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Abstract

Using a result of Kari and Ollinger, we prove that the torsion problem for elements
of the Brin-Thompson group 2V is undecidable. As a result, we show that there does
not exist an algorithm to determine whether an element of the rational group R of
Grigorchuk, Nekrashevich, and Sushchanskii has finite order. A modification of the
construction gives other undecidability results about the dynamics of the action of
elements of 2V on Cantor Space. Arzhantseva, Lafont, and Minasyan prove in 2012
that there exists a finitely presented group with solvable word problem and unsolvable
torsion problem. To our knowledge, 2V furnishes the first concrete example of such a
group, and gives an example of a direct undecidability result in the extended family of
R. Thompson type groups.

1. Introduction

If G is a finitely presented group, the torsion problem for G is the problem of deciding whether
a given word in the generators represents an element of finite order in G. Like the word and
conjugacy problems, the torsion problem is not solvable in general [BBN59]. Perhaps more sur-
prising is the fact that there exist finitely presented groups with solvable word problem and
unsolvable torsion problem. This result was proven by Arzhantseva, Lafont, and Minasyanin in
2012 [ALM12], but they did not give a specific example of such a group.

In the 1960’s, Richard J. Thompson introduced a family of three groups F , T , and V , which
act by homeomorphisms on an interval, a circle, and a Cantor set, respectively. These groups
have a remarkable array of properties: for example, T and V were among the first known ex-
amples of finitely presented infinite simple groups. Though Thompson and McKenzie used F
to construct new examples of groups with unsolvable word problem [TM00], the groups F , T ,
and V themselves have solvable word problem, solvable conjugacy problem, and solvable torsion
problem (see [BM13]).

In 2004, Matt Brin introduced a family {nV }∞n=1 of Thompson like groups, where 1V = V
[Br04]. Each group nV acts by piecewise-affine homeomorphisms on the direct product of n copies
of the middle-thirds Cantor set. These groups are all simple [Br10] and finitely presented [Br05,
HeMa12], and indeed they have type F∞ [KMN13, FMWZ13]. It follows from Brin’s work that
they all have solvable word problems. Our first main result is the following.

Theorem 1.1. For n > 2, the Brin-Thompson group nV has unsolvable torsion problem.
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It is easy to show that mV embeds in nV for m 6 n, so it suffices to prove this theorem
in the case where n = 2. Our strategy is to use elements of 2V to simulate the operation of
certain Turing machines. In 2008, Kari and Ollinger proved [KaOl08] that there does not exist
an algorithm to determine whether a given complete, reversible Turing machine has uniformly
periodic dynamics on its configuration space. We show that every such machine is topologically
conjugate to an (effectively constructible) element of 2V , and therefore there does not exist an
algorithm to determine whether a given element of 2V has finite order.

Our second main result concerns the periodicity problem for asynchronous transducers.
Roughly speaking, a asynchronous transducer is a finite-state automaton that converts an in-
put string of arbitrary length to an output string. The transducer reads one symbol at a time,
changing its internal state and outputting a finite sequence of symbols at each step. Asynchronous
transducers are a natural generalization of synchronous transducers, which are required to output
exactly one symbol for every symbol read.

Every transducer defines a rational function, which maps the space of infinite strings to itself.
A transducer is invertible if this function is a homeomorphism. The group of all rational functions
defined by invertible transducers is the rational group R defined by Grigorchuk, Nekrashevych,
and Sushchanskii [GNS00]. Subgroups of R are known as automata groups.

The idea of groups of homeomorphisms defined by transducers has a long history. Alěsin
[Al72] uses such a group to provide a counterexample to the unbounded Burnside conjecture.
Later, Grigorchuk uses automata groups to provide a 2-group counterexample to the Burnside
conjecture [Gr80], and to construct a group of intermediate growth, settling a well-known question
of Milnor [Gr83]. In the last decade, the work of Bartholdi, Grigorchuk, Nekrashevich, Sidki,
Sǔńıc, and many others have advanced the theory of automata groups considerably, and have
brought these groups to bear on problems in geometric group theory, complex dynamics, and
fractal geometry.

A transducer is periodic if some iterate of the corresponding rational function is equal to the
identity. Our second main theorem is the following.

Theorem 1.2. There does not exist an algorithm to determine whether a given asynchronous
transducer is periodic.

We prove this result by showing that every element of the group 2V is topologically conjugate
to a rational function defined by a transducer. Since the torsion problem in 2V is undecidable,
Theorem 1.2 follows.

One important problem in the theory of automata groups is the finiteness problem: given
a finite collection of invertible transducers, is it possible to determine whether the correspond-
ing rational homeomorphisms generate a finite group? This question was posed by Grigorchuk,
Nekrashevych, and Sushchanskii in [GNS00], and has since received significant attention in the
literature. Gillibert [Gi13] proved that it is undecidable whether the semigroup of rational func-
tions generated by a given collection of (not necessarily invertible) transducers is finite, which
our result implies as well. Akhvai, Klimann, Lombardy, Mairesse and Picantin [AKLMP12], Kli-
mann [Kl12], and Bondarenko, Bondarenko, Sidke, and Zapata [BBSZ13] have also obtained
partial decidability or undecidability results in various contexts. Our result settles the question
for asynchronous transducers.

Theorem 1.3. The finiteness problem for groups generated by asynchronous automata is un-
solvable.
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This follows immediately from Theorem 1.2, which states that no such algorithm exists for the
cyclic group generated by a single asynchronous automaton. Note that the finiteness problem is
still open for groups generated by synchronous automata, which includes all Grigorchuk groups,
branch groups, iterated monodromy groups, and self-similar groups.

In the last section, we show how to simulate arbitrary Turing machines using elements of
2V , and we use the construction to prove some further undecidability results for the dynamics
of elements. For example, we prove that there exists an element of f ∈ 2V with an attracting
fixed points such that the basin of the fixed point is a noncomputable set.

It is an open question whether the group 2V has a solvable conjugacy problem, and our result
does not settle the issue. However, it does seem clear that the conjugacy problem in 2V must
be considerably harder than in Thompson’s group V . In particular, there can be no conjugacy
invariant for 2V that gives a complete description of the dynamics, for it is not even possible to
detect whether the dynamics are periodic! This contrasts sharply with Thompson’s group V , in
which such an invariant is easy to compute (see [BM13]).

Based on this result, it seems likely that the conjugacy problem in 2V is undecidable. If this is
indeed the case, the group 2V may be useful for public-key cryptography [AAG99, KLCHKP00].

2. Turing Machines

In this section we define Turing machines, reversible Turing machines, and complete reversible
Turing machines. Our treatment here is very similar to the one in [KaOl08], which is in turn
based on the treatments in [Ku97] and [Mo96].

For the following definition, we fix two symbols L (for left) and R (for right), representing
the two types of movement instructions for a Turing machine.

Definition 2.1. A Turing machine is an ordered triple (S,A, T ), where

– S is a finite set of states,

– A is a finite alphabet of tape symbols, and

– T ⊆ (S × {L,R} × S) ∪ (S ×A× S ×A) is the transition table.

A tape for a Turing machine T = (S,A, T ) is any function τ : Z→ A, i.e. any element of AZ.
A configuration of a Turing machine is a pair (s, τ), where s is a state and τ is a tape. The set
S ×AZ of all configurations is called the configuration space for T .

Each element of the transition table T is called an instruction. There are two types of in-
structions:

(i) An instruction (s, δ, s′) ∈ S × {L,R} × S is called a move instruction, with initial state s,
direction δ, and final state s′.

(ii) An instruction (s, a, s′, a′) ∈ S ×A×S ×A is called a write instruction, with initial state s,
read symbol a, final state s′, and write symbol a′.

Together, the instructions of T define a transition relation → on the configuration space S ×AZ.

Specifically, let W : AZ ×A → AZ and M : AZ × {L,R} → AZ be the functions defined by

W (τ, a)(n) =

{
a if n = 0,

τ(n) if n 6= 0,
and M(τ, δ)(n) =

{
τ(n− 1) if δ = L,

τ(n+ 1) if δ = R,
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for all n ∈ Z. That is, W is the function that writes a symbol on the tape at position 0, while
M is the function that moves the head left or right by one step. Using these functions, we can
define the transition relation → for configurations:

(i) Each move instruction (s, δ, s′) ∈ T specifies that

(s, τ) →
(
s′,M(τ, δ)

)
for every tape τ ∈ AZ.

(ii) Each write instruction (s, a, s′, a′) ∈ T specifies that

(s, τ) →
(
s′,W (τ, a′)

)
for every tape τ ∈ AZ for which τ(0) = a.

This completes the definition of →, as well as the all of the basic definitions for general Turing
machines.

We are interested in certain kinds of Turing machines:

Definition 2.2. Let T = (S,A, T ) be a Turing machine.

(i) We say that T is deterministic if for every configuration (s, τ), there is at most one config-
uration (s′, τ ′) so that (s, τ)→ (s′, τ ′).

(ii) We say that T is reversible if T is deterministic and for every configuration (s′, τ ′), there is
at most one configuration (s, τ) such that (s, τ)→ (s′, τ ′).

(iii) We say that T is complete if for every configuration (s, τ), there is at least one configuration
(s′, τ ′) such that (s, τ)→ (s′, τ ′). (That is, T is complete if it has no halting configurations.)

Though we have defined these conditions using the configuration space S ×AZ, they can be
checked directly from the transition table T (see [KaOl08]).

Proposition 2.3. If T is a complete, reversible Turing machine, then the transition relation→
is a bijective function on the configuration space S ×AZ.

Proof. It is clear that → defines an injective function. The surjectivity follows from a simple
counting argument on the transitions between states (see [Ku97]).

If T is a complete, reversible Turing machine, the bijection F : S ×AZ → S ×AZ defined by
the transition relation is called the transition function for T . We say that T is uniformly periodic
if there exists an n ∈ N such that Fn is the identity function. In [KaOl08], Kari and Ollinger
prove the following theorem:

Theorem (Kari-Ollinger). It is undecidable whether a given complete, reversible Turing machine
is uniformly periodic.

We shall use this theorem to prove the undecidability of the torsion problem for elements
of 2V .

3. The Group 2V

In this section we define the Brin-Thompson group 2V and establish conventions for describing
its elements. Because we wish to view the Cantor set as the infinite product space {0, 1}∞, our
notation and terminology is slightly different from that of [Br04].
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Figure 1: (a) A dyadic subdivision of C2, and the corresponding pattern in the unit square. (b)
A numbered pattern pair for an element of 2V .

Let C be the Cantor set, which we identify with the infinite product space {0, 1}∞, and let
{0, 1}∗ denote the set of all finite sequences of 0’s and 1’s. Given a finite sequence α ∈ {0, 1}∗,
the corresponding dyadic interval in C is the set

I(α) =
{
αω
∣∣ ω ∈ {0, 1}∞}.

where αω denotes the concatenation of the finite sequence α with the infinite sequence ω. Note
that the Cantor set C is itself a dyadic interval, namely the interval I(−) corresponding to the
empty sequence. A dyadic subdivision of the Cantor set C is any partition of C into finitely many
dyadic intervals.

Let C2 denote the Cartesian product C × C. A dyadic rectangle in C2 is any set of the
form R(α, β) = I(α) × I(β), where I(α) and I(β) are dyadic intervals. A dyadic subdivision
of C2 is any partition of C2 into finitely many dyadic rectangles. As discussed in [Br04], every
dyadic subdivision of C2 has an associated pattern, which is a subdivision of the unit square into
rectangles. For example, Figure 1(a) shows a dyadic subdivision of C2 and the corresponding
pattern.

If R(α, β) and R(γ, δ) are dyadic rectangles, the prefix replacement function f : R(α, β) →
R(γ, δ) is the function defined by

f(αψ, βω) = (γψ, δω),

for all ψ, ω ∈ {0, 1}∞. Note that this is a bijection between R(α, β) and R(γ, δ).

Definition 3.1. The Brin-Thompson group 2V is the group of all homeomorphisms f : C2 → C2

with the following property: there exists a dyadic subdivision D of C2 such that f acts as a prefix
replacement on each dyadic rectangle of D.

Note that the images {f(R) | R ∈ D} of the rectangles of the dyadic subdivision D are
again a dyadic subdivision of C2. Since there is only one prefix replacement mapping any dyadic
rectangle to any other, an element of 2V is entirely determined by a pair of dyadic subdivisions,
together with a one-to-one correspondence between the rectangles. This lets us represent any
element f ∈ 2V by a pair of numbered patterns, as shown in Figure 1(b).

Note that the numbered pattern pair for an element f ∈ 2V is not unique. In particular,
given any numbered pattern pair for f , we can horizontally or vertically bisect a corresponding
pair of rectangles in the domain and range to obtain another numbered pattern pair for f .

Nonetheless, it is possible to compute effectively using numbered pattern pairs. In [Br04],
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Brin describes an effective procedure to compute a numbered pattern pair for a composition fg
of two elements of 2V , given a numbered pattern pair for each element. Note that we can also
effectively find a numbered pattern pair for the inverse of an element, simply by switching the
numbered patterns for the domain and range.

Proposition 3.2. Given numbered pattern pairs for two elements of 2V , there is an effective
procedure to determine whether the two elements are equal.

Proof. Let f and g be the two elements. Using Brin’s procedure, we can find a numbered pattern
pair for f−1g. Then f = g if and only if f−1g is the identity element, which occurs if and only
if the numbered domain and range patterns for f−1g are identical.

It is shown in [Br05] that the group 2V is finitely presented, with 8 generators and 70 relations.
The following proposition is implicit in [Br04] and [Br05].

Proposition 3.3. The word problem is solvable in 2V .

Proof. Given any two words, we can use Brin’s procedure to construct numbered pattern pairs
for the corresponding elements. By Proposition 3.2, we can use these to determine whether the
elements are equal.

We will also need the following result.

Proposition 3.4. Given a numbered pattern pair for an element f ∈ 2V , there is an effective
procedure to find a word for f .

Proof. Given a word w, we can determine whether w represents f by computing a numbered
pattern pair for w, and then comparing with f using Proposition 3.2. Therefore, we need only
search through all possible words w until we find one that agrees with f .

See [BC10] for explicit bounds relating the word lengths of elements to the number of rect-
angles in a numbered pattern pair.

4. Turing Machines in 2V

The goal of this section is to prove Theorem 1.1. That is, we wish to encode any complete,
reversible Turing machine as an element of 2V , in such a way that the Turing machine is uniformly
periodic if and only if the element has finite order.

Let T = (S,A, T ) be a complete, reversible Turing machine. Let {s1, . . . , sm} denote the states
of T , and let {I(σ1), . . . , I(σm)} be a corresponding dyadic subdivision of C, where σ1, . . . , σm ∈
{0, 1}∗. Similarly let {a1, . . . , an} denote the tape symbols for T , and let {I(α1), . . . , I(αn)} be
a corresponding dyadic subdivision of C, where α1, . . . , αn ∈ {0, 1}∗.

Given any infinite sequence ω ∈ A∞ of symbols, we can encode it to obtain an infinite
sequence ε(ω) ∈ {0, 1}∞ of 0’s and 1’s as follows:

ε(ai1 , ai2 , ai3 , . . .) = αi1αi2αi3 · · · ,

That is, ε(ω) is the infinite concatenation of the corresponding sequence of α’s.

Proposition 4.1. The function ε : A∞ → {0, 1}∞ defined above is a bijection.
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Proof. Let ψ0 ∈ {0, 1}∞. Since {I(α1), . . . , I(αn)} is a dyadic subdivision of C, there exists a
unique i1 ∈ {1, . . . , n} so that αi1 is a prefix of ψ0. Then ψ0 = αi1ψ1 for some ψ1 ∈ {0, 1}∞.
Then ψ1 itself has some uniquely determined αi2 as a prefix, and hence ψ1 = αi2ψ2 for some
ψ2 ∈ {0, 1}∞. Continuing in this way, we can express ψ0 uniquely as an infinite concatenation
αi1αi2αi3 · · · . Then

ε−1(ψ0) = (ai1 , ai2 , ai3 , . . .),

which proves that ε is invertible.

Now let Φ: S ×AZ → C2 be the configuration encoding defined by

Φ(si, τ) =
(
σi ε(τL), ε(τR)

)
for every configuration (si, τ), where

τL =
(
τ(−1), τ(−2), τ(−3), . . .

)
and τR =

(
τ(0), τ(1), τ(2), . . .

)
.

That is, the first component of Φ(si, τ) encodes the state si as well as the left half of the tape τ ,
while the second component of Φ(si, τ) encodes the right half of the tape τ . Clearly Φ is a
bijection from the configuration space S ×AZ to C2.

Theorem 4.2. Let F : S×AZ → S×AZ be the transition function for T . Then fT = Φ◦F ◦Φ−1

is an element of 2V .

Proof. Since T is complete and reversible, we know that F is bijective, and therefore fT is
bijective as well. To show that fT ∈ 2V , we need only demonstrate a dyadic subdivision D of C2

such that fT acts by a prefix replacement on each rectangle of the subdivision.

The subdivision D consists of the following dyadic rectangles:

(i) For each state si that is the initial state of a left move instruction, D includes the rectangles{
R(σiαk,−)

}n
k=1

(ii) For each state si that is the initial state of a right move instruction, D includes the rectangles{
R(σi, αk)

}n
k=1

.

(iii) For each state si that is the initial state of write instructions, D includes the rectangles{
R(σi, αk)

}n
k=1

.

Note that, in each of the three cases, the given rectangles are a subdivision of R(σi,−). It follows
that D is a dyadic subdivision of C2. Moreover, it is easy to check that fT has the right form on
each rectangle of D. In particular:

(i) For a left move instruction (si, L, sj), the formula for fT on each rectangle R(σiαk,−) is

fT (σiαkψ, ω) = (σjψ, αkω)

for all ψ, ω ∈ {0, 1}∞. That is, fT maps each R(σiαk,−) to R(σj , αk).

(ii) For a right move instruction (si,R, sj), the formula for fT on each rectangle R(σi, αk) is

fT (σiψ, αkω) = (σjαkψ, ω)

for all ψ, ω ∈ {0, 1}∞. That is, fT maps each R(σi, αk) to R(σjαk,−).

(iii) For a write instruction (si, aj , sk, a`), the formula for fT on the rectangle R(σi, αk) is

fT (σiψ, αkω) = (σjψ, α`ω)

for all ψ, ω ∈ {0, 1}∞. That is, fT maps each R(σi, αk) to R(σj , α`).
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We conclude that fT ∈ 2V .

Proposition 4.3. Given a complete, reversible Turing machine T = (S,A, T ), there exists an
effective procedure for choosing an element fT as defined above, and expressing it as a word in
the generators of 2V .

Proof. Note first that it is easy to choose the dyadic subdivisions {I(σ1), . . . , I(σm)} and {I(α1), . . . , I(αn)}.
For example, (σ1, . . . , σm) could be the m’th term of the sequence

(−), (0, 1), (0, 10, 11), (0, 10, 110, 111), (0, 10, 110, 1110, 1111), . . . ,

and (α1, . . . , αn) could be the n’th term of this sequence.

Once the subdivisions are chosen, we can use the formulas given in the proof of Theorem 4.2
to construct a numbered pattern pair for the element fT . Finally, we can use Proposition 3.4 to
compute a word for fT .

Proposition 4.4. The element fT has finite order if and only if T is uniformly periodic.

Proof. Since fT = Φ ◦ F ◦ Φ−1, it follows that (fT )p = Φ ◦ F p ◦ Φ−1 for each p, so (fT )p is the
identity if and only if F p is the identity function.

This completes the proof of Theorem 1.1. Combining this with the result of Kari and Ollinger
(Theorem 2 above), we conclude that the torsion problem in 2V is undecidable. The following
theorem may shed some light on the nature of this result:

Theorem 4.5. For each n ∈ N, let Ω(n) be the maximum possible order of a torsion element of
2V having at most n rectangles in its numbered pattern pair. Then Ω is not bounded above by
any computable function N→ N.

Proof. Suppose to the contrary that Ω were bounded above by a computable function γ : N→ N.
Then, given any element f ∈ 2V with n rectangles in its numbered pattern pair, it would be a
simple matter to determine whether f has finite order. Specifically, we could first compute γ(n),
and then compute the powers f, f2, f3, . . . , fγ(n), and finally check to see if any of these is the
identity. Since the torsion problem in 2V is undecidable, it follows that no such function γ
exists.

Thus the function Ω(n) must grow very quickly, e.g. on the order of the busy beaver function
(see [Ra62]).

We end this section with an example that illustrates the construction of fT .

Example 4.6. Consider the Turing machine T with four states {s1, s2, s3, s4} and three symbols
{a1, a2, a3}, which obeys the following rules:

(i) From state s1, move the head right and go to state s2.

(ii) From state s2, read the input symbol τ(0):

(a) If τ(0) = a1, then write a1 and go back to state s1.
(b) If τ(0) = a2, then write a3 and go back to state s1.
(c) If τ(0) = a3, then write a2 and go to state s3.

(iii) From state s3, move the head left and go to state s4.

(iv) From state s4, read the input symbol τ(0):

(a) If τ(0) = a1, then write a1 and go back to state s3.
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Figure 2: The element of 2V corresponding to the Turing machine in Example 4.6. The four
main vertical rectangles correspond to the four states {s1, s2, s3, s4}.

(b) If τ(0) = a2, then write a2 and go to state s1.
(c) If τ(0) = a3, then write a3 and go back to state s3.

That is, the transition table for T is the set

{(s1,R, s2), (s2, a1, s1, a1), (s2, a2, s1, a3), (s2, a3, s3, a2),

(s3, L, s4), (s4, a1, s3, a1), (s4, a2, s1, a2), (s4, a3, s3, a3)}

It is easy to check that T is complete and reversible. To make a corresponding element of 2V ,
let (σ1, σ2, σ3, σ4) = (00, 01, 10, 11), and let (α1, α2, α3) = (0, 10, 11). Then the resulting element
fT ∈ 2V is shown in Figure 2.

5. Transducers

In this section we show that it is undecidable whether the rational function defined by a given
asynchronous transducer has finite order (Theorem 1.2). This settles the finiteness problem for
asynchronous automata groups (Theorem 1.3).

We begin by briefly reviewing the relevant facts about transducers. See [Gl63] for a thorough
introduction to transducers, and [GNS00] for a discussion of transducers in the context of group
theory.

Definition 5.1. An asynchronous transducer is an ordered quadruple (A,S, s0, τ), where

– A is a finite alphabet,

– S is a finite set of states,

– s0 ∈ S is the initial state, and

– τ : S ×A → S ×A∗ is the transition function, where A∗ denotes the set of all finite strings
over A.

Given a transducer (A,S, s0, τ) and an infinite input string α1α2α3 · · · ∈ A∞, the correspond-
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ing state sequence {si} and output sequence {βi} are defined recursively by

(si, βi) = τ(si−1, αi).

The concatenation β1β2 · · · of the output sequence is called the output string. This string is
usually infinite, but will be finite if only finitely many βi’s are nonempty.

We say that the transducer is nondegenerate if every infinite input string results in an infinite
output string. In this case, the function f : A∞ → A∞ mapping each input string to the corre-
sponding output string is called the rational function defined by the given transducer. Rational
functions are always continuous, and any invertible rational function is a homeomorphism.

For a given finite alphabet A, the rational group R is the group consisting of all invertible
rational homeomorphisms of A∞. It is proven in [GNS00] that R forms a group, and that the
isomorphism type of R does not depend on the size of A, as long as A has at least two letters.

Our goal in this section is to prove the following theorem.

Theorem 5.2. The rational group R has a subgroup isomorphic to 2V .

Since 2V has unsolvable torsion problem, Theorems 1.2 and 1.3 will follow immediately.

We begin with the following proposition, which will help us to combine rational functions
together.

Proposition 5.3. Let A be a finite alphabet, let {α1, . . . , αn} be a complete prefix code over
A, and let f1, . . . , fn : A∗ → A∗ be rational functions. Define a function f : A∗ → A∗ by

f(αiω) = fi(ω)

for all i ∈ {1, . . . , n} and ω ∈ A∗. Then f is a rational function.

Proof. Let {β1, . . . , βm} be the set of all proper prefixes of strings in {α1, . . . , αn}, where β1

is the empty string. For each i ∈ {1, . . . , n}, let (A,Si, s0i, τi) be a transducer for fi. Define a
transducer (A,S, s0, τ) as follows:

– The state set S is the disjoint union {β1, . . . , βm} ] S1 ] · · · ] Sn.

– The initial state s0 is the empty string β1.

– The transition function τ : S ×A → S is defined by

τ(s, a) =


(βj ,−) if s = βi and βia = βj ,

(s0j ,−) if s = βi and βia = αj ,

τi(s, a) if s ∈ Si.

It is easy to check that the the rational function defined by this transducer is the desired func-
tion f .

Now consider the four-element alphabetA = {00, 01, 10, 11}. Let π : A∞ → C2 be the function
defined by

π(ε1δ1, ε2δ2, ε3δ3, . . .) = (ε1ε2ε3 · · · , δ1δ2δ3 · · · ).
Given any function f : C2 → C2, let fπ = π−1 ◦ f ◦ π denote the corresponding function A∞ →
A∞. We shall prove that the mapping f 7→ fπ defines a monomorphism from 2V to R.

Proposition 5.4. Let α, β ∈ {0, 1}∗, and let µα,β : C2 → C2 be the function

µα,β(ψ, ω) = (αψ, βω).

10
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Then µπα,β is a rational function.

Proof. Suppose that α ∈ {0, 1} has length m and β has length n. Consider the transducer
(A,S, s0, τ) defined as follows:

– The alphabet A is {00, 01, 10, 11}.

– The state set S is {0, 1}m × {0, 1}n.

– The initial state s0 is (α, β).

– The transition function τ : S ×A → S ×A∗ is defined by

τ
(
(δ1 · · · δm, ε1 · · · εn), δm+1εn+1

)
=
(
(δ2 · · · δm+1, ε2 · · · εn+1), δ1ε1

)
.

It is easy to check that the rational function defined by this transducer is µπα,β.

Proposition 5.5. If f ∈ 2V , then fπ is a rational function.

Proof. Let {R(α1, β1), . . . , R(αn, βn)} be a dyadic partition of C2 so that f is linear on each
R(αi, βi). By subdividing if necessary, we may assume that all of the strings α1, . . . , αn and
β1, . . . , βn have the same length. Let R(γi, δi) = f

(
R(αi, βi)

)
for each i, and let εi be the common

initial prefix of π
(
R(αi, βi)

)
. Then fπ is given by the formula

fπ(εiω) = µπγi,δi(ω)

for each i ∈ {1, . . . , n} and each ω ∈ {00, 01, 10, 11}∗. By Proposition 5.4, each of the functions
µπγi,δi is rational. By Proposition 5.3, it follows that fπ is rational as well.

This completes the proof of Theorem 5.2, and hence Theorems 1.2 and 1.3.

6. Allowing Halting

In this section, we briefly discuss how to simulate incomplete Turing machines using elements
of 2V , and we sketch the proofs of some further undecidability results. Similar results for general
piecewise-affine functions can be found in [BBKPT01].

Definition 6.1. Let T be a reversible Turing machine, and let (s, τ) be a configuration for T .

(i) We say that (s, τ) is a halting configuration if there does not exist any configuration (s′, τ ′)
such that (s, τ)→ (s′, τ ′).

(ii) We say that (s, τ) is an inverse halting configuration if there does not exist any configuration
(s′, τ ′) such that (s′, τ ′)→ (s, τ).

A Turing machine that reaches a halting configuration is said to halt.

If T is incomplete, then the transition function F : S × AZ → S × AZ on the configuration
space is only partially defined, and is injective but not surjective. Specifically, if H is the set of
halting configurations and H is the set of inverse halting configurations, then F restricts to a
bijection Hc → Hc, where Hc and Hc denote the complements of H and H in the configuration
space.

Our construction of the corresponding element fT ∈ 2V is only a slight modification of the
construction from Section 4. To start, we subdivide C2 into three dyadic rectangles

Rζ = R(0, 0), RT = R(−, 1), Rη = R(1, 0),

11
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We will use Rη and Rζ for halting and inverse halting, respectively, while RT will be used for
configurations of the Turing machine.

Now, let {s1, . . . , sm} denote the states of T , and let {I(σ1), . . . , I(σm)} be a correspond-
ing subdivision of C, where σ1, . . . , σm ∈ {0, 1}∗. Similarly, let {a1, . . . , an} denote the tape
symbols for T , and let {I(α1), . . . , I(αn)} be a corresponding a dyadic subdivision of C, where
α1, . . . , αn ∈ {0, 1}∗

Let ε : A∞ → {0, 1}∞ be encoding function derived from (α1, . . . , αn), and let Φ: S×AZ → C2

be the configuration encoding defined by

Φ(si, τ) =
(
σi ε(τL), 1 ε(τR)

)
Note that Φ is no longer surjective—its image is the rectangle RT . Moreover, note that Φ(H)
and Φ(H) are each the union of finitely many dyadic rectangles.

Let fT be any element of 2V that satisfies the following conditions:

(i) fT agrees with Φ ◦ F ◦ Φ−1 on Φ(Hc).

(ii) fT maps Rζ bijectively onto Rζ ∪ Φ(H).

(iii) fT maps Φ(H) ∪Rη bijectively onto Rη.

Such an element can be constructed effectively. For example, to construct the portion of fT
on Rζ , we need only enumerate the dyadic rectangles R1, . . . , Rk of Φ(H), then choose a dyadic
subdivision D of Rζ into k+1 rectangles, and finally choose a one-to-one correspondence between
the rectangles of D and {R1, . . . , Rk, Rζ}.

The element fT constructed above simulates the Turing machine T , in the sense that the
following diagram commutes:

Hc F //

Φ

��

Hc

Φ

��

Φ(Hc)
fT
// Φ(Hc)

Whenever a configuration halts, fT maps the corresponding point to Rη. Similarly, fT maps
points from Rζ onto inverse halting configurations to “fill in” the bijection.

Example 6.2. Consider the incomplete Turing machine T with two states {s1, s2} and two
symbols {a1, a2}, which obeys the following rules:

(i) From state s1, move the head right and go to state s2.

(ii) From state s2, read the input symbol τ(0):

(a) If τ(0) = a1, then write a2 and go back to state s1.
(b) If τ(0) = a2, then halt.

That is, the transition table for T is the set

{(s1,R, s2), (s2, a1, s1, a2)}

It is easy to check that T is reversible. The halting configurations for T are

H = {(s2, τ) | τ ∈ AZ and τ(0) = a2},

12
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Figure 3: The element of 2V corresponding to the Turing machine in Example 6.2. The subrect-
angles Rζ and Rη are shown in gray, while RT is shown in white.

and the inverse halting configurations are

H = {(s1, τ) | τ ∈ AZ and τ(0) = a1}.

To make a corresponding element of 2V , let (σ1, σ2) = (0, 1) and (α1, α2) = (0, 1). Then one
possible choice for fT is shown in Figure 3.

For our purposes, incomplete Turing machines are useful primarily because of their relation
to the halting problem. Before we can discuss this, we must restrict ourselves to a class of config-
urations that can be specified with a finite amount of information. First, we fix a blank symbol a1

from A, and we define a configuration (si, τ) to be finite if the tape τ has the blank symbol in all
but finitely many locations. Then any finite configuration (si, τ) can be specified using only the
state si and some finite subsequence

(
τ(−n), . . . , τ(n)

)
of the tape whose complement consists

entirely of blank symbols.

Theorem 6.3. Any Turing machine can be effectively simulated by a reversible Turing machine.

Proof. This was proven in [Be73] for a 3-tape reversible Turing machine, and improved to a
1-tape, 2-symbol machine in [MSG89].

Corollary 6.4. It is not decidable, given a reversible Turing machine and a finite starting
configuration, whether the machine will halt.

Proof. This follows immediately from Theorem 6.3 and Turing’s Theorem on the unsolvability
of the halting problem for general Turing machines.

We wish to interpret this result in the context of 2V . We begin by defining points in C2 that
correspond to finite configurations.

Definition 6.5. A point (ψ, ω) ∈ C2 is dyadic if ψ and ω have only finitely many 1’s.

Note that a dyadic point in C2 can be specified with a finite amount of information, namely
the initial nonzero subsequences of ψ and ω. Assuming the sequence α1 corresponding to the
blank symbol a1 is a string of finitely many 0’s, the dyadic points in RT are precisely the points
that correspond to finite configurations of T .

Theorem 6.6. It is not decidable, given an element f ∈ 2V, a dyadic point p ∈ C2, and a dyadic
rectangle R ⊆ C2, whether the orbit of p under f contains a point in R.

13
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Proof. Let T be a reversible Turing machine, let (si, τ) be a starting configuration for T , and
let fT be the element constructed above. Then T eventually halts starting at (si, τ) if and only
if the point Φ(si, τ) eventually maps into the rectangle Rη under fT . By Theorem 6.4, we cannot
decide whether T will halt, so the given problem must be undecidable as well.

Theorem 6.7. It is not decidable, given an element f ∈ 2V and two dyadic points p, q ∈ C2,
whether the orbit of p under f converges to q.

Proof. Let T be a reversible Turing machine, and let (si, τ) be a starting configuration for
T . Let fT be the element constructed above, with the function fT chosen so that fT (1ψ, 0ω) =
fT (10ψ, 00ω) for (1ψ, 0ω) ∈ Rη. Note then that the orbit of every point in Rη converges to (10, 0).
Therefore, T eventually halts starting at (si, τ) if and only if the orbit of Φ(si, τ) converges to
(10, 0). By Theorem 6.4, we cannot decide whether T will halt, so the given problem must be
undecidable as well.

Theorem 6.8. There exists an element f ∈ 2V with an attracting dyadic fixed point p ∈ C2

such that B(p)∩D is a non-computable set, where B(p) is the basin of attraction of p and D is
the set of dyadic points in C2.

Proof. It follows from Theorem 6.3 that there exists a reversible Turing machine T that is
computation universal, meaning that it can be used to simulate the operation any other Turing
machine. Such a machine has the property that, given a starting configuration (si, τ), there does
not exist an algorithm to determine whether T halts. (That is, the halting problem is undecidable
in the context of this one machine.) If we use this machine to construct an element fT ∈ 2V as
in the proof of Theorem 6.7, then fT will have the desired property.

Acknowledgments

We would like to thank Matthew Brin, Rostislav Grigorchuk, Conchita Martinez-Perez, Francesco
Matucci, Volodia Nekrashevich, and Brita Nucinkis for helpful conversations.

The second author wishes to acknowledge partial support by EPSRC grant EP/H011978/1
during a period when he was conducting some of the research that lead to the creation of this
article.

References

AKLMP12 A. Akhavi, I. Klimann, S. Lombardy, J. Mairesse, and M. Picantin, On the finiteness problem
for automaton (semi)groups, Internat. J. Algebra Comput. 22 (2012), no. 6, 1250052, 26.
MR2974106
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Gl63 V. M. Gluškov, The abstract theory of automata. I, Magyar Tud. Akad. Mat. Fiz. Oszt. Közl.
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