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Effects of lens motion and uneven magnification on image spectra
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ABSTRACT
Counter to intuition, the images of an extended galaxy lensed by a moving galaxy cluster should
have slightly different spectra in any metric gravity theory. This is mainly for two reasons. One
relies on the gravitational potential of a moving lens being time dependent (the moving cluster
effect, MCE). The other is due to uneven magnification across the extended, rotating source
(the differential magnification effect, DME). The time delay between the images can also cause
their redshifts to differ because of cosmological expansion. This differential expansion effect
is likely to be small. Using a simple model, we derive these effects from first principles. One
application would be to the Bullet Cluster, whose large tangential velocity may be inconsistent
with the � cold dark matter paradigm. This velocity can be estimated with complicated
hydrodynamic models. Uncertainties with such models can be avoided using the MCE. We
argue that the MCE should be observable with Atacama Large Millimetre Array. However,
such measurements can be corrupted by the DME if typical spiral galaxies are used as sources.
Fortunately, we find that if detailed spectral line profiles were available, then the DME and
MCE could be distinguished. It might also be feasible to calculate how much the DME should
affect the mean redshift of each image. Resolved observations of the source would be required
to do this accurately. The DME is of order the source angular size divided by the Einstein
radius times the redshift variation across the source. Thus, it mostly affects nearly edge-on
spiral galaxies in certain orientations. This suggests that observers should reduce the DME by
careful choice of target, a possibility we discuss in some detail.

Key words: gravitational lensing: strong – galaxies: clusters: individual: 1E 0657−56 –
galaxies: kinematics and dynamics – dark matter.

1 IN T RO D U C T I O N

The standard � cold dark matter (�CDM) paradigm (Ostriker &
Steinhardt 1995) still faces many challenges in reproducing galaxy
scale observations (for a recent review, see Famaey & McGaugh
2012). Particularly problematic is the anisotropic distribution of
satellites around Local Group galaxies, a question recently revisited
in detail (Pawlowski et al. 2014). A different analysis focusing on
Andromeda came to similar conclusions (Ibata et al. 2014). The
relevant observations for the Milky Way (Pawlowski & Kroupa
2013) and Andromeda (Ibata et al. 2013) are difficult to repeat
outside the Local Group because of the need to obtain 3D positions
and velocities.

On a larger scale, Cai et al. (2014) found that the collision speed
distribution of interacting galaxy clusters can be quite sensitive to
the underlying law of gravitation. Thus, the high collision speed
of the components of the Bullet Cluster 1E 0657−56 (Tucker,
Tananbaum & Remillard 1995) has been argued in favour of
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modified gravity (Katz et al. 2013). However, this speed is not
directly measured as the collision is mostly in the plane of the sky.
Instead, the speed is estimated using simulations of the shock gen-
erated in the gas by the collision. The separation of the dark matter
(DM) and gas (Clowe et al. 2006) also plays an important role –
there is less gas drag at lower speeds, so the separation is generally
reduced.

A collision speed close to 3000 km s−1 is thought to be required to
explain the observed properties of the Bullet Cluster (Mastropietro
& Burkert 2008). For the inferred masses of the components (Clowe,
Gonzalez & Markevitch 2004), this appears difficult to reconcile
with �CDM (Thompson & Nagamine 2012). This work suggested
that a cosmological simulation requires a comoving volume of
(4.48 h−1 Gpc)3 to see an analogue to the Bullet Cluster.

The recent work of Lage & Farrar (2014) finds a similar col-
lision speed but suggests a higher mass for the Bullet Cluster’s
components. While higher mass objects are likely to collide faster,
such heavy clusters are rare in cosmological simulations. For ex-
ample, their own unpublished work (Lage & Farrar 2015) based
on the Horizon Run N-body simulation (Kim et al. 2009) showed
how there were only seven cluster pairs with masses comparable to
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their higher estimate for the Bullet Cluster mass. Because a larger

volume of (6.59 h−1 Gpc)3 was used in the simulation and
(

6.59
4.48

)3 ≈
3, this result is not very surprising in light of previous works.

However, some recent unpublished studies have raised the prob-
ability estimate of observing a galaxy cluster merger with prop-
erties comparable to the Bullet Cluster. Bouillot et al. (2014)
used a larger box size of (21 h−1 Gpc)3, using the Dark Energy
Universe Simulation-Full Universe Run (DEUS-FUR) simulation.
Thompson, Davé & Nagamine (2014) took issue with the friends-
of-friends algorithm (Davis et al. 1985) long used to search outputs
of N-body simulations for analogues to the Bullet Cluster. After
switching to the recently developed ROCKSTAR algorithm (Behroozi,
Wechsler & Wu 2013), the rate of occurrence of analogues to the
Bullet Cluster increased by a factor of ∼100. Despite this, Thomp-
son et al. (2014) quoted the probability of a collision as fast as the
observed one as only one in 2170, which is still fairly small.

Moreover, a few other massive colliding clusters with high infall
velocities have been discovered in the last few years (Gómez et al.
2012; Menanteau et al. 2012; Molnar et al. 2013b). The El Gordo
Cluster (ACT-CL J0102−4915) may be particularly problematic
due to its combination of high redshift (z = 0.87; Menanteau et al.
2012), high mass (Jee et al. 2014) and high inferred collision speed
(Molnar & Broadhurst 2015).

A detailed analysis of how likely it is that observers would have
seen interacting clusters with the observed properties is still lacking.
One would need to account for incomplete sky coverage and perhaps
faster collisions being easier to discover due to greater shock heating
of the gas. A key input to any such analysis must be the collision
speeds of the components. This work focuses on measuring cluster
motions more accurately.

Molnar et al. (2013b) argue that inferring collision speeds from
observations of the shock can be non-trivial just due to projection
effects, let alone other complexities of baryonic physics. To see if
there is any tension with the �CDM model, the collision speeds
should be determined in a more direct way. Ultimately, we would
like to determine the proper motions of colliding clusters.

Although not feasible by traditional methods, such motions may
be inferred using the moving cluster effect (MCE; Birkinshaw &
Gull 1983). As derived later, this effect relies on the gravitational
potential of an object being time dependent due to its motion. Con-
sequently, if a source behind the object were multiply imaged, the
images would have slightly different redshifts. Moreover, as the
DM generally outweighs the gas on cluster scales (Blaksley &
Bonamente 2010), the MCE is mostly sensitive to the motion of the
DM. This is simpler to model than the gas, making the results easier
to compare with simulations.

The MCE would likely be around 1 km s−1 for the Bullet Cluster
(Molnar et al. 2013a). The effect may be searched for using cos-
mic microwave background (CMB) photons (e.g. Cai et al. 2010).
However, as noted by those authors, temperature anisotropies in
the CMB make it difficult to spot such a signal around an in-
dividual object. Thus, we focus instead on using a multiply im-
aged background galaxy as the source. Spectral features in this
galaxy could be used to determine the redshifts of its multiple
images.

We consider the feasibility of obtaining measurements of the
required accuracy using Atacama Large Millimetre Array (ALMA)
in Section 7. Measuring this effect seems to be within our reach.
One might instead conduct the observations in the visible/near-
infrared (IR) with large spectroscopic instruments such as the Thirty
Meter Telescope (TMT) and European-Extremely Large Telescope
(E-ELT).

Therefore, it is important to consider other effects that might
also cause the redshifts of double images to differ. Perhaps the
most important such mechanism is what we term the differential
magnification effect (DME). This depends on details of the source. If
this is a rotating disc galaxy not viewed face-on, then different parts
of the source have different radial velocities and hence redshifts.

The lens magnifies the source non-uniformly. The exact way in
which this occurs is different for each image. Consequently, the
intensity-weighted mean redshift of the images is usually different.

If one could perform integral field spectroscopy of the source
galaxy accurate to ∼1 km s−1, then one would simply need to
compare the redshift of the same part of the galaxy between the two
images. By focusing on a small part of the galaxy, the DME would be
greatly reduced. However, this will be a challenging observational
goal. The high spectral accuracy demanded by MCE measurements
means the source will likely be spatially unresolved in the near
future.

Assuming this to be the case, we determine the order of magnitude
of the DME for a typical disc galaxy. We find that it may well be
significant. Thus, we explore exactly how it affects the profiles of
individual spectral lines. The effect is quite different to the MCE,
which simply shifts each line. This may provide a way to correct
for the DME and also to verify that a redshift difference is indeed
caused by the MCE. Without spectra detailed enough to see such
small differences between line profiles, it might still be possible to
calculate the DME, though the determination would be less secure.

The additional complications and uncertainty introduced by try-
ing to correct for the DME necessitate a discussion on how it may be
reduced. Aside from the obvious steps of using ellipticals/face-on
spirals and smaller – likely slower rotating – galaxies, an important
factor to consider is how much the magnification varies across the
source. The larger the variation, the larger the DME.

For this reason, an edge-on fast-rotating spiral galaxy might still
be a good target if it is oriented so the magnification is nearly
constant across the image. At the other extreme, the magnification
varies rapidly near a caustic. Therefore, caustic images are likely to
be strongly affected by the DME (Molnar et al. 2013a).

We emphasize the need to model both the redshift structure of
the source and the deflection map of the lens when trying to use
precise lensed image redshifts to determine the tangential motion
of the lens.

2 THE MOVI NG CLUSTER EFFECT I N
S TA N DA R D A N D N O N - S TA N DA R D G R AV I T Y

2.1 The lensing geometry

Fig. 1 illustrates the basic geometry that will be considered here.
Because we are mostly concerned with angles on the sky, the dis-
tances relevant to us are the angular diameter distances to the lens
and source (Dl and Ds). Also important is the angular diameter
distance to the source galaxy as perceived by an astronomer at the
lens, measured at the epoch that the lens is currently observed at
(zl). This last distance we denote Dls.

2.2 Including lens motion

Suppose that the lens moves transversely to O L. Thus, one of the
light paths gets ‘stretched’ while the other gets ‘squeezed’, leading
to a redshift difference between the images. To calculate this effect,
we make the thin lens or triangle approximation whereby each
photon trajectory is treated as two straight lines. In this case, the
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The differential magnification effect 3157

Figure 1. The lensing geometry is depicted here. Upper photon trajectory =
primary image (same side as unlensed source), lower trajectory = secondary
image. Relevant distances are indicated at bottom. The lens is treated as a
point mass moving transversely to the viewing direction. The source is an
extended disc galaxy. There is a redshift gradient across it due to rotation.

light arrival time surface is generally given by (Kovner 1990)

cT (θ ) = constant + DlDs

2Dls
(θ − β)2 − �(Dlθ − xl). (1)

This consists of a geometric part and a relativistic part due to the
lensing potential �. We assume that � depends only on position
relative to the lens, which is located at xl relative to some reference
point in the lens plane.

The path length cT (θ ) can be thought of as a function of the lens
plane position θ hit by a ray from the source. The actual rays for
the images are at the extrema of this function (Fermat’s principle).

We briefly describe how the geometric part of equation (1) is
derived. Each section of a hypothetical undeviated photon trajectory
can be mapped on to a part of the actual trajectory. The latter is
slightly longer as there is an extra factor of the secant of the angle
between them. This is expanded at second order, as the angle is
small. The angle is (θ − β) for the stretch LO while for OS, it is
(θ − β) Dl

Dls

1+zl
1+zs

. The last factor arises because photons emitted in the
same direction gradually get further apart due to cosmic expansion.
Thus, photons emitted in different directions end up more widely
separated than in a static universe.

Equation (1) follows most naturally if using comoving distances,
which can be added simply. This fact leads to the very useful relation
between angular diameter distances:

(1 + zl) Dl + (1 + zs) Dls = (1 + zs) Ds. (2)

If the lens moves in the transverse direction, then xl changes and
so the lensing potential � changes at every point in the lens plane.
Thus, transverse motion of the lens would cause the arrival time to
change according to

cṪ = ẋl · ∇� ≡ −vt · α. (3)

α ≡ −∇� is the unreduced (true) deflection angle and vt ≡ ẋl is
the transverse velocity of the lens (note time here refers to that
measured by a clock at the lens).

The rate of increase of the path length cṪ is equivalent to a shift
of the intrinsic spectrum of the source. While the source’s intrinsic
spectrum cannot be directly measured, the relative spectra of the
images in a multiple image system can. Images 1 and 2 would have
a relative redshift velocity:

δVr ≡ V1 − V2 = −vt · (α1 − α2), (4)

where α1 − α2 is the relative deflection angle between the images.
The observed angular separation between the images is Dls

Ds
times as

much. This allows the MCE to be calculated without knowing what
the deflection angles are, as long as one is sure of the identification
of the double image and the distances to the lens and source.

So far, we have used time measured by a clock at the lens. Using
one on the Earth instead would introduce a factor of (1 + zl) to
the time delay. Putting it in, we should think of vt as the transverse
peculiar velocity in comoving coordinates. This is the comoving
lens distance times the relative proper motion of the lens with re-
spect to that of the source.1 This takes account of transverse mo-
tions of the observer and the source. In Section 3.2, we show that
such motions affect image redshifts much less than motion of the
lens.

For multiple lens planes, one would simply add the redshift dif-
ferences due to each plane.

The above derivation is a property of metric theories of gravity.
Hence, it is independent of details of the theory, something we now
show. Consider a static Universe with no observer–source relative
motion. Use a reference frame moving with the lens, so the source
and observer both appear to move at −ẋl. In general, there is a
Doppler shift for a photon emitted by the source as perceived at
the lens. A similar effect arises between lens and observer. The
shifts cancel if the photon is not deflected by the lens (if the source
emits a photon ‘backward’, then the observer ‘ploughs into’ the
photon).

However, if the photon is deflected, then there is a net frequency
shift between source and observer. This shift is different for another
photon which gets deflected by a different amount. Therefore, the
difference in deflection angles determines the redshift difference
between the photons. If observers could be sure the photons initially
had the same energy, then the redshift difference could be directly
measured, thus constraining ẋl.

For small deflections by a non-relativistic lens, the result in an
expanding Universe is exactly the same as in a static one, once all
the angles have been properly accounted for.

2.3 Point mass lenses

The unlensed source and images all lie along a line, so we only
consider positions along this line. For a point mass lens, one can
generically say that a ray of light with impact parameter Dlθ is
deflected by

α = − 4GM̃

c2Dlθ
, (5)

where M̃ is the ‘equivalent lensing mass’ in alternative gravity.
Different gravity theories require different amount of real mass M
to produce the observed equivalent mass M̃ , the Einstein radius θE

or the deflection angles α1, 2. In general, M̃ depends on position in
modified gravity theories, even with a point mass. For simplicity,
we neglect this.

Combining equations (4) and (5), we get that

V1 − V2 = 4GM̃vt

c2Dl

(
1

θ1
− 1

θ2

)
. (6)

Note that the signs of θ1 and θ2 are opposite because the images are
on opposite sides of the lens (equation 10).

vt is the component of the transverse velocity vt projected along
the line connecting images 1 and 2. If the lens proper motion is
orthogonal to the image separation, then vt would be zero.

1 Physically, it would be the peculiar velocity of the lens in the direction
orthogonal to our line of sight, in the absence of peculiar motions of either
observer or source.
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Noting that deflecting a photon at the lens only affects part of its
trajectory, we get the classical lens equation

β = θ − Dls

Ds

4GM̃

c2Dlθ
(7)

≡ θ − θE
2

θ
, where θE ≡

√
4GM̃

c2

Dls

DlDs
. (8)

The Einstein radius θE defines a typical angular scale for the prob-
lem. It will be convenient to use this to normalize all relevant angles.
Thus, we let

u ≡ β

θE
and y ≡ θ

θE
. (9)

Images are formed where

y = 1

2

(
u ±

√
u2 + 4

)
. (10)

For later use, we note that the magnification of a small part of the
source located at an unlensed angular position of β ≡ uθE relative
to the lens is given by

A =
∣∣∣∣ θ

β

∂θ

∂β

∣∣∣∣ (11)

= 1

2

(
u2 + 2

u
√

u2 + 4
± 1

)
. (12)

The result follows from the surface brightness of an unlensed source
and a lensed one being equal (Liouville’s theorem). Thus, A is the
Jacobian of the mapping between where objects appear on the sky
and where they would without a lens. The modulus signs are needed
because otherwise A < 0 for the secondary image (indicating that it
is inverted).

The secondary image becomes very faint if u � 1 (in this case,
A ∼ 2

u4 ). It is difficult to find a source with u 	 1 as this corresponds
to a very small part of the sky. Thus, any source used for MCE
measurements will very likely have u ∼1. We assume this is the
case.

3 C AU SES O F D IFFERENCES BETWEEN
MULTIPLE IMAG E R EDSHIFTS

Before deriving the DME, we briefly consider a few factors that
can affect redshift differences between double images of a source
strongly lensed by the Bullet Cluster.

3.1 Lens motion

The MCE is maximal for a source displaced from the lens in the
direction of its proper motion. This direction can be determined
from images of the shock fairly easily. Moreover, observers should
select targets to maximize the MCE. Thus, we assume the double
images are indeed separated along the direction of motion of the
lens. Otherwise, the MCE is reduced by the cosine of the angle
between them (equation 4).

With these assumptions, we combine equations (6) and (10) to
get that the difference in redshift velocity between the two images
is

	vr|MCE =
2vt

√
GM

(
u2 + 4

)
c

√
Ds

DlsDl
. (13)

Table 1. Input parameters used for Fig. 4. The source galaxy is
assumed positioned so as to maximize the MCE (i.e. it is separated
from the lens on the sky along the direction of motion of the lens,
which is clear from images). The lens mass should roughly correspond
to the subcluster in the Bullet. A flat �CDM cosmology is adopted
(Planck Collaboration XVI 2014).

Parameter Meaning Value

H0 Present Hubble constant 67.3 km s−1 Mpc−1


m Present matter density 0.315
Dl (Angular diameter) 0.945 Gpc

Distance to lens at zl = 0.296
Ds Distance to source at zs = 1.7 1.795 Gpc
Dls Distance to source from lens 1.341 Gpc

position in space–time
M Mass of lens 1.2 × 1014 M

rd Scale length of source galaxy 3.068 kpc
vt Tangential velocity of lens 3000 km s−1

vf Flat line level of source galaxy 100 km s−1

rotation curve
sin i cos γ See Fig. 2 and equation (21) 1

2

Using parameters appropriate to the Bullet Cluster (Table 1), the
effect is around 1 km s−1.

3.2 Source and observer motion

The peculiar velocity (with respect to the CMB) of the Sun is well
known (369 km s−1; Planck Collaboration XXVII 2014) and could
be included in a more careful analysis. We do not include it as we
only seek a rough idea of the magnitude of the MCE. This will not
be substantially affected by observer motion as this is much slower
than that of the lens (∼3000 km s−1).

More problematic may be the unknown peculiar velocity of the
source. Treating the Local Group peculiar velocity (∼630 km s−1)
as typical for galaxies, the Bullet Cluster transverse motion likely
greatly exceeds the source’s peculiar velocity. In this case, only the
component of this velocity parallel to the lens transverse motion has
much effect on image redshifts, leading to a factor of 1

2 on average.2

Another factor of 1+zl
1+zs

Dl
Ds

≈ 1
4 arises due to the geometry of the

situation and cosmic expansion. Moreover, typical peculiar veloci-
ties were smaller long ago. Supposing they were 1

2 as much as today
at zs = 1.5, we see that source motion cannot affect the inferred lens
velocity much more than ∼50 km s−1. This effect can be reduced by
observing more than one double image pair. However, we consider
the accuracy with even just one well-observed pair sufficient.

Thus, we ignore any motion other than that of the lens. We note
that it might be good to avoid source galaxies which are interacting,
as their peculiar velocities might be higher.

3.3 Cosmological expansion

A redshift difference between the images can also arise because
the time of flight of photons emitted by the source is different
depending on which path they took to get to the Earth. As the
photons for both images arrive simultaneously, the photons for one
image must have been emitted earlier than for the other. Thus, in an
expanding Universe, one of the images will have a higher redshift.
Because of both a longer path length and a stronger gravitational

2 For an angle between a fixed vector and another statistically isotropic one,
〈|cos θ |〉 = 1

2 .
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field along the path, this image is the secondary (on the opposite
side of the lens as the unlensed source would appear – see Fig. 1).
We term this the differential expansion effect (DEE).

A quick way to estimate the DEE is to assume that cosmological
distances like DL are usually ∼ c

H
. The extra path length ∼DLθ2.

The effect of the difference in gravitational time delays can crudely
be approximated as equal to that due to different geometric path
lengths.

The DEE expressed as a redshift = H	t ≈ θ2. Meanwhile, the
MCE ∼ v

c
θ . Assuming a velocity of 3000 km s−1 and an image

separation of 20 arcsec, we see that the MCE is ∼50 times larger
than the DEE. Thus, we calculate the DEE more precisely.

We first consider just the difference in time of flight (‘delay’) due
to different strengths of gravity along the two possible photon paths
(Shapiro 1964). The relative Shapiro delay between the images is

	tl = 4GM

c3
ln

(
b2

b1

)
,Ds, Dls � b1,2. (14)

The impact parameters of the rays are b1, 2. This result is valid if b
is much larger than the Schwarzschild radius of the lens, so the rays
are only weakly deflected. The ray with smaller b is delayed more
as it goes deeper into the lens’ gravitational potential well. It also
has a longer geometric path length (it forms the secondary image in
Fig. 1).

Note this is the time delay at the lens. In reality, both photons
must reach the Earth now, so the time of emission at the source must
have been different. This requires an extra factor of the relative rates
of a clock at the lens and at the source, 1+zl

1+zs
.

We then combined this Shapiro delay with the geometric path
difference between the trajectories. Thus, the difference in time
of emission required for photons traversing the two trajectories to
reach the Earth simultaneously is

	ts

= 1 + zl

1 + zs

2GM

c3

[
u
√

u2 + 4 + 2 ln

(
u2 + u

√
u2 + 4 + 2

2

)]
.

(15)

We used equation (10) to relate the source position u to the positions
of its images. A correction for cosmological time dilation was also
applied.

The change in redshift is given by the fractional difference in the
scale factor of the Universe at the time of emission of the photons:

	z = H (zs)	ts. (16)

Using realistic parameters (Table 1 and u ≈ 1), the DEE ∼1 m s−1.
In Section 3.1, we showed that the MCE is ∼1000 times larger,
allowing us to neglect the DEE.

Even with more accurate instruments, a very large number of
double image pairs would need to be observed before the random
noise from source peculiar motions was reduced below such a small
level. Thus, the DEE will not be important in the foreseeable future.
An exception might possibly arise if the source galaxy peculiar
motion could be estimated based on properties of galaxies near it.

4 D E R I VAT I O N O F T H E D I F F E R E N T I A L
M AG N I F I C AT I O N E F F E C T F O R U N R E S O LV E D
IMAG ES

The effects mentioned in Section 3 cause the frequencies of identical
photons emitted in different directions to end up different when

Figure 2. The observing geometry is shown here. The source galaxy has
centre O and normal to its plane O N . Earth is towards O E, so the galaxy’s
inclination to the sky plane is i. O Q and O P are in the galaxy’s plane and
orthogonal to each other, with O Q as closely aligned with O E as possible.
Thus, O P and O E are orthogonal. ∇A is directed within the source plane,
so must also be orthogonal to O E. ∇A is at an angle γ to O P . The source
is parametrized using cylindrical polar coordinates (r, φ), with centre O and
initial direction (φ = 0) along O Q.

measured at the Earth. The DME does not do this. It is merely an
observational artefact due to inability to simultaneously resolve the
images and take highly accurate spectra of them. This causes parts
of the source with different redshifts to get blended together in the
spectra. The precise way in which this blending occurs is different
between the images.

We assume the spectra are integrated over the entirety of each
image. The source is modelled as a typical spiral galaxy with ex-
ponential surface density profile and a realistic rotation curve. The
lens is treated as a point mass. The parameters considered (Table 1)
are designed with the Bullet Cluster (Tucker et al. 1995) in mind.

The basic idea is that spatially unresolved spectra can determine
the intensity-weighted mean redshift of each image. This may be
affected by rotation of the source galaxy. The effect is not reliant
on an expanding Universe, so it will be simplest to think of the
Universe as static for the remainder of this section.

The mean redshift velocity of each image is given by

vr ≡
∫

Image A
vr dS∫
Image A
 dS

. (17)

The integrals are over area elements of the source S. This is treated
as a disc with surface density


 = 
0 e− r
rd . (18)

The magnification A varies little over the source galaxy. This is
because rd

Ds
	 θE (see Table 1). Thus, a linear approximation to A

is sufficient:

A ≈ A0 + ∂A

∂u
du (A0 ≡ A at centre of source). (19)

In our model, A varies linearly with position in the source plane,
but only in the direction directly away from the (projection of the)
lens. In the orthogonal direction, A is independent of position at first
order (because u is, and A depends only on u).

The geometry of the source is shown in Fig. 2. The radial velocity
of any part of it is

vr = vc(r) sin φ sin i. (20)

Only the component of ∇A along O P is important. To see why,
suppose that ∇A was entirely along O Q. Reflecting the galaxy
about the line OP without altering ∇A should reverse the DME as
this is equivalent to reversing ∇A. However, the radial velocity of
every part of the galaxy remains unaltered after the reflection (as φ

→ π − φ). Thus, the DME must also remain unaltered.
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Noting that the component of ∇A along O N is irrelevant for the
DME, we see that only the component along O P might be relevant.
This component causes the approaching and receding halves of
the galaxy to be magnified differently. It will be responsible for
the DME. Thus, we assume the lens is located somewhere along
the line O P , making ∇A entirely along this direction. The result is
then multiplied by cos γ .

The magnitude of the DME is therefore ∝ cos γ sin i. Assuming
isotropy, all values of γ are equally likely. But values of i close to
π
2 are more likely because there are more ways for two vectors to
be orthogonal than to be aligned. This means the ratio between the
average magnitude of the DME and the maximum it could be is
given by the mean of |cos γ sin i|, with γ unweighted but a further
sin i weighting over i.3 Thus,

〈| sin i cos γ |〉 =
∫ π

2
0 cos γ dγ∫ π

2
0 dγ

∫ π

0 sin2i di∫ π

0 sin i di

= 1

2
. (21)

The angular separation between the lens and the unlensed source is
given by

u = u0 + r.Ô P
DsθE

(u0 ≡ u at centre of source). (22)

The component of r (measured from the galaxy’s centre) along
O P is r sin φ. We have not kept careful track of signs because, for
any conceivable orientation, the source galaxy could be rotating in
the opposite sense, thereby reversing the DME. We explain which
image has a lower redshift due to the DME later.

The difference in u between the centre of the source galaxy and
any other point in it is given by

du = r sin φ

DsθE
. (23)

A0 represents a constant magnification across the source. This does
not contribute to the numerator in equation (17) because the radial
velocity vr ∝ sin φ, while 
 is independent of φ due to axisymmetry.
Thus, integrating over φ gives 0.4 The DME arises when including
the first-order correction to A.

The denominator in equation (17) is a normalization for each
image (its total intensity).5 Because the magnification is nearly
constant across the source galaxy, we can approximate that A =
A0. The first-order correction to A would have a sin φ dependence,
which is irrelevant when integrated over all φ. This further justifies
our approximation. Therefore, the denominator in equation (17)
becomes∫

Image
A
 dS = 
0πrd

2

(
u2 + 2

u
√

u2 + 4
± 1

)
. (24)

To understand the sign of the DME, first note that regions closer to
the lens are magnified more. In our approximation, the numerator
in equation (17) is determined by ∂A

∂u
, which is the same for both

3 Edge-on galaxies are less likely to be detected due to dust obscuration.
This makes low values of i – and thus a smaller DME – more likely, for a
randomly selected multiple image.
4 This is expected, as the DME does not arise if the image is uniformly
magnified.
5 What we perceive as the total intensity given Ds and zs, but without
correcting for magnification by the lens.

images (equation 12). Therefore, the image with the lower magnifi-
cation (the secondary image) has a larger |vr|. Thus, if it was known
which side of the rotating source was the approaching side, one
could determine which image should have a higher mean redshift
due solely to the DME.

Including the second-order dependence of A on sky position
slightly alters the calculations done so far. Because a second-order
term does not affect the approaching and receding halves of the
source galaxy differently, the numerator in equation (17) is unal-
tered. But the denominator is affected, because the total intensity of
each image may be altered by a second-order term. This means that
our derivation of the DME has a fractional error which is second
order in rd

DsθE
. We consider this acceptable and proceed to develop

a model for the redshift structure of the source. This requires a
rotation curve.

4.1 Model rotation curves

It will likely be difficult to directly observe the source galaxy rota-
tion curve vc(r) as it is very far away. It is also difficult to precisely
determine its surface density and thus predict the form of vc(r).
Fortunately, we are considering a disc-integrated spectrum and so
the exact shape of vc(r) will turn out not to be very important once
the maximum level vmax is fixed.

To get a rough idea of vc(r), we take advantage of the tight empir-
ical relation between the forces in rotating disc galaxies as required
to sustain their rotation curves and those predicted by Newtonian
gravity based on the visible (baryonic) mass (Famaey & McGaugh
2012, and references therein). This empirical formalism goes by the
name of modified Newtonian dynamics (MOND; Milgrom 1983).
Regardless of whether it is correct at a fundamental level, it does
seem to provide a good empirical way of predicting rotation curves.
Here, this is important because measuring the actual rotation curve
of the source galaxy would be very challenging.

The particular empirical relation we adopt follows the work of
Famaey & Binney (2005):6( |g|

|g| + a0

)
g = gN, (25)

where g is the true gravitational field strength while gN is the
prediction of Newtonian gravity based on the visible mass. a0 is an
acceleration scale (≈1.2 × 10−10 m s−2) below which either gravity
becomes non-Newtonian or DM must be considered in addition to
the baryons. Thus, the magnitude of the gravitational field is given
by

g = gN

2
+

√(gN

2

)2
+ gNa0. (26)

It is not worthwhile to accurately determine gN for any particular
mass distribution because the actual mass distribution in the source
is uncertain. Thus, we approximated gN using an analytic method.
We assumed that, to determine gN at a particular in-plane location,
only material at smaller radii need be considered (we verified that the
force from material at larger radii was very small). The Newtonian
force at a distance r from the centre of a narrow ring of mass dM
and radius x is

gN ≈ G dM

r2
+ 3G dM x2

4r4
(x < r, interior ring). (27)

6 This is the so-called ‘simple μ-function’ in MOND.
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This is correct at second order in x
r
. The total force at any point

within the disc was found by decomposing the galaxy into a large
number of rings with dM = 2πx dx 
(x). We then summed only
the forces resulting from interior rings. Therefore,

gN =
∫ r

0

(
G dM

r2
+ 3G dM x2

4r4

)
(28)

= 2πG
0f ( r̃ ), where (29)

r̃ ≡ r

rd
and (30)

f ( r̃ ) = 1 − 13
4 e−r̃

r̃2
− 7 e−r̃

4r̃
+ 9

(
1 − e−r̃ − r̃ e−r̃

)
2r̃4

. (31)

When obtaining the true value of g from gN, the ratio gN
a0

is important.
Therefore, we introduce a new variable, the dimensionless density
k,

k ≡ G
0

a0
. (32)

Typical values for k are order 1. Using the empirical equation (26)
to get g from gN:

g

a0
= πkf ( r̃ ) +

√(
πkf ( r̃ ) + 1

)2 − 1. (33)

To get the rotation curve, we equate g with the centripetal acceler-
ation. Thus,

v2
c

r̃ rd
=

(
g

a0

)
a0, (34)

vf = 4
√

2πk
√

rda0. (35)

The rotation curve flat lines at the level vf = 4
√

GMa0, where the
total disc mass M = 2π
0r

2
d . The shape of the rotation curve is

given by

ṽc( r̃ ) ≡ vc( r̃ )

vf
=

√
πkr̃f ( r̃ ) + r̃

√(
πkf ( r̃ ) + 1

)2 − 1

4
√

2πk
. (36)

We show two such rotation curves in Fig. 3. Here, we also show
how K affects the ratio between vmax and vf .

4.2 The final result

Combining our results, we get that

|vr| = vfrd sin i cos γ

DsθE

×

∫ ∞
0

∫ 2π

0

∝
︷︸︸︷
e−r̃ ṽc( r̃ )̃r2

− ∂A
∂u︷ ︸︸ ︷
4

u2(u2 + 4)
3
2

sin2φ dφ dr̃

π

(
u2 + 2

u
√

u2 + 4
± 1

)
︸ ︷︷ ︸

∝A

. (37)

The magnification A changes by order 1 over an angular distance
of θE, while the angular radius of the source galaxy ∼ rd

Ds
. Thus,

the DME as a fraction of the typical radial velocity of the source

Figure 3. Top: rotation curves resulting from equations (31) and (36), used

in this work. vc(r) flat lines at vf. The surface density 
 = 
0 e
− r

rd . The
parameter k controls the shape of the rotation curve (k ≡ 
0G

a0
). Bottom: the

ratio of maximum to flat line rotation speed as a function of central surface
density.

is ∼ rd
DsθE

. The galaxy’s typical radial velocity is vf sin i. Another
factor of cos (γ ) is needed to account for the lensing geometry. As
can be seen from equation (37), this provides a rough guide to the
DME (as u ∼1 for a realistic target).

An important quantity for the DME is the difference in 1
A

∂A
∂u

between the images:

	

(
1

A

∂A

∂u

)
= ∂A

∂u
	

(
1

A

)
= 4√

u2 + 4
. (38)

In equation (37), the integration over φ yields π. The integral over
r is not analytic. Thus, we define

I ≡
∫ ∞

0
e−r̃ ṽc( r̃ ) r̃2 dr̃ . (39)

Substituting for θE using equation (8), we get that

	vr|DME = vf rd sin i cos γ I c
√

Dl√
u2 + 4

√
GMDlsDs

. (40)

The integral I depends somewhat on the central surface density in
the sense that, for the same vf, the DME is greater at higher k.
However, the maximum rotation speed is very well correlated with
the DME. In fact, the ratio I

ṽmax
= 1.89 ± 0.02 for k = 0.1 → 5. As

maximum rotation speeds are generally easier to determine than the
flat line level, this makes correcting for the DME easier.

If the surface density declines sufficiently slowly with r, then the
integral I might diverge. This is due to limited validity of a linear
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3162 I. Banik and H. Zhao

approximation to A – a more careful treatment would be required.
This might apply to rotating elliptical galaxies with ρ ∝ r−4. But
even if 
 ∝ r−3, the divergence of I is fairly slow. Thus, although
the integral would need a cut-off radius, its precise value would not
affect the result much.

A linear approximation to A must break down if u changes by
order 1. Thus, a logical cut-off might be the Einstein radius (at the
source plane) or the distance between the source and the projected
lens.

If a fibre-fed spectrograph was used or the field of view was
otherwise restricted, then this may impose an obvious cut-off. For
an inclined disc galaxy, a circular aperture would cover a non-
circular region in the disc plane. One might need to take this into
account.

We now decide on realistic parameters to gain a feel for
the scale of the DME and MCE. Ideally, one would like to measure
the motion of both components of the Bullet Cluster. However, we
choose a mass corresponding roughly with the subcluster in the
Bullet (Mastropietro & Burkert 2008). This is because the centre of
mass likely has little peculiar velocity as there is little structure on
such large scales. Thus, the lower mass component probably moves
faster (with respect to the Hubble flow).

The MCE ∝ v
√

M (equation 13). Assuming also that v ∝ 1
M

for
the components of the Bullet Cluster and that the value of u would be
broadly similar whichever component is targeted, the MCE overall
∝ 1√

M
. This makes it larger around the subcluster. Furthermore,

using its motion to extrapolate the total collision velocity is much
more reliable than using the motion of the main cluster, because the
subcluster contributes most of the relative velocity.

A typical source galaxy orientation is chosen using equation (21).
Although we used vf = 100 km s−1, it is around double this for our
own Galaxy (e.g. McMillan 2011).

Using the parameter values in Table 1, we obtained the results
shown in Fig. 4. The DME and MCE are comparable in magnitude.

Observing a similar source multiply imaged by the higher mass
component instead does not reduce the relative importance of the
DME. This is because the DME ∝ 1√

M
(equation 40), just like

the MCE. In fact, this scaling highlights an additional problem:
substructure in the lens (e.g. individual galaxies) with much less

Figure 4. The difference in redshift between double images of a typical
background galaxy as a function of its position, due to the effects described
in the text (equations 13 and 40). Parameter values used are listed in Table 1.
The shape of the rotation curve (k) has a modest impact on the DME once
its flat line level vf is fixed. If instead vmax is held fixed, then the impact of
k on the DME is very small.

mass than the entire cluster can enhance the DME. For example, an
elliptical galaxy in the lens plane with M = 1013 M
 would cause
a DME ∼3 times larger than the smooth cluster potential.

This problem could be mitigated to some extent by not select-
ing images which show indications of being lensed by small-scale
structure (e.g. avoiding images appearing near a galaxy in the lens
plane). We have implicitly assumed that such a selection has been
done, such that a point mass model for the lens is appropriate. Even
in this case, it might well be necessary to correct for the DME. This
correction would be less relevant if targets could be selected for
which the effect is small. We now consider how these things might
be achieved.

5 C O R R E C T I N G FO R T H E E F F E C T

For spatially unresolved spectra, it is possible to calculate the DME
by determining the parameters in equation (40). If radial velocities
accurate to a few km s−1 are obtained for a galaxy, then determining
vmax sin i to ∼10 km s−1 should be feasible using widths of spectral
lines (see later).

rd might be obtained from an image of the target, once distortion
and magnification by the lens were corrected for. If the image were
taken at more than one wavelength, it would suggest a value for k
(which we do not need very accurately) as the colour can be used
to estimate the baryonic M/L.

There is no need to determine the inclination as we are only
interested in redshift gradients across the source. However, the ori-
entation of the major axis of the image is important in determining
the axis of rotation and thus the angle γ in Fig. 2.

To know the sense of rotation (i.e. which side of the source galaxy
is the approaching side), we would need spectra of different parts
of the source galaxy. Naturally, a disc-integrated spectrum would
be insufficient for this purpose. However, one could make do with
poorer spectral resolution.

The secondary image is inverted relative to the primary, providing
an important consistency check if both images were used for such
a determination. We strongly recommend doing this, because an
error would lead to a 200 per cent error in the calculation of the
DME. The chance of this is minimized with two determinations of
the sense of rotation.

Finally, we also need ∇A, which must come from a lensing re-
construction.

5.1 Additional information from detailed spectral line profiles

It is often possible to extract more information from a spectral line
than just the location of its centroid. The width of the line profile
can be used to estimate e.g. vmax sin i.

The MCE simply shifts the entire spectrum. The DME leads to a
‘tilt’ being introduced because one side of the galaxy is magnified
more than the other. These effects are different. Therefore, detailed
line profiles can tell us if the shift in the centroid of spectral lines
is due to the MCE or the DME. This would avoid the need to
determine parameters like the disc scale length and orientation.
A detailed lensing reconstruction to determine ∇A would also be
avoided.

We investigate how the DME and MCE affect line profiles of
disc galaxies with rotation curves parametrized by equation (36).
We assume the galaxy is viewed edge-on, so the radial velocity of
any part of it is

vr(r, φ) = vc(r) sin(φ). (41)
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Figure 5. Radial velocity map of a disc galaxy viewed by an observer within
its plane at large x, for the case k = 2.5. Radial velocities are antisymmetric
about the x-axis. The radial coordinate is rescaled so all parts of the figure
would be equally bright. The units are such that rd = 1 and vf = 1. Note the
large region with vr close to the maximum value. The result for k = 0.5 is
very similar, although vmax is much closer to vf.

The resulting radial velocity map is shown in Fig. 5. Only half of
the galaxy is shown because vr is antisymmetric about the viewing
direction (the x-axis). vr is symmetric about the y-axis, because
sin φ = sin (π − φ).

To determine the profile of a narrow spectral line, we divide
the galaxy up into a large number of elements. We use cylindrical
polars so vr becomes separable. Thus, the rotation speed only needs
to be calculated once at each r (for all φ). The radial velocity at
the centre of each element is used to classify it among 200 bins in
radial velocity.

Assuming constant mass-to-light ratio (M/L) for the baryons,
the total intensity of the element multiplied by the magnification A
is then assigned to the corresponding radial velocity bin. Because
radial velocities and wavelengths are directly related, in this way
one obtains a synthetic line profile.

Spectral lines have an intrinsic width and can be further broad-
ened by random motions within the galaxy. To account for these
effects and also for instrumental errors, we convolved our synthetic
line profiles with Gaussians of various widths σ . The results are
shown in Fig. 6. The sharp peaks at vr ≈ ±vmax sin i give rise to the
name of a double-horned profile.

These horns are caused by the rotation curve having a peak,
leading to a small range in vr corresponding to a large range in r.
The greatest attained values of |vr| also correspond to large ranges
in φ, because sin φ is nearly independent of φ when φ ≈ ±π

2 .
Thus, a small range in vr corresponds to a large region in the

galaxy. Moreover, the peak rotation speed occurs at a radius close
to that which maximizes the light emitted per unit radius (r = rd).
Fig. 5 shows the ‘bull’s eye’ corresponding to the fairly large region
with near-maximal |vr|. This is responsible for the very pronounced
horns in the line profile. They are somewhat less pronounced at
high σ .

Although one might expect a feature corresponding to vf (at
least at low σ ), this is absent. A quick look at Fig. 5 shows why
vc(r) ≈ vf only for sufficiently large r. There is very little light from
such regions, so a disc-integrated spectrum is hardly sensitive to
them. In fact, due to the steep decline in surface brightness with r,
most of the spectral intensity at vr = vf actually comes from the
rising part of the rotation curve (when vc sin φ = vf) rather than
from the flat part. Thus, in the line profile, there is nothing special
about vf. This is not true for vmax.

Figure 6. The synthetic line profile of an intrinsically narrow line in an
unlensed galaxy with k = 2.5, viewed edge-on. The profile is symmetric
about vr = 0. Velocities are scaled to the flat line level vf. The sharp drop in
the line profile (blue) would probably get blurred (e.g. by random motions),
so we convolved the profile with Gaussians of widths σ . The results are
shown as red lines with thicknesses ∝ σ . Notice how all four profiles pass
close to the point marked B. The result for k = 0.5 is similar, if the profiles
are scaled to have the same vmax rather than vf.

Determining vmax sin i from a line profile is non-trivial as the
horns move to lower |vr| as σ increases. Instead of using the horn
positions, one could use the values of vr where the intensity is a
certain fraction of the intensity at the line centre (vr = 0). If this
fraction is chosen carefully, then one could simply scale the resulting
vr by a constant factor and accurately recover vmax sin i over a wide
range in σ and k. To see why, note that spectra with different σ all
pass close to the point marked B in Fig. 6.

Ultimately, it might be better to compare the observed line profile
with a suite of synthetic profiles built for a range of k, σ and
vmax sin i. The initial guess for σ might come from considering the
shape of the tail. If vmax sin i is accurately recovered, then the DME
hardly depends on k.7

The horns are cause by a relatively small part of the galaxy but
they greatly affect the mean radial velocity of its image. Thus, if
the galaxy was not axisymmetric and e.g. had a dusty spiral arm
obscuring light from this region, then the redshift measurement
of each image may be biased. Partly for this reason, it may be a
good idea to consider the rest of the line profile and not just the
mean redshift (which is basically the same as considering just the
horns).

We now consider how the DME and MCE affect the line profile.
The mean redshift velocity of the line is raised by 1 per cent of vmax

(1.08 per cent of vf for k = 0.5 and 1.26 per cent for k = 2.5). We
consider separately the cases where either the DME or the MCE is
wholly responsible for this shift in line centroid. We also construct
control line profiles like those in Fig. 6. These are obtained by
setting

A = 1 ∀r,φ . (42)

7 Line profiles can also be used to find vf sin i without detailed rotation
curves. In this case, the value of k is important as a ‘
 correction’ must
be applied to get from vmax to vf (e.g. bottom panel in Fig. 3). k does not
affect the line profile much and so it would need to come from an image and
photometry.
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Figure 7. The residuals in the spectral profile due to the DME (equation 43)
and the MCE (horizontal shift of profile) are shown here. These were ob-
tained by subtracting a control line profile (equation 42). The patterns are
antisymmetric about vr = 0. Results are for an edge-on galaxy with k =
0.5 (top) and k = 2.5 (bottom). Both effects change the mean redshift by
1 per cent of the maximum rotation speed, representing 1.08 per cent of vf

for k = 0.5 and 1.26 per cent for k = 2.5. The spectra were convolved with
Gaussians of widths 0.05, 0.1 and 0.2 vf (higher σ indicated by thicker line).
The MCE cannot change the amplitudes of the horns. The DME makes one
more pronounced and the other less.

In Fig. 7, we show the pattern of residuals (relative to the control)
created by each effect. The total line intensity is kept the same for
the comparison.

To obtain the corresponding observations, one would need to ac-
count for the images having different overall magnifications. Thus,
the spectra would have to be rescaled. We assume this can be done
perfectly (i.e. the photometry is very accurate).

The MCE corresponds to a horizontal shift in the spectrum rel-
ative to the control. This means the amplitudes of the horns are
unaffected. The pattern of residuals corresponds to the gradient in
the spectrum. Thus, the residuals are largest near the positions of
the horns, but small precisely at them. The residuals are of oppo-
site signs on either side of each horn because the gradient in the
spectrum changes sign there.

For the DME, we set

A = 1 + nr̃ sin φ. (43)

Note that no assumptions are made about any of the factors con-
trolling the amplitude of the DME, beyond it being a small effect
relative to vmax sin i (i.e. n 	 1) and that we need not consider the

second-order dependence of A on position in the source plane. The
purpose here is to illustrate how the DME affects the line profile,
not how much (this is controlled by n). If the DME ∼0.01vf sin i,
then the residuals would be ∼1 per cent of the line profile.

The image overall is not magnified for any (small) n. We adjust
n until the line centroid shifts by the correct amount, to allow
comparison with the MCE.

The DME causes one side of the galaxy to be magnified more
than the other. Thus, the residuals due to it are of the same sign for
each half of the galaxy (e.g. for vr > 0). There is no change in sign
at the horns.

These correspond to material displaced from the centre of the
galaxy along the direction O P in Fig. 2. As argued previously, we
only need to consider the component of ∇A along this direction.
Thus, the effects of differential magnification are substantial for the
material corresponding to the horns (in so far as the DME affects the
image at all). This is in contrast to the MCE, which hardly affects
the line profile at these positions (because the gradient of the line
profile there is 0).

For some vr, the MCE leads to very large residuals if σ
vf sin i

is
low (Fig. 7). Thus, observing faster rotating galaxies might make
it easier to distinguish between the DME and the MCE (as σ

vf sin i

would likely be smaller). However, the DME would be larger and
so it would have to be accounted for more accurately.

Detailed profiles of individual spectral lines may therefore help
in determining the balance between the MCE and the DME in
accounting for redshift differences between multiple images. In
reality, a large number of spectral lines would probably need to
be stacked. Even then, it seems likely that, in so far as redshift
differences between the images are discernible, the cause of such
differences can also be determined.

5.2 The second-order effect

For simplicity, we continue assuming the source is located along
O P . Thus, regions with high |vr| are magnified more and regions
with lower |vr| are magnified less than the centre of the source due to
the second-order dependence of A on position. To investigate what
this means for spectral line profiles, we set A to depend quadrati-
cally on position along the direction O P . This introduces a sin 2φ

dependence:

A = 1 + nr̃2 sin2 φ

1 + 3n
. (44)

A quadratic dependence along the orthogonal direction would give a
cos 2φ dependence. Because cos 2φ = 1 − sin 2φ, a second derivative
of A in either direction would affect the line profile in the same way
(i.e. the residuals would have the same pattern, up to sign); once
any overall magnification was corrected for.

When comparing the spectra, observers would first scale them
to have equal intensities. Thus, we must avoid changing the total
intensity. This leads to the factor of 1 + 3n in the denominator of
equation (44).

The results are shown in Fig. 8. The effect is symmetric in vr, so
both horns are equally affected. These end up more pronounced in
the secondary image than in the primary (in this example).

In reality, both the first- and second-order DME would be present
for any given pair of images of the same object. Thus, the residuals
would have both an antisymmetric and a symmetric part. However,
the latter would likely be very small for cluster mass lenses (except
for caustic images).
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Figure 8. The pattern of residuals for the second-order DME (equation 44)
and k = 1. A control profile obtained using equation (42) was subtracted
and the result convolved with a Gaussian. The residuals are symmetric about
vr = 0, so both horns become more pronounced in this example.

5.2.1 Non-rotating sources

We briefly consider how the DME might affect a non-rotating
pressure-supported galaxy, such as an elliptical. If a galaxy is sym-
metric such that ρ(r) = ρ(−r) and σ (r) = σ (−r), then at first order
the DME does not affect an unresolved image at all. To see this, con-
sider an inversion mapping r → −r while leaving ∇A unchanged.
The situation is identical to reversing the direction of ∇A instead,
so one expects the DME to act in exactly the opposite way on the
spectrum. But the situation has not physically changed, so the DME
must also remain unchanged.

This conclusion breaks down at second order. Suppose parts of
the galaxy further from its centre are magnified more. Then, as
the velocity dispersion generally decreases outwards, the derived
velocity dispersion of the image will be reduced by the DME. The
effect is larger for the fainter (secondary) image, which will thus
appear to have a smaller velocity dispersion than the primary in this
example.

This is likely to be more important for galaxy–galaxy lensing as
θE is smaller, making du over the source larger. In this case, the
DME might be useful to constrain the form of σ (r) using a double
image of a distant elliptical galaxy.

Alternatively, if the source galaxy was well understood, one might
be able to constrain ∇A and thus have a better understanding of the
lens. Doing both simultaneously would likely be very challenging
and model dependent.

6 TA R G E T S W I T H A SM A L L E R E F F E C T

Fig. 4 shows that the DME may well need to be accounted for when
using the redshifts of double images to determine the motion of
the lens. However, doing this accurately may be difficult because
of the cosmological distance to the source galaxy. Therefore, we
suggest sources for which the DME should be smaller, allowing us
to correct for it less accurately.

Some strategies outlined here involve selecting targets which are
harder to observe, thereby making their spectra less accurate. It is
up to observers to decide which targets best minimize the uncer-
tainty introduced by the DME while still being feasible to obtain
accurate spectra for. We also note that minimizing the uncertainty
introduced by correcting for the DME is not necessarily equivalent

to minimizing the magnitude of the DME, because there may be
sources for which the DME can be estimated more reliably.

6.1 QSOs

The DME ∝ rv, where the source has typical size r and radial
velocity spread v. For a given mass M, the Virial theorem gives
v ∝ 1√

r
. Thus, the DME ∝ √

r . For sources with a particular M, the
DME would be reduced if the source were smaller, even though it
would spin faster.

One obvious type of very small target visible over cosmological
distances is a quasi-stellar object (QSO). If a doubly imaged QSO
could be found lensed by the Bullet Cluster, it might make an
excellent target.

QSO spectra can sometimes lack distinctive features which are
required for precise redshift measurements. The Lyα forest might
provide a solution, but only if the same feature appeared in both im-
ages. Because the rays of light corresponding to the images diverge
from the source,8 this is only feasible if the gas cloud causing the
absorption feature was located fairly close to the QSO.

Another problem might be that the small size of QSOs makes
their radiation time variable. Thus, the time delay between the im-
ages could make it difficult to compare their spectra. This might
require observers to wait out the time delay, which would first have
to be determined (though it could be estimated, perhaps using equa-
tion 15).

6.2 Smaller and fainter galaxies

The DME is proportional to both the rotation velocity and the size
of the source galaxy. Brighter galaxies generally rotate faster (Tully
& Fisher 1977), so targeting fainter galaxies might help. One advan-
tage of this approach is that the number density of fainter galaxies is
greater than for brighter ones (Schechter 1976). This makes it more
likely that suitably oriented multiple images can be found.

However, it would be harder to obtain accurate spectra – and
thus redshifts – for fainter targets. Given the high accuracy required
in the redshift measurements and the cosmological distance to the
source, this is perhaps not the best option at present.

6.3 Elliptical galaxies

Elliptical galaxies might make good targets as they usually rotate
slower than spirals, if at all. They might be distinguished using
colour or image shape (though one might need to correct for distor-
tion by the lens). The surface brightness declines outwards much
more gradually for ellipticals than for spirals, potentially providing
another way of finding them.

Before conducting detailed observations, targets selected like
this might be followed up to check if the spectral line profiles
were double horned (characteristic of rotation along the line of
sight). A good target should have a Gaussian-looking line profile,
characteristic of a pressure-supported object.

However, even ellipticals can rotate, so the DME might not be
eliminated by observing one. Also, most galaxies are not elliptical,
so finding a bright doubly imaged one is somewhat dependent on
luck. Nonetheless, we consider this the best option. This is partly
because the work of Gonzalez et al. (2009) identified a multiply
imaged galaxy which may be a good target for determining the
MCE.

8 By an angle 1+zl
1+zs

Dl
Dls

(θ1 − θ2).

MNRAS 450, 3155–3168 (2015)

 at U
niversity of St A

ndrew
s on M

arch 31, 2016
http://m

nras.oxfordjournals.org/
D

ow
nloaded from

 

http://mnras.oxfordjournals.org/


3166 I. Banik and H. Zhao

6.4 Galaxy orientation and viewing angle

Fig. 2 shows the geometry of the situation. The radial velocity of
any part of the galaxy is scaled by sin i, so a face-on spiral could
not have a redshift gradient across it and thus would be unaffected
by the DME.

Determining i requires an image of the source galaxy to determine
its shape. One could imagine trying to select targets which look
round. Even then, the target might be an elliptical galaxy with some
rotation along the line of sight.

The direction of ∇A is also very important. In theory, we should
seek situations where ∇A is orthogonal to the major axis of the
image. In such situations, an edge-on disc galaxy would appear
as a line on the sky aligned orthogonally to the direction towards
the lens. With more complicated lenses, the galaxy would appear
as a line on the sky orthogonal to ∇A, which hopefully could be
estimated using a lensing reconstruction.

6.5 Galaxy position and caustics

As was already pointed out in Molnar et al. (2013a), the MCE is
maximal for image separations aligned with the direction of the
lens’ proper motion. As the collision is nearly in the plane of the
sky, the likely direction of this motion is plain to see and observers
should target double images separated approximately along this
direction.

In the simple lens model that we use, the DME ∝ 1√
u2+4

while

the MCE ∝ √
u2 + 4. Thus, galaxies less closely aligned with the

lens make better targets in terms of the systematic error of the DME.
For such sources, the images are more widely separated.

Unfortunately, sources with larger u make worse targets under a
number of other considerations. Both images – but especially the
secondary – are fainter. This image also becomes very close to the
lens, making it more likely to be obscured.

A lensing reconstruction could be used to suggest particular lo-
cations where the magnification is nearly constant. A galaxy with
double images near such locations might make a good target for
measuring the MCE. The difficulty with this is that such ‘sweet
spots’ might be small and not have any observable galaxies in them.
Also, a magnification map of sufficient accuracy might be difficult
to obtain.

Regions where A varies rapidly with position enhance the DME.
Caustics occur where the magnification of a small part of the source
plane is infinity. This means that the magnification varies rapidly
with position in the source plane, greatly increasing the DME. For
this reason, it has been suggested to avoid caustic images (Molnar
et al. 2013a).

However, it may be worthwhile to try correcting for the DME in
caustic images because they are generally very bright, making for
more accurate spectra. The correction would need to be done very
accurately in this case, because the MCE might be much smaller
than the DME. Because this is likely to lead to controversy sur-
rounding the measurements, we also recommend avoiding caustic
images unless the observational case is compelling.

6.6 Substructure within the source galaxy

If the source galaxy has e.g. a bright star-forming region which
emits strongly in the ultraviolet (UV) while the rest of the galaxy
does not, then another possibility arises. UV spectral lines would
correspond to material in a small part of the galaxy. Consequently,
different parts of it would have much the same radial velocity and

the magnification across it would be more uniform than across the
whole galaxy. This would reduce the DME for the UV lines.

Thus, in this example, the redshifts for the images should be
calculated using only the UV lines. In practice, one would exploit
the fact that a small part of the galaxy should have only a narrow
range of redshifts. Thus, one might use only spectral lines which
have a similar redshift. If the intrinsic linewidth was small, then the
line should be very narrow as there would not be much rotational
broadening.

Another possibility is using spectral lines that are more prominent
in the bulge of the galaxy (if it has one). The bulge is mostly pressure
supported with little rotation and is also much smaller than the whole
galaxy. In this case, the spectral lines to use might be quite broad,
but have a Gaussian line profile even if the galaxy is rotating (so
most spectral lines have a double-horned profile).

For this technique to be of much benefit, the galaxy needs to
be quite inhomogeneous in some way. It might be difficult to tell
whether it is from an image. Also, the technique reduces the number
of spectral lines that are used to calculate the redshift, making for
less precise measurements. This makes it difficult to target fainter
galaxies, perhaps forcing observers to choose between observing
all of a fainter galaxy or (effectively) part of a brighter one.

Any decision to restrict which spectral lines are used to determine
the MCE should be justified based on more detailed observations
of nearby galaxies. This increases confidence that the decision does
indeed effectively restrict the observations to a small part of the
source.

Even if all usable spectral lines are used to measure the MCE, it is
still likely that some lines are less affected by the DME than others.
It may be important to allow for this in the analysis e.g. by grouping
spectral lines based on their linewidth and shape and obtaining an
inference on the MCE for each group.

Because of the uncertainties introduced by such procedures, we
recommend reducing the DME by careful choice of target so that
the exact method used to correct for it does not much affect the
inferred lens velocity.

7 O BSERVATI ONAL PROSPECTS

We now consider the technical feasibility of detecting the MCE
with high-resolution spectroscopic measurements. The target we
consider is presented in Gonzalez et al. (2009). This has a flux
of ∼100 mJy at mm wavelengths. Because of dust in the source
galaxy, it is best to do the observations at such wavelengths. For
this purpose, we consider using ALMA. The Bullet Cluster rises to
within ∼35◦ of the zenith at this site (minimum airmass ≈1.2).

The parameters we supplied are given in Table 2. To clarify the
tension with �CDM, it would be necessary to constrain the collision

Table 2. Input parameters used for the ALMA exposure time
calculator, available at https://almascience.eso.org/proposing/

sensitivity-calculator. The dual polarization mode should be used
as polarization is unimportant here. The angular resolution does
not affect the result, which was 6.17 h.

Parameter Value

Declination −56◦
Frequency 150 GHz
Bandwidth per polarization 100 m s−1

Water vapour column density Default: 5th octile (1.796 mm)
Number of antennas 50 × 12 m
rms sensitivity 1.5 mJy
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speed to within ∼250 km s−1 (representing an 8 per cent accuracy if
the actual speed is 3000 km s−1). This corresponds to determining
the redshift difference between the images to 0.1 km s−1.

A flux accuracy of 1.5 mJy corresponds to ∼2 per cent accuracy
near the peak of the spectral energy distribution. The online calcu-
lator suggests that this level of precision can be attained in just over
6 h under typical weather conditions. Thus, we believe that a night
with all 50 of the 12 m dishes might allow us to constrain, in this
case, the proper motion of the main cluster.

In principle, the subcluster’s motion can also be determined using
the MCE. However, we could not find known multiple images with
separation close to the east–west direction, the likely direction of
the collision. Thus, suitable multiple images would first need to
be found around the subcluster. This might be accomplished using
a fairly deep exposure with the Atacama Pathfinder Experiment
(APEX) or other telescopes. If suitable targets were found, they
could be targeted for detailed spectroscopic follow-up.

The actual direction of motion of each component of the Bullet
Cluster is not known for certain. Thus, observers should target mul-
tiple images separated in roughly orthogonal directions. Observing
more than one object can also minimize systematics associated with
details of the source and the lens.

Once suitable targets are found, we believe that a few nights of
observations should be sufficient. The field of view might be large
enough that multiple images of different sources can be observed
in the same pointing, reducing the required telescope time further.
Observing the images simultaneously can also reduce systematics
associated with changing atmospheric conditions.

The main difficulty would be in achieving a very accurate cali-
bration of the spectra. However, it is the relative redshift between
multiple images that is critical for determining the MCE. Absolute
redshifts are not needed very precisely.

8 C O N C L U S I O N S

The MCE may provide an essentially direct method to determine
the tangential motion of high-z lensing clusters such as the Bullet
Cluster, thereby clarifying the tension that appears to exist with
�CDM (Molnar et al. 2013a). This requires a precise determination
of redshift differences between multiple images of the same object.

We expect the MCE to cause multiple images created by the
Bullet Cluster to have a redshift velocity difference of ≈1 km s−1.
We find that, for multiple images of a realistic target, this level of
accuracy should be feasible with a night on ALMA, using all 50 of
the 12 m dishes. To determine the motions of both the main and the
subcluster, multiple pointings may be required.

We considered the effect of the time delay between multiple
images. In an expanding Universe, this causes them to have different
redshifts (the DEE). However, the effect is second order in the
deflection angle, whereas the MCE is first order. Thus, the DEE can
be neglected compared with the MCE.

The DME arises when observing an object with a redshift gradient
across it, most likely due to rotation. The precise way in which
the magnification varies across the source is different for different
images. This leads to them having different mean redshifts. Under
plausible circumstances, the effect is large enough that it must be
considered when trying to infer the lens motion (Fig. 4).

We consider various methods for determining how the DME af-
fects image redshifts. All techniques require the profiles of spectral
lines, if only to estimate the redshift gradient across the image based
on the linewidth. If the line profile could be observed in more detail,

then one could exploit the fact that the DME and MCE affect the
line profile in different ways.

Otherwise, the DME could be estimated by determining the pa-
rameters which control it (disc scale length and orientation, maxi-
mum line of sight rotation speed and sense of rotation, how magni-
fication varies with position in the source plane for each image and,
to a smaller extent, the source surface density).

The DME is smaller for some sources than for others. We discuss
which types of source might reduce the DME in Section 6. We
believe the best option is to use multiple images of an elliptical
galaxy as these are likely to rotate slower than spirals, if at all. In
particular, the triple image identified in Gonzalez et al. (2009) might
be a good source to observe.

The DME is larger for lower mass lenses, making it more im-
portant for galaxy–galaxy lensing. Measuring peculiar velocities of
galaxies using the MCE might thus be very challenging, especially
as these are likely smaller than for the Bullet Cluster.

However, the DME might be easier to observe. This might give
more information about the gravitational potential of the lensing
galaxy and perhaps the redshift structure of the source. We speculate
that the DME might provide a way to estimate the radial gradient
in the velocity dispersion of a distant lensed elliptical galaxy.
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