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Abstract

Vascularized tumor growth is characterized by both abnormal interstitial fluid

flow and the associated interstitial fluid pressure (IFP). Here, we study the effect

that these conditions have on the transport of therapeutic agents during chemother-

apy. We apply our recently developed vascular tumor growth model which couples a

continuous growth component with a discrete angiogenesis model to show that hy-

pertensive IFP is a physical barrier that may hinder vascular extravasation of agents

through transvascular fluid flux convection, which drives the agents away from the

tumor. This result is consistent with previous work using simpler models without

blood flow or lymphatic drainage. We consider the vascular/interstitial/lymphatic

fluid dynamics to show that tumors with larger lymphatic resistance increase the

agent concentration more rapidly while also experiencing faster washout. In con-

trast, tumors with smaller lymphatic resistance accumulate less agents but are able
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to retain them for a longer time. The agent availability (area-under-the curve, or

AUC) increases for less permeable agents as lymphatic resistance increases, and cor-

respondingly decreases for more permeable agents. We also investigate the effect of

vascular pathologies on agent transport. We show that elevated vascular hydraulic

conductivity contributes to the highest AUC when the agent is less permeable, but

leads to lower AUC when the agent is more permeable. We find that elevated inter-

stitial hydraulic conductivity contributes to low AUC in general regardless of the

transvascular agent transport capability. We also couple the agent transport with

the tumor dynamics to simulate chemotherapy with the same vascularized tumor

under different vascular pathologies. We show that tumors with an elevated intersti-

tial hydraulic conductivity alone require the strongest dosage to shrink. We further

show that tumors with elevated vascular hydraulic conductivity are more hypoxic

during therapy and that the response slows down as the tumor shrinks due to the

heterogeneity and low concentration of agents in the tumor interior compared with

the cases where other pathological effects may combine to flatten the IFP and thus

reduce the heterogeneity. We conclude that dual normalizations of the micronevi-

ronment - both the vasculature and the interstitium - are needed to maximize the

effects of chemotherapy, while normalization of only one of these may be insufficient

to overcome the physical resistance and thus leads to sub-optimal outcomes.

1 Introduction

Chemotherapy is a type of cancer treatment that targets cancer cells through the

use of toxic agents, primarily drug molecules disrupting some aspect of cell division,

such as DNA synthesis and function. Ideally, drug dosages should be sufficient to kill

rapidly dividing tumor cells but not affect non-cancerous cells. Although isolated infu-

sion is sometimes used to deliver a concentrated dosage more directly to specific tumor

sites [Chreech et al., 1958, Noorda et al., 2007, McClaine et al., 2012], most drugs are

delivered systemically as an oral or intravenous bolus. Tissues in the body that undergo

cell proliferation under normal circumstances, such as cells in the digestive system, are

also typically damaged by chemotherapeutic drugs. Consequently, the drug dose is usu-

ally the maximum tolerated dose (MTD) that prevents patient death but may be well

below what is needed to eradicate all of the tumor cells. Diverse macromolecule agents

(e.g., nanoparticle carriers as summarized in [Jong & Borm, 2008]) have been devel-

oped as vehicles to encapsulate drugs in order to achieve higher targeting efficacy while

minimizing systemic toxicity. Nevertheless, both free drug and nanoparticles admin-

istered systematically suffer from impaired transport through tumor tissue due to the

abnormal vascularization. Further, dosing schemes are crucial since the tumor response

depends not only on the dynamics of the agents and the fluids that carry them but

also on the complex physiology of the body systems and the local tumor tissue. Recent

theoretical studies with the aid of mathematical modeling and computational simu-
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lation, coupled with the latest experimental technologies (e.g., intravital microscopy),

have highlighted the complexity of chemotherapy delivery and uptake in live tumors

[van de Ven et al., 2012, van de Ven et al., 2013].

Theoretical modeling of chemotherapy usually relies on partial differential equa-

tion (PDEs) to describe the transport dynamics as well as the pharmacokinetics of

therapeutic agents in time and space. Beginning with the vasculature, most studies

have focused on the interaction between the vascular structure and blood flow, which

contributes to the transport characteristics and agent availability through the vascu-

lar network as a closed system (e.g., [McDougall et al., 2002, Stephanou et al., 2005,

McDougall et al., 2006, Bartha & Rieger, 2006, Lee et al., 2006, Welter et al., 2008, Welter et al., 2009,

Welter et al., 2010]). However, fluids and substrates are exchanged through the vascular

wall in the capillary regions. In the tumor interstitium, transport subject to interstitial

fluid flow (IFF) has been investigated, where barriers due to lymphatic dysfunction as

well as other common tumor pathologies (e.g., elevated vascular hydraulic conductiv-

ity and resultant attenuated transvascular osmotic pressure) were studied theoretically

by Baxter and Jain [Baxter & Jain, 1989, Baxter & Jain, 1990]. These authors mod-

eled the source of fluids and substrates through a vascular continuum and the effect of

vascular flow was not considered. Recently, IFP, IFF and vascularized tumor growth

were coupled dynamically in computational models by [Cai et al., 2011, Wu et al., 2013,

Welter & Rieger, 2013].

Pharmacokinetics and pharmacodynamics (PKPD) models, which combine reaction-

diffusion PDEs that model the transport of chemotherapy agents in the tissue, and

mass-action ordinary differential equations (ODEs) that model biochemical reactions in

the cells, have been used to predict the tumor response to certain types of drug molecules

(e.g., doxorubicin and cisplatin, see [Jackson, 2003, Sanga et al., 2006, Sinek et al., 2009]),

or to predict agent availability due to innovative transport modalities (e.g., nanoparticles

or macrophages loaded with nanoparticles, see [Sinek et al., 2004, Owen et al., 2004], re-

spectively), as well as the resulting tumor response and therapy limitations ([Frieboes et al., 2009,

Sinek et al., 2009]). Although most of these efforts are tied to angiogenesis models as

the source of the agents, the extravasation is often assumed to be affected only by the

transvascular concentration difference and the physical pressure from tumor cells outside

the vasculature. The effects of convective transport by the interstitial fluid are usually

not considered or are coupled with the tumor cell velocity (e.g., [Jackson, 2003]) instead

of the IFF which can carry the agents through the interstitium.

Very recently, interstitial fluid flow and drug delivery have been investigated by

[Welter & Rieger, 2013] in a 3-dimensional vascular tumor growth model using a con-

tinuum model for tumor cells and an arteriole-venous vascular network that accounted

for drainage of interstitial fluid due to lymphatic function. [Welter & Rieger, 2013] found
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that the IFP, the IFF and the drug distributions are strongly heterogeneous due to the

vascular architecture.

Here, we study the transport of therapeutic agents in a 2-dimensional interstitial

continuum covered by a discrete tumor vasculature initially laid out as a rectangular grid

to simulate the pre-existing capillary network. Unlike [Welter & Rieger, 2013] where the

arterio-venous system is explicitly built, the capillaries considered here serve as both ar-

terial and venous conduits since they are the smallest blood-carrying units in the tissue.

Our approach builds on the tumor growth model developed in [Macklin et al., 2009, Wu et al., 2013],

where we investigated the transcapillary and interstitial fluid dynamics during vascu-

larized tumor growth coupled with the effect of blood and lymphatic vessel collapse.

In particular, we investigated the effect of tumor vascular pathologies on the fluid flow

across the tumor capillary bed, the lymphatic drainage and the IFP. Here, we focus

on how the pathologies affect the transport of therapeutic agents during chemotherapy

and the response of the tumor through the fluid flow. Considering the concentration of

chemotherapy agents both in the vasculature and in the interstitium linked by the tran-

scapillary fluid flux (modeled in [Wu et al., 2013]), as well as the loss of agents into the

lymphatic system through the lymphatic fluid drainage (modeled in [Wu et al., 2013]),

the model presented here can adapt to diverse delivery scenarios according to the specific

agent characteristics and delivery protocols. In particular, we apply the model to study

two injection schemes. The first, called ”bolus injection,” applies to agents injected up-

stream of the tumor vasculature for a short period of time (e.g., 1- 10 min). The second

scheme, called ”constant injection,” applies to agents injected upstream for a prolonged

period of time (∼ 100 minutes). We study the temporal and spatial distribution of

agents in the vasculature and the interstitium together with the transcapillary concen-

tration flux. We evaluate the efficiency of agent delivery while varying the functional

lymphatic distribution and associated pathological factors. Finally, we assess the effects

of chemotherapy on a growing tumor.

The outline of the paper is as follows. We present the mathematical models in Sec.

2, and describe the numerical details in Sec. 3. We present the results in Sec. 4, followed

by a discussion in Sec. 5, in which the conclusion and future work are also described.

2 The coupled mathematical model

We review the agent transport model that is applied to the vascular tumor growth

model described in [Wu et al., 2013]. For completeness, the modeling of vascular and

interstitial fluid dynamics from [Wu et al., 2013] is briefly described in Sec. 2.1. In

Sec. 2.2 we consider the tumor progression under the influence of therapeutic agents

where we describe the agent transport in the vasculature and in the interstitium by two
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reaction-convection-diffusion equations coupled by the transcapillary flux (Sec. 2.3).

2.1 Vascular and interstitial fluid dynamics

Following [Wu et al., 2013], we define the vasculature on a Cartesian grid. A ves-

sel node is the basic unit located at a grid point and the vasculature configuration is

given by the connection between neighboring nodes. Responding to the TAF released

by the hypoxic cells in the tumor interior, endothelial cell sprouts are generated, grow

and fuse to expand the vascular network. We describe the pre-existing vasculature on

this grid-like network in which sprouts can be generated from and fuse into, analogous to

[McDougall et al., 2002, Stephanou et al., 2005, McDougall et al., 2006, Bartha & Rieger, 2006,

Lee et al., 2006, Welter et al., 2008, Welter et al., 2009, Welter et al., 2010]. During an-

giogenesis, the sprouting pattern along stimulated vessels can be mediated by Notch-

Delta signaling between adjacent endothelial cells (ECs) that ensures no adjacent ECs

sprout simultaneously under the TAF stimulation [Hellstrom et al., 2007, Jakobsson et al., 2009].

We incorporate this sprouting pattern analogously to [Welter et al., 2009] (investigated

in detail in [Bentley et al., 2008]). After sprouts are generated, they advance stochas-

tically in space according to TAF and ECM gradients as in [McDougall et al., 2002,

McDougall et al., 2006, Macklin et al., 2009]. In the developing capillary network, blood

begins to flow and the blood vessel pressure and flow are computed along the vessels

(Sec.2.1.1) together with interstitial fluid coupled by transcapillary fluid flux (Sec.2.1.2).

Lymphatic drainage is also included in the dynamics of the interstitial fluid, described in

Sec.2.1.4. In [Wu et al., 2013], the vessel radius is adapted to the local vessel pressure,

shear rate and metabolite levels in the tumor growth model, following [Pries et al., 1998]

and as described in the Appendix A.

2.1.1 Blood flow

We model the blood flow by a generalized Poiseuille’s law [Fung, 1997]

Qqp =
πR4

qp(Pvq − Pvp)
8µapparentL

, (1)

where Qqp stands for the blood flow from a vessel node q to a neighboring node p,

and Pvq and Pvp are the corresponding blood pressures. Rqp is the radius of the vessel

segment from q to p, and µapparent is the apparent plasma viscosity.

The net blood flow flux passing through each vessel node p from all the neighboring

nodes is governed by: ∑
q

Qqp = OV . (2)
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which by using Eq. (1) results in a system of equations for blood pressure Pv at the

vessel nodes.

2.1.2 The transcapillary fluid flux (TFF)

We model the TFF by Starling’s law [Fung, 1997]

OV = KV fSV (Pv − Pf − ω(πv − πi)), (3)

where KV f is the vascular hydraulic conductivity, differing between the host and tumor

tissues (see Table 1) in pathological cases while being equal in the normal base case, and

SV =
∑

neighbour πRnLn is the summation of half vessel segment surface area connecting

to the neighbouring vessel nodes (The surface area of other half goes to the neighbouring

node). Pv is the blood pressure and Pf is the IFP on the opposite side of the vascular

wall. Further, ω is the average osmotic reflection coefficient for plasma proteins, while

πv and πi are the osmotic pressures of the plasma and interstitial fluid, respectively. In

the following, we name Pe = Pv−ω(πv−πi) to be the effective pressure which quantifies

the value that competes with Pf . Notice Pv, Pf and Pe are all in the unit of Pa.s.

Rescaling OV by the characteristic volume VT in the interstitial continuum we obtain

the exchange rate (the volume in the continuum is coincident with the vessel segment

VT = L3, where L is the characteristic length; hence, VT is fixed and is assumed for

simplicity to be unaffected by the vasculature volume):

JV =
OV
VT

(4)

which is the source term in Eq.(6) below describing the IFP.

2.1.3 Interstitial fluid pressure (IFP) and velocity (IFF)

Following [Wu et al., 2013], we use Darcy’s law to relate the IFP and IFF:

vf = −K∇Pf (5)

where K is the interstitial hydraulic conductivity. Conservation of mass then yields

∇ · (φfvf ) = φf (JV − JL)−∇ · (φcvc). (6)

where φf and φc are the water and cell volume fractions, respectively, vc is the cell

velocity (Sec. 2.2) and JL is the lymphatic drainage (Sec.2.1.4). The physical units

are compatible because in Eq. (4), the units of the transvascular fluid flux Ov are

volume/time divided by the characteristic volume VT . The exchange rate is then a rate

with units of 1/time, matching the source term in the continuum Eq. (6). Since we

solve for the blood pressure and interstitial pressure together by the iterative method,
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the convergence of the two variables ensures the mass balance between the two systems

via the transvascular fluid flux. Note that the 2nd term on the right-hand side of Eq.

(6) describes the flux of water due to cell division (uptake of water) as well as cell death

(source of water). We assume comparable densities of water and cells, where φf and φc

are considered as constants (φc = φf = 0.5), following [Wu et al., 2013].

2.1.4 Lymphatic drainage

The lymphatic drainage is modeled as:

JL = λfLc(Pc, L)(Pf − PL) · 1Pf>PL (7)

where c(Pc, L) is the lymphatic drainage capacity, λfL, a constant rate and PL is

the critical IFP level below which there is no drainage. 1Pf>PL is 0 for Pf ≤ PL

[Scallan et al., 2010] and 1 for Pf > PL. The function c(Pc, L) depends on the tumor

hydrostatic pressure Pc and the lymphatic vessel density L:

c(Pc, L) =


(1 + Lymmax−1

KLmin Pc)L Pc ≤ KLmin
Lymmax(1− Pc−KLmin

KLmax−KLmin )L KLmin < Pc ≤ KLmax
0 Pc > KLmax

(8)

For small hydrostatic pressures Pc below a partial collapse threshold KLmin, c(Pc, L) in-

creases with Pc and the drainage increases as hydrostatic pressure from the cells pushes

fluid into the lymphatic vessels (Lymmax at the maximum). When the pressure in-

creases beyond KLmin, the lymphatic vessels responding to the pressure Pc begin to

partially close, and c(Pc, L) subsequently decreases, eventually reaching 0 at KLmax as

the lymphatic vessels collapse. We assume that the continuum lymphatic vessel field is

degraded by matrix degrading enzymes M (described in Appendix B) at a rate λML;

hence,
dL

dt
= −λMLML. (9)

Pc is described in Sec.2.2. In the following we refer to KLmax as the lymphatic resistance

to represent the strength of the lymphatic vessel wall that is subjected to physical forces

(i.e., hydrostatic pressure). The distribution of functional lymphatic vessels is affected

by M in time and by Pc in space. Since we do not consider lymphangiogenesis in this

work, the loss of functional lymphatic vessels due to M cannot be recovered. However,

the function of lymphatic vessels can be partially recovered by decreasing Pc. We note

that in [Welter & Rieger, 2013], the amount of functional lymphatics is introduced as a

free parameter and different ratios between tumor and normal lymphatic distributions

are investigated for a static tumor. Here, if Pc is greater than KLmax, then the lymph

vessels are assumed to collapse and cannot drain any fluid regardless of the IFP.
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2.2 Tumor mechanics and chemotherapy

Following [Macklin et al., 2009, Wu et al., 2013] and references therein, we assume

cellular motion within the ECM as an incompressible fluid flow in a porous medium;

thus, the cell velocity is proportional to the forces following Darcy’s law. We model

all solid phases moving with a single cellular velocity field. Accordingly, the velocity is

given by:

vc = −
pressure gradient by mitosis︷ ︸︸ ︷

µ∇Pc + χE∇E︸ ︷︷ ︸
haptotaxis

(10)

where µ is the cell-mobility modeling the net effects of cell-cell and cell-matrix adhe-

sion, E is the ECM density (composed of non-diffusible matrix macromolecules such as

fibronectin, collagen, and laminin) and χE is the haptotaxis coefficient. See Appendix

B for the details of E. Details regarding µ and χE can be found in the Appendix in

[Wu et al., 2013]. We associate the growth and death of tumor cells with the rate of

volume change by assuming that the tumor cell density is constant in the proliferating

region:

∇ · vc = λp (11)

where λp is the net proliferation/death rate. Note that proliferating cells uptake water

while dying cells release water. The pressure satisfies:

−∇ · (µ∇Pc) = λp −∇ · (χE∇E) (12)

We assume that in the proliferating region, the cell mitosis/death rate is propor-

tional to the amount of nutrient present and that apoptosis may occur. We also assume

that volume loss may occur in the necrotic region and that there is neither proliferation

nor apoptosis in either the host or hypoxic tissue regions.

We include the effect of the agent (drug) into the net proliferation/death rate in

the tumor region Ω :

λp(σ) =



0 outside Ω

λMσ(1−
pharmacodynamics︷ ︸︸ ︷

λeffectD )− λA in ΩP

0 in ΩH

−GN in ΩN

(13)

where λM is the mitosis rate, σ is the oxygen concentration (that is given in Eq. (15)

below), and λA is the apoptosis rate. Further, λeffect is the rate of drug-induced cell

death, which represents a simple pharmacodynamic model. When λeffectD ≤ 1, the net
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proliferation is reduced. When λeffectD > 1, cell death is introduced and contributes

to tumor shrinkage. Note that the drug acts only on the proliferating cells in ΩP ,

and not on the hypoxic cells in ΩH or the necrotic cells in ΩN . The parameter GN

is the rate of volume loss in the necrotic core, which is taken to be constant (e.g.,

[Macklin et al., 2009, Wu et al., 2013]).

Following [Wu et al., 2013], we model the transport of oxygen by a quasi-steady

reaction-diffusion equation:

0 = ∇ · (Dσ∇σ)− λσ(σ)σ + λσvasc(x, t, 1vessel, Pf , σ, h) (14)

where the oxygen is supplied by the vasculature (both pre-existing and neo-vasculature)

at a rate λσvasc, diffuses with coefficient Dσ, is uptaken by normal cells with rate λhost,

by proliferating cells with rate λσ, by hypoxic cells with rate λhyp, and degrades with

rate λnec in the necrotic core:

λσ =


λσhost outside Ω,

λσprolif in ΩP ,

λσhyp in ΩH ,

λσnec in ΩN .

. (15)

In particular, the oxygen released by the vascular network is modeled as:

λσvasc = λ
σ
vasc1vessel(x, t)(

h

HD

− hmin)+(1− kPf
Pf
Pe

)(1− σ), (16)

where λ
σ
vasc is the transfer rate, 1vessel denotes the characteristic function of the vascular

network (e.g., 1 at the locations of the vessels and otherwise 0), h is the hematocrit in

the blood, HD is the normal value of hematocrit in the blood and hmin is the mini-

mum hematocrit needed to extravasate oxygen. The extravasation occurs only when
h
HD
− hmin > 0, which we denote by +. Note that we have not differentiated the effects

of convection-induced extravasation and diffusion-induced extravasation of oxygen due

to the lack of information of the involved parameters given that oxygen is quite differ-

ent from large molecules and therapeutic agents. Due to the lipid-solubility of oxygen,

the entire capillary wall is available for oxygen to diffuse through, which makes oxygen

transvascular diffusion less dependent on the pore size of the capillary (permeability)

[Pittman, 2011] compared to water-soluble molecules (i.e., glucose) and large particles

(i.e., drug agents). Moreover, the dependence of transvascular fluid convection for oxy-

gen and drugs are also different. In addition, it was reported that regions where there

are small differences between the blood pressure and IFP tend to be associated with

tumor cell hypoxia and decreasing the IFP reduces the hypoxia [Jain, 2005], though

there is no direct evidence of the effect of IFP on oxygen extravasation. Based on this

observation, we add a phenomenological constraint on oxygen extravasation through the
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term (1− kPf
Pf
Pe

) where kPf evaluates the impact of the ratio
Pf
Pe

on the overall oxygen

extravasation of each vessel.

2.3 Pharmacokinetics Model

We describe the dynamics of the agent concentration in the vasculature (F ) and in

the interstitium (D), which are coupled through the transvascular agent flux OFp .

We derive the model as a function of the vasculature by imposing mass conservation

at the vessel nodes. For each vessel node p over a time interval ∆t, the agent level Fp

in the bloodstream obeys:

dFp
dt

= (
∑
u

Qup(Fu − Fp)−OFp)/Vp − r (17)

where the transvascular agent flux OFp is modeled as

OFp =

{
(1− kO)FpOVp OVp ≥ 0

(1− kO)DOVp OVp < 0
+ kDSpFp − kTSpD (18)

In Eq. (17), the u’s represent the upstream neighbor nodes and Qup’s are the blood

flow from nodes u’s to node p. Further, Vp =
∑

u πR
2
upLup is the vascular volume

from all upstream u’s to p, where Rup and Lup are the radius and length of the cylinder

segments and r is a reaction term that accounts for the interaction between nanoparticles

and vessel walls [Decuzzi et al., 2009, Frieboes et al., 2013]. For example, r = rpFp

where rp is a function of the wall shear stress and the affinity between the vessel wall

and the specific nanoparticle, independent of the concentration Fp. In this paper, the

agent is assumed not to adhere on the vessel wall thus rp = 0, however, we present

the model as general as possible for future references. In Eq. (18), kO is the agent

osmotic reflection coefficient, which is affected by the agent size as well as the size

and surface area of the vessel wall pores. OVp is the total TFF from the upstream

neighbor nodes u’s to p according to Eq. (3). When OVp is negative, TFF convects

the agent from the interstitium to the blood. The parameters kD = KDSp and kT =

KTSp are the transfer rates across the wall from the blood to the tissue and from

the tissue to the blood by other transport components, respectively, including diffusion

[Jain & Stylianopoulos, 2010]. KT and KD can be associated with vascular hydraulic

conductivity KV f . Sp =
∑

u 2πRuLu is the vascular surface area from all upstream

u’s to p. Notice as long as the reaction term r linearly depends on Fp (i.e., as in

[Decuzzi et al., 2009, Frieboes et al., 2013] ), the sign of Fp is preserved. Even in the

most extreme washout scenario where there is no agent source from either the upstream

blood supply or the interstitium, and the transvascular fluid flux OVp ≥ 0, Fp decays
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exponentially as e−t(
∑
uQup+(1−kO)OVp+kDSp+rp) and approaches 0 asymptotically from

above.

For the agent concentration D in the intersitium, we account for the agent exchange

from the vessel (at rate JFp) and the agent loss through drainage into the lymph system

(at a rate JDL), as well as convection, diffusion, uptake by cells and natural decay of

the agents. Accordingly, we arrive at the advection reaction diffusion equation

∂D

∂t
+ τF

convection︷ ︸︸ ︷
∇ · (Dvf ) =

diffusion︷ ︸︸ ︷
DD∆D+JFp · 1vessel − JDL − (λdecay + λuptake · 1tumor)D (19)

where vf is the interstitial fluid velocity (e.g., from Eq.(5)) and DD is the diffusion co-

efficient, which differs between the host and tumor tissues (see Table 1). The parameter

λuptake is the agent uptake rate by tumor cells and λdecay is the natural decay rate. The

parameter τF in front of the convection term is known as the retardation factor in the

interstitium and is for simplicity here taken to be 1 (Table 1 ). 1vessel is 1 within vessels

where the effective pressure is greater than the IFP, while 1tumor is 1 in regions of live

tumor tissue. Finally, the vessel-tissue exchange flux JFp and the drainage flux JDL are

given by:

JFp =
OFp
VT

(20)

and

JDL = DJL. (21)

3 Numerical details

Briefly, following [Wu et al., 2013] we discretize the elliptic/parabolic equations

Eqs. (10), (6) and (19) in space using centered finite difference approximations and the

backward Euler time-stepping algorithm. The discrete equations are solved using a non-

linear adaptive Gauss-Seidel iterative method (NAGSI)[Macklin & Lowengrub, 2007,

Macklin & Lowengrub, 2008]. We use a first order upwind discretization of the ad-

vection term explicitly in time. The time step ∆τ is chosen to satisfy the CFL condition

in both the vasculature and the tissue: ∆τ ≤ min(
Vqp
Qqp

, ∆x
|vi,x|+|vi,y |) where |vi,x| and |vi,y|

are the magnitudes of the velocity in the x− and y−, respectively.

4 Simulation and Parameter studies

We first consider two representative injection schemes and evaluate the agent deliv-

ery under varying conditions in Sec. 4.1. We show the effect of pathological factors on

the agent distribution and delivery characteristics in Sec. 4.2. We simulate chemother-

apy and discuss the effect of pathological factors on tumor response in Sec. 4.3. The

parameters used in these studies are given in Table 1.

11



As described in our previous work [Wu et al., 2013], a uniform pre-existing vascular

network arranged on a Cartesian grid in a 2×2 mm2 area is used to represent the tissue

space in which the simulations are performed (Figs. 1 and 2)). A pressure gradient

is imposed on the domain boundary, 3750 Pa.s at the lower left and 3000 Pa.s at the

upper right, linearly decreasing between the two corners. This defines the 16 vessel

nodes along the left and bottom boundaries as inlets while the 16 vessel nodes along the

right and top boundaries are outlets. As in[Wu et al., 2013], the model is calibrated such

that the vasculature provides sufficient oxygen (σ = 0.76 ∼ 1) to support normal tissue

metabolism [Intaglietta et al., 1996]. A small avascular tumor nodule is placed in the

center of the domain to initialize the simulations. The oxygen level in the tumor tissue is

lower than the surrounding tissue because the tumor is assumed to uptake more oxygen

delivered by the vasculature. As the tumor grows, the oxygen concentration within the

tumor decreases further and cells therein become hypoxic (blue) and necrotic (brown),

see Figs. (6 and 7).

4.1 Delivery of agents in the vascular-interstitial space

We simulate chemotherapeutic agent delivery by either constant or bolus injection,

i.e., we either inject agents through the end of the simulation (100 min.) or inject agents

instantaneously upstream of the tumor vasculature, with agents passing through the vas-

cular wall solely by convection. Following [Baxter & Jain, 1989] and references therein,

the value of the diffusive component of transcapillary flux for molecules (e.g., mono-

clonal antibodies) has been estimated to be 0-10%; here, we focus on large molecules

and particles, and assume kT = kD = 0 in Eq.(18). We investigate the temporal and

spatial distribution of agents in the vasculature and interstitium simultaneously together

with the transcapillary agent concentration flux.

We first simulate a constant injection scheme. Agents are injected continuously

from 16 inlets located along the top and left boundaries of the tissue region (see t = 0.17

min. in Fig. 1). At ≈ 1 min. the agents in the blood reach the tumor region (see Row 2

in Fig. 1). At 2.5 min, the agents in the vessels cover almost the entire region, but the

agent extravasation is low due to the large Pf in the tumor which impedes TFF (Column

2, Row 3 in Fig.1). After ≈ 4 min., the agent concentration in the blood reaches a steady

condition in which the upstream is at a higher concentration (close to the concentration

from the inlets ) while the downstream maintains a lower concentration due to the

extravasation into the tumor tissue (Row 1 in Fig. 2). At ≈ 16 min. (Row 2 in Fig. 2),

the concentration in the tissue remains continuously elevated due to the flux from the

vessels while still showing a nadir in the tumor region due to the lack of TFF, which is

more pronounced later at time 100 min. (Row 3 in Fig. 2).

In the case of bolus injection, the agents also reach the tumor vasculature at ≈ 1
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min. At t = 2.5 min, the bulk of the injected agents passes through the tumor and enters

the washout phase. Interestingly, the agent is confined to the tissue even after t = 100

min. due to the inability to travel back to the bloodstream during washout as well as

the lack of tumor lymphatic drainage. The blue curve in Fig. 3 shows a cross-sectional

view of the agent distribution in the tissue at t = 100 min. For comparison, the red

curve shows the behavior of agents that can bi-directionally pass through the vascular

wall (kT = kD > 0).

4.2 Effect of vascular pathology on agent delivery

As discussed in [Wu et al., 2013], tumor vascular pathologies play a critical role

in elevating and maintaining IFP as well as the outward tumor fluid flow, resulting in

physical transport barriers that hinder agent delivery. Here, we illustrate the delivery

of agents taking into consideration lymphatic and vascular pathologies such as elevated

vascular/interstitial hydraulic conductivites and attenuated transvascular osmotic pres-

sure differences. We first quantify the average agent concentration in the tumor versus

time under each pathology combined with different lymphatic resistances KLmax for

both instant bolus and constant injection schemes. In all cases, a larger lymphatic re-

sistance (i.e., KLmax = 3, blue curves in Fig. 4) contributes to more rapid delivery to

the tissue. However, this also leads to a trade-off later in the bolus injection scheme

(Column 1 in Fig.4), where a larger lymphatic resistance contributes to a more rapid

washout while tumors with smaller lymphatic resistance behave as a reservoir of agents

for the surrounding tissue (Red curves in column 1 in Fig. 4). Interestingly, these be-

haviors are accentuated with elevated vascular hydraulic conductivity (Row 2 in Fig. 4).

Transport with elevated interstitial hydraulic conductivity and attenuated transvascular

osmotic pressure difference behaves similarly in terms of the average concentration in

the tumor (data not shown).

In Fig.5 we quantify the agent availability in the tumor over time (AUC) after the

same bolus injection under the variation ofKLmax and with elevated vascular/interstitial

hydraulic conductivity. We find that the AUC increases with KLmax for all cases,

while elevated vascular hydraulic conductivity contributes to higher AUC and elevated

interstitial hydraulic conductivity contributes to lower AUC (Fig.5, left).

We further evaluate the AUC with a permeable agent that can move freely through

the vascular wall without TFF (kD = kT > 0, Fig. 5, right). The AUC in all three cases

is elevated. However, the AUC decreases as KLmax increases, while cases with elevated

vascular/interstitial hydraulic conductivities exhibit a lower AUC. With elevated inter-

stitial hydraulic conductivity, the AUC is low both when kD = kT = 0 and kD = kT > 0,

which is an issue for transport in general. On the other hand, an elevated vascular hy-

draulic conductivity contributes to a higher AUC when the agents depend solely on
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TFF for transport, while with additional transvascular transport the elevated vascular

hydraulic conductivity contributes to a lower AUC. This suggests that increasing the

ability of the agents to move through the vascular wall may not necessarily increase

the net agent accumulation in the tissue when such vascular pathologies are present.

Similar investigations have recently been performed in [Welter & Rieger, 2013]. This is

described further in the Discussion.

4.3 Chemotherapy

In order to further investigate the interactions of agent delivery with heteroge-

nous tumor dynamics during treatment, we simulate chemotherapy assuming constant

injection of macromolecule drugs for 5 days, with kD = kT = 0 and with elevated tu-

mor vascular/interstitial hydraulic conductivities. In this case, the drug is uptaken by

tumor cells in contrast to the free agent in Sec. 4.1 and Sec. 4.2. Fig.6 shows the

drug distribution at day ≈ 18 before the tumor responds to the drug. Consistent with

[Wu et al., 2013], the IFP with elevated tumor interstitial hydraulic conductivity pro-

vides a broad-base plateau profile where the IFP is nearly constant in the tumor interior

(Column 2). This profile contributes to a larger area with high IFP and fluid flow away

from the tumor [Wu et al., 2013]. This decreases the drug concentration in and near the

tumor (Column 2), while the plateau profile itself smoothes the drug distribution inside

the tumor (Column 2).

The IFP with elevated tumor vascular hydraulic conductivity (Column 3) is larger

than that of control (Column 1) due to excessive fluid extravasation. The excessive fluid

extravasation when the vascular hydraulic conductivity is elevated contributes to higher

drug extravasation, thus increasing the concentration in the interstitium (Column 3).

However, the distribution is more heterogeneous compared to the base case– there is a

larger disparity between the drug concentrations in the tumor interior and in the tumor

periphery, which may contribute to a decreasing rate of tumor shrinkage (discussed fur-

ther below). The same observation is also found in [Welter & Rieger, 2013], in which the

macromolecules are distributed around the tumor perimeter. In their studies, however,

the drug distribution is even more heterogeneous (see Discussion).

During the simulation, the treated tumor responds to the drug by either decreasing

its rate of growth or decreasing its size (compared to untreated tumors). Fig. 7 shows

snapshots of tumor pressure, tumor tissue, vasculature during therapy from day ≈ 18 to

the end of the treatment (day ≈ 23). The vascular/interstitial hydraulic conductivities

are elevated. At day ≈ 18, although all the treated tumors experience negative pres-

sure due to cell death and lysing, those with elevated interstitial hydraulic conductivity

maintain a higher pressure due to lower drug concentration in the interior (Column 2 in

Fig. 6). However, tumors with elevated vascular hydraulic conductivity experience the

14



most negative pressure due to an increased drug concentration in the tissue caused by

excessive fluid extravasation. Correspondingly, after ≈ 5 days, (at day ≈ 23) the tumor

with elevated vascular hydraulic conductivity shrinks the most, while the tumor with

elevated interstitial hydraulic conductivity shrinks the least.

We quantify the tumor radius after ≈ 5 days of treatment (Fig. 8) by varying the

strength λeffect from 0 to 1 in increments of 0.2, where 0 corresponds to an untreated

tumor. The cases with elevated vascular and interstitial hydraulic conductivities are

shown in green and blue, respectively; their combination is shown in cyan, and their

further combination with attenuated transvascular osmotic pressure difference is plotted

in magenta. A tumor with none of these vascular pathologies is considered to be the

control and shown in red. The black horizontal line corresponds to the tumor radius

before therapy. Untreated tumors with elevated interstitial hydraulic conductivity grow

faster and those with elevated vascular hydraulic conductivity grow slower due to the

inhibitory effects of IFP on oxygen extravasation from Eq.(16). On the other hand,

these tumors do not shrink until the drug strength increases to ∼ 0.9, which is a slightly

slower effect than shown the control (∼ 0.85) due to the excessive fluid flow from the

tumor into the surrounding tissue. In contrast, untreated tumors with elevated vascular

hydraulic conductivities (green, magenta, and cyan) grow slower compared to both the

control and to tumors with elevated interstitial hydraulic conductivities. This is due

to lower oxygen extravasation as a result of IFP hypertension. These tumors begin

to shrink when the drug concentration increases to ∼ 0.45. However, with elevated

vascular hydraulic conductivity alone, the shrinkage seems to saturate (green line) as

the drug concentration increases (note the transition between the green curve and the

cyan or magenta curves) due to the heterogeneity and low drug concentration in the

tumor interior. The tumor shrinkage slows down once it reaches a radius . 0.35 mm.

5 Discussion

In this study we employed mathematical modeling and simulation to quantitatively

evaluate the role of hypertensive IFP and associated pathological conditions on the

delivery of chemotherapeutic agents to vascularized tumors and on the tumor response

to these agents. We found that agent extravasation from the bloodstream is hindered

by the hypertensive IFP through convection by the transvascular fluid flux. While the

agents can be washed away from the tumor into the neighboring host tissue as a result of

high IFF near the tumor border, inside the tumor, however, the agents can be confined to

the interstitium due to the lack of lymphatic function contributing to a relatively low and

homogeneous IFF in the tumor interior. These findings are consistent with pioneering

work in [Baxter & Jain, 1989], in which transport in the interstitium was modeled with

a continuum vascular source without blood flow and lymphatic drainage. In their work,
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there is strictly no back flow of IFF into the vasculature due to the continuity of the

modeled vasculature. Here, modeling a discrete vasculature, slight back flow of IFF can

be found with large vascular hydraulic conductivity (data not shown) near neighboring

but unconnected vessels with a large pressure difference between them. This does not

contribute to a considerable amount of agents draining back into the circulation. We

further analyzed the contribution of the lymphatic function as well as those of tumor

vascular pathologies to impaired agent delivery. In a time scale of hours, tumors with

more functional (i.e., normal) lymphatics increase agent concentration more rapidly, but

they also experience quicker washout under bolus injection. This finding has recently

been observed experimentally [van de Ven et al., 2013].

We investigated agent availability in the tumor over a longer period of 100 min.

using agents with/without additional transvascular transport (agents with/without sig-

nificant transvascular diffusivity). The AUC increases as lymphatic resistance increases

with less permeable agents while the AUC decreases with permeable agents. With el-

evated interstitial hydraulic conductivity, the AUC is low in general regardless of the

agent transvascular transport capability. Interestingly, an elevated vascular hydraulic

conductivity contributes to the highest AUC when the agent is less permeable, while pre-

senting lower AUC when the agent is more permeable. Both elevated vascular hydraulic

conductivity and lymphatic resistance correspond to higher fluid extravasation and thus

higher fluid drainage by the lymphatics (see Fig. 21 in [Wu et al., 2013]). When the

transport depends more on the transvascular convection, the positive correlation of the

AUC with vascular hydraulic conductivity or lymphatic resistance is clear, which is also

observed in [Welter & Rieger, 2013], where a drug with moderate permeability is stud-

ied. On the other extreme is the case where the drug extravasation depends so much on

the additional transport (i.e., large transvascular diffusivity) that the extravasation loses

sensitivity to increases of transvascular fluid due to increases in lymphatic resistance.

In this case, more fluid extravasation is actually a disadvantage rather than an advan-

tage to maintain a high level of agent concentration in the interstitium, since more fluid

drainage ultimately results in more drug washout into the lymphatics. Therefore, either

elevated vascular hydraulic conductivity or lymphatic resistance, which contributes to

more fluid extravasation and thus more drainage, results in a reversed trend (descending

vs. ascending) of AUC compared with the situation with only convection (see Fig. 5).

In recent work [Welter & Rieger, 2013] studied the effects of IFF and drug delivery

on vascularized tumors using a 3-dimensional continuum tumor model. The sources of

the IFF and the drug were supported by an arterio-venous vasculature that contains

capillaries, large vessels (from circumferential growth) and arteriovenous shunts with a

total pressure drop of about 12k Pa. In comparison, here we use a continuum model in 2-

dimensions for tumor cells coupled with a cellular automaton model for the vasculature,

and we consider an initial rectangular grid capillary network serving as both arterial
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and venous conduits. In this study, the pressure drop is lower – only about 0.75k

Pa (a typical pressure drop across the capillary bed is ∼ 2.7k Pa [Seeley et al., 2004]).

Correspondingly, the typical IFP in [Welter & Rieger, 2013] is about 6k Pa versus 2k Pa

in this study. Further, we considered blood flow from 16 inlets arranged on a Cartesian

mesh where the global blood pressure drop occurred primarily along the diagonal. As

a result, the time scale of drug delivery in the blood is minutes in the present work vs.

seconds in [Welter et al., 2010]. Further, the spatial distributions of both the IFP and

the IFF in [Welter & Rieger, 2013] are more heterogeneous than those observed here.

The uneven IFP in [Welter & Rieger, 2013] arises due to locally abundant IFF inside the

tumor. The distributions of the IFP and IFF obtained here are more consistent with

the results in [Baxter & Jain, 1990]. Interestingly, the trends in the AUC predicted

here and in [Welter & Rieger, 2013] are not exactly the same. We have observed two

opposite behaviors of AUC as a function of the lymphatic resistance KLmax in the

transvascular convection case and the full transport case. For the former case, the AUC

increases with lymphatic resistance, which is consistent with [Welter & Rieger, 2013];

however, when the full transport is considered, we have observed the reversed trend in

AUC (as outlined above). We conjecture that in the work of [Welter & Rieger, 2013],

where the fluid extravasation is abundantly supported by the arteriole-venous network

with a large pressure drop, a decrease of AUC by increasing the lymphatic function

would be observed when the transvascular diffusion is more dominant.

Interestingly, the average radial distribution in [Welter & Rieger, 2013] is consis-

tent with our findings and both studies find large IFF within the tumor periphery

and a layer of strong fluid drainage at the functional lymphatic front (tumor periph-

ery in [Welter & Rieger, 2013]). Moreover, both studies show that an increase of lym-

phatic function promotes the overall IFF in the tumor micro-environment (see Fig.21

in [Wu et al., 2013]). Similarly, despite different details of spatial distribution due to

different vascular networks between [Welter & Rieger, 2013] and this work, both studies

show that drug molecules distribute mostly along the tumor periphery, suggesting a

general behavior transcending the details of the vascular network topologies.

Finally, we investigated the tumor response to chemotherapy during a 5 day pe-

riod with the same vascularized tumor experiencing different vascular pathologies. We

showed that tumors with elevated interstitial hydraulic conductivity grew the fastest

without treatment or with lower drug dosages, consistent with our prediction in [Wu et al., 2013].

As a result, these tumors have the most need for therapy and require higher dosages

in order to shrink. We also showed that tumors with elevated vascular hydraulic con-

ductivity have more hypoxic interiors, even though the oxygen concentration near the

tumor boundary is elevated, due to constraints on oxygen extravasation in the presence

of increased IFP in the tumor interior. The response of these tumors to the therapy

slows down as the tumor shrinks due to the heterogeneity and low concentration of drug

17



in the tumor interior. We concluded that a normalization of the micronevironment -

both with respect to the vasculature and to the interstitium - is needed in order to opti-

mize chemotherapy, whereas normalizing only one of these may not effectively overcome

the physical resistance.

The insufficient delivery of therapeutic agents into tumors could be addressed by

augmenting other transport components, such as transvascular diffusivity in a situation

where the agent concentration is held high in the blood for a sufficiently long period

of time. This could be achieved via nanoparticles that attach to the tumor vascular

endothelium to serve as depots of drug into the surrounding tissue, as has recently

been proposed by [Tasciotti et al., 2008]. However, as the agent concentration in the

blood decreases, the agent in the tumor would still wash out by the outward fluid flow

and the bi-directional transport that lowers the agent retention by draining it back

into the circulation (data not shown). This phenomenon is accentuated with elevated

vascular/interstitial hydraulic conductivities. Moreover, the net concentration gain in

the tumor by introducing an improved transvascular diffusivity decreases as lymphatic

resistance increases (data not shown). However, under elevated vascular hydraulic con-

ductivity the net gain is small, suggesting that the strategy of promoting tranvascular

transport may not work well when the vascular hydraulic conductivity is elevated.

Normalization of the tumor vasculature [Jain, 2005, Jain et al., 2007], e.g., decreas-

ing the vascular hydraulic conductivity, is an emerging trend in tumor treatment in

order to improve drug delivery into tumors. Here, we showed that an elevated vascular

hydraulic conductivity during chemotherapy may contribute to a later stage physical

resistance due to heterogeneity in the drug distribution and to low drug concentration

in the tumor interior compared to the concentration at the tumor periphery, although

the drug concentration in the tumor interior is actually larger than the base case with

normal vascular/interstitial hydraulic conductivity. However, vasculature normalization

by itself leaves the possibility of a stagnant tumor response due to an elevated intersti-

tial hydraulic conductivity, in which a higher drug dose would be required to treat the

tumor (Fig.8, blue curve) and could possibly lead to toxic side-effects. The results thus

suggest that normalization of the extracellular matrix, which is related to the intersti-

tial hydraulic conductivity [Levick, 1987], should be considered together with vascular

normalization in order to achieve a better response.

Lastly, during chemotherapy, we did not consider the fluid production by tu-

mor cell necrosis, which has the potential to further raise the IFP through cell lysis.

This would require a biphasic model with balance laws between cell and water phases

(see [Wise et al., 2008, Frieboes et al., 2010, Lowengrub et al., 2010] and the references

therein). This is the subject of future work.
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A Vessel radius adaptation

We summarize the vessel radius adaptation in [Wu et al., 2013] which follows work

by [Pries et al., 1998, McDougall et al., 2002, McDougall et al., 2006, Macklin et al., 2009].

The vessel radii are adapted in response to wall shear stress, intravascular pressure and

hematocrit. The change in radius ∆R over a time unit is given by:

∆R = (Swss + Sp + Sm − Ss)R∆t, (22)

Swss = log (τω + τref ), (23)

Sp = −kp log τe(Pv), (24)

Sm = km log

(
Qref
QHD

+ 1

)
, (25)

where Swss is the stimulus from wall shear stress τω, and τref is a constant included to

avoid singular behavior at low shear rates. The wall shear stress τω is calculated from

[Pries et al., 1998, Pries et al., 1992]:

τω =
4µapp(R,HD)

πR3
|Q| (26)

where µapp is apparent viscosity and can be computed as a function of vessel radius and

hematocrit (see the previous references). The term |Q| is the absolute value of the flow

rate, as specified numerically in [Wu et al., 2013]. Further, Sp is the stimulus by the

intravascular pressure (considering only the vessel pressure) in the form of τe(Pv) from:

τe(Pv) = 100− 86 · exp
[
−5000 · [log (logPv)]

5.4
]
, (27)

where the values are obtained from [Pries et al., 1998, McDougall et al., 2002, McDougall et al., 2006,

Macklin et al., 2009]. Finally, Sm is the stimulus from the flow carrying hematocrit,

where Qref is a reference flow rate that is assumed to be larger than most of the flows

in the network. The parameters kp and km are the intensity coefficients.

B Microenvironment interactions

In vascular tumor growth, the viable tumor cells and endothelial cells (ECs) remodel

the extracellular matrix (ECM) by releasing matrix degrading enzyme (MDE). Here, we

assume that the functional pre-existing lymphatics also degrade with MDE in Eq.(9)

following previous work [Wu et al., 2013]. The tumor microenvironment is described by

introducing E representing the ECM and M representing MDE which are assumed to

satisfy (following [Macklin et al., 2009]):

∂M

∂t
= ∇ · (DM∇M) + λ

M
prod(1−M)1ΩV − λ

M
decayM + λ

M
spr.prod1sprouttips (28)

∂E

∂t
= −λEdegradationEM + λ

E
prod(1− E)1ΩV + λ

E
spr.prod1sprouttips (29)
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where MDEs are produced by the viable tumor cells (ΩV = ΩP ∪ ΩH) and neo-

vascular sprouts with rates λ
M
prod and λ

M
spr.prod, respectively. For simplicity, we assume

MDEs are only released by the sprouting ECs, diffuse only with small DM and decay

with rate λ
M
decay. We assume that the ECM is degraded by interacting with MDE with

the rate λ
E
degradation. However, the loss of MDE in this interaction is negligible compared

to the MDE production, thus the term −λEdegradationEM only applies to the dynamics

of ECM. The ECM can be further remodeled by the production by viable tumor cells

and tip ECs with rates λ
M
prod and λ

M
spr.prod, respectively.
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Physiological Name Parameter Unit Value and Ref.

agent transfer rate kD per s 0 in Fig.1-8

(out of vessels) 5.73e-3 red curve in Fig.3 and right panel in Fig.5

Ref.[Baxter & Jain, 1989]

agent transfer rate kT per s 0 in Fig.1-8

(back into vessels) 5.73e-3 red curve in Fig.3 and right panel in Fig.5

Ref.[Baxter & Jain, 1989]

tumor drug binding rate λuptake per s 0 in Fig.1-5

0.002 in Fig.6-8

host drug binding rate λdecay per s 0 in Fig.1-5

0.001 in Fig.6-8

Agent diffusivity DD µm2 per s 0.048 in the host and 1.3 in the tumor Ref.[Baxter & Jain, 1989]

Drug effect λeffect non- 0 in Fig.1-5

dimensional 1 in Fig.6-8

rate by cell mitosis λM per s 0.77e-5

lymph 1 left column in Fig. 1-2, red in Fig.4, 5-8

collapsing KLmax 1 2 green in Fig.4 and in 5

threshold 3 blue in Fig.4 and in 5

µm2 3.1e-2 (in the tumor), cyan curves in Fig.5, middle column in Figs.6,7,

interstitial hydraulic Ki per and blue, cyan and magenta curves in Fig.8 Ref. [Baxter & Jain, 1989]

conductivity pa·s 0.64e-2, all the others, Ref.[Baxter & Jain, 1989]

µm 2.1e-5 (in the tumor), black curves in Fig.5, right column in Figs.6,7,

vascular KV f per and green, cyan and magenta curves in Fig.8 Ref. [Baxter & Jain, 1989]

hydraulic conductivity pa·s 0.27e-5, all the others, Ref.[Baxter & Jain, 1989]

osmotic ω(πv − πi) pa 667 (in the tumor) magenta curves in Fig.8

pressure difference 1333, all the others, Ref.[Baxter & Jain, 1989]

osmotic reflection coefficient KO 1 0.95

Retardation factor τF 1 1 [Swabb et al., 1974]

Table 1: Key parameters in the simulations; further parameters are in [Wu et al., 2013].
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Figure 1: Agent distribution in the tumor tissue arising from constant injection at early

times. Tissue is shown in a 2x2mm area: tumor with viable tissue in red, hypoxic in blue,

and necrotic in brown, with the pre-existing vasculature (brown rectangular gridlines)

as well as the neovasculature (irregular brown lines) originating in response to the net

release of pro-angiogenic factors from the tumor hypoxic regions. The left column shows

the concentration in the blood, the middle shows the transcapillary concentration flux,

and the right shows the concentration in the tissue. Row 1 corresponds to t = 0.17

min, row 2 corresponds to t = 1 min and row 3 corresponds to t = 2.5 min. With only

transcapillary convection (kT = kD = 0), the agent extravasation is small due to the

hypertension in the tissue which impedes TFF.
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Figure 2: Agent distribution in the tumor tissue at later times. The left column shows

the concentration in the blood, the middle shows the transcapillary concentration flux,

and the right shows the concentration in the tissue. Row 1 corresponds to t = 4.17

min, row 2 corresponds to t = 16.7 min, and row 3 corresponds to t = 100 min. At

t = 4.17 min, the agent concentration distribution in the blood reaches a homogeneous

state which persists through t = 100 min. In row 3, the distribution of agent in the

tissue shows a decrease in the tumor interior due to the lack of TFF.
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Figure 3: Concentration of agent with kT = kD = 0 in the tissue (cross section from the

center) at t = 100 min. reveals a peak in the tumor region (blue curve) compared with

the case when kT = kD > 0 (red curve).
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Figure 4: Average agent concentration (scaled by injection concentration) in the tumor

vs. time (min.) shown in each subplot with lymphatic resistance KLmax = 1 in red,

KLmax = 2 in green and KLmax = 3 in blue under bolus/constant (column 1/column

2) injection with/without (row 1/row 2) elevated vascular hydraulic conductivity. In

all cases, a larger lymphatic resistance (i.e., KLmax = 3, blue curves) contributes to

more rapid delivery to the tissue, which also contributes to a more rapid washout in the

bolus injection case (column 1). For a lower lymphatic resistance (i.e., KLmax = 1,

red curves), there is more drug in the tumor at later stages (t > 50 min) due to the

inability of the drug to leave the tissue through either the vasculature or the lymphatics.

The contrast between the two behaviors is accentuated with elevated vascular hydraulic

conductivity (row 2 compared with row 1).
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Figure 5: Agent availability in tumor tissue over time (area under the curve, AUC) after

bolus injection with elevated vascular/interstitial hydraulic conductivity (black/cyan)

compared with control (magenta) as a function of KLmax (x-axis). The left plot cor-

responds to convective transport of drug from the vasculature (kD = kT = 0) while

the right plot considers other transport mechanisms (kD = kT > 0). In the convection

only case (left), the AUC increases as KLmax for all cases while elevated vascular hy-

draulic conductivity contributes to a higher AUC. In addition, an elevated interstitial

hydraulic conductivity contributes to lower AUC compared to the control. With addi-

tional transport (right), the AUC increases to a higher level in all cases but decreases as

KLmax increases. The cases with elevated vascular/interstitial hydraulic conductivities

exhibit lower AUC compared with the control. With an elevated interstitial hydraulic

conductivity, the AUC is low with and without additional transport, which represents a

transport impairment in general (cyan curve lies below the magenta and black curves).

On the other hand, an elevated vascular hydraulic conductivity contributes to a higher

AUC (black curve lies above the magenta curve) when the agent transport depends

solely on convection. When there is elevated vasculature hydraulic conductivity, addi-

tional transcapillary transport, contributes to a lower AUC (black curve lies below the

magenta curve).
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Figure 6: Tumor vasculature, IFP and the distribution of drugs before the tumor re-

sponse at day 18.07. The tumor with elevated tumor interstitial hydraulic conductivity

has a broad base plateau profile of IFP (Column 2, Row 2) whereas the IFP with ele-

vated tumor vascular hydraulic conductivity (Column 3) is more hypertensive compared

to the control (Column 1) due to excessive fluid extravasation. The broad base plateau

profile contributes to a larger elevated IFP area and fluid flow away from the tumor

[Wu et al., 2013]. This decreases the drug concentration in and near the tumor (Col-

umn 2) while the plateau profile itself makes the drug distribution more uniform inside

the tumor compared to the control (Column 2). Excessive fluid extravasation by an el-

evated tumor vascular hydraulic conductivity contributes to higher drug extravasation,

thus increasing the concentration in the interstitium (Column 3), but the distribution

is heterogeneous and the concentration in the tumor remains low (though higher than

the base case).
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Figure 7: Tumor tissue, vasculature, and pressure with elevated vascular/interstitial

hydraulic conductivities during treament with poorly-permeable (kD = kT = 0) drugs

at high doses (λeffect = 1) for day 18.23 until the end of the treatment at day 23.10.

Although all the treated tumors have negative pressures due to cell death, those with

elevated interstitial hydraulic conductivity maintain a higher pressure due to insufficient

drug extravasation (Column 2 in Fig. 6). Tumors with elevated vascular hydraulic

conductivity have the most negative pressure and shrink the most by day 23.10 due to

higher agent concentration resulting from excessive fluid extravasation.
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Figure 8: Tumor radius after ≈ 5 days of treatment by varying drug strength λeffect

from 0 to 1 (0 corresponds to an untreated tumor), with elevated vascular/interstitial

hydraulic conductivity (green and blue, respectively), their combination (cyan curve),

and their further combination with an attenuated transvascular osmotic pressure dif-

ference (magenta curve), compared to the control (red curve). The black horizontal

line corresponds to the tumor radius before therapy. Tumors with elevated interstitial

hydraulic conductivity (blue curve) do not shrink until the drug concentration increases

to ∼ 0.9, which is a slightly slower effect than the control (∼ 0.85), due to the excessive

fluid flow from the tumor into the surrounding tissue. Tumors with elevated vascular

hydraulic conductivity (green curve) begin to shrink when the drug strength increases

to ∼ 0.45. However, with elevated vascular hydraulic conductivity alone, the shrinkage

seems to saturate (green line) (note the transition between the green curve and the cyan

or magenta curves), due to the heterogeneity and low drug concentration in the tumor

interior. The tumor shrinkage slows down once the tumor radius . 0.35 mm.
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