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Abstract

J.M. Howie, the influential St Andrews semigroupist, claimed that we value an area
of pure mathematics to the extent that (a) it gives rise to arguments that are deep
and elegant, and (b) it has interesting interconnections with other parts of pure
mathematics.

This paper surveys some recent results on the transformation semigroup gener-
ated by a permutation group G and a single non-permutation a. Our particular
concern is the influence that properties of G (related to homogeneity, transitivity
and primitivity) have on the structure of the semigroup. In the first part of the
paper, we consider properties of S = 〈G, a〉 such as regularity and generation. The
second is a brief report on the synchronization project, which aims to decide in
what circumstances S contains an element of rank 1. The paper closes with a list
of open problems on permutation groups and linear groups, and some comments
about the impact on semigroups are provided.

These two research directions outlined above lead to very interesting and chal-
lenging problems on primitive permutation groups whose solutions require combin-
ing results from several different areas of mathematics, certainly fulfilling both of
Howie’s elegance and value tests in a new and fascinating way.

1 Regularity and generation

1.1 Introduction

How can group theory help the study of semigroups?
If a semigroup has a large group of units, we can apply group theory to it. But

there may not be any units at all! According to a widespread (but never properly

proved) belief, lim
n→∞

z(n)

s(n)
= 1, where z(n) is the number of 3-nilpotent semigroups

of order n (semigroups with zero satisfying xyz = 0), and s(n) is the number
of semigroups of order n. Roughly speaking, this conjecture (which is for sure
true!) implies that almost all finite semigroups have only one idempotent, which
is a zero (see [25] and [18]). This observation, however, should not deter us from
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the general goal of investigating how the group of units shapes the structure of the
semigroup. There are many families of finite semigroups with group of units. In
addition, some of those families of semigroups are interesting enough to keep many
mathematicians busy their entire lives; in fact a unique family of finite semigroups,
the endomorphism semigroups of vector spaces over finite fields, has been keeping
experts in linear algebra busy for more than a century.

Regarding the general question of how the group of units can shape the structure
of the semigroup, an especially promising area is the theory of transformation
semigroups, that is, semigroups of mappings Ω → Ω (subsemigroups of the full
transformation semigroup T (Ω), where Ω := {1, . . . , n}). This area is especially
promising for two reasons. First, in a transformation semigroup S, the units are
the permutations; if there are any, they form a permutation group G and we can
take advantage of the very deep recent results on them, chiefly the classification of
finite simple groups (CFSG). Secondly, even if there are no units, we still have a
group to play with, the normaliser of S in Sym(Ω), the set of all permutations g
such that g−1Sg = S.

The following result of Levi and McFadden [28] is the prototype for results of
this kind. Let Sn and Tn denote the symmetric group and full transformation
semigroup on Ω := {1, 2, . . . , n}.

Theorem 1.1 Let a ∈ Tn \ Sn, and let S be the semigroup generated by the con-
jugates g−1ag for g ∈ Sn. Then

(a) S is idempotent-generated;

(b) S is regular;

(c) S = 〈a, Sn〉 \ Sn.

In other words, semigroups of this form, with normaliser Sn, have very nice
properties!

Inspired by this result, we could formulate a general problem:

Problem 1.2 (a) Given a semigroup property P, for which pairs (a,G), with
a ∈ Tn \ Sn and G ≤ Sn, does the semigroup 〈g−1ag : g ∈ G〉 have property
P?

(b) Given a semigroup property P, for which pairs (a,G) as above does the semi-
group 〈a,G〉 \G have property P?

(c) For which pairs (a,G) are the semigroups of the preceding parts equal?

The following portmanteau theorem lists some previously known results on this
problem. The first part is due to Levi [26], the other two to Araújo, Mitchell and
Schneider [8].

Theorem 1.3 (a) For any a ∈ Tn \ Sn the semigroups 〈g−1ag : g ∈ Sn〉 and
〈g−1ag : g ∈ An〉 are equal.

(b) 〈g−1ag : g ∈ G〉 is idempotent-generated for all a ∈ Tn \ Sn if and only if
G = Sn or G = An or G is one of three specific groups of low degrees.
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(c) 〈g−1ag : g ∈ G〉 is regular for all a ∈ Tn \Sn if and only if G = Sn or G = An

or G is one of eight specific groups of low degrees.

Recently, we have obtained several extensions of these results. The first theorem
is proved in [3].

Theorem 1.4 Given k with 1 ≤ k ≤ n/2, the following are equivalent for a sub-
group G of Sn:

(a) for all rank k transformations a, a is regular in 〈a,G〉;
(b) for all rank k transformations a, 〈a,G〉 is regular;

(c) for all rank k transformations a, a is regular in 〈g−1ag : g ∈ G〉;
(d) for all rank k transformations a, 〈g−1ag : g ∈ G〉 is regular.

Moreover, we have a complete list of the possible groups G with these properties for
k ≥ 5, and partial results for smaller values.

It is worth pointing out that in the previous theorem the equivalence between
(a) and (c) is not new (it appears in [27]). Really surprising, and a great result that
semigroups owe to the classification of finite simple groups, are the equivalences
between (a) and (b), and between (c) and (d).

The four equivalent properties above translate into a transitivity property of G
which we call the k-universal transversal property, which we will describe in the
Subsection 1.3.

In the framework of Problem 1.2, let P be the following property: the pair (a,G),
with a ∈ Tn \ Sn and G ≤ Sn, satisfies 〈a,G〉 \G = 〈a, Sn〉 \ Sn.

The classification of the pairs (a,G) with this property poses a very interesting
group theoretical problem. Recall that the rank of a map a ∈ Tn is |Ωa| and the ker-
nel of a is ker(a) := {(x, y) ∈ Ω2 | xa = ya}; by the usual correspondence between
equivalences and partitions, we can identify ker(a) with a partition {A1, . . . , Ak}.
Suppose |Ω| > 2 and we have a rank 2 map a ∈ Tn. It is clear that g−1a ∈ 〈a, Sn〉,
for all g ∈ Sn. In addition, if ker(a) = {A1, A2}, then ker(g−1a) = {A1g,A2g}.
Therefore, in order to classify the groups with property P above we need to find
the groups G such that

{{A1, A2}g | g ∈ G} = {{A1, A2}g | g ∈ Sn}. (1)

If |A1| < |A2|, this is just |A1|-homogeneity; but if these two sets have the same
size, the property is a little more subtle.

Extending this analysis, we see that the group-theoretic properties we need to
investigate are transitivity on ordered partitions of given shape (this notion was
introduced by Martin and Sagan [32] under the name partition-transitivity) and
the weaker notion of transitivity on unordered partitions of given shape. This is
done in Section 1.4, where we indicate the proof of the following theorem from [1].

Theorem 1.5 We have a complete list (in terms of the rank and kernel type of a)
for pairs (a,G) for which 〈a,G〉 \G = 〈a, Sn〉 \ Sn.
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As we saw, the semigroups 〈a, Sn〉 \ Sn have very nice properties. In particular,
the questions of calculating their automorphisms and congruences, checking for
regularity, idempotent generation, etc., are all settled. Therefore the same happens
for the groups G and maps a ∈ Tn \ Sn such that 〈a,G〉 \G = 〈a, Sn〉 \ Sn, and all
these pairs (a,G) have been classified.

Another long-standing open question was settled by the following theorem, from
[5].

Theorem 1.6 The semigroups 〈a,G〉 \ G and 〈g−1ag : g ∈ G〉 are equal for all
a ∈ Tn \ Sn if and only if G = Sn, or G = An, or G is the trivial group, or G is
one of five specific groups.

Problem 1.7 It would be good to have a more refined version of this where the
hypothesis refers only to all maps of rank k, or just a single map a.

1.2 Homogeneity and related properties

A permutation group G on Ω is k-homogeneous if it acts transitively on the set
of k-element subsets of Ω, and is k-transitive if it acts transitively on the set of
k-tuples of distinct elements of Ω.

It is clear that k-homogeneity is equivalent to (n−k)-homogeneity, where |Ω| = n;
so we may assume that k ≤ n/2. It is also clear that k-transitivity implies k-
homogeneity.

We say that G is set-transitive if it is k-homogeneous for all k with 0 ≤ k ≤ n.
The problem of determining the set-transitive groups was posed by von Neumann
and Morgenstern [33] in the first edition of their influential book on game theory.
In the second edition, they refer to an unpublished solution by Chevalley, but the
first published solution was by Beaumont and Peterson [10]. The set-transitive
groups are the symmetric and alternating groups, and four small exceptions with
degrees 5, 6, 9, 9.

In an elegant paper in 1965, Livingstone and Wagner [30] showed:

Theorem 1.8 Let G be k-homogeneous, where 2 ≤ k ≤ n/2. Then

(a) G is (k − 1)-homogeneous;

(b) G is (k − 1)-transitive;

(c) if k ≥ 5, then G is k-transitive.

In particular, part (a) of this theorem is proved by a short argument using char-
acter theory of the symmetric group. This can be translated into combinatorics,
and generalised to linear and affine groups: see Kantor [23].

The k-homogeneous but not k-transitive groups for k = 2, 3, 4 were determined
by Kantor [21, 22]. All this was pre-CFSG.

The k-transitive groups for k > 1 are known, but the classification uses CFSG.
Lists can be found in various references such as [11, 15].
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1.3 The k-universal transversal property

Let G ≤ Sn, and k an integer smaller than n.
The group G has the k-universal transversal property, or k-ut for short, if for

every k-element subset S of {1, . . . , n} and every k-part partition P of {1, . . . , n},
there exists g ∈ G such that Sg is a transversal or section for P : that is, each part
of P intersects Sg in a single point.

Theorem 1.9 For k ≤ n/2, the following are equivalent for a permutation group
G ≤ Sn:

(a) for all a ∈ Tn \ Sn with rank k, a is regular in 〈a,G〉;
(b) G has the k-universal transversal property.

In order to get the surprising equivalence (noted after Theorem 1.4) of “a is
regular in 〈a,G〉” and “〈a,G〉 is regular”, we need to know that, for k ≤ n/2,
a group with the k-ut property also has the (k − 1)-ut property. This fact, the
analogue of Theorem 1.8(a), is not at all obvious.

We go by way of a related property: G is (k − 1, k)-homogeneous if, given any
two subsets A and B of {1, . . . , n} with |A| = k−1 and |B| = k, there exists g ∈ G
with Ag ⊆ B.

Now the k-ut property implies (k − 1, k)-homogeneity. (Take a partition with k
parts, the singletons contained in A and all the rest. If Bg is a transversal for this
partition, then Bg ⊇ A, so Ag−1 ⊆ B.)

The bulk of the argument involves these groups. We show that, if 3 ≤ k ≤
(n− 1)/2 and G is (k − 1, k)-homogeneous, then either G is (k − 1)-homogeneous,
or G is one of four small exceptions (with k = 3, 4, 5 and n = 2k − 1).

It is not too hard to show that such a group G must be transitive, and then
primitive. Now careful consideration of the orbital graphs shows that G must be 2-
homogeneous, at which point we invoke the classification of 2-homogeneous groups
(a consequence of CFSG).

One simple observation: ifG is (k−1, k)-homogeneous but not (k−1)-homogeneous
of degree n, then colour one G-orbit of (k − 1)-sets red and the others blue; by
assumption, there is no monochromatic k-set, so n is bounded by the Ramsey num-
ber R(k − 1, k, 2). The values R(2, 3, 2) = 6 and R(3, 4, 2) = 13 are useful here;
R(4, 5, 2) is unknown, and in any case too large for our purposes.

Now we return to considering the k-ut property.
First, we note that the 2-ut property says that every orbit on pairs contains

a pair crossing between parts of every 2-partition; that is, every orbital graph is
connected. By Higman’s Theorem, this is equivalent to primitivity.

For 2 < k < n/2, we know that the k-ut property lies between (k − 1)-
homogeneity and k-homogeneity, with a few small exceptions. In fact k-ut is equiv-
alent to k-homogeneous for k ≥ 6; we classify all the exceptions for k = 5, but for
k = 3 and k = 4 there are some groups we are unable to resolve (affine, projective
and Suzuki groups), which pose interesting problems (see Problems 3.1 and 3.2).

For large k we have:
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Theorem 1.10 For n/2 < k < n, the following are equivalent:

(a) G has the k-universal transversal property;

(b) G is (k − 1, k)-homogeneous;

(c) G is k-homogeneous.

In the spirit of Livingstone and Wagner, we could ask:

Problem 1.11 Without using CFSG, show any or all of the following implica-
tions:

(a) k-ut implies (k − 1)-ut for k ≤ n/2;

(b) (k − 1, k)-homogeneous implies (k − 2, k − 1)-homogeneous for k ≤ n/2;

(c) k-ut (or (k − 1, k)-homogeneous) implies (k − 1)-homogeneous for k ≤ n/2.

1.4 Partition transitivity and homogeneity

Let λ be a partition of n (a non-increasing sequence of positive integers with sum
n). A partition of {1, . . . , n} is said to have shape λ if the size of the ith part is
the ith part of λ.

The group G is λ-transitive if, given any two (ordered) partitions of shape λ,
there is an element of G mapping each part of the first to the corresponding part
of the second. (This notion is due to Martin and Sagan [32].) Moreover, G is λ-
homogeneous if there is an element of G mapping the first partition to the second
(but not necessarily respecting the order of the parts).

Of course λ-transitivity implies λ-homogeneity, and the converse is true if all
parts of λ are distinct. If λ = (n−t, 1, . . . , 1), then λ-transitivity and λ-homogeneity
are equivalent to t-transitivity and t-homogeneity.

The connection with semigroups is given by the next result, from [1]. Let G be
a permutation group, and a ∈ Tn \Sn, where r is the rank of a, and λ the shape of
the kernel partition.

Theorem 1.12 For G ≤ Sn and a ∈ Tn \ Sn, the following are equivalent:

(a) 〈a,G〉 \G = 〈a, Sn〉 \ Sn;

(b) G is r-homogeneous and λ-homogeneous.

So we need to know the λ-homogeneous groups. First, we consider λ-transitive
groups.

If the largest part of λ is greater than n/2 (say n− t, where t < n/2), then G is
λ-transitive if and only if it is t-homogeneous and the group H induced on a t-set
by its setwise stabiliser is λ′-transitive, where λ′ is λ with the part n− t removed.

So if G is t-transitive, then it is λ-transitive for all such λ.
If G is t-homogeneous but not t-transitive, then t ≤ 4, and examination of the

groups in Kantor’s list gives the possible λ′ in each case.
So what remains is to show that, if G is λ-transitive but not Sn or An, then λ

must have a part greater than n/2.
If λ 6= (n), (n− 1, 1), then G is primitive.
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If n ≥ 8, then by Bertrand’s Postulate, there is a prime p with n/2 < p ≤ n− 3.
If there is no part of λ which is at least p, then the number of partitions of shape λ
(and hence the order of G) is divisible by p. A theorem of Jordan (see Wielandt [40],
Theorem 13.9) now shows that G is symmetric or alternating.

The classification of λ-homogeneous but not λ-transitive groups is a bit harder.
We have to use

(a) a little character theory to show that either G fixes a point and is transitive
on the rest, or G is transitive;

(b) the argument using Bertrand’s postulate and Jordan’s theorem as before;

(c) CFSG (to show that G cannot be more than 5-homogeneous if it is not Sn
or An).

The outcome is a complete list of such groups.

1.5 Normalising groups

We define a permutation group G to be normalising if 〈g−1ag : g ∈ G〉 = 〈a,G〉\G
for all a ∈ Tn \ Sn.

The classification of normalising groups given by Theorem 1.6 is a little different;
although permutation group techniques are essential in the proof, we didn’t find a
simple combinatorial condition on G which is equivalent to this property. We will
not discuss it further here.

2 Synchronization

2.1 Introduction

In this section, we give a brief report on synchronization.
A (finite deterministic) automaton consists of a finite set Ω of states and a finite

set of maps from Ω to Ω called transitions, which may be composed freely.
In other words, it is a transformation semigroup with a distinguished set of

generators.
An automaton is synchronizing if there is a map of rank 1 (image of size 1) in

the semigroup. A word in the generators expressing such a map is called a reset
word.

We will also call a transformation semigroup synchronizing if it contains an
element of rank 1.

Example 2.1 This example has four (numbered) states, and two transitions A
and B, shown as double and single lines respectively.
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The reader can check easily that, irrespective of the starting state, following the
path BAAABAAAB always ends in state 2, and hence this is a reset word of
length 9. In fact, this is the shortest reset word.

The Černý Conjecture asserts that if an n-state automaton is synchronizing,
then it has a reset word of length at most (n− 1)2. The above example, with the
square replaced by an n-gon, shows that this would be best possible. The problem
has been open for about 45 years. The best known bound is cubic.

It is known that testing whether an automaton is synchronizing is in P, but
finding the length of the shortest reset word is NP-hard.

2.2 Graph homomorphisms and transformation semigroups

All graphs here are undirected simple graphs (no loops or multiple edges).
A homomorphism from a graph X to a graph Y is a map f from the vertex set

of X to the vertex set of Y which carries edges to edges. (We don’t specify what
happens to a non-edge; it may map to a non-edge, or to an edge, or collapse to a
vertex.) An endomorphism of a graph X is a homomorphism from X to itself.

Let Kr be the complete graph with r vertices. The clique number ω(X) of X is
the size of the largest complete subgraph, and the chromatic number χ(X) is the
least number of colours required for a proper colouring of the vertices (adjacent
vertices getting different colours).

(a) There is a homomorphism from Kr to X if and only if ω(X) ≥ r.
(b) There is a homomorphism from X to Kr if and only if χ(X) ≤ r.

There are correspondences in both directions between graphs and transformation
semigroups (not quite functorial, or a Galois correspondence, sadly!)

First, any graph X has an endomorphism semigroup End(X).
In the other direction, given a transformation semigroup S on Ω, its graph Gr(S)

has Ω as vertex set, two vertices v and w being joined if and only if there is no
element of S which maps v and w to the same place.

(a) Gr(S) is complete if and only if S ≤ Sn;

(b) Gr(S) is null if and only if S is synchronizing;

(c) S ≤ End(Gr(S)) for any S ≤ Tn;
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(d) ω(Gr(S)) = χ(Gr(S)); this is equal to the minimum rank of an element of S.

Now the main theorem of this section describes the unique obstruction to syn-
chronization for a transformation semigroup.

Theorem 2.2 A transformation semigroup S on Ω is non-synchronizing if and
only if there is a non-null graph X on the vertex set Ω with ω(X) = χ(X) and
S ≤ End(X).

In the reverse direction, the endomorphism semigroup of a non-null graph cannot
be synchronizing, since edges can’t be collapsed. In the forward direction, take
X = Gr(S); there is some straightforward verification to do. (For details see [4].)

2.3 Maps synchronized by groups

Let G ≤ Sn and a ∈ Tn\Sn. We say that G synchronizes a if 〈a,G〉 is synchronizing.
By abuse of language, we say that G is synchronizing if it synchronizes every

element of Tn \ Sn.
Our main problem is to determine the synchronizing groups. From the theorem,

we see that G is non-synchronizing if and only if there is a G-invariant graph whose
clique number and chromatic number are equal.

Rystsov [36] showed the following result, which implies that synchronizing groups
are necessarily primitive.

Theorem 2.3 A permutation group G of degree n is primitive if and only if it
synchronizes every map of rank n− 1.

We give a brief sketch of the proof, to illustrate the graph endomorphism tech-
nique. The backward implication is trivial; so suppose, for a contradiction, that
G is primitive but fails to synchronize the map a of rank n − 1. Then there are
two points x, y with xa = ya, and a is bijective on the remaining points. Choose
a graph X with 〈G, a〉 ≤ End(X). Note that X is a regular graph. Since a is an
endomorphism, x and y are non-adjacent; so a maps the neighbours of x bijectively
to the neighbours of xa, and similarly the neighbours of y to those of ya. Since
xa = ya, we see that x and y have the same neighbour set. Now “same neighbour
set” is an equivalence relation preserved by G, contradicting primitivity.

So a synchronizing group must be primitive.
We have recently improved this: a primitive group synchronizes every map of

rank n − 2. The key tool in the proof is graph endomorphisms. Also, a primitive
group synchronizes every map of kernel type (k, 1, . . . , 1). For both results, and
further information, see [4].

Also, G is synchronizing if and only if there is no G-invariant graph, not complete
or null, with clique number equal to chromatic number. For more on this see
[9, 13, 34, 35, 36, 38, 39]. Thus, a 2-homogeneous group is synchronizing, and
a synchronizing group is primitive. For if G is 2-transitive, the only G-invariant
graphs are complete or null; and if G is imprimitive, then it preserves a complete
multipartite graph.
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Furthermore, a synchronizing group is basic in the O’Nan–Scott classification,
that is, not contained in a wreath product with the product action. (For non-basic
primitive groups preserve Hamming graphs, which have clique number equal to
chromatic number.) By the O’Nan–Scott Theorem, such a group is affine, diagonal
or almost simple.

None of the above implications reverses. Indeed, there are non-synchronizing
basic groups of all three O’Nan–Scott types.

We are a long way from a classification of synchronizing groups. The attempts
to classify them lead to some interesting and difficult problems in extremal combi-
natorics, finite geometry, computation, etc. But that is another survey paper! We
content ourselves here with a single result about an important class of primitive
groups, namely the classical symplectic, orthogonal and unitary groups, acting on
their associated polar spaces. The implicit geometric problem has not been com-
pletely solved, despite decades of work by finite geometers. We refer to Thas [37]
for a survey.

Theorem 2.4 A classical group, acting on the points of its associated polar space,
is non-synchronizing if and only if the polar space possesses either an ovoid and a
spread, or a partition into ovoids.

2.4 A conjecture

We regard the following as the biggest open problem in the area. A map a ∈ Tn is
non-uniform if its kernel classes are not all of the same size.

Conjecture 2.5 A primitive permutation group synchronizes every non-uniform
map.

We have some partial results about this but are far from a proof!

3 Problems

In addition to the problems included above, we collect here a number of problems
on the general interplay between properties of the group of units and properties of
the semigroup containing it.

We start by proposing a problem to experts in number theory. If this problem
can be solved, the results on AGL(1, p), in [3], will be dramatically sharpened.

Problem 3.1 Classify the prime numbers p congruent to 11 (mod 12) such that
for some c ∈ GF(p)∗ we have |〈−1, c, c− 1〉| < p− 1.

The primes less than 500 with this property are 131, 191, 239, 251, 311, 419,
431, and 491.

Problem 3.2 Do the Suzuki groups Sz(q) have the 3-universal transversal prop-
erty?
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Classify the groups G that have the 4-ut property, when PSL(2, q) ≤ G ≤
PΓL(2, q), with either q prime (except PSL(2, q) for q ≡ 1 (mod 4), which is not
3-homogeneous), or q = 2p for p prime.

A group G ≤ Sn has the (n − 1)-universal transversal property if and only if it
is transitive. And 〈a,G〉 (for a rank n− 1 map a) contains all the rank n− 1 maps
of Tn if and only if G is 2-homogeneous. In this last case 〈a,G〉 is regular for all
a ∈ Tn, because 〈a,G〉 = {b ∈ Tn | |Ωb| ≤ n − 1} ∪ G, and this semigroup is well
known to be regular.

Problem 3.3 Classify the groups G ≤ Sn such that G together with any rank
n − k map, where k ≤ 5, generate a regular semigroup. We already know that
such G must be k-homogeneous; so we know which groups to look at (see Theorem
1.10).

The difficulty here (when rank k > bn+1
2 c) is that a k-homogenous group is not

necessarily (k−1)-homogenous. Therefore a rank k map a ∈ Tn might be regular in
〈a,G〉, but we are not sure that there exists g ∈ G such that rank(bgb) = rank(b),
for b ∈ 〈a,G〉 such that rank(b) < rank(a).

Problem 3.4 The most general problem that has to be handled is the classification
of pairs (a,G), where a ∈ Tn and G ≤ Sn, such that 〈a,G〉 is a regular semigroup.

When investigating (k−1)-homogenous groups without the k-universal transver-
sal property (k-ut property), it was common that some of the orbits on the k-sets
have transversals for all the partitions. Therefore the following definition is natural.

A group G ≤ Sn is said to have the weak k-ut property if there exists a k-set
S ⊆ Ω such that the orbit of S under G contains a section for all k-partitions. Such
a set is called a G-universal transversal set. A solution to the following problem
would have important consequences in semigroup theory.

Problem 3.5 Classify the groups with the weak k-ut property; in addition, for
each of them, classify their G-universal transversal sets.

In McAlister’s celebrated paper [31] it is proved that, if e2 = e ∈ Tn is a rank n−1
idempotent, then 〈G, e〉 is regular for all groups G ≤ Sn. In addition, assuming that
{α, β} is the non-singleton kernel class of e and αe = β, if α and β are not in the
same orbit under G, then 〈e,G〉 is an orthodox semigroup (that is, the idempotents
form a subsemigroup); and 〈e,G〉 is inverse if and only if α and β are not in the
same orbit under G and the stabilizer of α is contained in the stabilizer of β.

Problem 3.6 Classify the groups G ≤ Sn that together with any idempotent [rank
k idempotent] generate a regular [orthodox, inverse] semigroup.

Classify the pairs (G, a), with a ∈ Tn and G ≤ Sn, such that 〈e,G〉 is inverse
[orthodox].

The theorems and problems in this paper admit linear versions that are inter-
esting for experts in groups and semigroups, but also to experts in linear algebra
and matrix theory.
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Problem 3.7 Prove (or disprove) that if G ≤ GL(n, q) such that for all singular
matrix a there exists g ∈ G with rank(a) = rank(aga), then G contains the special
linear group.

For n = 2 and for n = 3, this condition is equivalent to irreducibility of G. But
we conjecture that, for sufficiently large n, it implies that G contains the special
linear group.

Problem 3.8 Classify the groups G ≤ GL(n, q) such that for all rank k (for a
given k) singular matrix a we have that a is regular in 〈G, a〉 [the semigroup 〈G, a〉
is regular].

To handle this problem it is useful to keep in mind the following results. Kan-
tor [23] proved that if a subgroup of PΓL(d, q) acts transitively on k-dimensional
subspaces, then it acts transitively on l-dimensional subspaces for all l ≤ k such
that k + l ≤ n; in [24], he showed that subgroups transitive on 2-dimensional sub-
spaces are 2-transitive on the 1-dimensional subspaces with the single exception
of a subgroup of PGL(5, 2) of order 31 · 5; and, with the second author [12], he
showed that such groups must contain PSL(d, q) with the single exception of the
alternating group A7 inside PGL(4, 2) ∼= A8. Also Hering [19, 20] and Liebeck [29],
using CFSG, classified the subgroups of PGL(d, p) which are transitive on 1-spaces.

Regarding synchronization, the most important question (in our opinion) is the
following conjecture, stated earlier.

Problem 3.9 Is it true that every primitive group of permutations of a finite set
Ω synchronizes every non-uniform transformation on Ω?

Assuming the previous question has an affirmative answer (as we believe), an in-
termediate step in order to prove it would be to solve the following set of connected
problems:

Problem 3.10 (a) Prove that every map of rank n−3, with non-uniform kernel,
is synchronized by a primitive group. This is known for idempotent maps (see
[4]).

(b) Prove that a primitive group synchronizes every non-uniform map of rank 5.

(c) Prove that if in S = 〈f,G〉 there is a map of minimal rank r > 1, there can
be no map in S with rank r + 2.

The next class of groups lies strictly between primitive and synchronizing.

Problem 3.11 Is it possible to classify the primitive groups which synchronize
every rank 3 map?

Note that there are primitive groups that do not synchronize a rank 3 map (see
[34]). And there are non-synchronizing groups which synchronize every rank 3
map. Take for example PGL(2, 7) of degree 28; this group is non-synchronizing,
but synchronizes every rank 3 map, since 28 is not divisible by 3.
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There are very fast polynomial-time algorithms to decide if a given set of per-
mutations generates a primitive group, or a 2-transitive group.

Problem 3.12 Find an efficient algorithm to decide if a given set of permutations
generates a synchronizing group.

It would be quite remarkable if such an algorithm exists; as we saw, it would
in particular resolve questions about ovoids and spreads in certain polar spaces
(among other things).

There are a number of natural problems related to λ-homogeneity.

Problem 3.13 Let H ≤ Sn be a 2-transitive group. Classify the pairs (a,G),
where a ∈ Sn and G ≤ Sn, such that 〈a,G〉 = H.

Problem 3.14 Let G ≤ Sn be a 2-transitive group. (The list of those groups is
available in [11, 15].) For every a ∈ Tn describe the structure of 〈G, a〉 \ G. In
particular (where G is a 2-transitive group and a ∈ Tn):

(a) classify all the pairs (a,G) such that 〈a,G〉 is a regular semigroup (that is,
for all x ∈ 〈a,G〉 there exists y ∈ 〈a,G〉 such that x = xyx);

(b) classify all the pairs (a,G) such that 〈a,G〉\G is generated by its idempotents;

(c) classify all the pairs (a,G) such that 〈a,G〉 \G = 〈g−1ag | g ∈ G〉;
(d) describe the automorphisms, congruences, principal right, left and two-sided

ideals of the semigroups 〈a,G〉 (when G is a 2-transitive group).

Problem 3.15 For each 2-transitive group G classify the G-pairs, that is, the pairs
(a,H) such that H ≤ Sn, a ∈ Tn and 〈a,G〉 \G = 〈a,H〉 \H.

Problem 3.16 Let V be a finite dimension vector space. A pair (a,G), where a
is a singular endomorphism of V and G ≤ Aut(V ), is said to be an Aut(V )-pair if

〈a,G〉 \G = 〈a,Aut(V )〉 \Aut(V ).

Classify the Aut(V )-pairs.

Problem 3.17 Formulate and prove analogues of the results in this paper, but for
semigroups of linear maps on a vector space.

Problem 3.18 Solve the analogue of Problem 3.17 for independence algebras (for
definitions and fundamental results see [6, 7, 14, 16, 17]).
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[7] J. Araújo and J. Fountain, The origins of independence algebras, Proceedings of the
Workshop on Semigroups and Languages (Lisbon 2002), World Scientific, (2004), 54–
67.
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