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In HIV-uninfected adults with pulmonary tuberculosis (TB), anti-TB treatment is associated with changes
in Mycobacterium tuberculosis (Mtb)-specific immune responses, which correlate with sputum bacillary
load. It is unclear if this occurs in HIV-infected TB patients. We investigated changes in Mtb-specific
immune responses and sputum bacillary clearance during anti-TB treatment in HIV-infected and
HIV-uninfected adults with pulmonary TB. Sputum bacillary load was assessed by smear microscopy and
culture. Mtb-specific IFN-g secreting peripheral blood mononuclear cells were enumerated using an
ELISPOT assay following stimulation with PPD, ESAT-6 and CFP-10. The baseline frequency of Mtb-specific
IFN-g secreting cells was lower in HIV-infected than HIV-uninfected patients (median PPD 32 vs. 104
Spot Forming Units (SFU), p ¼ 0.05; CFP-10 19 vs. 74 SFU, p ¼ 0.01). ESAT-6-specific IFN-g secreting cells
and sputum bacillary load declined progressively during treatment in both HIV-infected and
HIV-uninfected patients. HIV infection did not influence the 2-month sputum culture conversion rate
(Odds Ratio 0.89, p ¼ 0.95). These findings suggest that changes in ESAT-6-specific immune responses
during anti-TB treatment correspond with changes in sputum bacillary load irrespective of host HIV
infection status. The utility of Mtb-specific IFN-g responses as a proxy measure of treatment response in
HIV-infected TB patients warrants further evaluation in other settings.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Tuberculosis (TB) is a leading cause of morbidity and mortality
worldwide. Cell-mediated immune responses are pivotal in the
host's response to Mycobacterium tuberculosis (Mtb) infection and
IFN-g produced predominantly by CD4þ T lymphocytes is a crucial
component of this response [1e4]. Production of IFN-g in response
to Mtb-specific antigens is commonly used as a marker of poten-
tially protective immunity against Mtb [5e7]. The 20- to 40-fold
increased risk of developing active TB among HIV-infected
individuals, particularly those with low blood CD4þ T lymphocyte
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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counts [8] underscores the importance of T cell-mediated adaptive
immunity in protection against disease caused by Mtb.

Successful treatment of pulmonary TB is associated with
reduction in sputum bacillary load and assessment of sputum by
smear microscopy and culture after two months of anti-TB
treatment to monitor early microbiological response is recom-
mended by the International Union Against Tuberculosis and
Lung Disease (IUATLD) [9]. Both microbiological assessments,
however, have limitations. First, the sensitivity of sputum smear
microscopy for acid-fast bacilli (AFB) is low, particularly when
the bacillary load is reduced by anti-TB treatment [10]. Second,
Mtb grows slowly in culture and may take up to 8 weeks or
longer before a positive culture becomes detectable [10]. Other
laboratory markers such as C-reactive protein (CRP) and eryth-
rocyte sedimentation rate (ESR) have been used to monitor
response to anti-TB treatment [11,12], but they are not specific to
TB. Therefore, there is need to identify other laboratory param-
eters specific to TB which could be useful rapid surrogate
markers of response during treatment of pulmonary TB irre-
spective of the patient's HIV infection status.

In HIV-uninfected adults with pulmonary TB, a good response
to anti-TB treatment is associated with changes in peripheral
blood immune parameters, including T-cell subpopulations,
cellular proliferative and cytokine responses [13e16]. Data from
previous studies suggest a correlation between disease activity,
bacterial load and IFN-g production by sensitized lymphocytes in
response to Mtb-specific antigens Early-Secreted Antigenic Target
6 (ESAT-6) and Culture Filtrate Protein 10 (CFP-10) during treat-
ment of pulmonary TB [17e22]. How Mtb-specific immune re-
sponses relate to microbiological responses during treatment of
pulmonary TB in HIV-infected adults is, however, incompletely
understood.

We addressed this knowledge gap by conducting a prospective
observational cohort study of adults receiving treatment for
confirmed pulmonary TB in Malawi where over 50% of adults with
sputum smear-positive pulmonary TB are HIV-infected [23]. The
aim of the study was to assess the relationship between host
Mtb-specific immune responses and sputum bacillary load during
the first 2 months of anti-TB treatment in HIV-infected pulmonary
TB patients.
2. Materials and methods

2.1. Study population

HIV-infected and HIV-uninfected adults aged �17 years were
recruited at the Queen Elizabeth Central Hospital (QECH) in Blan-
tyre, Malawi. Participants were patients with microbiologically
confirmed pulmonary TB whose ZiehleNeelsen (ZN)-stained
sputum smears were graded �1þ positive for AFB at direct
microscopy [10]. Asymptomatic volunteers with no clinical evi-
dence of active disease or previous history of TB treatment were
also recruited from communities surrounding QECH as controls. All
participants were BCG-vaccinated at birth. Patients were recruited
before commencing anti-TB treatment and were followed up to 56
days of treatment, while controls were seen once at recruitment.
Anti-TB treatment was given as short course chemotherapy con-
sisting of rifampicin, isoniazid, pyrazinamide and ethambutol for 2
months (intensive phase), followed by rifampicin and isoniazid for
4 months (continuation phase) according to national guidelines.
Written informed consent was obtained from all study participants
and the research ethics committees of the Malawi College of
Medicine (COMREC) and the Liverpool School of Tropical Medicine
approved the study.
2.2. Sample collection

Peripheral blood and sputum samples were collected from pa-
tients before and after 14, 28 and 56 days of anti-TB treatment.
Peripheral blood was collected from controls at recruitment only.

2.3. Processing of sputum for mycobacterial culture and detection
of Mtb

Sputum samples digested and decontaminated by the N-acetyl
L-cysteine (NALC) (SigmaeAldrich, Germany) and 3% sodium hy-
droxide (NaOH) (VWR, Belgium) method were processed for
mycobacterial culture using the Bactec™ MGIT™ 960 system
(Becton Dickinson, USA) as previously described [24]. Days to
positivity (DTP), defined as the time it took for MGIT cultures to
become positive were used as an inverse measure of the bacillary
load in the sputum sample. Smears were prepared from positive
MGIT cultures, stained with ZN stain and examined for AFB by light
microscopy. The presence of Mtb in all cultures that were positive
for AFBs was confirmed using the MPT64 antigen test (Becton
Dickinson, USA) according to themanufacturer's instructions. MGIT
cultures were positive for Mtb if both smear microscopy for AFB
and MPT64 antigen test results were positive. They were reported
negative if there was no growth after 42 days incubation.

2.4. Antigens and enumeration of Mtb-specific IFN-g secreting cells

Peripheral blood mononuclear cells (PBMCs) were isolated from
heparinised blood using the gradient centrifugation technique as
previously described [25]. Freshly isolated PBMCs were analysed
for IFN-g production using an 18-hour enzyme-linked immunospot
(ELISPOT) assay as described elsewhere [26]. Antigens/peptides
were added individually to duplicate wells containing 0.25 � 106

PBMCs at 10 mg/ml purified protein derivative (PPD) (Statens Serum
Institute, Copenhagen, Denmark), 5 mg/ml CFP-10, 5 mg/ml ESAT-6
(Peptide and Protein Research, UK) and 5 mg/ml phytohaemag-
glutinin (PHA) (SigmaeAldrich, Germany) as the positive control.
Additional duplicate wells left unstimulated were the negative
control. Spot Forming Units (SFU) were quantified using an auto-
mated ELISPOT reader (AID Autoimmune Diagnostic GmbH,
Strassberg, Germany), and data were expressed as SFU per million
PBMCs. Control values (from unstimulated wells) were subtracted
from antigenestimulated conditions, and responses were scored as
positive if antigen-stimulated wells contained � 5 SFU more than
unstimulated wells as described previously [27].

2.5. Statistical analysis

Data analysis and graphical presentations were performed using
GraphPad Prism 5 (GraphPad Software, USA). Non-paired compari-
sons were done either by ManneWhitney U or Kruskall Wallis and
Dunn's multiple comparison tests. Logistic regression was used to
determine the kinetics of bacillary clearance, while One-way ANOVA
was used to determine the kinetics of Mtb-specific immune re-
sponses over time. Linear regression was used to determine the as-
sociation between CD4 count and Mtb-specific immune responses.
Results are given as medians with inter-quartile ranges (IQR). Dif-
ferences were considered statistically significant when p < 0.05.

3. Results

3.1. Participant characteristics

We recruited 63 sputum smear- and culture-positive pulmo-
nary TB patients and 27 asymptomatic controls (Table 1). Among



Table 1
Characteristics of study participants.

Pulmonary
TB patients

Asymptomatic
controls

Total 63 27
Age, median (IQR) 30 (25e36) 33 (29e39)
Sex
Male (%) 45 (71) 12 (44)

HIV Status
HIVþ (%) 27 (43) 15 (56)
HIVþ on ART (%) 18 (67) 10 (67)
Baseline CD4, median (IQR)* 17 (68e287) 452 (237e610)

* CD4þ T-cell counts were done in HIV-infected individuals only;
ART ¼ antiretroviral therapy; IQR ¼ interquartile range.
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HIV-infected patients 44% (12/27) had a CD4þ T-cell count of
�200 cells/ml at recruitment. All participants on antiretroviral
therapy (ART) received the first-line regimen for Malawi at the
time of the study consisting of stavudine, lamivudine and nevi-
rapine. Nine ART-naïve patients commenced ART within 2 weeks
of starting anti-TB treatment according to national guidelines. All
patients had good clinical response to anti-TB treatment during
the study period. Chest radiographs were not repeated to
monitor response to treatment during follow-up unless clinically
indicated by worsening respiratory symptoms and signs. ESR,
CRP and plasma HIV viral load were not monitored during the
study.
Figure 1. Sputum conversion in HIV-infected and HIV-uninfected pulmonary TB patients on
and at days 14, 28 and 56 of anti-TB treatment. The grade of smear positivity at direct mic
measure of bacterial load in sputum samples. DTP inversely correlates with the bacillary loa
sputum samples did not grow bacilli in culture or whose sputum smear microscopy was neg
infected and HIV-uninfected TB patients before and after 14 days of anti-TB treatment (Day 0
the ManneWhitney U test; black horizontal bars represent medians and IQRs. B and C) Spu
the intensive phase of anti-TB treatment (Day 0 HIV� n ¼ 23, HIVþ n ¼ 19; Day 14 HIV� n ¼
The bars represent medians.
3.2. HIV infection is not associated with failure to clear Mtb from
sputum during the intensive phase of anti-TB treatment

To assess the effect of HIV on microbiological responses, we
determined the sputum bacillary load before, and at days 14, 28
and 56 of anti-TB treatment. The grade of smear positivity and
the DTP of MGIT cultures were used as surrogate measures of
sputum bacillary load. Before commencing anti-TB treatment,
HIV-infected and HIV-uninfected patients had similar sputum
bacillary loads (grade 3þ smear positivity 83% vs. 74%; p ¼ 0.339,
median DTP 4.4 [IQR 3.1e6.5] days vs. 4.5 [IQR 3.2e6.2] days;
p ¼ 0.98) (Figure 1A and 1B). After 14 days of treatment the
magnitude of bacillary load reduction was greater in HIV-
uninfected than HIV-infected patients, although this did not
reach statistical significance for culture (median DTP 14.3 [IQR
9.8e18.5] days vs. 9.8 [IQR 8.2e12.4] days, p ¼ 0.06, Figure 1A)
but was significant for smear conversion (30% vs. 12%, p ¼ 0.0029,
Figure 1B). However, the proportion of patients who successfully
cleared Mtb after 2 months of treatment was similar between the
two groups (Day 56 smear conversion, HIV� 85% vs. HIVþ 86%,
Figure 1B; culture conversion, HIV� 68% vs. HIVþ 50%, Figure 1C;
OR 0.89 [IQR 0.02e32.1], p ¼ 0.95). While these findings suggest
that clearance of Mtb from sputum very early during anti-TB
treatment may be slower in HIV-infected than HIV-uninfected
individuals, HIV infection is not associated with failure to clear
bacilli as duration of anti-TB treatment increases.
anti-TB treatment. Sputum samples were collected from TB patients before (baseline),
roscopy and days to positivity (DTP) for MGIT liquid cultures was used as a surrogate
d. Culture conversion was calculated by determining the proportion of patients whose
ative for acid-fast bacilli. A) Comparison of bacillary load in sputum samples from HIV-
HIV� n ¼ 23, HIVþ n ¼ 19; Day 14 HIV� n ¼ 22 HIVþ n ¼ 18). Data were analysed using
tum smear and culture conversion in HIV-infected and HIV-uninfected patients during
23 HIVþ n ¼ 19; Day 28 HIV� n ¼ 19, HIVþ n ¼ 18; Day 56 HIV� n ¼ 19, HIVþ n ¼ 16).



Figure 2. IFN-g responses to Mtb-specific antigens in HIV-infected and HIV-uninfected asymptomatic controls and TB patients before commencing anti-TB treatment. Pe-
ripheral blood mononuclear cells (PBMCs) were stimulated with PPD, ESAT-6, CFP-10 or PHA in an 18 h ELISPOT assay. PHA stimulation was used as the positive control while
unstimulated cells were the negative control. The frequencies of A) PPD-specific, B) ESAT-6-specific and C) CFP-10-specific IFN-g secreting cells were compared between HIV-
infected and HIV-uninfected TB patients and asymptomatic controls. Data were analysed using KruskaleWallis and Dunn's multiple comparisons tests; black horizontal bars
represent medians after background (unstimulated) responses were subtracted from all the antigen-specific responses (Controls, HIV� n ¼ 12, HIVþ n ¼ 15; TB Patients, HIV�
n ¼ 31, HIVþ n ¼ 27).

D.T. Mzinza et al. / Tuberculosis 95 (2015) 463e469466
3.3. HIV-infected TB patients have low frequency of PPD- and CFP-
10 specific IFN-g secreting cells before commencing anti-TB
treatment

Next, we compared the Mtb antigen-specific IFN-g responses
between HIV-infected and HIV-uninfected TB patients before the
start of anti-TB treatment. The frequency of IFN-g secreting cells
following ex vivo stimulation of PBMCs with PPD, ESAT-6 and CFP-
10 was measured using an ELISPOT assay. We found that the fre-
quency of PPD- and CFP-10-specific IFN-g secreting cells was lower
in HIV-infected than HIV-uninfected patients (median PPD 32 [IQR
14e84] vs. 104 [IQR 38e190] SFU, p ¼ 0.05; median CFP-10 19 [IQR
4e72] vs. 74 [IQR 32e247] SFU, p ¼ 0.01; Figure 2A and 2B). There
was no significant difference in the frequency of ESAT-6-specific
IFN-g secreting cells between the two groups (median ESAT-6 72
[IQR 14e330] vs. 108 [IQR 18e256], p ¼ 0.8923). The number of
antigen-specific IFN-g secreting cells did not correlate with the
blood CD4þ T-cell count at recruitment (PPD, r2 ¼ 0.004, p ¼ 0.77;
CFP-10, r2 ¼ 0.04, p ¼ 0.32) suggesting that the blunted IFN-g re-
sponses may reflect a preferential loss or dysfunction of PPD- and
CFP-10-specific CD4þ T cells in HIV-infected individuals as reported
previously [28,29].
To determine if the antigen-specific responses observed in TB
patients were due to active TB, we compared ELISPOT responses
between TB patients and asymptomatic controls. The frequency of
ESAT-6- and CFP-10-specific IFN-g secreting cells was higher in
HIV-uninfected TB patients than HIV-uninfected controls (median
ESAT-6108 [IQR 18e256] vs. 4 [IQR 0e15] SFU, p ¼ 0.01; median
CFP-10 74 [IQR 32e247] vs. 9 [IQR 0e35] SFU, p ¼ 0.001; Figure 2B
and 2C). The frequency of PPD-specific IFN-g secreting cells was not
significantly different between HIV-uninfected patients and con-
trols (median PPD 104 [IQR 38e190] vs. 40 [IQR 15e193],
p ¼ 0.4255). ESAT-6-specific responses were also higher in HIV-
infected TB patients compared to HIV-infected controls (median
ESAT-6 72 [IQR 14e330] vs. 10 [IQR 2e26] SFU, p ¼ 0.001;
Figure 2C). The frequencies of PPD- and CFP-10-specific responses
were not significantly different between HIV-infected patients and
controls (median PPD 32 [IQR 18e152] vs. 32 [IQR 14e84],
p ¼ 0.7015; median CFP-10 19 [IQR 4e72] vs. 10 [IQR 2e24],
p ¼ 0.1155). These findings suggest that high ELISPOT responses to
Mtb-specific antigens ESAT-6 and CFP-10 in TB patients reflect high
bacillary loads during active disease. They also suggest that HIV
infection may differentially impact host Mtb-specific responses,
with CFP-10-specific responses affected more than ESAT-6-specific



Table 2
Mtb antigen-specific IFN-g responses in pulmonary TB patients during the first 2 months of anti-TB treatment.

Days on treatment Median PPD-specific SFU [IQR] Median ESAT-6-specific SFU [IQR] Median CFP-10-specific SFU [IQR]

HIV� HIVþ HIV� HIVþ HIV� HIVþ
0 80 [42e185] 32 [15e133] 108 [22e278] 90 [18e330] 108 [35e269] 26 [4e72]
14 115 [70e196] 84 [24e170] 59 [28e214] 60 [20e166] 76 [38e166] 42 [14e180]
28 138 [38e294] 139 [37e361] 52 [6e214] 30 [8e236] 82 [28e198] 34 [13e158]
56 136 [70e152] 140 [38e212] 53 [2e200] 48 [14e146] 60 [15e112] 34 [15e86]

SFU ¼ spot forming units; IQR ¼ interquartile range.
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responses. The absence of a significant difference in PPD-specific
responses between patients and controls may be due to previous
BCG vaccination and comparable exposure to environmental
mycobacteria.
3.4. Kinetics of PPD-, ESAT-6- and CFP-10-specific IFN-g secreting
cells during the intensive phase of anti-TB treatment

We examined changes in Mtb antigen-specific IFN-g responses
during the first 2 months of anti-TB treatment by comparing the
frequencies of IFN-g secreting cells before (day 0) and after 14, 28
and 56 days of treatment in HIV-infected and HIV-uninfected TB
patients. Although therewere no statistically significant differences
between day 0 and day 56 in responses to PPD (HIV�, p ¼ 0.6888;
HIVþ, p ¼ 0.0846), ESAT-6 (HIV�, p ¼ 0.1220; HIVþ, p ¼ 0.9923) or
CFP-10 (HIV�, p ¼ 0.4508; HIVþ, p ¼ 0.2417), the frequency of
PPD-specific IFN-g secreting cells showed an increasing trend from
day 0 to day 56 in both HIV-infected and HIV-uninfected patients
(Table 2, Figure 3A and 3B). In contrast, the frequency of ESAT-
6-specific IFN-g secreting cells showed a decreasing trend from day
0 to day 56 in both HIV-infected and HIV-uninfected patients
(Table 2, Figure 3C and 3D). There was no clear trend in the fre-
quency of CFP-10-specific IFN-g secreting cells in both HIV-infected
and HIV-uninfected patients (Table 2, Figure 3E and 3F). These
findings suggest similar kinetics of PPD-, ESAT-6- and CFP-
10-specific IFN-g secreting cells during anti-TB treatment between
HIV-infected and HIV-uninfected TB patients although the trends in
responses differ between antigens. Differences in antigen loads
during treatment may underlie the different trends in antigen-
specific responses.
4. Discussion

The present study investigated the kinetics of Mtb-specific
immunity and sputum microbiological responses during the
intensive phase of anti-TB treatment in adults with pulmonary TB.
We have shown that while HIV infection may be associated with
slow sputum bacillary clearance very early in the course of anti-TB
treatment, it did not impact the sputum conversion rate after 2
months of treatment. These findings are consistent with, and
advance what was reported previously that HIV infection does not
influence the time to sputum conversion in sputum smear-positive
pulmonary TB patients [30]. Furthermore, HIV-infected patients
had lower frequencies of PPD- and CFP-10-specific IFN-g secreting
cells before the start of anti-TB treatment than HIV-uninfected
patients, perhaps due to loss or dysfunction of Mtb-specific CD4þ

T-cells [28,29]. Together, the findings imply that HIV-associated
impaired host Mtb-specific immune responses before
commencing anti-TB treatment do not predict subsequent micro-
biological failure.

The RD1-coded antigens ESAT-6 and CFP-10 are specific to Mtb
and were reported to be more specific than PPD for detecting Mtb
in HIV-uninfected patients with active TB [31]. Consistent with this
report, we found a higher frequency of ESAT-6- and CFP-10-specific
IFN-g secreting cells in HIV-uninfected TB patients than
HIV-uninfected controls. In contrast, only ESAT-6-specific IFN-g
secreting cell responses were significantly different between
HIV-infected TB patients and HIV-infected controls, suggesting a
differential impact of HIV infection on Mtb antigen-specific im-
mune responses. CFP-10-specific responses appear to be influenced
more by HIV infection than ESAT-6-specific responses. This obser-
vation underscores the previously reported limited accuracy of
RD1-coded Mtb antigen-specific immune responses for diagnosing
active TB in HIV-infected individuals [32].

During the first 2 months of anti-TB treatment the frequency of
ESAT-6-specific IFN-g secreting cells showed a decreasing trend
with increasing duration of treatment in both HIV-infected and
HIV-uninfected patients while the opposite was true for
PPD-specific responses. Other studies have reported similar trends
in the kinetics of cytokine responses to PPD, ESAT-6 and CFP-10 in
HIV-infected and HIV-uninfected children [33,34] and
HIV-uninfected adults during treatment of pulmonary TB [16].
While the reasons for this dichotomy are not clear, we speculate
that the decline in Mtb antigen-specific immune responses may be
explained by a decline in antigen load as a consequence of suc-
cessful anti-TB treatment since these proteins are secreted by live
and actively metabolizing bacilli [35]. The differences may also
reflect inadequate expansion of a small reservoir of ESAT-6- and
CFP-10-specific CD4þ T cells during anti-TB treatment [36,37]. In
contrast, the increase in the frequency of PPD-specific immune
responses with increasing duration of anti-TB treatment may
reflect an appropriate response to an increasing load of myco-
bacterial proteins released by dying bacilli early during the
intensive phase of treatment. The increase in PPD-specific re-
sponses may also be due to rapid expansion of a large reservoir of
PPD-specific CD4þ T cells established following previous BCG
vaccination and exposure to environmental mycobacteria [36,37].
Although our study did not look beyond the first two months of
treatment, others have shown that the PPD-specific IFN-g
response eventually wanes after three to six months of anti-TB
treatment [16,34].

This study had limitations. First, the number of patients
recruited was small, raising the possibility that small differences in
immune responses between HIV-infected and HIV-uninfected pa-
tients may have beenmissed. Second, patients were followed up for
the first 2 months of anti-TB treatment only, so it was not possible
to link changes in immune and microbiological parameters during
the follow up period with outcomes at the end of 6 months of
treatment.
5. Conclusion

This study has shown that HIV infection does not influence
the 2-month sputum smear and culture conversion rate in HIV-



Figure 3. Kinetics of PPD-, ESAT-6- and CFP-10-specific IFN-g responses during the intensive phase of anti-TB treatment. Peripheral blood was collected from TB patients
before (day 0) and at days 14, 28 and 56 of anti-TB treatment. Peripheral blood mononuclear cells (PBMCs) were stimulated with PPD, ESAT-6, CFP-10 or PHA in an 18 h
ELISPOT assay. PHA stimulation was used as the positive control and unstimulated cells were used as the negative control. The frequency of PPD-, ESAT-6- and CFP-10-specific
IFN-g secreting cells at different time-points during the intensive phase of anti-TB treatment are shown for both HIV-uninfected and HIV-infected TB patients. The frequency
of PPD-specific IFN-g secreting cells in (A) HIV-uninfected and (B) HIV-infected TB patients (HIV� Day 0 n ¼ 21, Day 14 n ¼ 18, Day 28 n ¼ 19, Day 56 n ¼ 11; HIVþ Day
0 n ¼ 20, Day 14 n ¼ 12, Day 28 n ¼ 16, Day 56 n ¼ 11). The frequency of ESAT-6-specific IFN-g secreting cells in (C) HIV-uninfected and (D) HIV-infected TB patients (HIV�
Day 0 n ¼ 21, Day 14 n ¼ 18, Day 28 n ¼ 19, Day 56 n ¼ 11; HIVþ Day 0 n ¼ 19, Day 14 n ¼ 11, Day 28 n ¼ 16, Day 56 n ¼ 10). The frequency of CFP-10-specific IFN-g secreting
cells in (E) HIV-uninfected and (F) HIV-infected TB patients (HIV� Day 0 n ¼ 20, Day 14 n ¼ 19, Day 28 n ¼ 19, Day 56 n ¼ 13; HIVþ Day 0 n ¼ 20, Day 14 n ¼ 13, Day 28 n ¼ 17,
Day 56 n ¼ 12). Data were analysed using One-way ANOVA; black horizontal bars represent medians after background (unstimulated) responses were subtracted from all the
antigen-specific responses.
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infected adults receiving first-line treatment for pulmonary TB.
The frequency of ESAT-6-specific IFN-g secreting cells declines
progressively during anti-TB treatment and corresponds with
declining sputum bacillary load in both HIV-infected and
HIV-uninfected patients. Serial measurements of ESAT-6-specific
IFN-g secreting cells may be useful for monitoring response to
anti-TB treatment irrespective of host HIV infection status. Large
studies in different populations are required to determine
further the potential utility of Mtb antigen-specific immune re-
sponses as a proxy measure of anti-TB treatment response and
outcome in HIV-Infected and HIV-uninfected adult pulmonary
TB patients.
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