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ABSTRACT
We discuss the effect of a conformally coupled Higgs field on conformal gravity (CG) pre-
dictions for the rotation curves of galaxies. The Mannheim–Kazanas (MK) metric is a valid
vacuum solution of CG’s fourth-order Poisson equation if and only if the Higgs field has a
particular radial profile, S(r) = S0 a/(r + a), decreasing from S0 at r = 0 with radial scale-
length a. Since particle rest masses scale with S(r)/S0, their world lines do not follow time-like
geodesics of the MK metric gμν , as previously assumed, but rather those of the Higgs-frame
MK metric g̃μν = �2 gμν , with the conformal factor �(r) = S(r)/S0. We show that the required
stretching of the MK metric exactly cancels the linear potential that has been invoked to fit
galaxy rotation curves without dark matter. We also formulate, for spherical structures with
a Higgs halo S(r), the CG equations that must be solved for viable astrophysical tests of CG
using galaxy and cluster dynamics and lensing.

Key words: gravitation – galaxies: kinematics and dynamics – cosmology: theory – dark
energy – dark matter.

1 IN T RO D U C T I O N

The need for dark matter and dark energy to reconcile Einstein’s
general relativity (GR) with observations, together with the lack
of other tangible evidence for their existence, motivates the study
of alternative gravity theories aiming to achieve similar success
without resort to the dark sector.

Conformal gravity (CG), like GR, employs a metric to describe
gravity as curved space–time. But the CG field equations, which
dictate how matter and energy generate space–time curvature, arise
from a local symmetry principle, conformal symmetry, which holds
for the strong, weak and electro-magnetic interactions, but is vio-
lated by GR. Conformal symmetry means that stretching the met-
ric by a factor �2(x), and scaling all other fields by appropriate
powers of �, has no physical effects. In particular, local confor-
mal transformations preserve all angles and the causal relations
among space–time events, but physical distances, time intervals,
and masses change, so that only local ratios of these quantities have
physical significance.

Unlike GR, and many related alternative gravity theories, terms
allowed in the CG action are highly restricted by the required confor-
mal symmetry. GR’s Einstein–Hilbert action adopts the Ricci scalar
R, leading to Einstein’s famous second-order field equations,

Gμν + � gμν = −8 π G Tμν , (1)

where Gμν = Rμν − (R/2) gμν is the Einstein tensor, G is New-
ton’s constant, and � is the cosmological constant. These terms
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are excluded in CG because � and G build in fundamental scales,
and R violates conformal symmetry. Instead the CG action allows
only conformally invariant scalars linked by dimensionless cou-
pling constants. R can appear if it is coupled to a scalar field S in

the particular conformally invariant combination S ;μ S;μ − R
6 S2 .

Particle rest masses cannot be fundamental, but may instead arise
through Yukawa couplings to the conformal Higgs field S. Like-
wise, the Higgs mass cannot be fundamental, but may arise through
dynamical symmetry breaking. Conformal invariance replaces Ein-
stein’s second-order field equations with the fourth-order CG field
equations (Mannheim & Kazanas 1989; Mannheim 2006),

4 αg Wμν = Tμν , (2)

where αg is a dimensionless coupling constant. The Bach tensor
Wμν and stress–energy tensor Tμν are both traceless, and scale as
�−4.

Despite their complexity, the fourth-order CG field equations
admit analytic solutions for systems with sufficient symmetry
(Mannheim 2006). For homogeneous and isotropic space–times
(Mannheim 2001), the Robertson–Walker metric is a solution with
Wμν = 0, providing a dynamical cosmological model identical
to that of GR, except that the Friedmann equation has a nega-
tive effective gravitational constant Geff = −3/4 π S2

0 , where S0

is the vacuum expectation value of a conformally coupled scalar
field with vacuum energy density λ S4

0 . This CG cosmology gives
an open universe, but it can fit luminosity distances from super-
novae (Mannheim 2003) and features cosmic acceleration with
0 < �� < 1, neatly solving the cosmological constant problem
without dark energy (Mannheim 2001, 2011; see also Nesbet 2011).
Growth of structure in CG cosmology is starting to be investigated
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Conformal gravity rotation curves 4123

(Mannheim 2012), but has not yet produced predictions for the
cosmic microwave background.

The plan of this paper is as follows: in Section 2, we review the
static spherical solutions that have been used with some success
(Mannheim 1993b, 1997; Mannheim & O’Brien 2012) to fit the
rotation curves of spiral galaxies, large and small. In Section 3, we
discuss the need for a conformally coupled Higgs field S(r), and
show that it makes a non-zero contribution to the source f(r) in
CG’s fourth-order Poisson equation unless it has a particular radial
profile S(r) = S0 a/(r + a). In Section 4, we stretch the Mannheim–
Kazanas (MK) metric with the conformal factor �S(r) = S(r)/S0,
and show that the linear potential used in previous fits to galaxy
rotation curves is effectively removed. In Section 5, we summarize
the coupled system of equations that must be solved in order to
make astrophysical tests of CG predictions for static spherically
symmetric structures. We summarize and conclude in Section 6.

2 STAT I C SP H E R I C A L S O L U T I O N S

For static and spherically symmetric space–time geometries, ana-
lytic solutions to CG include the MK metric (Mannheim & Kazanas
1989), an extension of GR’s Schwarzschild metric. Analytic so-
lutions are also available for charged and rotating black holes
(Mannheim & Kazanas 1991).

Comoving coordinates render Wμ
ν and T μ

ν diagonal, giving in
principle four CG field equations. But only two are independent,
given that spherical symmetry requires Wθ

θ = W
φ
φ , and the Bianchi

identities require a traceless Bach tensor, Wμ
μ = 0, and hence

T μ
μ = 0.
MK show that for any static spherically symmetric space–time,

a particular conformal transformation brings the metric into a stan-
dard form,1

ds2 = −B(r) dt2 + dr2

B(r)
+ r2 dθ2 + r2 sin2 θ dφ2 . (3)

We refer to this standard form, in which −g00 = 1/grr = B(r), as the
‘MK frame’.

With this metric ansatz, MK show that the CG field equations
boil down to an exact fourth-order Poisson equation for B(r):

3

B

(
W 0

0 − Wr
r

) = 1

r
(r B)′′′′ = 3

4 αg B

(
T 0

0 − T r
r

) ≡ f (r) , (4)

where ′ denotes d/dr, and f(r) is the CG source. Note that T 0
0 = −ρ

and T r
r = p for a perfect fluid (representing matter and radiation)

with energy density ρ and pressure p. We then require αg < 0 so
that a localized source with ρ − p > 0 generates attractive gravity.2

The remaining constraint can then be the third-order equation

Wr
r = 1 − B2

3 r4
+ 2 B B ′

3 r3
− B B ′′ + (

B ′)2

3r2

+B ′ B ′′ − B B ′′′

3 r
+ 2 B ′ B ′′′ − (

B ′′)2

12
= 1

4 αg

T r
r , (5)

which can be imposed as a boundary condition (Brihaye & Verbin
2009).

1 Here and henceforth, we adopt natural units, � = c = G = 1.
2 While Flanagan (2006) argues that CG is repulsive in the Newtonian limit,
Mannheim (2007) shows that this mistaken conclusion arises from a subtlety
in taking the Newtonian limit in isotropic coordinates, and that αg < 0 gives
locally attractive gravity in the Newtonian limit.

2.1 Vacuum solution: the MK metric

A source-free vacuum solution requires T 0
0 = T r

r , so that f(r) = 0.
Since(
rn+1

)′′′′ = (n + 1) n (n − 1) (n − 2) rn−3 (6)

vanishes for n = −1, 0, 1, and 2, the homogeneous fourth-order
Poisson equation then integrates four times to give

B(r) = w − 2 β

r
+ γ r − κ r2 , (7)

with four integration constants w, β, γ , and κ . The third-order
constraint 4 αg Wr

r = T r
r then gives

w2 = 1 − 6 β γ + 3 r4

4 αg

T r
r . (8)

For T r
r = 0, or T r

r ∝ r−4, this gives one constraint on the four
coefficients, leaving the metric with three parameters: β, γ , κ .

This MK metric matches the successes of GR’s Schwarzschild
metric in the classic Solar system tests, if we identify β = M
and require |βγ | � 1. The quadratic potential, −κ r2, embeds the
spherical structure into a curved space at large r.

2.2 Rotation curves

The MK metric’s linear potential, γ r, enjoys some success in fitting
galaxy rotation curves (Mannheim & O’Brien 2012). For circular
orbits, the rotation curve for the MK metric is

v2 ≡ r2 θ̇2

B
= d ln (|g00|)

d ln (|gθθ |) = r B ′

2 B
=

β

r
+ γ

2
r − κ r2

w − 2 β

r
+ γ r − κ r2

,

(9)

where dotted quantities denote time derivatives, e.g. θ̇ = dθ/dt .
Fig. 1 shows the metric potential B(r) and the corresponding rotation
curve v(r) for a compact point mass M = β = 1011M�. In the weak
field limit relevant to astrophysics, B ≈ 1, so that the three terms in
the numerator of equation (9) determine the shape of the velocity
curve. The Newtonian potential −2 β/r gives a Keplerian rotation
curve v2 = β/r. The linear potential γ r gives a rising rotation
curve v2 = γ r/2. A flat rotation curve resembling those observed
on the outskirts of large spiral galaxies (Rubin, Ford & Thonnard
1978) then corresponds to the transition between these regimes, at
r2 ∼ 2 β/γ , or r ∼ 19 kpc for the case in Fig. 1. The velocity at
the transition radius, v ≈ (2 β γ )1/4, can approximate the observed
Tully–Fisher relation v4 ∝ M (Tully & Fisher 1977), provided γ

has the right magnitude and is independent of β.
To fit the rising rotation curves observed in smaller dwarf galax-

ies, however, it is necessary to assume a relationship between γ and
M:

γ (M) = γ0 + γ�

(
M

M�

)
= γ0

(
1 + M

M0

)
, (10)

where M is the galaxy mass, γ 0 = 3.06 × 10−30 cm−1,
γ � = 5.42 × 10−41 cm−1, and M0 ≡ γ 0 M�/γ � = 5.6 × 1010M�.
This metric fits the rotation curves of a wide variety of spiral galax-
ies, replacing their individual dark matter haloes by just two free
parameters (Mannheim 1993b, 1997).

To justify this particular form, it is argued (Mannheim 1993b)
that γ 0 is generated by matter external to r while γ � is generated
by matter internal to r. This argument is plausible but in our view
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4124 K. Horne

Figure 1. Top panel: the MK metric potential B(r) =w − 2 β/r + γ r − κ r2

(blue curve) and the associated Higgs halo S(r) (red dashed) for a point mass
β = M = 1011M�, with the MK parameters (β,γ ,κ) used by Mannheim &
O’Brien (2012) to fit the rotation curves of spiral galaxies. Bottom panel:
circular orbit velocity curve v2 = r B′/2 B for the MK potential B(r) (black
curve), v2 =β/r B for the Newtonian potential (red dashed) and v2 = γ r/2 B
for the linear potential (blue dot–dashed). Three fiducial radii at transitions
between the Newtonian, linear, and quadratic potentials are also marked. The
rotation curve is relatively flat from 10 to 100 kpc as a result of cancelling
contributions from the three potentials. The potential B(r) has a maximum
at the watershed radius r = |γ /2 κ| ≈ 144 kpc, outside which there are no
stable circular orbits.

not really convincing until it becomes clearer how to calculate γ 0

given the external matter distribution in the expanding universe.
The most recent fits (Mannheim & O’Brien 2012) to a sam-

ple of 111 galaxies require invoking the quadratic potential
−κr2 to counter the rising γ r potential on the outskirts of
particularly large galaxies like Malin 1. The required scale,
−κ = 9.54 × 10−54 cm−2 ∼ (100 Mpc)−2, is plausibly identi-
fied with the observed size of typical structures in the cosmic web.
For the 1011M� point mass illustrated in Fig. 1, the transition from
rising linear to falling quadratic potential has the effect of extending
the relatively flat part of the rotation curve out to around 100 kpc,
and eliminating bound circular orbits outside the ‘watershed ra-
dius’ r = |γ /2 κ|1/2 = 144 kpc, where the potential B(r) reaches a
maximum.

2.3 Concerns about using the MK metric

Given the notable success of the MK metric in fitting a wide variety
galaxy rotation curves with just three parameters, it is tempting to
conclude that CG provides a simpler description of galaxy dynamics
than an alternative model with hundreds of individual dark matter
haloes.

However, the vacuum has a non-zero Higgs field, with radial
profile S(r). This raises two potential problems with using the MK
metric’s linear potential γ r to fit galaxy rotation curves. First, with
a non-constant S(r), test particles find their rest masses changing
with position, causing them to deviate from geodesics of the MK
metric (Mannheim 1993a; Wood & Moreau 2001). Secondly, if S(r)
fails to satisfy (1/S)′′ = 0, then f(r) is non-zero, causing the MK
coefficients w, β, γ , κ to be functions of r, and altering their radial
dependence within and outside extended mass distributions such as
galaxies and galaxy clusters.

The role of S(r) in sourcing B(r) has been previously investigated
(Mannheim 2007; Brihaye & Verbin 2009), but the best CG analysis
of galactic rotation curves to date (Mannheim & O’Brien 2012)
omits this effect, arguing that it is negligible. In our view conclusions
about the success of CG in fitting galaxy rotation curves are unsafe
unless it can be justified to neglect radial gradients in S(r). We
argue below that even though S(r) is very nearly constant, its radial
gradient is large enough to significantly alter predictions for galaxy
rotation curves, and moreover the effect on the rotation curve is to
cancel that of the linear potential.

Null geodesics (photon trajectories) are independent of confor-
mal transformations, and those of the MK metric are well studied
(Edery & Paranjape 1998; Pireaux 2004; Sultana & Kazanas 2012;
Villanueva & Olivares 2013). A major challenge to CG is that a
linear potential with γ r > 0 is needed to fit galaxy rotation curves,
and this produces light bending in the wrong direction, away from
the central mass rather than towards it, making it difficult to account
for observed gravitational lensing effects. However, since S(r) af-
fects B(r), analysis of lensing by extended sources like galaxies
and clusters must also include the Higgs halo. We show below that
the Higgs halo S(r) outside a point mass effectively eliminates the
γ r potential, so that rotation curves may no longer constrain the
sign of γ . We may then reconsider using γ < 0 when analysing
gravitational lensing effects.

3 C O N F O R M A L LY C O U P L E D H I G G S F I E L D

Vacuum solutions of GR, such as the Schwarzschild and Kerr
metrics, assume T μ

ν = 0, and the MK metric of CG assumes
f ∝ T 0

0 − T r
r = 0. However, the vacuum now has a Higgs field

S, for which T μ
ν and/or f may well not vanish. A family of analytic

solutions of GR with a conformally coupled scalar field (Wehus
& Ravndal 2007) includes the extreme Reissner–Nordström black
hole metric, with

B(r) =
(

1 − M

r

)2

, (11)

sourced by the scalar field profile

S(r) =
(

3

4 π

)1/2
M

r − M
. (12)

Below we discuss a similar solution for CG.
For the CG matter action

IM =
∫

d4x
√−gLM , (13)
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Conformal gravity rotation curves 4125

the Lagrangian density Mannheim (2007) is

LM = −σ

2

(
S ;α S;α − R

6
S2

)
− λ S4 − ψ̄ ( �D − μS) ψ . (14)

This features a Dirac four-spinor field ψ , with Dirac operator �D and
Yukawa coupling to the conformal Higgs field S with dimension-
less coupling constant μ. Note that a conformal factor � stretches
the volume element

√−g d4x by �4, so that conformal symmetry
requires LM ∝ �−4. With S ∝ �−1, conformal symmetry holds for
S ;α S;α − R S2/6, for the quartic self-coupling potential λ S4, and
as well for the fermion terms with ψ ∝ �−3/2. By rescaling S the
dimensionless parameter σ can be set to +1 for a ‘right-sign’ or −1
for a ‘wrong-sign’ scalar field kinetic energy.

Varying IM with respect to ψ gives the Dirac equation

�Dψ = μ S ψ , (15)

with the fermion mass m = μ S induced by Yukawa coupling. Vary-
ing IM with respect to S gives the second-order Higgs equation

S ;α
;α = 1√−g

(√−g gαβ S,β

)
,α

= −R
6

S + 4 λ

σ
S3 − μ

σ
ψ̄ ψ .

(16)

This is the Klein–Gordon equation in curved space–time, for a
massless scalar field S with a fermion source μ ψ̄ ψ/σ and a space–
time dependent ‘Mexican hat’ potential

V (S) = −R
12

S2 + λ

σ
S4 . (17)

Varying IM with respect to the metric gives the conformal stress–
energy tensor, with mixed components

T μ
ν ≡ 2√−g

gμα δIM

δgαν = T μ
ν (ψ) + σ T μ

ν (S) , (18)

where

T μ
ν (S) = 2

3
S ;μ S;ν − 1

3
S S ;μ

;ν − 1

6
S2 Rμ

ν

−δμ
ν

(
1

6
S ;α S;α − 1

3
S S ;α

;α − 1

12
R S2 + λ

σ
S4

)
. (19)

The trace

T α
α = ψ̄ �Dψ + σ

(
S S ;α

;α + 1

6
R S2

)
− 4 λ S4 (20)

vanishes by virtue of the Dirac and Higgs equations (15) and (16),
respectively.

For static spherically symmetric fermion fields, the stress–energy
tensor takes the form

T μ
ν (ψ) = diag (−ρ, pr , p⊥, p⊥) , (21)

with energy density ρ, radial pressure pr, and azimuthal pressure
p⊥. The Dirac equation (15) then gives

T α
α (ψ) = pr + 2 p⊥ − ρ = ψ̄ �Dψ = μS ψ̄ ψ . (22)

We can consider a Higgs field S(r, t), allowing for a possible time
dependence, with the understanding that the consequent stress–
energy tensor and gravitational source f(r) must be time indepen-
dent for the static spherical structures of primary interest here.
An example is a complex Higgs field with S ∝ e−i ω t, for which
(Ṡ)2 = −ω2 S2 and S̈ = −ω2 S.

Specializing to the MK metric, the Higgs equation (16) evaluates
as

S̈

B
= 1

r2

(
r2 B S ′)′ + R

6
S − 4 λ

σ
S3 + pr + 2 p⊥ − ρ

σ S
, (23)

with the Ricci scalar

R =
(
r2 B

)′′ − 2

r2 = 2 (w − 1)

r2 + 6 γ

r
− 12 κ . (24)

4 TH E H I G G S F R A M E

A conformal transformation � maps the Higgs field S to

S → S̃ = �−1 S . (25)

Transforming to the ‘Higgs frame’, where S̃ = S0, requires the
specific conformal factor �S(x) = S(x)/S0. In the static spherical
geometry, given any CG solution B(r) and S(r) in the MK frame,
where −g00 = 1/grr = B(r), we can ‘stretch’ the metric into the
Higgs frame:

gμν → g̃μν = �2 gμν =
(

S

S0

)2

gμν . (26)

In the Higgs frame, test particles have space–time independent rest
masses, m̃ = μS0, and thus they follow geodesics of this stretched
metric g̃μν , rather than those of the MK metric gμν .

4.1 Vacuum stability and spontaneous symmetry breaking

Using a tilde to denote the Higgs-frame counterparts of the MK-
frame Higgs and fermion fields, we have S̃ = �−1 S = S0, and ψ̃ =
�−3/2ψ = (S/S0)−3/2 ψ . The fermion stress–energy components
are then (ρ̃, p̃r , p̃⊥) = (ρ, pr , p⊥) (S/S0)−4. The MK-frame Higgs
equation is then

S̈

B
= 1

r2

(
r2 B S ′)′ + R

6
S − 4 λ̄ S3 , (27)

where we define

λ̄ ≡ λ

σ
+ ρ̃ − p̃r − 2p̃⊥

4σ S4
0

. (28)

Note that the fermions effectively strengthen the quartic Higgs self-
coupling constant. The corresponding Higgs potential is

V (S) = −R
12

S2 + λ̄ S4 = λ̄

(
S2 − R

24 λ̄

)2

− R2

576 λ̄
. (29)

A stable vacuum in the MK-frame requires λ̄ > 0, so that V(S)
is bounded from below. Spontaneous symmetry breaking to in-
duce non-zero fermion masses can then occur for positive curvature
R > 0. The minimum of V(S) occurs at S2 = R/24 λ̄. This gives
the vacuum energy density V (S) = −R2/576 λ̄ = −λ̄ S4.

Note that λ̄ > 0 and R > 0 are not required, however, since a
time-dependent S(r, t) in the MK frame corresponds to a constant
S0 in the Higgs frame.

4.2 Source-free solution: the BV metric

The source f(r) in CG’s fourth-order Poisson equation includes
both fermion and Higgs contributions (Mannheim 2007; Brihaye &
Verbin 2009):

4 αg f (r) = − 3

B
(ρ + pr ) − σ S3

((
1

S

)′′
+ 1

B2

(
1

S

)··)
. (30)

The Higgs field S(r, t) makes no explicit contribution to f(r), if and
only if it takes the specific form

S(r, t) = S0 t0 a

(t + t0) (r + a)
, (31)
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declining from S0 at time t = 0 and radius r = 0 with a time-scale
t0 and radial length-scale a. This holds for either sign σ .

The time dependence included here may have applications, for
example when embedding static spherical structures in an expanding
universe, with t0 ∼ 1/H0, or for a complex Higgs field varying as
S(r, t) = S(r) e−i ω t. We set t0 = ∞ to focus on static solutions.

Note in equation (30) that a static ‘Higgs halo’ S(r) makes a
contribution to f(r) that does not depend on B(r). Thus when S(r)
is known it is straightforward to integrate the fourth-order Poisson
equation (4) to determine the corresponding B(r). One cannot spec-
ify an arbitrary S(r), however, since B(r) appears in the Higgs equa-
tion (23) for S(r). Remarkably, the MK potential B(r) and source-
free S(r) do admit an analytic solution (Brihaye & Verbin 2009, as
we see below).

(Brihaye & Verbin 2009, BV) use numerical methods to inves-
tigate static spherical solutions of CG with various assumptions
about f(r). Among these BV identify one three-parameter analytic
solution with a source-free scalar field,

S(r) = S0 a

r + a
, (32)

for which the MK potential is

B(r) =
(

a + r

a

)2 (
1 − h̃

r̃(r)

)
− K r2

(
1 − h̃3

r̃3(r)

)
, (33)

where h̃ ≡ h a/(a + h), r̃ ≡ r a/(a + r), and K ≡ −2 λS2
0 . This

metric has a Schwarzschild-like horizon, with B(r) ∝ (r − h) van-
ishing at r = h.

Expanding equation (33) in powers of r, we can read off the three
independent MK parameters (β, γ , κ) in terms of the three BV
parameters (h, a, K):

2 β = h̃
(
1 − K h̃2

)
, (34)

γ = 1

a

(
2 − 3

h̃

a

(
1 − K h̃2

))
, (35)

κ = K − 1

a2

(
1 − h̃

a

(
1 − K h̃2

))
. (36)

From these one can verify that the constant term,

w = 1 − 3
h̃

a

(
1 − K h̃2

) = γ a − 1 = 1 − 6 β

a
, (37)

satisfies the Wr
r = 0 constraint w2 = 1 − 6 β γ . The inverse relations

are

a = 1 + w

γ
= 6 β

1 − w
, (38)

K = κ +
(

γ

1 + w

)2

− 2 β

(
γ

1 + w

)3

, (39)

and finally, the horizon radius h, where B(r) vanishes, is the smallest
positive real root of the cubic

0 = −2 β + w r + γ r2 − κ r3 . (40)

The MK and BV metrics are thus equivalent, representing the
same three-parameter source-free solution to the CG field equations.
However, as BV show, the Higgs field has a radial profile S(r).
Massive test particles therefore do not follow the time-like geodesics
of the MK metric.

Fortunately, since we know S(r), we know the conformal trans-
formation between the MK frame and the Higgs frame:

S = S0 a

r + a
→ S̃ = �−1 S = S0 , (41)

gμν → g̃μν = �2 gμν =
(

S

S0

)2

gμν =
(

a

r + a

)2

gμν . (42)

The stretched metric’s circumferential radius

r̃ ≡
√

|g̃θθ | = r S

S0
= r a

r + a
(43)

maps 0 < r < ∞ to 0 < r̃ < a. The stretched metric has

|g̃00| =
(

a

r + a

)2

B(r) = 1 − 2 M

r̃
− K r̃2 , (44)

featuring a Newtonian potential with mass

M = h

2

(
1 + K h2

)
(45)

embedded in an external space with curvature K. The conformal
transformation does not move the horizon at r = h, which remains
at r̃ = h̃.

Note, however, that while the original MK metric gμν has a linear
potential γ r, the corresponding Higgs-frame metric g̃μν has no term
in g̃00 linear in r̃ . Thus even though the Higgs field S(r) declines
only slightly from its central value S0, this has a significant effect on
the shape of the potential and the resulting rotation curve. With B
rising as B ≈ 1 + γ r, S falls as S/S0 ≈ 1 − γ r/2, so that S2 B lacks
a linear potential. While this result is demonstrated here for a point
mass, rather than for a more realistic extended source structure, it
indicates the potential danger when using the linear potential in the
MK metric to fit galaxy rotation curves.

Fig. 2 further illustrates this point by showing the Higgs-frame
potential (S/S0)2 B, and the corresponding rotation curve, for the
same 1011M� point mass as in Fig. 1. The Higgs field is constant,
by definition, in the Higgs frame. Because a ≈ 2/γ = 7.6 × 1010 pc
is by far the longest scale in the problem, r and r̃ = r a/(r + a)
are nearly identical, and the Higgs-frame mass M and curvature
K are essentially unchanged from their MK-frame counterparts β

and κ . The Higgs-frame potential (S/S0)2 B retains the Newtonian
potential −2 β/r̃ and the quadratic potential −κ r̃2, but lacks a
linear potential term. The rotation curve thus follows a Keplerian
profile out to ∼20 kpc, bending down as the quadratic potential
takes hold, and the watershed radius, where −g̃00 = (S/S0)2 B has
a maximum, is now at r̃ = |β/κ|1/3 = 37.5 kpc.

5 A STRO PHYSI CAL TESTS

To really test CG with astrophysical observations is considerably
harder than simply using geodesics of the MK metric with B(r)
sourced by matter. The source f(r) in CG’s fourth-order Poisson
equation must include contributions from the Higgs halo S(r),
in addition to those from the matter (+radiation) energy density
ρ(r) and pressure p(r). These are specified in the Higgs frame,
ρ̃(r̃) and p̃(r̃), and moved to the MK frame using r̃ = r S(r)/S0,
ρ(r) = (S/S0)4 ρ̃(r̃), and p(r) = (S/S0)4 p̃(r̃). For example, to
model spherical structures similar to the matter distribution in galax-
ies and clusters, it may be appropriate to adopt a Hearnquist profile
(Hearnquist 1990)

ρ̃(r̃) = ρ0

x (x + 1)3 , (46)

with x = r̃/r0 in units of the scale radius r0, and with ρ0 =
M/(2 π r3

0 ) for total mass M. The enclosed mass profile is

M(r̃) = M

(
x

x + 1

)2

. (47)
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Conformal gravity rotation curves 4127

Figure 2. Same as in Fig. 1 but after a conformal transformation
�(r) = S(r)/S0 stretches the geometry from the MK frame, where
B(r) = −g00 = 1/grr, to the Higgs frame, where the Higgs field is con-
stant. The Higgs-frame potential B̃ ≡ (S/S0)2 B has a maximum at the
watershed radius r̃ ≡ (S/S0) r = |β/κ|1/2 ≈ 37.5 kpc, outside which there
are no stable circular orbits. Note that B(r) has a rising linear potential γ r,
but this is effectively cancelled by the decline in S2, so that the rotation curve
is Keplerian out to ∼20 kpc.

This Hearnquist profile ρ̃(r̃) is specified in the Higgs frame, then
scaled by (S/S0)4 for use in the MK frame where the fourth-order
Poisson equation and second-order Higgs equation are more easily
solved.

In the MK frame, B(r) and S(r) satisfy their equations of motion.
The fourth-order Poisson equation for B(r),

4 αg

r
(r B)′′′′ = −σ S3

((
1

S

)′′
+ 1

B2

(
1

S

)··)

− 3

B

(
S

S0

)4

(ρ̃ + p̃) ≡ 4 αg f (r), (48)

is convenient because solutions of the form

B(r) = w(r) − 2 β(r)

r
+ γ (r) r − κ(r) r2 (49)

can be found for extended sources f(r) by integrating first-order
equations, with appropriate boundary conditions:

β ′ = r4

12
f (r) , β(0) = β0 , (50)

γ ′ = − r2

2
f (r) , γ (0) = γ0 , (51)

κ ′ = − r

6
f (r) , κ(∞) = κ∞ , (52)

w′ = r3

2
f (r) , w2(r) = 1 − 6 β(r) γ (r) + 3 r4

4 αg

T r
r (r) . (53)

The MK parameters, β(r), γ (r), κ(r), w(r), are then internal and/or
external moments of f(r). For non-singular structures, appropriate
boundary conditions at the origin are β(0) = 0 and γ (0) = 0, though
non-zero values may also be chosen for an unresolved central source
such as a nucleon, a star, or a black hole. The curvature of the
external three-space is set by κ(∞). The third-order constraint on
w can be set any radius where T r

r is known.
Note that even for an extended source f(r), the first three deriva-

tives of B(r) evaluate as if the MK parameters were r-independent.
For example:

B ′ = 2 β

r2
+ γ − 2 κ r − 2 β ′

r
+ w′ + γ ′ r − κ ′ r2

= 2 β

r2
+ γ − 2 κ r +

(
−1

6
+ 1

2
− 1

2
+ 1

6

)
r3 f . (54)

As a consequence, the Ricci scalar remains

R = 2 (w(r) − 1)

r2 + 6 γ (r)

r
− 12 κ(r) , (55)

and the third-order constraint remains

Wr
r = w(r)2 + 6 β(r) γ (r) − 1

3 r4 = 1

4 αg

T r
r . (56)

Here, T r
r includes radial pressure from both matter (+radiation) and

from the Higgs halo,

T r
r = p̃r

(
S

S0

)4

+ σ T r
r (S) , (57)

with the Higgs halo contribution being,

T r
r (S) =

(
Ṡ
)2 − 2 S S̈

6 B
+ B

2

(
S ′)2 + S S ′

6

(
B ′ + 4 B

r

)

+S2

6

(
B ′

r
+ B − 1

r2

)
− λ

σ
S4. (58)

Because f(r) depends on B(r) and S(r), the moment integrals for
B(r) must be iterated along with solving the second-order MK-frame
Higgs equation for S(r):

S̈

B
= 1

r2

(
r2 B S ′)′ + R

6
S − 4

(
λ

σ
+ ρ̃ − p̃r − 2 p̃⊥

4σ S4
0

)
S3,

(59)

with boundary conditions S(0) = S0 and S′(0) = S1.
Having solved for B(r) and S(r) in the MK frame, we move back

to the Higgs frame, and use geodesics of the resulting Higgs-frame
metric g̃μν = (S(r)/S0)2 gμν to test CG in three ways:

(1) galaxy rotation curves;
(2) galaxy cluster potentials probed by X-ray gas;
(3) lensing by galaxies and galaxy clusters.

For example, the circular orbit rotation curve is

v2 = d ln (|g̃00|)
d ln (|g̃θθ |) = d ln

(
S B1/2

)
d ln (S r)

= v2
B + v2

S

1 + v2
S

, (60)
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where

v2
B = r B ′

2 B
=

β

r
+ γ

2
r − κ r2

w − 2 β

r
+ γ r − κ r2

(61)

is the rotation curve arising from the MK potential B(r), as used
by Mannheim & O’Brien (2012), and v2

S ≡ r S ′/S implements the
corrections arising from the Higgs halo profile S(r).

One of the objections to CG is that for the MK metric with
γ > 0 the linear potential causes light rays to bend away from
the point mass, rather than towards it. But our results show that a
rising MK-frame potential B(r) is compensated by a corresponding
decline in the Higgs halo S(r). In light of this, the galaxy rotation
curves may not in fact require γ > 0, and we may now reconsider
adjusting the strength and sign of the linear potential when testing
CG predictions for gravitational bending of light rays. It remains to
be shown whether the effect of an extended source f(r) appropriate
to modelling galaxies and clusters can fit the light bending angles
from lensing as well as the flat rotation curves. We hope to address
this in future work.

6 C O N C L U S I O N S

The fourth-order field equations of CG have vacuum solutions that
augment the Schwarzschild metric with linear and quadratic poten-
tials (Mannheim & Kazanas 1989). This MK metric has been used
to fit the rotation curves of a wide variety of galaxies with only three
free parameters (Mannheim & O’Brien 2012).

We highlight two potential problems with using geodesics of the
MK metric to study rotation curves of galaxies. First, the MK metric
is a source-free solution to CG’s fourth-order Poisson equation,
but the conformally coupled Higgs field makes an extended halo
S(r) that also contributes to the gravitational source unless it has a
specific radial profile, S(r) = S0 a/(r + a). Secondly, since particle
masses scale with the Higgs field, the Higgs halo S(r) pushes test
particles off geodesics of the MK metric.

To address these issues, we note that a conformal factor
�(r) = S(r)/S0 stretches the metric to a form that makes the Higgs
field constant. Test particles then follow geodesics of this stretched
‘Higgs-frame’ metric.

For the analytic solution to the source-free CG equations (Brihaye
& Verbin 2009), which is equivalent to the MK metric, we find that
the effect of stretching the metric to the Higgs frame is to eliminate
the linear potential that is used to fit galaxy rotation curves. Thus, the
remarkable results of Mannheim & O’Brien (2012), using geodesics
of the MK metric to fit a large variety of galaxy rotation curves with
just three parameters, may be testing an empirical model rather than
the actual CG predictions.

We collect the equations and outline the procedure for astro-
physical tests of CG in static spherical geometries. Specifically, the
sources for CG’s fourth-order Poisson equation include not only
the energy density and pressure of distributed matter (stars+gas),
and radiation if relevant, but also the associated Higgs halo S(r).
The resulting MK metric gμν must then be ‘stretched’ to the Higgs
frame metric g̃μν = (S/S0)2 gμν . The Higgs-frame geodesics then
provide predictions for testing CG against observations.
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