
is uniformly distributed on T1Xx0 and t is independent of v. (Riemannian
manifolds with this property include spheres, projective spaces and the rotat-
ion group SO(3) with their usual metrics.) For almost all points x1, . . . , xn,
each xi can be written as xi = exp(tivi) for some (ti,vi) with vi ∈ T1Xx0 and
0 ≤ ti < rvi

. For i = 1, . . . , n, define j(i) by ti = t(j(i)), the j(i)th smallest
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order statistic of t1, . . . , tn, and define ui by F0(ui) = {j(i)− 1/2} /n, where
F0 denotes the cumulative distribution function of t conditional on v under
the uniform distribution, νX . The uniform scores, x̃1, . . . , x̃n are defined by
x̃i = exp(uivi). If x1, . . . , xn is a random sample from a distribution on X
which is symmetric about x0 then as n→∞ the empirical distribution given
by {x̃1, . . . , x̃n} tends to the uniform distribution on X . In the case X = S1,
x̃1, . . . , x̃n are very similar to the usual uniform scores that are used in some
two-sample tests on the circle, as in [21, Section 8.3.1].

Given a base-point (x0, y0) in X × Y where the uniform distributions
on X and Y are symmetric about x0 and y0, respectively, a simple extens-
ion of the above construction transforms sets of points (x1, y1), . . . , (xn, yn)
into uniform scores, (x̃1, ỹ1), . . . , (x̃n, ỹn). If (x1, y1), . . . , (xn, yn) is a random
sample from a distribution on X × Y having marginals that are symmetric
about x0 and y0, respectively, then as n → ∞ the empirical distribution
given by {(x̃1, ỹ1), . . . , (x̃n, ỹn)} tends to a distribution on X × Y having
unform marginals, i.e. a copula in the sense of Section 3 below. In the case
X = Y = S1, x̃1, . . . , x̃n and ỹ1, . . . , ỹn are similar to the usual uniform scores
that are used in the uniform scores Sobolev tests of independence considered
in [18, Section 3].

3. Copulae on compact Riemannian manifolds

Let X and Y be compact Riemannian manifolds. A copula (more pre-
cisely, a 2-copula) on X ×Y is a probability distribution on X ×Y that has
uniform marginal distributions on X and Y . More generally, an n-copula
on a product

∏n
i=1Xi of compact Riemannian manifolds is a probability dis-

tribution on
∏n

i=1Xi with uniform marginal distribution on each Xi. For
simplicity, only 2-copulae will be considered here.

The following proposition follows immediately from Proposition 1.

Proposition 3. Let µ be a probability distribution on X×Y having marginal
densities with respect to νX and νY that are continuous and positive. Then
there are homeomorphisms φX of X and φY of Y such that (φX ×φY )∗µ is a
copula. �

In general, the copula in Proposition 3 is not unique.
For any compact Riemannian manifold X , let P(X ) denote the set of

probability distributions on X that are mutually absolutely continuous with
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respect to νX . The following Proposition shows that copulae can be consid-
ered from several equivalent viewpoints. The proof is straightforward.

Proposition 4. For a probability distribution µ on X × Y with marginals
that are mutually absolutely continuous with respect to νX and νY , let µX and
µY denote the mappings (Markov kernels) from X to P(Y) and from Y to
P(X ) for which µX (x) and µY(y) are the conditional probability distributions
on Y given x and on X given y, respectively. Then the maps µ 7→ µX and
µ 7→ µY give one-to-one correspondences between

(a) the set of copulae on X × Y that are in P(X × Y),

(b) the set of Markov kernels from X to Y that send νX to νY , i.e.

∫

X
µX (x)dνX (x) = νY ,

(c) the set of Markov kernels from Y to X that send νY to νX .

If Y = X then the identification of a Markov process with its transition
Markov kernel and stationary distribution gives a one-to-one correspondence
between any of (a), (b) or (c) and

(d) the set of discrete-time Markov processes on X with uniform stationary
distribution. �

Using the correspondence between (a) and (b), composition of uniformity-
preserving Markov kernels from X to X can be translated into a concept of
composition of copulae on X ×X . For X = R this was introduced by Darsow
et al. [3]; see Section 6.4 of [23].

4. Copulae on compact homogeneous manifolds

4.1. Mixed translation copulae on compact Lie groups

Let G be a compact Lie group. The inversion map x 7→ x−1 and, for
any elements z1, z2 of G, the 2-sided translation x 7→ z−1

1 xz2 are isometries
and so preserve the uniform distribution. It follows that mixtures of these
transformations have the same property. Thus, if X,Z1, Z2 are random vari-
ables on G with X uniformly distributed and independent of (Z1, Z2) then
the distributions of (X,Z−1

1 XZ2) and (X,Z−1
1 X−1Z2) are copulae on G×G,
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called positive mixed-translation copulae and negative mixed-translation cop-
ulae, respectively. The distribution of (Z1, Z2) is called the binding distribut-
ion. If Z is in the centre of G, i.e. commutes with all elements of G, then
(ZZ1)

−1X(ZZ2) = Z−1
1 XZ2 and (ZZ1)

−1X−1(ZZ2) = Z−1
1 X−1Z2.

If Z1 and Z2 are independent with densities f1 and f2, respectively, then
the distributions of (X,Z−1

1 XZ2) and (X,Z−1
1 X−1Z2) are called positive con-

volution copulae and negative convolution copulae, and have densities

∫

G

f1(xzy
−1)f2(z)dνG(z) =

∫

G

f1(u)f2(x
−1uy)dνG(u) (2)

and ∫

G

f1(x
−1zy−1)f2(z)dνG(z) =

∫

G

f1(u)f2(xuy)dνG(u), (3)

respectively. For G = S1, this construction is that considered by Wehrly
& Johnson [28] and Jones et al. [12]. Special cases of the corresponding
stationary Markov processes were given in models 3.1 and 3.4 of [1]. Taking
Z2 = Z1 gives a random conjugation of X.

Two useful classes of convolution copulae are the left convolution copulae,
for which Z2 = e, and the right convolution copulae, for which Z1 = e, where e
denotes the identity element ofG. Tests for a distribution onG×G to be a left
or right convolution copula can be obtained from tests of uniformity. If the
distribution of (X, Y ) is a left (respectively, right) positive convolution copula
then (X,X−1Y ) (respectively, (X, Y X−1)) is uniformly distributed on G×G.
Similarly, if the distribution of (X, Y ) is a left (or right) negative convolution
copula then (X,XY ) (respectively, (X, Y X)) is uniformly distributed on
G×G.

4.2. Convolution copulae on coset spaces

For closed subgroupsK1 andK2 of a compact Lie groupG, the correspond-
ing left, right, and double coset spaces are G/K2 = {xK2 : x ∈ G}, K1\G =
{K1x : x ∈ G} and K1\G/K2 = {K1xK2 : x ∈ G}, respectively. Probability
distributions on G/K2, K1\G and K1\G/K2 can be identified with prob-
ability distributions on G that are (right) K2-invariant, (left) K1-invariant,
and (left-right) (K1×K2)-invariant, respectively. Using these identifications,
convolution of distributions on coset spaces can be defined as convolution of
the corresponding invariant distributions on G. In the cases (a) G = SO(p),
K1 = {e}, K2 = SO(p−2), (b) G = SO(p), K1 = SO(p−2), K2 = SO(p−2),
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explicit descriptions of the convolutions on the coset spaces (a) Sp−1 and (b)
[−1, 1] are given in Sections 9 and 6 of [19].

The above definition of convolution on coset spaces enables the follow-
ing extension of convolution copulae from Lie groups to coset spaces. Let
K1, K2, K3, K4 be closed subgroups of G. Denote by π12 and π34 the maps
x 7→ K1xK2 and x 7→ K3xK4 from G to K1\G/K2 and K3\G/K4, respect-
ively. Let X,Z1, Z2 be random variables on G with X uniformly
distributed, (Z1, Z2) being independent of X and having any distribution on
G×G for which the distributions of Z1 and Z2 are (K1 ×K2)-invariant and
(K3 × K4)-invariant, respectively. Then simple invariance arguments show
that the distributions of (π12(X), π34(Z

−1
1 XZ2)) and (π12(X), π34(Z

−1
1 X−1Z2))

are copulae on (K1\G/K2) × (K3\G/K4), called convolution copulae An
important case is that in which K1 = K3 = {e}, so that these copulae
are on G/K2 × G/K4. The compact manifolds of the form G/K are the
compact homogeneous manifolds, i.e. those on which the group of isometries
acts transistively. If the density f1 in (2) is (K1 × K3)-invariant and f2 is
(K2 × K4)-invariant then (2) is a copula on (K1\G/K2) × (K3\G/K4). If
f1 is (K2 ×K3)-invariant and f2 is (K1 ×K4)-invariant then (3) is a copula
on (K1\G/K2)× (K3\G/K4). For S1 and S2, examples of this construction
were given in models 2.1, 2.4, 3.1 and 3.4 of [1].

4.3. Sobolev copulae on homogeneous compact manifolds

For a compact Riemannian manfold X , let Ek (k = 1, 2, . . .) be the space
of eigenfunctions of the Laplacian corresponding to the kth non-zero eigen-
value. Then the Ek are orthogonal finite-dimensional subspaces of the space
L2(X ) of square-integrable functions on X . There are canonical maps tk
(k = 1, 2, . . .) of X into Ek, given by

tk(x) =

dim Ek∑

i=1

fi(x)fi,

where {fi : 1 ≤ i ≤ dim Ek} is any orthonormal basis of Ek. If a1, a2, . . . is
a sequence of real numbers such that

∞∑

k=1

a2
k dim Ek <∞
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then

x 7→ t(x) =
∞∑

k=1

aktk(x) (4)

defines a mapping t of X into L2(X ). Such mappings t are the basis of
Sobolev tests of uniformity [7, 15], several-sample tests [29], tests of symmetry
[17], tests of independence [18], and tests of goodness of fit [14]. They can
also be used as follows to construct copulae.

Proposition 5. Let X = G/K be a compact homogeneous manifold,
t : X → L2(X ) be a mapping of the form (4), h be a continuous real-valued
function on R and µ be a probability distribution on G. For any real κ, define
the probability density f(·, ·;κ, t, µ) on X × X by

f(x, y;κ, t, µ) = c(κ)

∫

G

h(κ〈t(x), t(gy)〉)dµ(g), (5)

where c(κ) is a normalising constant and 〈·, ·〉 denotes the inner product on
L2(X ). Then the distribution with density (5) is a copula on X × X , called
the Sobolev copula given by t, h, κ and µ.

If X is a Lie group, G, then the densities (5) can can be generalised to
copula densities of the form

c(κ)

∫

G×G
h(κ〈t(x), t(g1yg

−1
2 )〉)dω(g1, g2), (6)

where ω is a probability distribution on G×G.

Proof. For γ in G,

〈t(γx), t(gy)〉 = 〈t(x), t(γ−1gy)〉,

and so
∫

X

∫

G

h(κ〈t(γx), t(gy)〉)dµ(g)dνX (y)

=

∫

G

∫

X
h(κ〈t(x), t(γ−1gy)〉)dνX (y)dµ(g)

=

∫

G

∫

X
h(κ〈t(x), t(z)〉)dνX (z)dµ(g)

=

∫

X
h(κ〈t(x), t(y)〉)dνX (y).
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As this does not depend on γ, the marginal density of x is constant. Similar-
ly, the marginal density of y is constant, and so (5) is a copula. A simple
extension of this argument shows that (6) is a copula. �

For X = Sp−1 and µ a point distribution on SO(p), various subclasses
of the densities (5) have been considered elsewhere: (a) taking t(x) = x
and κ = 1 gives the densities of Example 1 of [25]; (b) taking t(x) = x
and h = exp gives a special case of the bivariate densities considered in
Section 2.4 of [20] and Section 11.4 of [21], the normalising constant is c(κ) =

(κ/2)p/2−1 {Γ(p/2)Ip/2−1(κ)
}−1

, the conditional distribution of y given x is
von Mises–Fisher, and the correlation coefficient of [16] is pAp(κ)2, where
Ap(κ) = Ip/2(κ)/Ip/2−1(κ); (c) for t(x) = xxT − p−1Ip and h = exp, the
normalising constant is c(κ) = M(1/2, p/2, κ)−1, where M(1/2, p/2, κ) is a
Kummer function, and the conditional distribution of y given x is Watson.
In the cases p = 2, 3 and t(x) = x or t(x) = xxT − p−1Ip (with Ip denoting
the p × p identity matrix), the corresponding stationary Markov processes
were given in models 2.1, 2.4, 3.1 and 3.4 of [1].

4.4. Goodness of fit

Let f(·, ·; θ) (with θ ∈ Θ) be a family of copulae on X×Y , where X and Y
are compact Riemannian manifolds. Given observations (x1,y1), . . . , (xn,yn)
on X×Y and a corresponding fitted copula f(·, ·; θ̂) in this family, the quality
of the fit can be assessed using the following version of the Sobolev goodness-
of-fit tests of [14]. It is based on the fact that, for distributions on X ×Y with
uniform marginals, uniformity is equivalent to independence. This implies
that, for measuing the fit of a copula, the weighted tests of uniformity used
in the goodness-of-fit tests of [14] can be replaced by weighted versions of
the tests of independence considered in [18]. Thus, if t : X → L2(X ) and
u : Y → L2(Y) are functions of the form (4), an appropriate statistic for
measuring goodness of fit is

T =
1

n

n∑

i=1

n∑

j=1

wiwj〈t(xi), t(xj)〉〈u(yi),u(yj)〉, (7)

where
wi = f(xi,yi; θ̂)

−1 i = 1, . . . , n.

Large values of T indicate poor fit. Significance of T can be assessed using
simulation from the fitted copula.
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For certain concentrated copulae of the form (5) or (6), there is a quick
graphical method of assessing goodness of fit. If X is a d-dimensional homo-
geneous manifold and the copula has density f(x, y;κ, g) = c(κ) exp {κ〈t(x), t(gy)〉}
then it follows from standard high-concentration asymptotics that a plot of
2κ̂ {M − 〈t(x1), t(ĝy1)〉} , . . . , 2κ̂ {M − 〈t(xn), t(ĝyn)〉} (whereM = 〈t(x), t(x)〉
and ĝ is the maximum likelihood estimate of g) against the (i−1/2)/n quant-
iles of χ2

d (i = 1, . . . , n) will be close to the straight line of slope 1 through the
origin, provided that κ̂ is large. Similarly, if X is a d-dimensional Lie group
and the copula has density f(x, y;κ, g1, g2) = c(κ) exp

(
κ〈t(x), t(g1yg

−1
2 )〉

)

then a plot of 2κ̂
{
M − 〈t(x1), t(ĝ1y1ĝ

−1
2 )〉

}
, . . . , 2κ̂

{
M − 〈t(xn), t(ĝ1ynĝ

−1
2 )〉

}

(where ĝ1 and ĝ2 are the maximum likelihood estimates of g1 and g2) against
the (i− 1/2)/n quantiles of χ2

d (i = 1, . . . , n) will be close to the straight line
of slope 1 through the origin, provided that κ̂ is large.

5. Examples

5.1. Magnetic remanence data on S2 × S2

Data set B8 of [5] consists of 62 pairs (x1,y1), . . . , (xn,yn) of directions
of magnetic remanence after partial demagnetisation; xi and yi are the
directions recorded for the ith specimen at 200◦ C and 350◦ C, respectively.
It is reasonable to model the marginal distributions of x and y by Fisher
distributions. The maximum likelihood estimates of the mean directions µX

and µY and the concentrations κX and κY are µ̂X = (0.210, 0.104, 0.972)T,
µ̂Y = (0.210, 0.135, 0.968)T and κ̂X = 76.1, κ̂Y = 84.4. Adequacy of the fit
can be assessed by applying tests of unformity to the transformed observ-
ations φ̂X (x1), . . . , φ̂X (xn) and φ̂Y(y1), . . . , φ̂Y(yn), where φ̂X and φ̂Y are
the geodesic-preserving homeomorphisms of S2 that transform the fitted
marginal distributions to uniformity and preserve the sample mean direct-
ions; see Example 1 of Section 2. The P -values of the Rayleigh test of unifor-
mity applied to φ̂X (x1), . . . , φ̂X (xn) and φ̂Y(y1), . . . , φ̂Y(yn) are 0.99 and 0.90,
respectively, so that uniformity of the transformed fitted Fisher distributions
can certainly be accepted, i.e. the Fisher distributions fit x1, . . . ,xn and
y1, . . . ,yn well.

Fitting the Sobolev copula with density

f(x,y;κ,U) = (κ/ sinhκ) exp {κxTUTy} (8)
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to the transformed data (φ̂X (x1), φ̂Y(y1)), . . . , (φ̂X (xn), φ̂Y(yn)) gives maxi-
mum likelihood estimates

κ̂ = 6.42, Û =




0.997 −0.074 0.013
0.074 0.996 −0.042
−0.010 −0.043 0.999


 .

The fit of the copula can be assessed by means of the plot described at the end
of Section 4.4, taking t(x) = x, and so plotting

2κ̂
{

1− φ̂X (x1)
TÛTφ̂Y(y1)

}
, . . . , 2κ̂

{
1− φ̂X (xn)TÛTφ̂Y(yn)

}
against quant-

iles of χ2
2. For this copula, the plot is the same as a colatitude plot (see

e.g. Section 10.2 of [21]) based on the angles between the Ûφ̂X (xi) and
φ̂Y(yi). For this data set, the plot is far from linear and the correspond-
ing Kolmogorov–Smirnov test is significant at the 1 % level. Thus the copula
fits the transformed data very poorly.

5.2. Vectorcardiogram data on SO(3)× SO(3)

The data set described in [4] consists of pairs of rotations representing the
orientations of vectorcardiograms of 98 children. The portion of this data set
obtained from boys aged 11–19 gives observations (X1,Y1), . . . , (Xn,Yn) on
SO(3)×SO(3), where n = 28 and rotations Xi and Yi represent the orient-
ations of vectorcardiograms for the ith subject obtained using the Frank lead
system and the McFee lead system, respectively, for placement of electric-
al leads. Prentice [24] fitted the regression model Y = UT

1XU2 with U1

and U2 in SO(3) separately to the portion of the data obtained from the
56 boys and to that obtained from the 42 girls. Here, the data set on the
28 boys aged 11–19 will be described by the bivariate model with marginal
symmetric matrix Fisher distributions and a copula with regression function
Y = UT

1XU2.
Perhaps the simplest non-uniform models for the marginal distributions

of X and Y are the matrix Fisher distributions with densities of the form
eκXM(1/2, 2, 4κX)−1 exp {κXtr (XTMX)} and eκY M(1/2, 2, 4κY )−1

exp {κY tr (YTMY )}, respectively, where M and MY are in SO(3) and
M(1/2, 2, ·) is a Kummer function. The maximum likelihood estimates of
the mean directions MX and MY and concentrations κX and κY are

M̂X =




0.491 0.705 0.512
0.633 −0.692 0.346
0.598 0.154 −0.786


 , M̂Y =




0.695 0.653 0.300
0.639 −0.753 0.160
0.330 0.080 −0.940
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and κ̂X = 2.76, κ̂Y = 2.76. The fit of these models to the marginal data can
be assessed by applying the Rayleigh test of uniformity to each of the trans-
formed marginal data sets (φ̂X (X1), . . . , (φ̂X (Xn)) and (φ̂Y(Y1), φ̂Y(Yn)),
where φ̂X and φ̂Y denote the orientation-preserving homeomorphisms of SO(3)
that transform the fitted marginal distributions to uniformity and preserve
geodesics through M̂X and M̂Y ; see Example 2 of Section 2. Comparison of
the Rayleigh statistics with their asymptotic distribution (which is justified
by [13, Table 1]) yields P -values of 0.001, so the fitted Fisher distributions
fit the marginal data very poorly. The Bingham test on RP 2 of uniformity
of the rotation axes in each marginal data set gives P -values of 0.62 and
0.06, so that uniformity is acceptable (marginally so for the data on Y ).
This suggests that a better transformation to marginal normality might be
obtained by taking (M̂X , M̂Y ) as the base-point of SO(3)×SO(3) and using
the uniform scores (X̃1, Ỹ1), . . . , (X̃n, Ỹn) (described in Section 2.2) instead
of the transformed data (φ̂X (X1), φ̂Y(Y1)), . . . , (φ̂X (Xn), φ̂Y(Yn)).

Fitting the copula with density

f(X,Y;κ,U1,U2) = eκM(1/2, 2, 4κ)−1 exp {κtr(XTU1YUT

2 )}

(which has the form (6) with t(X) = u(X) = X) to the uniform scores
(X̃1, Ỹ1), . . . , (X̃n, Ỹn) gives maximum likelihood estimates

Û1 =




0.980 0.198 −0.037
−0.201 0.950 −0.241
−0.013 0.244 0.970


 , Û2 =




0.988 0.153 0.024
−0.147 0.974 −0.172
−0.050 0.166 0.985




and κ̂ = 0.80. A weighted Sobolev goodness-of-fit test based on (7) with
t(X)= u(X) = X has P -value 0.16, indicating that the fit of the copula to the
uniform scores (X̃1, Ỹ1), . . . , (X̃n, Ỹn) is acceptable.
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