
Type-based Allocation Analysis for Co-Recursion
in Lazy Functional Languages

Pedro Vasconcelos1, Steffen Jost2, Mário Florido1, and Kevin Hammond3

1 LIACC, Universidade do Porto, Porto, Portugal; {pbv,amf}@dcc.fc.up.pt
2 Ludwig Maximillians Universität, Munich, Germany; jost@tcs.ifi.lmu.de

3 University of St Andrews, St Andrews, UK; kevin@kevinhammond.net

Abstract. This paper presents a novel type-and-effect analysis for pre-
dicting upper-bounds on memory allocation costs for co-recursive def-
initions in a simple lazily-evaluated functional language. We show the
soundness of this system against an instrumented variant of Launch-
bury’s semantics for lazy evaluation which serves as a formal cost model.
Our soundness proof requires an intermediate semantics employing indi-
rections. Our proof of correspondence between these semantics that we
provide is thus a crucial part of this work.
The analysis has been implemented as an automatic inference system.
We demonstrate its effectiveness using several example programs that
previously could not be automatically analysed.

1 Introduction

Co-recursion can be treated as a construction principle for infinite data struc-
tures: whereas recursion progressively deconstructs (finite) data structures, co-
recursion progressively constructs (possibly infinite) data structures through syn-
thesis from some base case [1]. In lazy functional programming, co-recursion al-
lows concise and elegant definitions by separating data generation from control.
For example, an infinite sequence of Fibonacci numbers, fibs, can be defined in
Haskell by zipping a list with its own tail [2]:

fibs = 0 : 1 : zipWith (+) fibs (tail fibs)

There are two co-recursive base cases (0 and 1). The zipWith operation then
builds the remainder of fibs constructively using both these base cases. Thanks
to lazy evaluation, the above definition is efficient: each successive Fibonacci
number is produced in constant cost. Furthermore, the flow of demand will
ensure that each number is evaluated once only when it is needed. However,
reasoning about execution costs requires a detailed understanding of the oper-
ational properties of lazy evaluation, particularly how intermediate results are
shared. Moreover, apparently innocuous changes may have a significant impact
on execution costs. As a simple example, consider two definitions of the function
cycle that produces an infinite list by repeated concatenation:

cycle xs = xs’ where xs’ = xs++xs’
cycle’ xs = xs ++ cycle’ xs

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/31300302?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Although the two definitions are denotationally equivalent, the evaluation of
cycle’ will allocate space that is proportional to the number of elements that
are demanded from the result, whereas cycle will generate a circular list and
thus only use constant space. Difficulties in reasoning about space usage are often
mentioned as a hindrance to the practical use of lazily evaluated languages, such
as Haskell, especially in domains where predictability is a primary concern.

This paper presents a new static analysis for obtaining a-priori bounds on
the dynamic costs of co-recursive definitions for a foundational subset of Haskell.
The analysis is formulated as a proof system for inferring annotated types that
express upper bounds on the costs of program fragments. For concreteness, we
choose to bound the number of heap allocations performed by a standard oper-
ational semantics for lazy evaluation. The work presented here complements our
previous analysis for lazy functional programs [3]. We have previously shown that
amortisation allows cost bounds to be determined for recursive definitions over
finite data, but also that it does not contribute to the analysis of co-recursion
over infinite data. For clarity of presentation, we thefore omit amortisation here.
Any automated analysis that is aimed at practical use could obviously combine
both methods for improved precision. We do not foresee any problems in do-
ing this (in fact, our implementation includes amortisation), but the technical
complexity of the presentation and proofs is likely to increase substantially.

2 Language and cost semantics

We consider the λ-calculus extended with local bindings, data constructors and
pattern matching:

e ::= x | λx. e | e x | let x = e1 in e2 | c(x) | match e0 with {ci(xi)->ei}ni=1

Our semantics is built on Sestoft’s revision [4] of Launchbury’s natural seman-
tics for lazy evaluation [5], which is one of the earliest and most widely-used
operational accounts of lazy evaluation for the λ-calculus. As in Launchbury’s
semantics, we restrict arguments of applications to simple variables; nested appli-
cations must translated into nested let-bindings.4 Let-expressions bind variables
to possibly (co)recursive terms. In line with common practice in non-strict func-
tional languages, we do not have a separate letrec form, as in ML. For simplicity,
we consider only single-variable let-bindings: multiple let-bindings can be en-
coded, if needed, using pairs and projections. Unlike [3], we do not require a
distinguished let-construct for introducing constructors here.

Figure 1 defines an instrumented version of Launchbury’s semantics, using a
simple cost counting mechanism, against which we prove the soundness of our
cost analysis. Our semantics is given as a relation H,S,L m

m′ e ⇓ w,H′, where

4 This transformation does not increase worst-case costs because, in a call-by-need
setting, function arguments must, in general, be heap-allocated in order to allow
in-place update and sharing of normal forms.

H,S,L m
m w ⇓ w,H

(Whnf⇓)

` 6∈ L H[` 7→ e],S,L ∪ {`} m

m′ e ⇓ w,H′[` 7→ e]

H[` 7→ e],S,L m

m′ ` ⇓ w,H′[` 7→ w]
(Var⇓)

` is fresh H[` 7→ e1[`/x]],S,L m

m′ e2[`/x] ⇓ w,H′

H,S,L m + 1

m′ let x = e1 in e2 ⇓ w,H′ (Let⇓)

H,S,L m

m′ e ⇓ λx. e′,H′ H′,S,L m′
m′′ e′[`/x] ⇓ w,H′′

H,S,L m

m′′ e ` ⇓ w,H′′ (App⇓)

H,S ∪
(⋃n

i=1{xi} ∪ BV(ei)
)
,L m

m′ e0 ⇓ ck(`),H′ H′,S,L m′
m′′ ek[`/xk] ⇓ w,H′′

H,S,L m

m′′ match e0 with {ci(xi)->ei}ni=1 ⇓ w,H′′

(Match⇓)

Fig. 1. Instrumented version of Launchbury’s operational semantics

e is an expression; the heap H is a finite mapping from variables to possibly-
unevaluated expressions (thunks):

H ::= ∅ | H[x 7→ e]

Some notation conventions: we will write dom(H) for the set of variables occur-
ring in the left-hand side of all mappings in H. We also assume that variables
are assigned at most once, i.e. the notation H[x 7→ e] requires x 6∈ dom(H), and
we will use heaps as partial functions, i.e. use H(x) for the (possibly-undefined)
expression associated with x in H. The set S contains bound variables that are
used to ensure the freshness condition in the Let⇓ rule; and L is a set of variables
used to record thunks that are under evaluation, thereby preventing cyclic evalu-
ation (similar to the well-known “black-hole” technique used in [5]). The result of
evaluation is an expression w in weak head normal form (whnf) and a final heap
H′. Note that we use lowercase letters x, y, . . . for bound variables in the original
expression and `, `′, . . . for “fresh” variables (designated locations) introduced by
the evaluation of let-expressions. The parametersm,m′ are non-negative integers
representing the number of available heap locations before and after evaluation,
respectively. The purpose of the analysis that will be developed in Section 3 is
to obtain static bounds on m and m′ that will allow the execution to proceed.
For readability, we may omit the resource information from judgements when
they are not otherwise mentioned, writing simply H,S,L ` e ⇓ w,H′ instead of
H,S,L m

m′ e ⇓ w,H′.
Under a lazy evaluation model, expressions are evaluated only when they are

demanded (that is when their value is needed in order to progress evaluation). In
our operational semantics, this happens: i) when we need the value of a variable
in Var⇓ (which is looked up from the environment); ii) when we need the value
of a function (a λ-expression) in App⇓; or iii) when we need the value of the
constructor argument in a match-expression. Let⇓ is the only rule that augments

the heap with a new expression bound to a “fresh” location. Accordingly, it is the
only rule that requires a positive heap cost in the annotation above the turnstile;
all other rules simply “thread” costs from sub-expressions to the outermost one.
For simplicity, but without loss of generality, we choose to use a uniform cost
model where each freshly allocated location is counted as a single cost unit. More
complex cost model, e.g. for determining the usage of other resources such as
execution time, or stack usage (as in [6]), could be easily substituted, if required.

The Whnf⇓ rule deals with weak-head normal forms (λ-expressions and
constructors) that require no further evaluation, and hence it incurs no cost.

The Var⇓ and App⇓ rules are identical to their equivalents in Launchbury’s
semantics, except for passing on m,m′,etc. Note that the Var⇓ rule is restricted
to locations that are not marked as being under evaluation, ` 6∈ L (so enforcing
“black-holing” that explicitly excludes some non-terminating evaluations).

The Match⇓ rule deals with pattern matching against a constructor. The
variables bound in the matching pattern are replaced in the corresponding
branch expression ek by the locations within the heap (also just variables, but
we use the meta-variable ` to range over variables within the domain of the
heap), which is then evaluated. Regardless of the actual branch taken, all pos-
sibly bound variables are added to S; this is done solely to ensure the freshness
condition in subsequent applications of the Let⇓ rule.

For the sake of completeness, we state the auxiliary definition that formalises
the notion of variable freshness. This is due to de La Encina and Peña-Marí [7].

Definition 1 (Freshness). A variable x is fresh in judgement H,S,L ` e ⇓
w,H′ if x does not occur in either dom(H), L or S nor does it occur bound in
either e or the range of the heap H.

3 Type and Effect Analysis

The syntax of annotated types is as follows:

A ::= X | A1
−→q A2 | Tp(A) | µX.{ci : Ai}ni=1

We use meta-variables A, B, C for types, X,Y for type variables and p, q for
cost annotations (i.e. non-negative rational numbers). Function types A1

−→q A2

are annotated with a cost q of evaluating the function; thunk types Tp(A) are
annotated with a cost p of evaluating the thunk to whnf.

Both recursive and non-recursive algebraic data types are encoded as µ-types
µX.{ci : Ai} where the ci are constructors, Ai is a sequence of argument types
and and X is a recursively-bound type variable. For example, the type of lists
with elements of type A can be encoded as µX.{Nil : () | Cons : (A,X)}. Note
that we do not distinguish co-recursive data types syntactically, hence finite and
infinite lists have the same type.

Our analysis is presented in Figures 2 and 3 as a proof system that derives
annotated typing judgments for expressions. The rules use two auxiliary relations
on types (subtyping and lowering thunk costs) defined in Figures 4 and 5.

Γ, x:Tq(A)
q
0 x : A

(Var)

Γ, x:T0(A′)
q
0 e1 : A A′ C A Γ, x:Tq(A)

p

p′ e2 : C

Γ
1 + p

p′ let x = e1 in e2 : C
(Let)

Γ, x:A
q
0 e : C

Γ, x:A 0
0 λx.e : A−→

q

C
(Abs)

Γ
p

p′ e : A−→
q

C

Γ, y:A
p + q

p′ e y : C
(App)

B = µX.{· · · |c : A| · · · }
Γ, y:A[B/X] 0

0 c(y) : B
(Cons)

|Ai| = |xi| B = µX.{ci : Ai} Γ
p

p′ e0 : B Γ, xi:Ai[B/X]
p′

p′′ ei : C

Γ
p

p′′ match e0 with {ci(xi)->ei} : C
(Match)

Fig. 2. Syntax directed type rules

q ≥ p p− p′ ≥ q − q′ Γ
p

p′ e : A

Γ
q

q′ e : A
(Relax)

Γ
p

p′ e : A A <: B

Γ
p

p′ e : B
(Subtype)

Γ, x:B
p

p′ e : C A <: B

Γ, x:A
p

p′ e : C
(Supertype)

Γ, x:Tq0(A)
p

p′ e : C

Γ, x:Tq0+q1(A)
p + q1

p′ e : C
(Prepay)

Fig. 3. Structural type rules

X <: X

|Ai| = |Bi| Aij <: Bij

µX.{ci : Ai}ni=1 <: µX.{ci : Bi}ni=1

A′ <: A B <: B′ p ≤ q
A−→

p

B <: A′−→q B′

A <: B p ≤ q
Tp(A) <: Tq(B)

Fig. 4. Subtyping relation

AC A

|Ai| = |Bi| Aij CX Bij

µX.{ci : Ai}ni=1 C µX.{ci : Bi}ni=1

ACX A

p ≤ q
Tp(X)CX Tq(X)

Fig. 5. Lowering thunk costs

An annotated type judgment has the form Γ p

p′ e : A where Γ is a context
assigning types to variables,5 e is an expression, A is an annotated type and p, p′
are non-negative numbers approximating the available resources before and after
evaluation of e, respectively; these annotations are used for “threading” resources
through sub-expressions in rules Let and Match. As with the operational se-
mantics, we omit the annotations on the turnstile whenever they are not further
referenced.

Because variables reference heap expressions, rules dealing with the introduc-
tion and elimination of variables also deal with the introduction and elimination
of thunk types: Var eliminates an assumption of a thunk type, i.e. of the form
x : Tq(A). Dually, Let introduce an assumption of a thunk type. Note how the
cost of evaluating a thunk is deferred from Let to Var. Similarly, the cost of
evaluating the body of a λ-abstraction is deferred to application. Rules Abs and
App are otherwise standard.

The type rules Cons and Match for constructors and pattern matching are
straightforward.6 The Cons rule just ensures consistency between the arguments
to a constructor and its result type. In correspondence with our operational
semantics, there is no extra cost for constructors, since allocation is accounted
for in rule Let. The Match rule deals with pattern-matching over an expression
of a (possibly recursive) data type. The rule requires that all branches admit an
identical result type and that estimated resources after execution of any of the
branches are equal; fulfilling such a condition may require relaxing type and/or
cost information using the structural rules below.

A significant difference from our previous work [3] lies in the typing of let-
expressions. Typing let x = e1 in e2 allows lower costs for the bound variable x
within the recursively-defined expression e1. Specifically, it allows zero costs for
both the thunk itself and also for its recursive references; this is justified because
any recursive access to the defined value cannot incur evaluation costs, since
5 We use the standard notation x : A to denote the singleton context mapping variable
x to type A, and a comma between two contexts denotes disjoint union.

6 Note that these rules are simpler than in our earlier work [3], since data constructors
do not carry potential as required for the amortisation technique.

either the thunk is already in whnf, or the access would cause a self-referential
loop (which is prevented by the “black-holing” in the operational semantics). To
this end the type rule Let uses an auxiliary ordering relation C on annotated
types defined in Figure 5.

The structural rules of Figure 3 allow the analysis to be relaxed in various
ways: Relax allows the relaxing of cost bounds. Subtype and Supertype allow
subtyping in the conclusion and supertyping in a hypothesis, respectively; these
make use of an separate relation defined in Figure 4. Informally, A <: B means
that the A and B have identical type structure but A has lower cost annotations
in both thunk and function types.

The crucial rule Prepay allows (part of) the cost of a thunk to be paid
in advance, thus reducing the cost of further uses of the same variable. Rule
Var requires the cost of the thunk to be paid for every use, as in call-by-name
evaluation. However, Prepay allows the cost of a thunk to be shared, which
models the effect of memoization in call-by-need evaluation.

Note that weakening and contraction are implicitly allowed without any re-
strictions, so type assumptions may be freely duplicated without requiring the
application of an explicit type rule.7

4 Experimental results

We have constructed a prototype implementation of our analysis as an inference
algorithm for the type system of Section 3. A publicly accessible web version
with several editable examples (including the ones presented here) is available at
http://kashmir.dcc.fc.up.pt/cgi/lazy.cgi. The implementation combines
the analysis presented in this paper with our earlier amortised analysis [3]. These
techniques complement each other: amortisation deals with recursive definitions
over finite data, while our new system deals with co-recursive definitions on
infinite data. In this paper, of course, we focus only on examples of co-recursive
definitions here.

The analysis is fully automatic, i.e. it does not require type annotations from
the programmer and either produces an annotated typing or fails when no cost
bounds can be found. Inference for a whole program is currently performed in
three steps:

1. We first perform Damas-Milner type inference to obtain an unannotated
version of the type derivation. The unannotated types form a free algebra
and can be determined using standard first-order unification.

2. We then decorate types with fresh variables and perform a traversal of the
type derivation gathering linear constraints among annotations following the
type rules.

7 This is again quite different to [3], where restrictions on weakening and contraction
are needed because of the amortisation technique.

http://kashmir.dcc.fc.up.pt/cgi/lazy.cgi

3. Finally, we feed the linear constraints to a standard linear programming
solver8 with the objective of minimizing the overall expression cost on the
turnstile. Any solution gives rise to a valid annotated typing derivation.

As in Standard ML or Haskell, we associate constructors with specific data
types (e.g. Cons and Nil with lists). This ensures that the use of the Cons
rule is syntax-directed. Also, the implementation includes some minor language
extensions, namely, primitive integers and associated arithmetic operations.

It remains to explain how to decide the use of the structural rules from
Figure 3. Prepay is used immediately whenever bound variables are introduced,
namely, in the body of a lambda, let-expression or match alternative. This can be
done uniformly because the rule allows any part of the cost to be paid (including
zero); hence, we defer to the LP solver the choice of how much should each
individual thunk be prepaid in order to achieve an overall optimal solution.
Finally, we allow the use of Relax at every node of the derivation and Subtype
at the application rule (to enforce compatibility between the function and its
argument) and at the Match rule (to obtain a compatible result type).

4.1 Zipping streams

Our first example is a co-recursive zipWith function that combines two infinite
lists by applying a function to corresponding elements:

let zipWith = \f xs ys -> match xs with
Cons(x,xs’) -> match ys with

Cons(y,ys’) -> let t = f x y
in let r = zipWith f xs’ ys’
in let s = Cons(t,r) in s

The analysis infers the following annotated type:

zipWith : T(T(a) -> T(b) -> c) ->
T(Rec{Cons:(T(a),T(#)) | Nil:()}) ->

T(Rec{Cons:(T(b),T(#)) | Nil:()}) ->@3
Rec{Cons:(T(c),T@3(#)) | Nil:()}

Some remarks on the analysis output: µ-types are written Rec{...} with an
implicit bound type variable represented by an ‘#’-sign; annotations in thunk
and arrow types are marked by an ‘@’-sign; for readability, zero annotations are
omitted. Hence, the type above ensures that zipWith yields a list where each
successive tail costs (at most) 3 allocations (T@3(#)) plus 3 for the application
itself (->@3); thus the cost for obtaining n elements is bounded by 3 + 3n.

Note that the inference algorithm outputs only one of an infinite set of admis-
sible solutions. Because zipWith was analysed in isolation, we obtained a type
with zero costs for the function argument and, therefore, where all costs of the
result are assigned to the list spine. If zipWith was used in a context where the
8 We use the GLPK library: http://www.gnu.org/software/glpk.

http://www.gnu.org/software/glpk

argument function requires positive costs, we might instead obtain a type with
costs in both head and spine thunks, e.g.:

zipWith : T(T(a) -> T(b) ->@1 c) ->
T(Rec{Cons:(T(a),T(#)) | Nil:()}) ->

T(Rec{Cons:(T(b),T(#)) | Nil:()}) ->@3
Rec{Cons:(T@1(c),T@3(#)) | Nil:()}

4.2 Fibonacci numbers

Our next example is the infinite list of Fibonacci numbers from the introduction;
this can be defined using the zipWith function shown before:

let zero = 0 in
let one = 1 in
let plus = \x y -> x+y in
let fibs = (let t = match fibs with

Cons(x,fibs’) -> zipWith plus fibs fibs’
in let r = Cons(one,t)
in let s = Cons(zero,r)
in s)

Here we extend the language with a type for integers by adding suitable con-
structors for each constant and primitive arithmetic operators. As in the STG
machine [8], operators must be fully applied; higher-order values can be obtained
using explicit lambda-expressions (plus in the example). We also assume that
arithmetic operations have no intrinsic allocation costs, but since arguments of
applications are restricted to be variables, compound results have to be let-bound
(and thus heap allocated) anyway. The type inferred for fibs is as follows:

fibs : Rec{Cons:(T(Int),T@3(#)) | Nil:()}

From the type above we see that the infinite list evaluating each successive of
Fibonacci requires at most 3 allocations. This matches exactly the cost of zipWith
because plus has zero cost in our model. Note that it is essential that fibs’ is
the tail of fibs, for otherwise one would have to pay twice for evaluating each
argument of zipWith. Thanks to our novel Let typing rule, our analysis can
recognise this reduction in cost due to aliasing.

4.3 The Hamming problem

Our final example is the Hamming problem: produce an infinite list of numbers in
ascending order and without duplicates, starting with 1 and such that, whenever
x occurs in the list, so do 2 × x, 3 × x and 5 × x. One elegant Haskell solution
(from Bird and Wadler’s textbook [2]) uses a function that merges infinite lists
in ascending order:

merge (x:xs) (y:ys) | x==y = x : merge xs ys
| x<y = x : merge xs (y:ys)
| x>y = y : merge (x:xs) ys

The Hamming numbers can then be defined co-recursively using merge and the
standard list map:

hamming = 1 : merge (map (2*) hamming)
(merge (map (3*) hamming) (map (5*) hamming))

Using some informal reasoning about the sharing properties of the cyclic list
above, Bird and Wadler argue that n elements can be computed with bounded
O(n) cost [2]. We will see that our analysis can confirm this with a precise bound.

However, a direct translation of the above definitions into our core language
does not admit an annotated type in our system: the two uses of merge in the
definition of hamming require different cost annotations. Because of this, the
constraints generated by the reconstruction algorithm will not admit a solution.9

One work around for this limitation is to simply duplicate the definition of
merge so that each use can be assigned a precise type10:

hamming = 1 : merge1 (map (2*) hamming)
(merge2 (map (3*) hamming) (map (5*) hamming))

With this translation, the reconstruction algorithm is able to obtain the following
annotated types:

merge1 : T@3(Rec{Cons:(T(Int),T@3(#)) | Nil:()}) ->
T@3(Rec{Cons:(T(Int),T@3(#)) | Nil:()}) ->@8
Rec{Cons:(T(Int),T@8(#)) | Nil:()}

merge2 : T@3(Rec{Cons:(T(Int),T@3(#)) | Nil:()}) ->
T@8(Rec{Cons:(T(Int),T@8(#)) | Nil:()}) ->@13
Rec{Cons:(T(Int),T@13(#)) | Nil:()}

hamming : Rec{Cons:(T(Int),T@13(#)) | Nil:()}

The type inferred for hamming confirms Bird and Wadler’s reasoning and pro-
vides a precise bound: each successive Fibonacci number requires (at most) 13
allocations.

Finally, we note that the revised Let type rule that is presented in this paper
is essential for obtaining annotated types for the fibs and hamming examples
above. In fact, these two examples do not admit annotated types using just the
amortised analysis described in [3].

9 This does not happen for map because, in this particular problem, all the uses have
identical costs.

10 A more general solution would be to extend the analysis to include effect polymor-
phism – we leave this as further work (see Section 7).

evaluation demand 0 1 2 3 4 5 6 7 8 9 10
Fibs analysis 8 8 11 14 17 20 23 26 29 32 35

semantics 8 8 8 11 14 17 20 23 26 29 32
Hamming analysis 17 17 30 43 56 69 82 95 108 121 134

semantics 17 17 30 35 42 47 54 64 69 76 86

Table 1. Comparison of analysis with the operational semantics.

4.4 Comparison with the instrumented semantics

Table 1 presents a short assessment of the quality of the upper-bounds obtained
from our analysis by comparison with the exact costs obtained from an imple-
mentation of the operational semantics of Section 2. The figures are grouped
by the evaluation demanded from the resulting infinite lists, where 0 evaluates
the list to whnf (i.e. just a Cons cell), 1 evaluates the first element to whnf,
2 evaluates the second, etc. We first note that the analysis is indeed producing
upper-bounds; this is true in general as shown by the soundness theorem proved
in Section 5.

The results for the fibs are quite accurate: the inferred cost of 3 allocation
for each successive elements is exact. There is a fixed overestimation of 3 allo-
cations because a recursive type Rec{Cons:(T(Int),T@3(#))|...} cannot not
distinguish the lower cost of the first two elements.

The results for hamming are less accurate; this is because the exact cost
for successive elements is not constant, instead varying between 0 and 10 allo-
cations; however, our annotated types assign identical cost for the entire spine
(Rec{Cons:(T(Int),T@13(#)|...} — i.e. 13 allocations), hence the overesti-
mation.

5 Soundness

In this section we formulate the soundness of our analysis from Section 3. The
structure of our proof is as follows:

1. in Section 5.1, we define a variant of the operational semantics which uses
indirections;

2. in Section 5.5, we establish the soundness of the type rules against the indi-
rection semantics.

3. finally, in Section 5.6, we show the equivalence of the original semantics and
the revised indirection semantics (including preservation of resource bounds).

5.1 Indirection semantics

To facilitate proving the soundness of the type analysis of Section 3 we will con-
sider a variant of the operational semantics. We exploit a new syntactic form for

H@w is defined
H,S,L m

m w ⇓I w,H
(Whnf⇓I)

` 6∈ L H[` 7→ e],S,L ∪ {`} m

m′ e ⇓I w,H′[` 7→ e]

H[` 7→ e],S,L m

m′ ` ⇓I w,H′[` 7→ w]
(Var⇓I)

`, `′ are fresh H[` 7→ e1[`
′/x], `′ 7→ ind(`)],S,L m

m′ e2[`/x] ⇓I w,H′

H,S,L m + 1

m′ let x = e1 in e2 ⇓I w,H′ (Let⇓I)

H,S,L m

m′ e ⇓I u,H′ H′@u = λx. e′ H′,S,L m′
m′′ e′[`/x] ⇓I w,H′′

H,S,L m

m′′ e ` ⇓I w,H′′ (App⇓I)

H,S ∪
(⋃n

i=1{xi} ∪ BV(ei)
)
,L m

m′ e0 ⇓I u,H′

H′@u = ck(`) H′,S,L m′
m′′ ek[`/xk] ⇓I w,H′′

H,S,L m

m′′ match e0 with {ci(xi)->ei}ni=1 ⇓I w,H′′ (Match⇓I)

Fig. 6. Indirection semantics.

indirections. These do not occur in the original program, but are used internally
by the evaluation mechanism.

e ::= · · · | ind(x) w ::= λx.e | c(x) | ind(x)

Operationally, an indirection ind(x) will be treated similarly to the variable x (i.e.
it references some expression in the heap). However, evaluation of an indirection
will not force the evaluation of a thunk; instead, it succeeds immediately if and
only if the heap expression is already in whnf. This will be crucial for establishing
the soundness of the type rule Let.

Figure 6 presents the revised semantics as a relation H,S,L m

m′ e ⇓I w,H′

where the components play identical roles to the semantics of Section 2. Indirec-
tions are allowed to be either expressions for evaluation e or as results w; they
may also occur in heaps, H or H′.

The Whnf⇓I rule is revised to follow chains of indirections. Note that indi-
rections are considered to be whnfs; this is necessary only to allow more accurate
costs in the soundness proof. The Var⇓I rule is identical to the previous one.

The revised rule for let-expressions Let⇓I substitutes the bound variable
in e1 by an indirection instead of a self-reference; this will allow the costs of
(co-)recursive uses to be distinguished in the soundness proof.

The revised rules Whnf⇓I , App⇓I and Match⇓I make use of a auxiliary
partial function H@w for de-referencing a result w with respect to a heap H:

H@λx.e def
= λx.e

H@c(x) def
= c(x)

H@ind(`) def
= H(`) if ` ∈ dom(H)

Note that H@ind(`) is defined only if we reach a constructor or abstraction by
following a (possibly empty) chain of indirections starting at `.

5.2 Typing rule for indirections

We introduce the following typing rule Ind for indirections:

A′ C A

Γ, x:Tq(A) 0
0 ind(x) : A′ (Ind)

This rule is similar to Var except that it allows lowering the thunk costs both
on the judgment and on the recursive type; we use the relation C of Figure 5 for
the latter. The rule will be needed in the soundness proof solely for establishing
well-typing of intermediate heap configurations (since indirections may not occur
within source programs).

5.3 Global types and balance

The global types are given by a mappingM from locations to (annotated) types.
The intuition is that whenM(`) = Tq(A) then q is (an upper bound of) the cost
of evaluating ` and the resulting whnf admits type A. Furthermore, we introduce
an auxiliary balance function B mapping locations to non-negative numbers.
This keeps track of the partial costs that have been paid in advance by uses of
the Prepay rule. We also define the balance sum over a heap configuration as
the sum of the balance associated with all thunks that are not under evaluation:∑

H,L B
def
=

∑
{B(`) : ` ∈ dom(H) and ` 6∈ L and H(`) is not a whnf }

Note that the balance is needed to prove the soundness of the analysis, but is
not part of the operational semantics — in particular, it does not incur runtime
costs.

5.4 Consistency and compatibility

We can now define the principal soundness invariants of our analysis, namely, a
consistency relation for typing heap configurations and a compatibility relation
between global types and contexts. We proceed by first defining typing of a single
location and then extend it to typing a heap configuration.

Definition 2 (Typing of locations).We say that location ` admits type Tq(A)
under context Γ , balance B, heap configuration (H,L), and write Γ,B;H,L `Loc
` : Tq(A) if one of the following cases holds:

(Loc1) H(`) is in whnf and Γ 0
0 H(`) : A;

(Loc2) H(`) is not in whnf and Γ q + B(`)
0 H(`) : A;

The two cases above are mutually exclusive: Loc1 applies when the expression
in the heap is already in whnf ; otherwise Loc2 applies. For Loc2, the balance
B(`) associated with location ` is added to the available resources for typing the
thunk H(`), effectively reducing its cost by the prepaid amount. Note that in [3],
we additionally distinguished whether a location was under evaluation. Since we
do not use the notion of potential here, this is no longer needed.

Definition 3 (Typing of heap configurations). We say that a heap con-
figuration (H,L) is consistent with context Γ , global types M and balance B,
and write Γ,B `Mem (H,L) : M, if and only if for all ` ∈ dom(H) we have
Γ,B;H,L `Loc ` :M(`).

The compatibility relation enforces that the global types of locations are super-
types (i.e. have lower costs) of the types occurring in a context.

Definition 4 (Compatibility). We say that a global typesM are compatible
with a context Γ , writtenM <: Γ , if and only ifM(`) <: A for all `:A ∈ Γ .

5.5 Soundness of the proof system

We state the soundness of our analysis as an augmented type preservation result.

Theorem 1 (Soundness). Let t ≥ 0 be fixed but arbitrary. If the following
statements hold

Γ p

p′ e : A (1)
Γ,B `Mem (H,L) :M (2)

M <: Γ (3)
H,S,L ` e ⇓I w,H′ (4)

then for all m such that m ≥ t + p +
∑

H,L B, there exists m′, Γ ′, B′ and M′

such that

Γ ′ 0
0 w : A (5)

Γ ′,B′ `Mem (H′,L) :M′ (6)
M′ <: Γ ′ (7)

H,S,L m

m′ e ⇓I w,H′ (8)
m′ ≥ t+ p′ +

∑
H′,L B′ (9)

Informally, the soundness theorem reads as follows: if an expression e admits
type A (1), the heap can be typed (2) (3), and the evaluation is successful (4),
then the result whnf also admits type A (5). Furthermore, the final heap can
also be typed (6) (7) and the static bounds that are obtained from the typing of
e give safe resource estimates for evaluation (8) (9). Because of space limitations,
we will only present the cases that differ significantly from our previous work [3],
particularly the revised typing rule for let and for indirections.

Proof. The proof is by induction on the lengths of the derivations of evalua-
tion (4) and typing (1) ordered lexicographically, with the former taking priority
over the later. We proceed by case analysis of the typing rule used in premise (1),
considering just some representative cases.

Case Let. The typing premise (1) instantiates as

Γ 1 + p
p let x = e1 in e2 : C

By inversion of rule Let together with the substituition lemma, we get

Γ, `′:T0(A′) q
0 e1[`

′/x] : A (10)
Γ, `:Tq(A) p

p′ e2[`/x] : C (11)

where A′ C A. The evaluation premise (4) instantiates as

H,S,L 1 + m

m′ let x = e1 in e2 ⇓I w,H′

from which we getH0,S,L m

m′ e2[`/x] ⇓I w,H′ whereH0 = H[` 7→ e1[`
′/x], `′ 7→

ind(`)]. Define:

B0 = B[` 7→ 0, `′ 7→ 0]

M0 =M[` 7→ Tq(A), `′ 7→ T0(A′)]

Γ0 = Γ, `:Tq(A), `′:T0(A′)

To apply induction to the evaluation of e2[`/x] we first need to re-establish
type consistency and compatibility. Type consistency for ` follows from (10)
and (Loc2); and for `′ follows directly from the type rule Ind and (Loc1).
Compatibility is immediate because the types for ` and `′ in Γ0 are exactlyM0(`)
andM0(`

′). Applying induction to (11) then yields all required conclusions. Note
that the lower thunk costs for A′ are only allowed for the recursive reference `′
introduced in the let-expression; crucially this is sound only because the recursive
reference is introduced in the heap as in indirection whose cost is ignored by the
typing rule Ind. Otherwise compatibility would not hold.

Case Ind. This case is immediate: taking Γ ′ = Γ , B′ = B,M′ =M andm′ = m
yields all required conclusions.

Case Var. The typing premise is Γ, `:Tq(A) q
0 ` : A and the evaluation premise

is H,S,L m

m′ ` ⇓I w,H′[` 7→ w]; by inversion of rule Var⇓I we get H,S,L ∪
{`} m

m′ H(`) ⇓I w,H′ and ` 6∈ L. By the type compatibility hypothesis we get
that

M(`) <: Tq(A)

We now distinguish the two applicable cases:

H(`) is in whnf. The evaluation succeeds immediately by either Whnf⇓I and
we have w = H(`), H = H′ and m′ = m, i.e. the update is without effect.
Taking Γ ′ = Γ , B′ = B,M′ =M. By type consistency, we get

Γ 0
0 H(`) : A

which is equivalent to the required conclusion

Γ ′ 0
0 w : A

The remaining conclusions are immediate because H′ = H.

H(`) is not in whnf. Let Tr(Â) =M(`). In this case, type consistency for
` requires (Loc2), which instantiates as

Γ, `:Tq(A)
r + B(`)

0 H(`) : Â

Recall that from compatibility for location ` we get Tr(Â) <: Tq(A), which
implies Â <: A. By applying the type rule Subtype we obtain

Γ, `:Tq(A)
r + B(`)

0 H(`) : A

By inversion of the evaluation premise we get

H,S,L ∪ {`} m

m′ H(`) ⇓I w,H′

and ` 6∈ L. We now apply the induction hypothesis to the evaluation of H(`).
Note that according to rule Var⇓I , we apply the induction hypothesis for
L′ = L∪{`}. Observe that m ≥ t+p+B(`)+

∑
H,L∪{`} B holds as required.

We thus obtain m′, Γ ′, B′ andM′ such that

Γ ′ 0
0 w : A (12)

Γ ′,B′ `Mem (H′,L ∪ {`}) :M′ (13)
M′ <: Γ ′ (14)

m′ ≥ t+ p′ +
∑

H′,L∪{`} B (15)

The only remaining proof obligations is to re-establish these statements for
the updated heap H′′ = H′[` 7→ w]. In particular, we need

Γ ′,B′ `Mem (H′′,L) :M′ (16)
m′ ≥ t+ p′ +

∑
H′,L∪{`} B (17)

The only location changed from (13) to (16) is ` were the applicable case
changes from (Loc2) to (Loc1). But the latter is immediate from (12)
because H′′(`) = w. Since the balance sum skips locations mapped to whnf,
we have

∑
H′,L∪{`} B =

∑
H′′,L B, thus establishing (17) as required.

Case App. The typing and evaluation premises in this case are

Γ, y:A p + q

p′ e y : C (18)

H,S,L m

m′′ (e `) ⇓I u,H′′ (19)

By inversion of the type rule (App) applied to (18) we obtain

Γ, y:A p

p′ e : A−→q C (20)

By inversion of the evaluation rule App⇓I applied to (19) we get

H,S,L m

m′ e ⇓I u,H′ (21)
H′@u = λx.e′ (22)

H′,S,L m′
m′′ e′[`/x] ⇓I w,H′′ (23)

Taking t′ = t+ q, we show that we verify the conditions for applying induction
to the evaluation of e because

m ≥ (t+ q)︸ ︷︷ ︸
t′

+p+
∑

H,L B (24)

By induction we obtain Γ ′,B′,M′ such that

Γ ′ 0
0 u : A−→q C (25)

Γ ′,B′ `Mem (H′,L) :M′ (26)
M′ <: Γ ′ (27)

m′ ≥ (t+ q) + p′ +
∑

H′,L B′

= (t+ p′)︸ ︷︷ ︸
t′′

+q +
∑

H′,L B′ (28)

By H′@u = λx. e′ we either have u = λx. e′ or u = ind(κ). In either case the type
remains unchanged, due to rule Ind and due to C not altering function types,
we thus get

Γ ′ 0
0 λx.e′ : A−→q C

Using a standard Abs inversion lemma, we get

Γ ′, x:A q
0 e′ : C

By the substitution lemma we get

Γ ′, `:A q
0 e′[`/x] : C

We can now apply induction again to (23) (evaluation of e′[`/x]) and obtain
m′′, Γ ′′,M′′,B′′ satisfying all desired conclusions:

Γ ′′ 0
0 w : C (29)

Γ ′′,B′′ `Mem (H′′,L) :M′′ (30)
M′′ <: Γ ′′ (31)

m′′ ≥ (t+ p′) + 0 +
∑

H′′,L B′′

= t+ p′ +
∑

H′′,L B′′
(32)

Case Prepay. The typing premise is

Γ, `:Tq0+q1(A)
p + q1

p′ e : C (33)
m ≥ t+ (p+ q1) +

∑
H,L B (34)

By inversion of rule Prepay we get

Γ, `:Tq0(A) p

p′ e : C (35)

Assume that H(`) is not in whnf, for otherwise the case is trivial (includ-
ing indirections). By type consistency (2) and compatibility (3) there exists
M(`) = Tq(Â) such that Â <: A and q ≤ q0 + q1. Let r = max(q − q1, 0),
M′ = M[` 7→ Tr(Â)] and B′ = B[` 7→ q1 + B(`)]. In order to apply induction
we now re-establish the theorem’s premises for these updated mappings. To es-
tablish type consistency for location ` by (Loc2) we then need to show that
Γ, `:Tq0(A)

r + B′(`)
0 H(`) : Â holds. Originally, type consistency (2) yields

Γ, `:Tq0+q1(A)
q + B(`)

0 H(`) : Â

by rule Supertype we have

Γ, `:Tq0(A)
q + B(`)

0 H(`) : Â

By Definition of r we have r ≥ q− q1 which is equivalent to r+ q1 ≥ q and thus
by rule Relax we deduce

Γ, `:Tq0(A)
r + q1 + B(`)

0 H(`) : Â

which is equivalent by our Definition of B′ above to

Γ, `:Tq0(A)
r + B′(`)

0 H(`) : Â

We also need to re-establish type compatibilityM′ <: Γ, `:Tq0(A) We originally
have

M <: Γ, `:Tq0+q1(A)

For location ` this gives

M(`) <: Tq0+q1(A)

We have M(`) = Tq(Â); by the definition of subtyping this gives q ≤ q0 + q1
which is equivalent to q− q1 ≤ q0; by non-negativativity of annotations we have
0 ≤ q0. Combining both inequalities gives max(q−q1, 0) ≤ q0 hence r ≤ q0 which
establish the subtyping

M′(`) <: Tq0(A)

This establishes the compatibility for `; the types for other locations are un-
changed and thus we get

M′ <: Γ, `:Tq0(A)

It remains to show that m ≥ t+ p+
∑

H,L B′ holds. Originally, we had

m ≥ t+ (p+ q1) +
∑

H,L B (36)

which is equivalent to the desired inequality since q1 +
∑

H,L B =
∑

H,L B′ by
the definition of B′. Applying induction yields all required results for this case.

5.6 Relationship with Launchbury’s semantics

In this section we sketch the correspondence between the indirection semantics
and Launchbury’s standard semantics, which justifies our cost model. More pre-
cisely, we prove for every evaluation in the standard semantics that there is a
corresponding one in the indirection semantics and that the conversion preserves
cost (Theorem 2). The reverse correspondence also holds, but is not required
for the soundness result, so we do not pursue it here. The development of the
relationship follows [9]. We start by defining an auxiliary function to remove
indirections from a heap.

Definition 5. Consider a heap H such that H(`) = ind(`′). The indirection
erasure of ` from H, written H	 `, is defined as follows:

∅[` 7→ ind(`′)]	 ` def
= ∅

H[κ 7→ e, ` 7→ ind(`′)]	 ` def
= (H[` 7→ ind(`′)]	 `)[κ 7→ e[`′/`]]

Note that we remove not just the indirection ` 7→ ind(`′) but also rename all
occurrences of ` to `′ in the remaining heap expressions.

Using indirection erasure, we can now define a relation on heaps H < H′

which informally says that we obtain H′ from H by removing a sequence of
indirections.

Definition 6. We say that H is indirection-related to H′ and write H < H′

iff there exists a (possibly empty) sequence of locations ` such that H(`i) is an
indirection and H	 ` = H′.

The next two lemmas state some auxiliary results about <; the proofs are similar
to the corresponding results from [9].

Lemma 1. < is reflexive and transitive (i.e. a pre-order relation on heaps).

Lemma 2. If H < H′ then dom(H) ⊇ dom(H′).

Because expressions have free variables which must be interpreted in the context
of a heap, it is convenient to extend the indirection relation to pairs (H, e) of a
heap and associated expression; we do so by simply introducing the expression
in a fresh location.

Definition 7. We say that (H, e) is indirection-related to (H′, e′) and write
(H, e) < (H′, e′) iff there exists ` 6∈ dom(H) ∪ dom(H′) ∪ FV(H) ∪ FV(H′)
such that H[` 7→ e] < H′[` 7→ e′].

Before presenting the correspondence result we state some auxiliary lemmas; for
space restrictions we omit most proofs.

Lemma 3. If (H, e) < (H′, e′) then e′ is a renaming of e i.e. there exist variables
x and y such that e[y/x] = e′.

Lemma 4. If (H, e) < (H′, e′) and ` ∈ dom(H′) and ` ∈ FV(e′) then ` ∈ FV(e).

Lemma 5. If (H, u) < (H′, w) and w is in whnf, then H@u is defined (e.g. u
is either a whnf or an indirection from which a whnf can be reached in a finite
number of steps).

Proof (Sketch.). By the definition of <, there is a sequence of locations ` such
that H	 ` = H′. The proof is by induction on the length of `.

Lemma 6. If (H, let x = e1 in e2) < (H′, let x = e′1 in e′2) and ` is a fresh
location then

(H[` 7→ e1[`/x]], e2[`/x]) < (H′[` 7→ e′1[`/x]], e
′
2[`/x]) .

We can now finally establish the correspondence between ⇓ and ⇓I.

Theorem 2. If H,S,L m

m′ e ⇓ w,H′ then for all Ĥ such that Ĥ < H there
exists Ĥ′ and ŵ such that:

Ĥ,S,L m

m′ e ⇓I ŵ, Ĥ′

(Ĥ′, ŵ) < (H′, w)

In order to prove the above theorem by induction on the evaluation we need to
strengthen the statement by allowing the evaluations to start from indirection-
related heap-expression pairs.

Proposition 1. If H,S,L m

m′ e ⇓ w,H′ then for all Ĥ and ê with

(Ĥ, ê) < (H, e) (37)

there exists Ĥ′ and ŵ such that:

Ĥ,S,L m

m′ ê ⇓I ŵ, Ĥ′ (38)

(Ĥ′, Ĥ′@ŵ) < (H′, w) (39)

Proof. By induction on the derivation of the evaluation H,S,L m

m′ e ⇓ w,H′;
we proceed by case-analysis of the last rule used. Due to space limitations, we
only present selected cases.

Case Whnf⇓. The premises are H,S,L, m
m w ⇓ w,H and (Ĥ, u) < (H, w) for

some Ĥ and expression u. By Lemma 5, we get that Ĥ@u is defined. This satisfies
the side condition of rule Whnf⇓I . Hence, we application of this evaluation rule
yields the required conclusion (38). Conclusion (39) follows by transitivity of <.

Case Var⇓. The evaluation premise is H[` 7→ e],S,L m

m′ ` ⇓ w,H′[` 7→ w]. By
inversion of rule Var⇓ we get ` 6∈ L and

H[` 7→ e],S,L ∪ {`} m

m′ e ⇓ w,H′[` 7→ e] (40)

The premise (37) is (Ĥ0, ê0) < (H[` 7→ e], `); by Lemma 2 this implies Ĥ0 =

Ĥ[` 7→ ê] for some ê; and by Lemmas 3 and 4 we get ê0 = `. Thus the premise
instantiates in this case as:

(Ĥ[` 7→ ê], `) < (H[` 7→ e], `) (41)

We can now apply induction to (40) and (41) and obtain

Ĥ[` 7→ ê],S,L m

m′ ê ⇓I ŵ, Ĥ′[` 7→ ê] (42)

(Ĥ′[` 7→ ê], Ĥ′[` 7→ ê]@ŵ) < (H′[` 7→ e], w) (43)

Conclusion (43) fulfils proof obligation (39). Applying Var⇓I to (42) yields the
remaining obligation (38). This concludes the proof of the Var⇓ case.

Case Let⇓. The evaluation premise is H,S,L 1 + m

m′ let x = e1 in e2 ⇓ w,H′.
By inversion of rule Let⇓ we get for some fresh `:

H[` 7→ e1[`/x]],S,L m

m′ e2[`/x] ⇓ w,H′ (44)

By Lemma 3, the premise (37) instantiates as

(Ĥ, let x = ê1 in ê2) < (H, let x = e1 in e2) (45)

By Lemma 6 and (45) we get

(Ĥ[` 7→ ê1[`/x]], ê2[`/x]) < (H[` 7→ e1[`/x], e2[`/x]) (46)

By the definition of < (erasing the indirection `′ 7→ ind(`)) it is immediate that:

Ĥ[` 7→ ê1[`
′/x], `′ 7→ ind(`)] < Ĥ[` 7→ ê1[`/x]] (47)

By transitivity of < (Lemma 1) and (47) plus (46) we get

(Ĥ[` 7→ ê1[`
′/x], `′ 7→ ind(`)], ê2[`/x])
< (H[` 7→ e1[`/x], e2[`/x])

which is the premise needed for applying induction to the evaluation (44). As a
result of induction we get

Ĥ[` 7→ ê1[`
′/x], `′ 7→ ind(`)],S,L m

m′ ê2[`/x] ⇓I ŵ, Ĥ′ (48)

(Ĥ′, Ĥ′@ŵ′) < (H′, w) (49)

Applying rule Let⇓I to (48) together with (49) yields the required conclusions.

6 Related work

This paper extends our previous work on type-based static analysis of resource
bounds for lazy functional programs using amortisation [3]. Unlike that system,
here we focus on co-recursive infinite data structures and show that a simpler
type-and-effect system without amortisation suffices to obtain static resource
bounds. As described in Section 4, this type-and-effect system successfully pro-
duces resource bounds for examples that could not previously be analysed.

Our cost model is based on Launchbury’s natural semantics for lazy evalua-
tion [5], as subsequently refined by Sestoft [4], de la Encina and Peña-Marì [10,11].
The proof technique used in Section 5.6 for establishing correspondence between
the indirections semantics and the standard one is based on work by Sánchez-Gil,
Hidalgo-Herrero and Ortega-Mallén [9]. The first work on cost analysis for lazy
evaluation of higher-order functional programs was by Sands [12,13]. This used
evaluation contexts [14] and projections [15] to capture the degree of evaluation
of data structures. This was intended to aid manual reasoning about program
costs but is not directly automatable for use in a compiler or static analysis tool.

Several authors have proposed symbolic profiling approaches, where programs
are annotated with additional cost parameters. For example, Wadler [16] has
used a state monad to count reduction costs through a tick-counting operation.
Danielsson extends this work using a cost-annotated monad [17] that allows
expressing machine-checkable complexity annotations through dependent types
in the Agda programming language. Unlike the work presented here, this system
allows checking but not automatic inference of complexity annotations.

Turner’s elementary strong functional programming [18] explores issues of
guaranteed termination in a purely functional programming language. Turner’s
approach separates inductive data structures from co-data structures such as
streams. This ensures that functions on both finite and infinite structures are
total by construction using only primitive recursive definitions. However, this
work does not consider evaluation costs, and does not provide an analysis.

Hughes, Pareto and Sabry [19] describe a sized type system for a simple
higher-order, non-strict functional language, that guarantees termination and
productivity of recursive and co-recursive definitions. This work was subsequently
developed to ensure bounded space usage in the strict functional language Em-
bedded ML [20], which lacks co-recursion. Brady and Hammond [21] have also
developed an embedding of sized types in a dependently typed framework. How-
ever, all three approaches require the programmer to provide explicit size in-
formation, that is checked rather than inferred. Finally, a combination of sized
types with memory regions has been suggested by Peña and Segura [22], building
on information provided by ancillary analyses on termination and safe destruc-
tion [23]. However, this does not deal with co-recursive costs.

7 Conclusions and further work

This paper presents a type-and-effect system for predicting upper-bounds on
allocation costs for co-recursive definitions in a lazy functional language. The

analysis is formally based on a standard operational semantics for lazy evaluation
and we present a detailed proof sketch of soundness. We have also implemented
this type system as a fully automatic static analysis. Initial experimental results
show it can deal with non-trivial examples (the Fibonacci sequence and the
Hamming problem). We are not aware of any previous automatic analysis that
is capable of dealing with these examples.

A number of future research directions are left open by this work. For sim-
plicity we presented a type system without either type polymorphism or effect
polymorphism. This limits the compositionality of the analysis (cf. the dupli-
cation of definitions required in Hamming example of Section 4.3). Let-bound
polymorphism could, in principle, be added simply by capturing constraints in
type schemes as in [24,25,26]. It then remains an open question whether our
system admits a notion of principal types schemes [27] (although this concerns
only the completeness of the inference algorithm and not soundness).

Again for simplicity we chose a uniform cost model (each let-expression
costs one unit). It should be straightforward to extend this to a more realis-
tic cost model by allowing variable costs, derived from e.g. the STG abstract
machine [8,28]. Another option would be to focus on resources other than heap,
e.g. time or stack usage.

We have considered annotated types that express linear bounds for co-recursion,
i.e. where the cost for each successive value is bounded by a constant. Hoffmann
et al. have previously demonstrated successful extensions to multivariate poly-
nomial bounds, in the context of amortised cost analysis for recursion [29]. It
would be interesting to explore whether their techniques could also be applied
in our work, to allow for non-linear costs with respect to evaluation depth.

Finally, the presented analysis and cost model do not yet consider deallocation
of resources. In order to reason about memory residency in a type-based system,
we would need, for example, to express deallocation using some syntax-directed
primitives. It should be possible to extend our language and type-system with
a deallocation primitive (e.g. the deallocating match in [30] or a region-based
mechanism [31,32]) to accommodate this. This would pave the way for an inter-
mediate language for compiling lazily evaluated programs with static residency
guarantees.

References

1. Barwise, J., Moss, L.: Vicious Circles. CSLI Publications (1996)
2. Bird, R., Wadler, P.: Introduction to Functional Programming. Prentice Hall, New

York (1988)
3. Simoes, H., Vasconcelos, P., Jost, S., Hammond, K., Florido, M.: Automatic amor-

tised analysis of dynamic memory allocation for lazy functional programs. In: Proc.
of ACM Intl. Conf. Func. Programming (ICFP’12), ACM (2012) 165–176

4. Sestoft, P.: Deriving a Lazy Abstract Machine. J. Functional Programming 7(3)
(1997) 231–264

5. Launchbury, J.: A Natural Semantics for Lazy Evaluation. In: Proc. POPL ’93:
Symp. on Princ. of Prog. Langs. (1993) 144–154

6. Jost, S., Loidl, H.W., Hammond, K., Scaife, N., Hofmann, M.: “Carbon Credits” for
Resource-Bounded Computations Using Amortised Analysis. In: Proc. FM 2009:
Intl. Conf. on Formal Methods, Springer LNCS 5850 (2009) 354–369

7. de la Encina, A., Peña-Marí, R.: Proving the Correctness of the STG Machine. In:
Proc. IFL ’01: Impl. of Functional Langs., Stockholm, Sweden, Sept. 24-26, 2001,
Springer LNCS 2312 (2002) 88–104

8. Peyton Jones, S.L.: Implementing Lazy Functional Languages on Stock Hardware
– the Spineless Tagless G-machine. J. Functional Programming 2(2) (April 1992)
127–202

9. Sánchez-Gil, L., Hidalgo-Herrero, M., Ortega-Mallén, Y.: The role of indirections
in lazy natural semantics. Technical Report TR-13-13, Departamento de Sistemas
Informáticos y Computación, Universidad Complutense de Madrid (2013)

10. de la Encina, A., Peña-Marí, R.: Formally Deriving an STG Machine. In: Proc. 5th
International ACM SIGPLAN Conference on Principles and Practice of Declarative
Programming, 27-29 August 2003, Uppsala, Sweden, ACM (2003) 102–112

11. de la Encina, A., Peña-Marí, R.: From Natural Semantics to C: a Formal Derivation
of two STG Machines. J. Funct. Program. 19(1) (2009) 47–94

12. Sands, D.: Calculi for Time Analysis of Functional Programs. PhD thesis, Imperial
College, University of London (September 1990)

13. Sands, D.: Complexity Analysis for a Lazy Higher-Order Language. In: Proc. ESOP
’90: European Symposium on Programming, Copenhagen, Denmark. Springer
LNCS 432 (1990) 361–376

14. Wadler, P.: Strictness Analysis aids Time Analysis. In: Proc. POPL ’88: ACM
Symp. on Princ. of Prog. Langs. (1988) 119–132

15. Wadler, P., Hughes, J.: Projections for Strictness Analysis. In: Proc. FPCA’87: Intl.
Conf. on Functional Prog. Langs. and Comp. Arch. Springer LNCS 274 (September
1987) 385–407

16. Wadler, P.: The Essence of Functional Programming. In: Proc. POPL ’92: ACM
Symp. on Principles of Prog. Langs. (January 1992) 1–14

17. Danielsson, N.A.: Lightweight Semiformal Time Complexity Analysis for Purely
Functional Data Structures. In: Proc. POPL 2008: Symp. on Principles of Prog.
Langs., San Francisco, USA, January 7-12, 2008, ACM (2008) 133–144

18. Turner, D.: Elementary Strong Functional Programming. In: Proc. 1995 Symp. on
Funct. Prog. Langs. in Education — FPLE ’95. LNCS, Springer-Verlag (December
1995)

19. Hughes, R., Pareto, L., Sabry, A.: Proving the Correctness of Reactive Systems
Using Sized Types. In: ACM Symp. on Principles of Prog. Langs. (POPL’96), St.
Petersburg Beach, USA, ACM (January 1996) 410–423

20. Hughes, R., Pareto, L.: Recursion and Dynamic Data Structures in Bounded
Space: Towards Embedded ML Programming. In: Proc. 1999 ACM Intl. Conf. on
Functional Programming (ICFP ’99). (1999) 70–81

21. Brady, E., Hammond, K.: A Dependently Typed Framework for Static Analysis
of Program Execution Costs. In: IFL, Springer-Verlag LNCS 4015 (2005) 74–90

22. Pena, R., Segura, C.: A First-Order Functl. Lang. for Reasoning about Heap
Consumption. In: Draft Proc. Intl. Workshop on Impl. and Appl. of Functl. Langs.
(IFL ’04). (2004) 64–80

23. Montenegro, M., Pena, R., Segura, C.: An Inference Algorithm for Guaranteeing
Safe Destruction. In: Draft Proc. Trends in Functional Programming (TFP07),
New York, 2–4 April (2007)

24. Talpin, J.P., Jouvelot, P.: Polymorphic type, region and effect inference. J. Funct.
Program. 2(3) (1992) 245–271

25. Nielson, F., Nielson, H.R., Amtoft, T.: Polymorphic subtyping for effect analysis:
The algorithm. In: Logical and Operational Methods in the Analysis of Programs
and Systems. (1996) 207–243

26. Nielson, H.R., Nielson, F., Amtoft, T.: Polymorphic subtyping for effect analysis:
The static semantics. In: Logical and Operational Methods in the Analysis of
Programs and Systems. (1996) 141–171

27. Damas, L., Milner, R.: Principal type-schemes for functional programs. In: ACM
Symp. on Principles of Prog. Langs. (POPL’82). POPL ’82, New York, NY, USA,
ACM (1982) 207–212

28. Marlow, S., Jones, S.P.: Making a fast curry: push/enter vs. eval/apply for higher-
order languages. In: Proc. of the ACM SIGPLAN 2004 Intl. Conf. on Functional
Programming (ICFP’04). Volume 16., ACM Press (January 2004) 4–15

29. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate Amortized Resource Analysis.
ACM Trans. Program. Lang. Syst. 34(3) (November 2012) 14:1–14:62

30. Hofmann, M., Jost, S.: Static prediction of heap space usage for first-order func-
tional programs. In: ACM Symp. on Principles of Prog. Langs. (POPL’03), ACM
(January 2003) 185–197

31. Tofte, M., Talpin, J.P.: Region-based memory management. Information and
Computation 132(2) (1997) 109–176

32. Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N., Olesen, T., Sestoft, P.: Pro-
gramming with regions in the ml kit (April 2002) IT University of Copenhagen
http://www.itu.dk/research/mlkit/.

http://www.itu.dk/research/mlkit/

	Type-based Allocation Analysis for Co-Recursion in Lazy Functional Languages
	Introduction
	Language and cost semantics
	Type and Effect Analysis
	Experimental results
	Zipping streams
	Fibonacci numbers
	The Hamming problem
	Comparison with the instrumented semantics

	Soundness
	Indirection semantics
	Typing rule for indirections
	Global types and balance
	Consistency and compatibility
	Soundness of the proof system
	Relationship with Launchbury's semantics

	Related work
	Conclusions and further work

