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Searching for new ferroelectrics and multiferroics:
A user’s point of view
JF Scott1

A perspective on computational studies of ferroelectrics and multiferroics is given that emphasises what has yet to be done, along
with some subtleties in previously studied systems. Beginning with the extensive data-mining studies of Abrahams and more
recently, Rabe, a survey is given of magnetostrictive effects in antiferromagnetic antiferroelectrics (after Toledano and Toledano),
which has an nonmagnetic analogy in the antiferroelectric phase of tris-sarcosine calcium chloride and a reminder of the unusual
spin–phonon coupling of Holden et al. in systems such as KCoF3 and EuTiO3. Attention is also paid to field-temperature phase
diagrams, finite non-periodic boundary conditions, and processing-dependent structures.
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INTRODUCTION
The search for new ferroelectrics has been proceeding in at least
three different ways: (1) data mining of existing crystallographic
data;1 (2) ab initio calculations, particularly by density functional
theory (DFT) of new families;2 (3) new techniques of fabrication,
including high-pressure synthesis or infiltration of the gaps
between surfaces.3 In the present paper I address qualitatively
some subtleties that might help guide these efforts, not from the
technical calculation point of view, but as an interested observer
and user of such predictions wishing to fabricate new device
embodiments.

ABRAHAMS’ CRITERION
In a lengthy series of papers Sidney Abrahams, formerly head of
the crystallography department at Bell Labs and president of the
American Crystallography Society, presented a thorough review of
materials that had a good but unproven probability of being
ferroelectrics.4–6 Abrahams had a specific criterion for these
choices: The ionic positions must be off-centred (acentric
symmetry) but within small specified distances from being
centred. We can express his criterion as

0<r<0:01 nm ð1Þ

where r is the distance from a centred position for the ion in
question; the upper limit in Equation (1) is rather arbitrary but
intended to be oo the bond length for the ion to nearest
neighbour(s) and hence, compatible with switching with a modest
coercive field (less than the breakdown field).
Using this criterion Abrahams predicted a large number of new

ferroelectrics, and a significant number of these were later shown
to be ferroelectric.7,8

Another example, discussed below, is β-Na2UF6, which has been
published by the same author9,10 as both paraelectric P6_2m and
acentric ferroelectric P321. Heavy twinning has prevented a
definitive structural analysis.11 In general, twinning has often
prevented definitive structural studies (e.g., famously in SrTiO3 and
LaAlO3).

CRYSTALLOGRAPHERS’ PROTOCOL
One of the problems arising with data mining is that researchers
do not always recognise the most important protocol in crystal-
lographic structural reports: The symmetry published must be
the highest compatible with the highest point group symmetry
for each ion that is possible within experimental uncertainty.
This means that structures are often reported with centred
phases whereas, their ions, particularly the lighter ions such as O,
F, and H, are probably off-centred. Until the advent of modern
synchrotron sources, this was such a serious problem that
structures of even simple lattices such as perovskites (SrTiO3,
LaAlO3 and PrAlO3)

12–14 were incorrect (corrected by Raman
techniques,15–17) and the positions of H in hydrogen-bonded
ferroelectrics was complete guesswork. My estimate is that at least
10% of the structures published in Wycoff are lower in reality,
including many ferroelectrics. Paradoxically these include those
slightly acentric materials most likely to exhibit ferroelectric
switching.

ACTINIDES—THE ‘ACID TEST’ FOR DFT
Actinide fluorides
Density functional calculations have trouble with d-electrons and
so they have much more trouble with 5f states. That is a pity,
because the actinides (excluding thorium) are multiferroic and
very interesting. We have already alluded above to the interest in
Na2UF6, but there are many other actinide fluorides that might be
ferroelectric, including hexagonal C32 NaPuF4 and Na3UF6, with
octyfluorides such as PuOF and UOF having pseudocubic
rhombohedral and tetragonal phases, whereas AcOF is truly
cubic.18 The latter sequence would be a good challenge to DFT
theory, particularly to show why AcOF is cubic and PuOF and UOF
noncubic.
Rather recently (2015) Jason Lashley (unpublished) at Los

Alamos has shown that UO2 is probably noncubic (tetragonal) at
modest temperatures below ambient. Strong phonon–magnon
coupling is well known19,20 in UO2.
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Other oxyfluorides
French and Russian groups have shown that systems such as
NH4FePO4F (acentric Pna21 to Pnma) are probably21 not only
ferroelectric but multiferroic; and both elpasolites (e.g., K3MoO3F3
or (NH3)3TiOF3) and chiolites (e.g., Na4Lu(WNb2)O9F) merit
further study.

ANTIFERROMAGNETIC ANTIFERROELECTRICS
Whenever two adjacent spins order antiparallel, magnetostriction
effects are likely to cause those ions to move closer together or
farther apart. Thus, in principle, most antiferromagnets also
double their primitive chemical unit cell below T(Neel); however,
this effect is usually negligible and ignored. In some cases this
antiferromagnetic order does change the structure, and a
structural phase transition occurs.22 Toledano and Toledano23,24

have discussed the case of a magnetically induced phase
transition from Pca21′ (the nickel chlorine boracite structure) to
P21, using Landau free energies.

Kornetzki; Toledano and Toledano
Starting with the free energy of form

Fm ¼ Fo þ Σ ai=2ð ÞLi2 þ c=2ð ÞM2 þ ΣbiLi
4 þ d=4ð ÞM4

þ v1z=2ð ÞLiz2 þ v2z=2
� �

L2z
2 þ v3=2ð ÞL3z2

þ bz=2ð ÞMz
2 ð2Þ

where L and M are defined as

M ¼ μ1 þ μ2 þ μ3 þ μ4
L1 ¼ μ1 - μ2 þ μ3 - μ4
L2 ¼ μ1 þ μ2 - μ3 - μ4
L3 ¼ μ1 - μ2 - μ3 þ μ4

ð3Þ

for magnetic moments μ on four spin sites 1, 2, 3 and 4.
The magnetoelastic free energy is

FME ¼ δ1L1z
2exz þ δ2L2z

2exy þ δ3exx þ δ4eyy þ δ5ezz
� �

L3z
2

þ δ6Mz
2eyz: ð4Þ

And the elastic terms

FE ¼ 1
2
C11exx

2 þ C22eyy
2 þ C33ezz

2
� �þ C12exy

2 þ C13exz
2

þ C23eyz
2: ð5Þ

They show that this permits two types of ordering of relativistic
origin: (1) an induced magnetization

Mz ¼ - a2=σ2ð ÞL2x ð6Þ
corresponding to weak ferromagnetism along z (here σ terms
couple L to M), and

canting angle ¼ tan - a2=σ2ð Þ ¼ Mz=L2x ; ð7Þ
and also: (2) an induced antiferromagnetic order along the y axis
given by

L2y ¼ - a2=δ4ð ÞL2x: ð8Þ
Here δ relates strain: e.g., exz= (− δ1/C13) L1z

2 and so on.
The full free energy also includes the elastic terms

FE ¼ 1
2

C11exx
2þ C22eyy

2þ C33ezz
2

� �þ C12exy
2þ C13exz

2þ C23eyz
2

� �

ð9Þ
And the minimisation of the full free energy gives three different
possible structures:

(i) If the coefficient c vanishes first at the Neel transition,
a spontaneous strain

eyz ¼ - δ6=C23ð ÞMz
2 ð10Þ

occurs, leading to a structural phase transition to Pc′a′21;
(ii) If a1 vanishes first, the strain is

exz ¼ - δ1=C13ð ÞL1z2 ð11Þ
leading to a monoclinic Pb(y) structure.
(iii) If a2 vanishes first, the phase change is to Pc′a21′.
(iv) And if a3 changes at T(N), no structural phase transition

occurs.
That is, a structural phase transition does NOT always occur.

In this case a volumetric magnetostriction occurs.21 Volume
magnetostriction has been understood for about 80 years but still
has new wrinkles.22

EuTiO3 and the Buyers–Cowley model of antiferromagnetic
structural effects
In 1971 Holden et al.25 developed a model applicable to magnetic
perovskites such as KCoF3 in which a rotational instability in the
antiferrodistortive soft mode like that in SrTiO3 or LaAlO3 occurs.
In addition to the magnetostrictive effects discussed above, such a
system has a more direct coupling between vibrations and
magnetic spins and hence between magnetic ordering and
structural phase transitions. They point out that the soft mode
involving oxygen octahedral rotation carries with it an orbital
angular momentum; and this momentum can couple directly to
the spins at the A or B sites. This spin–orbit coupling will be in
addition to and may be larger than magnetostriction. It is
expected to be unusually large in systems such as Co++ with
large unquenched orbital angular momenta. It results in extra lines
in the perovskite Raman spectra below T(Neel) in KCoF3, RbCoF3
and TlCoF3,

26–29 and probably in the planar magnets K2CoF4,
Tl2CoF4 and so on.30 Most important in the present-day context, it
should also occur in EuTiO3, where the antiferrodistortive
transition31,32 occurs near 282 K. Note that since this is an
antiferrodistortive transition, the soft optic phonon is at the
Brillouin zone boundary (critical point R at the [111] corner);
although magnon-like spin waves do not exist as propagating
modes at T44T(Neel) for very long wavelengths at the Brillouin
zone centre, they still exist for very short wavelengths at the zone
boundary and can therefore couple to phonons.
Holden et al. and Scott et al.25,26 find a spin–lattice interaction

energy of c= 9±2 cm− 1 experimentally and 12 cm− 1 theoretically,
compatible with a lattice distortion from Gladney (40) of
δa/a= 0.2% along the a axis. The key equation is of form

C ¼ - 6=35ð Þ Zf e
2=R3

� �
δa=að Þ<r24 akorbð Þ2 ð12Þ

where −Zfe is the fluorine ion charge; o r24 is the mean radius of
the 3d electron in Angstroms squared; other terms defined
elsewhere.25

It is also useful to be reminded that in all titanates entropy
requires that there are some oxygen vacancies. Ti+4 ions near such
vacancies convert to Ti+3, which is a magnetic ion. Therefore
titanates, especially in regions near domain walls (which trap
oxygen vacancies) may exhibit unexpected magnetoelectric
effects in substances such as SrTiO3 that nominally lack
magnetic ions.

SPATIAL AND TEMPORAL COHERENCE: ENERGY LANDSCAPES
An important concern, in addition to symmetry differences related
to processing procedures, is the fact that many chemical
compounds have numerous symmetry-unrelated phases with
ground state energies only a few meV apart. SiO2 is probably the
most notorious of these, with various quartz structures, plus
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cristobalites, tridymites, coesite, stishovite and so on. These are of
great importance to mineralogists and geologists, and yet in some
cases controversies remain over many decades until the present.
β-cristobalite is a notorious example, with Dove et al. publishing
several papers33,34 that maintain it is cubic, yet the ab initio
calculation of Coh and Vanderbilt showing35 that to be incorrect;
and both infrared and Raman studies of the present author36

confirming Vanderbilt’s theory. Isomorphs such as cristobalite
AlPO4 have the same phase transition exhibiting non-subgroup
symmetry relationship to the parent phase; the symmetries in
each case are lower than in SiO2, due to inequivalent Al and P ions,
but the argument is the same.

β-cristobalite
The problem with cristobalite is that its α and β phases do not
satisfy a subgroup–group relationship. Hence, the phase transition
is first order and technically ‘reconstructive,’37 yet it exhibits a soft
optical vibrational mode similar to those in second-order
displacive systems. The problem seems to be spatial and temporal
coherence. Dove et al. has maintained adamantly that the
structure is cubic and disordered on a length scale of a few
atoms or unit cells; but he does not specify his time scale.
Conventional non-synchrotron sources generally give X-ray
information on the time scale of seconds. Yet crystal structures
can be well-defined and carry out many physical processes
(absorption and emission of light) on time scales of picosecond or
less. Thus, it is not particularly useful for physicists, unlike
geologists, to be told that cristobalite is cubic on a time scale of
seconds or minutes. These criteria of correlation lengths and times
are usually unspecified in DFT calculations, and of course will be
highly temperature dependent. In β-cristobalite it is quite certain
that the structure is not cubic with ions at inversion centres, since
that would produce no first-order Raman spectra (all vibrations of
odd parity), whereas experiments reveal three strong Raman lines.

Moreover, although the non-cubic structure may average out over
long times of interest to mineralogists, they do not over times
adequate to emit and absorb light or carry out electronic
transitions, which is a reasonable definition of a stable phase for
physicists.
The moral in this story is that care must be exercised in looking

for crystal symmetry at phase transitions, and nearly continuous
(no fracture of crystals) need not imply subgroup relations. Energy
landscapes are often filled with ground states very close together
(meV), and the experimental phase sequence can miss subgroup
transitions in favour of ‘sibling’ phases descended from the same
parent phase but not satisfying group-subgroup criteria, even
when such paths exist. Furthermore, the coherence times and
lengths for such ground states are usually undetermined via DFT
calculations.

LaTaO4 and LaNbO4

LaTaO4, LaNbO4 and their lanthanide rare earth isomorphs are
isostructural with BaMnF4, BaNiF4 and so on, with structure shown
in Figure 1. These are ‘geometric ferroelectrics’ with planar
structures and magnetoelectric effects.38–41 In addition to the
A21am orthorhombic structures of BaMnF4, the oxides also have a
different ferroelastic structure with 2/m–4/m symmetry change at
a ferroelastic transition.42 It is not known whether the 2/m
ferroelastic centric structure is a lower-energy state than the
ferroelectric A21am state. This family of materials, both fluorides
and oxides, are of practical importance in another context: SrMgF4
is the ferroelectric with the largest bandgap in nature; at
Eg = 12.50 eV it can be used for second harmonic generation from
2,000–1,000 Å.43 The oxyfluorides of this family have not been
explored, and it is not known if any are stable in this structure.

STRUCTURE VIA PROCESSING
It often happens that the structure of oxides is strongly dependent
on their processing conditions, particularly the annealing cycle.
The most notorious and best-studied example is lead scandium
tantalate, PbSc1/2Ta1/2O3, often abbreviated as PST. This useful
relaxor ferroelectric can be prepared with Sc and Ta ions at the
B sites almost perfectly ordered or alternatively, completely
randomly disordered, depending only on the annealing proce-
dure. In fact, not only are the phases different in symmetry, but
even the number of phases stable at different temperatures is not
the same and can include incommensurate phases. The situations
in PbFe1/2Nb1/2O3 (PFN) and PbFe1/2Ta1/2O3 (PFT) may be similar.

PST
At present the conventional wisdom is that PST somewhere above
Tc = 299 K is that it has Fm3m cubic structure with ordered Sc and
Ta ions giving a doubled perovskite primitive cell (PFN and PFT
have the same Fm3m structure)44–49. For a fully disordered
material, the average structure is Pm3m. Setter and Cross
concluded that at 299 K there is a single paraelectric–ferroelectric
transition to a rhombohedral structure. However, Salje et al.
showed45 that most samples exhibit a two-step ferroelectric
transition from Fm3m to R3_c to R3c; and others have shown that
this Pm3m structure is reached only above T= 723 K, and that
between 300 and 700 K several additional phases exist, including
an orthorhombic C2221 phase similar to that in Pb(Mg,W)O3; and
at least one incommensurate phase exists between 299 and 323 K,
depending on annealing cycles. These situations are reviewed in
refs 48,49.

InMnO3

Similar to PST, indium manganite can be in a ferroelectric P63cm
state at low temperatures48 or a non-ferroelectric P3_c1 symmetry

Figure 1. Structure of topological ferroelectric LaTaO4.
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state.48–50 The latter can be quenched at room temperature. The
work of Spaldin and Fiebig is quite beautiful and theory and
experiment agree, with full pole figures; but as Cheong’s group
has shown49, those measurements were on a metastable state
quenched to ambient,50 and not on the true ground state.

Room temperature multiferroic GaFeO3

Gallium orthoferrite is a room temperature multiferroic whose
properties have been controversial due to processing. Very
detailed studies of its ferroelectric switching in bulk were
published by Garg’s group in India;51,52 with earlier work in
China,53 but these disagreed qualitatively with the thin-film data
from Pohang.54 Very recently this year this has been reconciled,54

with o-GaFeO3 demonstrating good ferroelectric switching in thin
films 50–200 nm thick up to 405 K, above which leakage currents
become unacceptably large; this satisfies most commercial and
military specifications for a memory material. The differences arise
in part from the processing conditions for sol-gel films compared
with single-crystal samples. The structure is ferromagnetic, with Fe
+3 ions at different sites yielding a net magnetization of 0.3 Bohr
magnetons per unit cell at low temperatures, significantly better
than BiFeO3. The material has strong magnetoelectric effects at
ambient temperatures and exhibits Vogel–Fulcher relaxation for
both its magnetization near T(Neel) and its polarisation. This glassy
behaviour arises from Ga ions at Fe sites and vice versa (same
valence and size).

MULTI-ION B-SITE OCCUPANCY SYSTEMS
A particular topic of current interest55–59 is room temperature
multiferroic materials with four different ions at the perovskite
B site (Ti, Zr, Fe and either Ta or Nb), such as
Pb(Fe1/2Nb1/2)1− y[Ti0.53Zr0.47]yO3. These require too large a cell
for present DFT calculations, although V. Cooper (private
communication) is beginning the three-ion B-site case of Pb
(Fe1/2Nb1/2)1− yTiyO3 (a single-phase mixture of PbTiO3 and PFN).

PbFe1=2Nb1=2O3=PbZr1 - xTixO3; PbFe1=2Ta1=2O3=PZT;

and PbFe2=3W1=3O3=PZT PFW=PZTð Þ
This system merits considerably more computational work
because it is a family of room temperature multiferroics. The
magnetic field dependence of its room temperature dielectric
response has very recently been modelled this year, with very
good agreement with experiment.58 The PFW/PZT single-phase
material has received the least attention,59 although it has unusual

magnetic field dependence for its dielectric constant (probably
due to charge injection through its electrodes, which creates an
inductance even in a parallel-plate capacitor60,61), and a detailed
indirect coupling model for polarisation and magnetization via
electrostriction.62,63

FINITE SYSTEMS
The ab initio calculations such as DFT normally employ cylindrical
periodic boundary conditions. However, growing evidence
indicates that the stability of phases may hinge critically on the
assumed boundary conditions. This is especially clear in switching
of domains,64–66 but it also applies to phase stability, with thin
films of e.g., BaTiO3 or Ba1-xSrxTiO3 exhibiting Tc several hundred
degrees higher than in bulk.67,68 Thus, finite geometry should be
considered in computational studies.

Infiltration systems (Noheda)
A particularly elegant system is that in which a phase of TbMnO3

grows nicely3 as it infiltrates narrow slots between other materials,
such as SrTiO3, where it grows under stress. This result was first
presented in 2013 but misinterpreted as stacking faults. It was
correctly interpreted at its presentation by the present author. It is
of potentially great importance in device processing. Moreover,
starting with the seminal work on SrTiO3/LaAlO3 interfaces, it is
clear that SrTiO3 surfaces in particular play a strong role in
enhancing superconductivity, even in pnictides. Interfaces and
boundary conditions are not minor perturbations in phase
stability.

Other finite-size systems: Bessel function structures (Gruverman;
Baudry and Lukyanchuk and Sene)
There are finite-size systems of other geometries that merit
attention: Thin-film nano-discs are frequently studied and
exhibit very unusual nucleation and growth of phases with
applied switching fields69,70 and temperature changes, displaying
Bessel-function spatial patterns71,72 and unpredicted polygonal
faceting,73 probably due to surface tension. These phases need
not be stable in samples of infinite or periodic lateral boundary
conditions (Figure 2).

Cylinder stress systems (Lichtensteiger and Triscone; Scott)
In nanostructures, particularly in nano discs, the boundary
conditions also involve cylinder stress (or ‘hoop stress’). This

Figure 2. +P and − P circular domains in a 1-micron diameter PZT thin-film disk, showing Bessel-function type geometries.
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effect can be large and should not be neglected in calculating
phase stability.74,75

Artificial superlattices (Dawber; Zubko; Jiang, Rios and Scott)
Of course the most obvious case of finite geometries and
their relationship to phase stability is in the area of artificial
superlattices. Fortunately these have been reviewed carefully
elsewhere.76

It is worth pointing out, however, the work of Jiang et al.67 and
Rabe’s group68 on BaTiO3/SrTiO3 superlattices, since they are
highly counter-intuitive. When barium titanate and strontium
titanate are stacked as superlattices, it is not surprising that the
barium titanate [001] polarisation polarises the adjacent nonpolar
SrTiO3 blocks; it is very surprising, however, that the latter is along
[110]. This arises in relaxed structures and is despite the fact that
Poisson’s Law creates an energetically costly interfacial electro-
static energy; that is overcompensated by reduced strain energy.

QUANTUM CRITICAL POINTS: O18 SrTiO3, TSCC:Br,
PbFe3Ga9O19, BaFe3Al9O19

Predicting ferroelectric structures may be hard enough for
computational physicists, but it should in some sense be easier
for quantum critical point systems, since their Curie or Neel
temperatures are at or very near T= 0. Nevertheless, not much has
yet been published. The following eight ferroelectric QCP systems
have been studied experimentally:
SrTiO3 (18O, 16O and mixed, with 38% 18O being closest to

Tc = 0);77 KTaO3;
77 tris-sarcosine calcium chloride with Br;78

BaFe12O19,
79 SrFe12O19,

79 and PbFe12− xGaxO19.
79 The last cited

has a magnetic quantum critical point at x= 9. Ironically, all are
second-order displacive phase transitions, whereas some very
good theoreticians have predicted that they must be first order
and order–disorder.80 The hexaferrites are p-type semiconductors
with bandgaps between 1 and 2 eV, and they are Lieb–Mattis
antiferromagnets with very large net ferromagnetic moments,
with 16 Fe+3 spins up and 8 Fe+3 spins down in the Z= 2 primitive
unit cell. With 58 ions per unit cell, they are slightly too large for
most present-day DFT calculations (see however refs 81,82).
The hexaferrites satisfy the 1970 prediction of Shneerson

et al.81,82 that reciprocal dielectric constant varies near T= 0 as
T3, and the temperature regime of criticality is found to be ca. 15 K
for BaFe12O19 and 30 K for SrFe12O19.

TOPOLOGICAL DEFECT SYSTEMS—SKYRMION MODELS:
ZAKRZEWSKI; GRUVERMAN AND SCOTT; RAMESH
An additional complication in computational structures for
ferroelectrics is that they exhibit topologically singular arrays of
skyrmions: Fu and Bellaiche;83 Borisevich;84 and Ramesh et al.85

These resemble Abrikosov vortex arrays in Type-II super-
conductors, but they have not yet been computationally
modelled.
Skyrmions in magnets and ferroelectrics were considered by

Zakrewski et al.86 and by Dawber et al.87

INCOMMENSURATE STRUCTURE PREDICTIONS
The incommensurate material88–92 of maximum multiferroic
interest is probably BaMnF4.

39,40 Whereas Ederer et al.41 did a
nice DFT computation for BaNiF4, the situation in BaMnF4 is far
more challenging, because it has incommensurate phases
between its paraelectric and ferroelectric phase. Samples from
Howard Guggenheim at Bell Labs were used in both the work at
Brookhaven88,92 (Eibschutz et al.) and by the present author. These
exhibit a single paraelectric–ferroelectric transition near 254 K with
soft mode at q* = (0.392, 1/2, 1/2) a* of the high-temperature

phase. Unusually for incommensurates, this wave vector is
independent of T down to T= 4 K, an effect we view as pinning
by defects, probably fluorine vacancies. However, in other
specimens grown in France and in Slovenia, Barthes-Regis
et al.89 and Levstik et al.90 found two or more phase transitions
from ca. 250 K down to ca. 80 K, where a ferroelectric lock-in
transition occurs to a commensurate cell with five formula groups
along the a axis and two orthogonal to that axis (Z= 10). And in
fact there are at least five subtle transitions between 260 and 80 K,
revealed by piezoelectric resonance (Hidaka et al.91), and these
perhaps satisfy a Devil’s staircase of critical wave vectors given by

qn� ¼ 2nþ 5ð Þ= 5nþ 13ð Þa�; ð13Þ
although that has not been directly confirmed. Modelling this
system will be difficult. We note in passing that the final low-
temperature lock-in phase to long-range ferroelectricity occurs
near the temperature at which strong two-dimensional spin
ordering occurs in this material, which might not be coincidental
(TN(3d) = 27 K; TN(2d) = ca. 80 K); in-plane magnetostriction might
play a role.
The fact that the phase diagram in BaMnF4 depends strongly on

processing and is sample dependent is therefore analogous to the
case of InMnO3 or PST discussed above.
Another point of computational interest is that BaMnF4

satisfies93 the axial-next-nearest-neighbour model94 famous for
K2SeO4, Rb2ZnCl4 and so on. These systems have incommensurate
structures that multiply their primitive unit cell length by large
integers, and therefore describing them with Landau–Devonshire
free energies requires implausible high-order terms (e.g., P17),
whereas the the axial-next-nearest-neighbour model does so
nicely with few parameters.
The other system of multiferroic interest is the Aurivilius-phase

family studied by L. Keeney et al.95 in Cork. She found room
temperature multiferroic behaviour in several of these mixed-
phase ceramics, but whose chemical complexity is daunting for
computational modelling.

HYDROGEN-BONDED SYSTEMS: FERROELECTRIC AND
ANTIFERROELECTRIC TSCC
In recent years researchers have emphasised oxide ferroelectrics
and neglected hydrogen-bonded systems, based on their robust-
ness and applicability for devices. Yet hydrogen-bonded systems
retain fascinating and subtle puzzles. A good example is afforded
by tris-sarcosine calcium chloride. This material has a fully
displacive paraelectric–ferroelectric transition at 130 K at ambient
pressure,96,97 (Feldkamp; Banys) and a second transition98,99

(Jones; Lashley) at 64 K (which can also be driven at room
temperature with modest hydrostatic pressure). The phase below
64 K is thought to be antiferroelectric,100 but no direct proof has
been observed (no double-loop P[E] hysteresis curves). In addition,
it is certain that the primitive unit cell (Z= 4 formula groups and 12
sarcosine molecules) does not increase below 64 K, based on new
Raman data (S. Sahoo and J. S. Young, private communication).
Usually antiferroelectricity involves a doubling of the ferroelectric-
phase primitive unit cell, but this is not required; because TSCC
has four formula groups per unit cell in its ferroelectric and
paraelectric phases, it is possible that the four local polarisations
simply realign in the proposed AFE phase. This does not double
the number of Raman lines, but it does produce a few distinct
vibrational mode frequency shifts. There are also one or two
(closely spaced) phase transitions near 46 K. Since this system
exhibits a quantum critical point, some modelling is warranted.
However, its structure of four units of (CH3NHCH2COOH)3.2CaCl2
(252 atoms) makes DFT difficult, not because of the size per se, but
because of the numerous H-ions and hydrogen bonds.
Thus, the four polarisations (one for each formula group) P in

TSCC can reorient in a way similar to the four magnetisations at

Search for new ferroelectrics and multiferroics
JF Scott

5

© 2015 Shanghai Institute of Ceramics, Chinese Academy of Sciences/Macmillan Publishers Limited npj Computational Materials (2015) 15006



the four spin sites in the example from Toledano and Toledano
discussed in the section above on magnetostriction; that is, it is
probably a ferrielectric, where four local polarisations Pi play the
role of the four local magnetisations m in Equation (3) above.
However, this has been neither confirmed directly by experiment
nor modelled by computation.
Hydrogen-bonded ferroelectrics have other important roles in

fundamental physics, with an important but often neglected series
of papers by Hilczer’s group101 showing that so-called ‘critical
exponents’ in triglycine sulphate are entirely extrinsic and can be
eliminated by careful annealing and restored by irradiation.
Despite her pioneering work that ruled out true fluctuation-
dominated criticality, intrinsic critical exponents are still invoked
by ferroelectricians every year. Note that many hydrogen-bonded
systems are displacive and not order–disorder, contrary to the
conventional wisdom of the 1960s.

VOLTAGE-DRIVEN MOTT TRANSITIONS: NICKELATES
The nickelates merit102 further computational modelling to
describe their phase diagram in temperature and applied electric
field, since metal–insulator transitions can be driven by T or E. The
latter produces an attractive memory material (metallic =ON;
insulating =OFF). Since ab initio calculations now incorporate dc
fields, this would seem to be a high priority task. This system is
related to the (T, E) phase diagram for NaNO2 discussed below:

SODIUM NITRITE: NaNO2

A ferroelectric of great pedagogical value but no commercial
promise is sodium nitrite, NaNO2.

103,104 This simple five-atom
structure consists of linear arrays of NO2 molecules separated by
Na ions. It exhibits an order–disorder phase transition in which
the structure changes from (almost) all V-shaped polar NO2

molecules in the same direction to random orientation in the
paraelectric phase.
This system is notable in that it demonstrates clearly the

difference between an overdamped soft mode (displacive) and a
central mode due to disorder. A single vibrational normal mode,
consisting of oscillation of the rigid NO2 molecule over normal to
the polar a axis, creates two peaks in the dielectric response: one
is at a few hundred cm− 1 and arises from small-amplitude motion
of this mode; the other grows in intensity near Tc at frequency f= 0

and is due to very large amplitude flopping of the NO2 molecule
180° from +P to − P. Note: This is an ‘extra’ mode not accounted
for by conventional normal mode analysis, which permits three
degrees of freedom per ion; such normal mode vibrational
theories assume infinitesimally small amplitudes.
This system is a clear counter example to the view from others

that order–disorder and displacive ferroelectric phase transitions
have qualitatively similar soft-mode dynamics; we see that the
former has two dielectric peak frequencies for the same normal
mode coordinate, while for the latter case there is one. The
existence of two peak frequencies for one normal mode is
instructive for students and shows the limitations of standard
group-theory determined normal mode analysis for infrared or
Raman spectra near phase transformations.
In NaNO2 the paraelectric phase is separated from the

ferroelectric phase by a few degrees K, over which the NO2

molecules exhibit an incommensurate modulation in angle
from +a to − a.
The connection with voltage-drive phase transitions (e.g.,

nickelates) is that application of modest dc electric fields gives a
rich phase diagram for NaNO2, with for E along the polar a axis, a
critical end point. Thus, in switching studies, one must be careful
to keep fields low near Tc so as not to drive the system into a
different structural phase and not just a different domain
configuration. For ferroelectrics with an electric field along the
polar axis (termed the ‘conjugate field’) there is in general a critical
end point (as in pressure P–T diagrams in fluids), and one can go
continuously from a highly polar phase to a phase with almost
zero polarisation without crossing any phase boundaries. But in
NaNO2 with E along the polar a axis there is also a triple point
(paraelectric commensurate, incommensurate, and ferroelectric)
and a tricritical point at which the para- to ferroelectric transition
goes from first order to second order. And if the field is
applied perpendicular to the polar a axis (non-conjugate field),
there is a Lifshitz point, where two phases touch tangentially

Figure 3. Structure of Pb5Cr3F19. Figure 4. Structure of chiolites.
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(more precisely, in NaNO2 this Lifshitz point is not quite reached,
with a first-order transition coming at a slightly lower
temperature).
It would be a fine textbook example to model these phase

diagrams and four different kinds of critical point (critical end
point, triple point, tricritical point, and Lifshitz point) via
computational methods. Parenthetically I note that Ishibashi has
calculated105 unusual critical exponents at such ferroelectric
critical end points.

COMPLEX MULTIFERROICS
Three interesting families of magnetic ferroelectrics are the
chiolites (Figure 3), the elpasoites, and Pb5Cr3F19 (Figure 4). These
are reviewed in ref. 8.

SURFACE PHASES
It is known106–108 in BiFeO3 that at least three surface phase
transitions occur, including both those above ambient and below.
Modelling of these via computational techniques is highly
desirable, since device applications of BiFeO3 are apt to emphasize
thin films and surfaces.
In contrast to much other surface science work, the surface

phases measured in BiFeO3 do not appear to be simple 21/2

geometric reconstructions, but they have not yet been crystal-
lographically characterised with two-dimensional space group
symmetries.

ARTEFACTS: FERROELECTRICITY IN PIG’S AORTAS, PHONON
MODE SPLITTINGS DUE TO SECOND SOUND AND SO ON.
There are a lot of artefacts being published in the area of
ferroelectrics and multiferroics at present.109,110 In a way this
reflects the rapidly growing interest in the field, attracting
newcomers from unrelated areas on science. However, it produces
a lot of papers that are obviously silly: among these are reports
ferroelectricity in pig’s aortas (ferroelectricity is defined in a way
that requires voltage-driven switching and an acentric crystal, so it
cannot occur in noncrystalline matter); or vibrational mode
splitting of a doubly degenerate TA (transverse acoustic vibration)
in SrTiO3 interpreted as second sound. Second sound can be
observed in only one or two crystals, such as NaF, where it is
required that the Na and F have only one isotope. Even isotopic
mixtures, let alone vacancies or defects, produce so much
umklapp scattering that second sound predictions seem silly.
In ferroelectrics, like all science, Okham’s Razor must prevail: Don’t
make up far-fetched explanations for simple data; and in the case
of phonon splittings, the culprit is usually a structural phase
transition (tetragonal-triclinic in the case of SrTiO3).

111

SUMMARY
In summary this is not a review about computational physics from
a computational physicist; instead it is a perspective addressed to
computational physicists with a list of pitfalls to avoid and
suggestions for future directions. I hope it is helpful in looking in
the subtle areas listed. Technical points of emphasis include
antiferroelectric structures in antiferromagnets and the fact that
magnetostriction can induce several different structural phase
changes or none at all; finite-size effects and boundary conditions;
the Buyers–Cowley model of magnetoelectric coupling; and the
strong dependence of phase stability upon processing (PST,
InMnO3and so on).
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