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ABSTRACT  
The application of Machine Learning to cheminformatics is a large and active field of research, 

but there exist few papers which discuss whether ensembles of different Machine Learning 

methods can improve upon the performance of their component methodologies. Here we 

investigated a variety of methods, including kernel-based, tree, linear, neural networks, and 

both greedy and linear ensemble methods. These were all tested against a standardised 

methodology for regression with data relevant to the pharmaceutical development process. This 

investigation focused on QSPR problems within drug-like chemical space. We aimed to 

investigate which methods perform best, and how the ‘wisdom of crowds’ principle can be 

applied to ensemble predictors. It was found that no single method performs best for all 

problems, but that a dynamic, well-structured ensemble predictor would perform very well 

across the board, usually providing an improvement in performance over the best single 

method. Its use of weighting factors allows the greedy ensemble to acquire a bigger 

contribution from the better performing models, and this helps the greedy ensemble generally 

to outperform the simpler linear ensemble. Choice of data pre-processing methodology was 

found to be crucial to performance of each method too.  

 



1 INTRODUCTION  

Cheminformatics relies on informatics, statistical and Machine Learning (ML) methodology, 
rather than directly modelling the physics of the real world, to study chemical and biochemical 
systems.[1] Cheminformatics can address diverse problems in chemistry, from molecular docking 
to quantitative structure-activity relationships (QSAR), and can be used to improve the quality of 
experimentally obtained data, for example by reducing noise in high-throughput screening 
data.[2] One of the most significant areas of application for cheminformatics techniques is in 
medicinal chemistry and drug development.[3,4,5,6,7]   
 
QSAR is based on the principles that the physiochemical properties of a molecule are related to 
its structure, and that similar structures tend to exhibit similar properties. The principles of 
QSAR can be expanded to include wider contexts of application, such as quantitative structure-
property relationships (QSPR), or similarly for selectivity (QSSR) or toxicity (QSTR).  
 
While the basic principles underlying a QSAR relationship can often be rationalised in a general 
chemical sense – such as the presence of a polar group in a molecule making it more soluble in a 
polar solvent, QSARs are empirical in nature. The field has moved on from simple linear and 
multi-linear regression, and more complex relationships require more complex determination, 
and this is where ML comes in. It is also worth remembering that correlation does not equal 
causation, and most ML and cheminformatics methods do not, and cannot, determine 
causation.  
 
Machine Learning is a field of artificial intelligence which concerns the ability to train a 
computer system, using existing data, to be able to predict properties of new, unseen, data. This 
has become increasingly important in recent years given both the huge growth in computing 
power and the exponential advance of Big Data..[1] Technical developments within computer 
science have allowed ML to infiltrate many aspects of modern life in a wide variety of 
applications. These can include, but are by no means limited to, cheminformatics,[8] as well as 
the closely related field of bioinformatics,[9,10,11] image processing,[12] text analysis,[13] and even 
learning to play video games.[14,15]  As Helfert et al. observed, “Data can be a mixed 
blessing…”,[16] and this can certainly be true with the expanse of Big Data. However, with the 
power of sophisticated computers and algorithms,[17] ML allows problems to be addressed in 
modern and powerful ways. Machine Learning, in the context of cheminformatics and QSAR, 
often involves an overarching workflow of dataset construction, training and optimising models, 
and then testing them on new data. 
 
Most cheminformatics investigations tend to focus on one or a small number of ML methods 
and only one or two chemical problems.[18,19,20,21] Here, we look at a large number of ML 
methods and compare them on a standard methodology across a number of datasets of varying 
size and properties, to examine which methods perform best. Further, we consider ensemble 
ML methods, which are under-represented in the literature. The aim was to see how these can 
be developed and utilised in diverse cheminformatics problems, and if they indeed perform in 
accordance with the ‘wisdom of crowds’[8,22,23]

 principle; that if a single prediction is good, many 
predictions - averaged in some way - are better.  
 
Aqueous solubility is an important parameter to investigate during drug development; it can 
mean the difference between taking a medicine in oral or injection form, or more starkly 
success and failure in a drug development context. Solubility strongly affects absorption, 



excretion and bioavailability.[24] Since aqueous solubilities can have a very large range, we quote 
and predict them as the base 10 logarithm, logS, where S is referred to molar units. It was 
known as early as 1924[25] that aqueous solubility is, at least somewhat, predictable from 
chemical structure – in that case by comparing the number of methyl groups on otherwise 
similar molecules, with aqueous solubility being related to molecular size. Much further work 
has been done, and various other properties have been shown to relate, including the melting 
point and octanol-water partition coefficient as exemplified in the General Solubility Equation 
and elsewhere.[20,24,26] Much of the solubility data used here came from the Solubility 
Challenge,[27,28] a competition to challenge research groups to develop and test computational 
means of accurately predicting solubility. These data were obtained in one laboratory by a 
standardised and sophisticated experimental procedure, CheqSol.[29] That being said, all 
experimental data have some associated error, and quality of data is crucial in ML. Indeed, our 
recent study has shown that, despite its apparently small random error, use of data exclusively 
from CheqSol is not a panacea for all difficulties in modelling solubility.[30] For a typically difficult 
set of druglike molecules, it is reasonable to suggest that computing their logS values to within a 
±1 logS unit root mean squared error (RMSE) is a good prediction.[31] 
 
The octanol-water partition coefficient is important for ensuring bioavailability in drug 
development,[32] and allowing the drug to cross membranes as required.[20,24] It is generally 
regarded as a measure of lipophilicity. Like aqueous solubility, the partition coefficient is quoted 
as its base 10 logarithm, logP, due its potentially large range of values. The ability to quickly and 
easily predict logP in silico is very useful to the wider community, given the large reliance on 
focusing on potency of compounds, rather than ADMET optimisation in drug development.[32] 
LogP values are known from previous work, including our own, to be easier to predict than logS 
values; [24]

 nonetheless, there is scope for considerable improvement upon currently available 
methods.  
 
Melting point is also important in drug development,[24] though perhaps less obviously so. For 
example, if one could predict the melting point of a novel compound accurately, it might aid in 
the characterisation of that substance. Melting point also plays a key role in the General 
Solubility Equation.[26] Whilst melting points have shown some predictability in the 
literature[18,19,21,24,33] they are notoriously difficult to compute accurately – this is argued to be 
due to a relationship to 3D structure and bulk properties not adequately described by 2D 
descriptors of single molecules.[24] Based on literature and prior work in our group, a 
predictability of ±50°C in terms of RMSE (reference[18] uses the more forgiving “average absolute 

error” measure) might be considered reasonable.[18,19,21,24,33] 
 

 

2 METHODS 

2.1 ALGORITHMS 

One of the main difficulties when beginning any ML investigation is selecting which methods to 

use. Here, we compare a large number of diverse, though sometimes similar, ML methods. In 
this section we briefly outline each method used; fuller technical detail is available in the 
referenced literature, including work by Mitchell[8] and by Brown.[1,17] Several of these methods 
have tunable parameters, the values tested in this work can be found in the R scripts given as 
Supporting Information,  method-9-2-14.r and method.r. 



 

2.1 General Linear Model 

The first of three simple, and similar, linear methods we have investigated is the General Linear 
Model (GLM),[34] a simplistic multivariable model based on linear regression, not dissimilar to 
simply plotting X versus Y and extrapolating. It is susceptible to various sources of error, 
including over-fitting, and we did not expect it to perform very well on complex problems. It is 
used here for constructing a simple linear ensemble, and is called with the keyword glm in the 
statistical programming suite R.[35] 
 

2.1.2 Partial Least Squares 

Partial Least Squares (PLS) is a long standing technique in modelling, traced back to the 1960’s, 
and initially used in economics.[36] In wider chemistry applications, PLS can be used for 
calibration of spectrometers. It is an advanced evolution of multiple linear regression, and 
attempts linear regression for a system with many collinear variables by reducing the number of 
variables to those which are most significant for predicting the outcome. It is a relatively cheap 
and simple method, which may not perform very well on complex problems. In the R scripts, it is 
called using the pls keyword.  
 

2.1.3 Principal Components Regression 

Closely related is Principal Components Regression (PCR), a method which builds a linear 
regression model based on the principal components.[36] Given that Principal Component 
Analysis (PCA) is used as one of the pre-processing methods in this work, PCR is of limited 
significance to us here. In the R scripts used here, it is called with the pcr keyword. 
  

2.1.4 K-Nearest Neighbours  

One of the easiest methods to understand in ML is k-nearest neighbours (kNN), an approach 
used somewhat commonly for QSAR and related problems.[37,38] It is based on the assumption 

that molecules close together in descriptor space will have similar properties.[8] kNN will simply 
predict a test molecule as having the same properties as its nearest neighbour (within the 
training set) when k=1, but with k>1 kNN regression’s output prediction is based on an average 
of the neighbours’ properties. kNN is used here via the knn keyword in R.  
 

2.1.5 Neural Networks  

Neural networks, or more specifically artificial neural networks (ANNs), are a complex family of 
ML algorithms, inspired by neural networks in biological systems – if not necessarily reflecting 
nature, since ANNs consist of far fewer neurons .[39] They link a set of inputs and outputs via 
nodes, or neurons. The hidden layer of neurons between the input and output layers makes 
ANNs a ‘black box’ approach, whereby there is no easy interpretation of the relationship 
between inputs and outputs. The popularity of ANNs has decreased in the past few years, 
overtaken by more modern methods, though they are still used in cheminformatics and other 
ML investigations.[18,20,21,40,41,42] Here, a traditional implementation of ANNs was used with the 
nnet keyword in R. We used feed-forward neural networks with a single hidden layer, the 
number of nodes in that layer being a parameter chosen from {1, 5, 10}, whichever value 
performed best in training being selected. 
 

 



2.1.6 Tree Methods (Random Forest, Treebag and Cubist) 

Another relatively easy family of algorithms to understand are the tree-based methods. In the 
simplest form, these consist of simple decision trees – like flowcharts – constructed from the 
training data. One of the most effectively and commonly[43] used ways to improve upon the 
simple decision tree is to use Random Forest (RF), an ensemble technique wherein a large 
number of trees are constructed, hence forest,[44,45] and their outputs are combined to produce 
a consensus result. The ensemble method here trains the forest to produce diverse trees by 
giving each tree a different subset of the descriptors to learn from. In this investigation 1000 
trees were used, as the additional computational cost was negligible, though it is generally 
considered that around 500 trees are sufficient to obtain the full benefit of the ‘wisdom of 
crowds’ consensus effect.[43] The Random Forests were implemented with the rf keyword in R. 
Another tree based ensemble method, related to Random Forests, was also used – treebag. This 
bagged (bootstrap aggregation) method is produced in a similar fashion to Random Forests, 
except each tree is this time trained on a reduced subset of the available input training data.[43] 

Though this approach predates Random Forest, it is no longer as popular since it is considered 
less sophisticated. Finally, and slightly differently, cubist is a rule-based regression method,[46] 
developed in the late 1990’s, and has had limited coverage in the literature given its proprietary 
origins. However, an R port based on GPL code released by the developers was developed by 
Kuhn,[47] where a tree is grown as normal, but the decisions are reduced to a set of rules, by 
pruning amongst other methods. This method has not been investigated widely in 
cheminformatics, and this work provides an interesting opportunity to benchmark the 
performance of a relatively underexposed technique. 
  

2.1.7 Kernel-Based Methods (Support Vector Machine, Relevance Vector Machine and 
Gaussian Processes) 

One of the more widely used methods used in this field these days is Support Vector Machine 
(SVM). This method takes the data, maps them in a high-dimensional feature space, and 
attempts to plot a hyperplane separating two classes by maximising the distance between the 
plane and the support vectors, or closest points in space.[8,48] Particular mathematical functions 
– kernels - are used to enable non-linear classification, as well as numerical regression on non-
linear data. SVM is therefore used as a kernel-based regression method in this investigation. 
SVM is called with the keyword SVM followed by the kernel function suffix. Two kernel functions 
were used here; radial, and polynomial. The linear kernel, despite being a less computationally 
expensive function, was not included since it performed poorly in preliminary work. The radial 
kernel has previously been investigated in our laboratory,[31] and indeed has proven quite 
successful for a variety of cheminformatics problems.[8,49,50,51] The polynomial kernel function is 
by far the more expensive kernel function of those considered here. As such, less parameter 
optimisation was conducted for polynomial methods than radial ones. The two kernels are 
defined with the R keyword suffixes of Radial, and Poly, respectively. In addition to SVM, two 
other kernel-based methods were used. The first of these was Relevance Vector Machine 
(RVM). Otherwise very similar to SVM, RVM uses Bayes’ theorem and an assumed Bernoulli 
distribution of conditional probabilities to output probabilistic classification and regression 
models.[52] RVM, in favourable cases at least, has comparable performance at reduced 
complexity to SVM, but fewer examples of its utilisation exist in the literature. RVM was called 
with the R keyword prefix rvm. The final kernel-based method used is Gaussian Processes, and is 
related to RVM, in that it also uses a Bayesian approach for regression.[53] Only a few examples 
of its use in cheminformatics are to be found in the literature,[54,55]  and its inclusion in this 



investigation is for the comparison of kernel methods. It was used with the R keyword prefix 
gaussPr.  
 
 

2.1.8 Ensemble Methods (Greedy Ensemble and Linear Ensemble) 

One of our main aims here is to develop a methodology with ensemble methods, and 
investigate their performance. To that end, the recently developed caretEnsemble package[56] 
was utilised to build two further models. Once each of the previously mentioned models had 
been trained, these additional ensemble, or consensus, models were generated from them. 
Ensemble models were constructed in two different ways – a greedy ensemble 
(ens_greedy),[57,58] and a simple linear stacked ensemble (ens_linear). The linear ensemble 
simply used a further glm model to combine the other models into one ensemble. This method 
is inherently susceptible to error if one or more of the constituent models is performing badly. 
The greedy ensemble takes a weighted amount of the best-performing constituent models 
based on their performance within an internal validation set. It is based upon greedy algorithms, 
which attempt to find an optimal solution to a problem. These are not perfect, and may fail to 
consider all possibilities.[57] The exact weightings chosen will vary with each fold of each dataset, 
and so this dynamic nature means the greedy ensemble can be tuned to perform well for each 
problem.  Thus we obtain a dynamically generated ensemble that does not require hardcoding 
of methods into or out of the model depending on their individual effectiveness, but instead 
automatically fine tunes their weights. The Random Forest and treebag methods, discussed 
earlier, are technically themselves ensemble methods also, although with their constituent parts 
being tree-based.  
 

2.2 SOFTWARE USED 

2.2.1 R 

R (version 3.0.2)[35] – a programming language and computer environment for statistics – was 
chosen for its relative ease of use as well as its diverse set of plugins and abilities, due to its 
scripted nature. Within R, various plugins – known as packages – were used here to expand the 
list of available ML algorithms, as well as to provide ways to optimise these methods. These 
packages include Kernlab,[59]

 Metrics,[60] randomForest,[61] and several others. The main 
functions of the script were provided by the caret[62] package, which acts as a wrapper for many 
ML methods, unifying syntax and simplifying development and scaling of the script. The 
ensemble methods, discussed above, were implemented with an extension to the caret 
package, the caretEnsemble[56] package.  
 

2.2.2 CDK Descriptor Calculator 
For calculation of descriptors, we used the CDK Descriptor Calculator GUI, CDKDescUI[63] (version 
1.4.1). This software takes a comma-delimited list of compounds (in SMILES format) and 
calculates over 200 descriptors. For this methodology, all possible descriptors were calculated 
for each molecule. Descriptors which returned an N/A were removed, as well descriptors which 
showed zero, or near-zero variance (based on the nearZeroVar function in the caret package in 
R). The descriptors were then further pre-processed in two different ways, either with simple 
centre-scaling (CS) to normalise divergent numbers, or with Principal Component Analysis (PCA) 
to reduce the descriptors to a lesser number of principal components. The PCA functionality was 
implemented using the pre-processing function of the caret package. Exact numbers of 
descriptors used are given in the Results section.  



 

2.2.3 Taverna 
A Taverna workflow was used to convert chemical names to their corresponding SMILES strings, 
required for descriptor calculation. This workflow[31] queried the Chemspider online database.[64] 

 
2.2.4 Experimental Design 
The methodology of the R script is demonstrated in Figure 1. This represents the workflow of 
the process. For a given dataset with N=100 molecules, the dataset is split into a training set and 
a test set. This external dataset of 10% of the total data is withheld from all training, meaning 
that the results from testing on the final model are valid, and not based on examples that the 
trained models have previously seen. This important aspect is discussed widely in the 
literature.[8,65, 66] 
 
The training set is then split again 90-10 for training and internal validation. This internal 
validation set is used for cross-fold validation to make sure that the final trained model is not 
biased on one split of the data. The sections of the flowchart in blue represent what the caret 
package in R can do. That is, it will run the ML methods several times to determine the optimum 
parameters – e.g., the size of a neural network, or the number of k-nearest neighbours to use. It 
determines this by scoring the methods against this internal validation set. Additionally, these 
scores are used by the caretEnsemble package to determine weightings for the greedy ensemble 
method.  
 
The final model, once trained on the complete training set, including parameter optimisation 
with the internal validation set, is then scored against the external testing set. This score is 
aggregated across a 10-fold cross-validation to provide a real measure of the performance. 
Averaging over splitting the dataset in 10 different random ways gives a fair measure; here, the 
process was also repeated five times with different random seeds, given in the scripts in the SI.  
 

2.3 MEASURING PERFORMANCE  

2.3.1 RMSE  

For simple numerical regression, Root-Mean-Square Error (RMSE) is commonly quoted, and for 
a dataset with positive and negative numbers, it provides a real comparison of predicted versus 
actual values. In this investigation, the RMSE was calculated for each method, for each fold, and 
then averaged across the entire process, including with five different random seeds. The RMSE 
value is given in the appropriate units of the given problem, for example logS units for solubility.  
 

2.3.2 Normalised RMSE  

When comparing different datasets, especially for different problems – solubility and melting 
points, for example – the RMSE values are no longer directly comparable. Thus, in addition to 
RMSE, we also calculated Normalised RMSE values – whereby the RMSE value was divided by 
the range of actual values of each experimental property in the dataset.  

 

2.3.3 R2  

R-squared (R²) has several slightly different definitions,[67] including simply the square of the 

Pearson correlation coefficient, R, which is the definition used here. This measure gives the 
underlying correlation between the experimental and predicted values of logS (or logP, or 



melting point), stripping out systematic bias. The latter will affect our RMSE, but not R2, 
values. 
 

 
 
Figure 1 – Schematic flowchart of our methodology. This tenfold cross-validation process is repeated five times with five 
different random seeds for each combination of algorithm and dataset.  

 
2.3.4 Alternative Approaches 

One could alternatively examine performance by other methods, including comparison to a 
‘lazy’ learner, as well as by defining a range of acceptable values and determining a simple ratio 
of acceptable-to-unacceptable values. For the case of a lazy learner, one simply averages the 
values of the properties under investigation, and ‘predicts’ all other data to have this mean 
value. Using this as a baseline, one could discuss if their method is better or worse than a lazy 
learner. Generally speaking, this has limited use in the real world, but it is an important 
consideration when first investigating a method. As for the acceptable-to-unacceptable ratio 
example, one could consider a property such as solubility, for which a valid prediction error 



margin might be within 0.5 logS units of experiment, as in the solubility challenge,[27,28] or 

perhaps 1.0 logS unit; experimental errors have been estimated to be around 0.6-0.7 logS 
units.[68] Any prediction falling within the specified range would be considered valid. In previous 
investigations[31] this has been used as a metric, however it is not discussed further here. 
 

3 RESULTS  
 

3.1 Aqueous Solubility (logS)  

The first problem investigated was that of predicting aqueous solubility, logS, of compounds. 
This built on prior work by the Mitchell group, and indeed the initial dataset was taken from this 
work,[31] and shall be referred to as the ‘Solubility Challenge’ (SC) dataset in this paper; it 
represents the usable subset of the original SC data.[27,28, 31]

  
 

A second dataset for this chemical problem allows comparison of dataset size and quality, 
keeping methods constant, allowing for greater analysis of results. This second dataset was 
taken from previous work within the Mitchell group, [24] and shall be referred to as the ‘Laura 
Hughes’ dataset, abbreviated to ‘LH’ dataset, for the rest of this paper. Importantly, the LH data 
also have available values for logP and melting point, which facilitate comparison between the 
predictions of different physicochemical properties. 
 
Descriptors for both datasets were calculated in the same way, with the same CDK software.[63] 
 

Dataset Molecules Descriptors 

Solubility Challenge 122 113 

Laura Hughes 262 139 

 
Table 1: Datasets for logS models 
 
Table 1 shows the different sizes of the two logS datasets. Whilst they cover the same regions of 
chemical space, the LH dataset is more than twice the size of the SC dataset, and therefore 
should produce better models for predicting logS. The difference in number of descriptors is not 
hugely significant – the LH dataset has more descriptors because it has more molecules, and 
therefore fewer calculated descriptors will have had zero variance or near zero variance.  
 
The following graphs, Figure 2 and Figure 3, show the distribution of logS values in the two 
respective datasets, with a normal curve superimposed. It is clearly apparent that the LH dataset 
has a more satisfactory distribution of values, spanning not only a greater range but with higher 
frequencies, and a closer-to Gaussian distribution. This suggests that the LH dataset is both 
more realistically sampling this area of chemical space and also therefore provides better 
predictive models within this domain of applicability.[65] 
 
 
 



 

Figure 2 - Histogram of logS distribution for the Solubility Challenge dataset
 

 

 

Figure 3 - Histogram of logS distribution for the Laura Hughes dataset  
 
 
 



 

 

Figure 4. Normalised RMSE vs R
2

 for all models excluding RVM, averaged over the different properties. This Figure shows the 

same data as Table 5, but for more methods



RMSE RVM 
Radial 

RVM 
Poly 

SVM 
Radial 

SVM 
Poly 

GaussPr 
Radial 

GaussPr 
Poly 

nnet kNN treebag RF cubist PLS PCR ens 
greedy 

ens 
linear 

SC (PCA) 1.12 0.92 0.96 0.95 1.03 0.94 1.09 0.98 1.06 1.03 0.90 0.91 0.88 0.84 0.85 

SC (CS) 1.21 0.91 0.94 0.91 0.96 0.88 1.07 0.95 0.94 0.89 0.86 0.93 0.92 0.83 0.86 

LH (PCA) 1.26 1.19 1.08 1.15 1.17 1.20 1.21 1.19 1.20 1.15 1.17 1.20 1.19 1.09 1.17 

LH (CS) 1.22 1.22 1.01 1.07 1.03 1.10 1.38 1.15 1.05 1.02 1.09 1.14 1.12 1.03 1.08 

 

Norm 
RMSE 

RVM 
Radial 

RVM 
Poly 

SVM 
Radial 

SVM 
Poly 

GaussPr 
Radial 

GaussPr 
Poly 

nnet kNN treebag RF cubist PLS PCR ens 
greedy 

ens 
linear 

SC (PCA) 0.16 0.13 0.14 0.13 0.15 0.13 0.15 0.14 0.15 0.14 0.13 0.13 0.12 0.12 0.12 
SC (CS) 0.17 0.13 0.13 0.13 0.14 0.12 0.15 0.13 0.13 0.12 0.12 0.13 0.13 0.12 0.12 
LH (PCA) 0.12 0.11 0.10 0.11 0.11 0.11 0.12 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.11 

LH (CS) 0.12 0.12 0.10 0.10 0.10 0.10 0.13 0.11 0.10 0.10 0.10 0.11 0.11 0.10 0.10 

 

R
2
 RVM 

Radial 
RVM 
Poly 

SVM 
Radial 

SVM 
Poly 

GaussPr 
Radial 

GaussPr 
Poly 

nnet kNN treebag RF cubist PLS PCR ens 
greedy 

ens 
linear 

SC (PCA) 0.46 0.57 0.53 0.55 0.56 0.56 0.45 0.51 0.44 0.47 0.58 0.56 0.58 0.63 0.62 

SC (CS) 0.42 0.56 0.54 0.57 0.55 0.58 0.48 0.54 0.55 0.60 0.60 0.54 0.55 0.63 0.61 

LH (PCA) 0.48 0.56 0.59 0.57 0.59 0.54 0.52 0.52 0.53 0.55 0.56 0.54 0.54 0.60 0.56 

LH (CS) 0.51 0.58 0.64 0.61 0.64 0.59 0.39 0.53 0.61 0.63 0.60 0.57 0.57 0.63 0.60 

 

Table 2: Results of regression models for logS using the various ML methods showing (top) RMS errors in logS units; (middle) normalised RMS errors, see text for details; (bottom) correlation 

presented as R
2
. The datasets are Solubility Challenge

[27,28]
 and Laura Hughes,

[24]
 and in each case results are given separately for two pre-processing protocols, Principal Components Analysis 

(PCA) and Centre-Scaling (CS).



The RMSE values for aqueous solubility are shown in the top panel of Table 2. For the SC 
dataset, the RMSE values are encouragingly mostly within 1 logS unit. Nonetheless, some 
models produced much lower (better) RMSE values than others. For the dataset with simple CS 
pre-processing, the range of results was 0.83-1.21 logS units. The best method was the greedy 
ensemble, with an RMSE of 0.83. The linear ensemble performed almost as well with an RMSE 
of 0.86. Looking at the more traditional methods, it is clear that the kernel based methods 
(RVM, SVM, and Gaussian Processes) perform better with a polynomial kernel function, 
especially the RVM which had an error of 1.21 logS units with the radial function and 0.91 with 
the polynomial function, a significant performance boost from the latter kernel. In this instance, 
the best kernel-based method was Gaussian Processes with the polynomial function, at 0.88 
logS units. Of the tree and rule based methods, cubist outperforms treebag and Random Forests 
with an RMS error of 0.86 – equally good as the linear ensemble. The simple, fast, linear 
methods – PLS and PCR – performed reasonably well in this case too. The greedy ensemble 
scored better than any of the individual models it was comprised of, as expected from the 
‘wisdom of crowds’ hypothesis.  
 
The SC dataset was also modelled with PCA pre-processing. This reduced the computational cost 
significantly, cutting the time to train and test models by over half. This came at the cost of 
slightly worse predictivity for most models; the range of RMSEs recorded was smaller, but with a 
slightly larger minimum RMSE, at 0.84-1.12. Again the greedy and linear ensembles performed 
very well, with both doing better than any of their constituent models. The kernel methods 
again performed better with the larger polynomial function than with the radial function, but 
the performance difference is not as great as for the CS pre-processing. Neural networks had an 
RMSE of 1.09 here, compared with 1.07 RMSE for CS pre-processing, a minimal difference, but 
notably worse than most of the other ML methods. Again the cubist method performed better 
than treebag or Random Forest, but less well than it did with CS pre-processing. Only three 
models performed better with PCA than CS pre-processing – RVM with a radial kernel function, 
PLS and PCR. Possibly these methods are more sensitive to descriptor noise, and would benefit 
more from more thorough dataset curation and pre-processing.  
 
The R2

 values, in Table 2, support similar conclusions to the RMSE analysis. For Solubility 
Challenge data with CS pre-processing, only two models had R2 below 0.5 – neural networks and 
RVM with the radial kernel function. However, with PCA pre-processing this benchmark was 
missed by two more methods, treebag and Random Forests. Again, greedy and linear ensembles 
outperformed their constituent models, with the greedy achieving an R2 of 0.63 for both pre-
processing methods.  It is clear that many of the methods perform essentially equally well. 
 
The ranges of RMSEs for the LH dataset are larger than for SC, at 1.01-1.38 and 1.09-1.26 for CS 
and PCA pre-processing, respectively. When we normalised the RMSE values, see middle panel 
of Table 2, the LH dataset was actually modelled better in relative terms. This demonstrates the 
importance of normalising measures when comparing different datasets. As shown in the LH 
dataset histogram, Figure 3, the range of logS values was greater than for the SC dataset. 
Therefore the RMSE scores for the LH data were normalised from a wider range onto the 
standardised scale, and proportionally scored better, see Figure 4.  
 
In terms of which models performed best with the different datasets, there are some interesting 
differences. With the LH dataset the greedy ensemble performs well, but not best, illustrating 
that the ‘wisdom of crowds’ principle is not absolutely obeyed by our models. The best model 
with CS pre-processing was SVM with a radial function; indeed, across the kernel-based 



methods, the radial function usually out-performed the polynomial kernel. This is in direct 
contrast to the SC dataset. Also unlike the SC dataset, random forests performed best of the 
tree-based methods – better than cubist or treebag. The worst model was the neural network, 
with a poor RMSE of 1.38. These trends were generally mirrored with PCA pre-processing, albeit 
it with poorer RMSE values for most of the models. Two models did perform better with PCA 
than with simple CS pre-processing, RVM with the polynomial function and neural networks. 
Again, this is different to the SC dataset. Neural networks may favour the PCA pre-processing as 
it reduces noise in the data, and therefore prevents overfitting.[8] 
 

The R2
 values for the LH logS dataset are shown in the lower panel of Table 2 and in Figure 4. For 

CS, the joint best R2
 values were for SVM and Gaussian Processes with the radial kernel – both 

obtaining 0.64, which is higher than for the SC dataset. The greedy ensemble had R2 = 0.63 with 

CS scaling, matching the SC dataset, but with PCA its R2 dropped to 0.60. Two models failed to 

reach an R2
 value of greater than 0.5, neural networks with CS pre-processing and RVM radial 

with PCA. With the alternative pre-processing protocols, both methods built models with R2 

above 0.5. 

 

3.2 Octanol-Water Partition Coefficient (logP)  

The second chemical problem investigated was predicting the base 10 logarithm of the octanol-

water partition coefficient, logP, for which values were available in the LH dataset. [24]  

Figure 5 shows the distribution of logP values within the LH dataset, with the numbers of 
molecules and descriptors being as detailed in Table 1. This histogram most closely resembles a 
Gaussian distribution. There are outliers at very high and low logP, but the majority are within 
the range associated with Lipinski drug like space, with a logP of less than 5
[69,70] Based on prior work in the literature, and with this dataset, logP was expected to be the 
easiest numerical regression problem to model. 

 
Referring to the results in Table 3, we can see that the greedy ensemble method performed best 
for PCA and CS, scoring better than or at least as well as, the best of its constituent models. For 
CS, greedy ensemble had an RMSE of 1.01, and 1.04 for PCA. CS had an RMSE range of 1.01-
1.40, whereas PCA has a smaller range at 1.04-1.23. Of the kernel-based methods, the two best 
models were SVM radial, 1.01 and 1.06 for CS and PCA respectively, and Gaussian processes 
with a polynomial function at 1.04 and 1.07 for CS and PCA, respectively. The worst performing 
model with CS was neural networks, with a disappointing RMSE of 1.40. However, with PCA, 
neural networks’ performance was significantly improved to an RMSE of 1.09. This fits with the 
CS pre-processing leaving too much noise in the data. As on the SC dataset for logS, cubist 
performed best of the tree or rule based methods. The linear methods, PLS and PCR, performed 
reasonably well, and are relatively resilient to pre-processing method in this case. Most of the 
methods did better with CS as pre-processing compared to PCA, with the exceptions of RVM and 
SVM with a polynomial function, neural networks, and k-nearest neighbours.  



 

Figure 5 - Histogram of logP distribution for the Laura Hughes dataset. 

 

Table 3 also shows the R2 values for the logP models. For the partition coefficient problem, the 

R2
 values were all substantially higher than for logS, with the lowest value being 0.54 for neural 

networks with the CS pre-processing. The analysis of R2 values supports the RMSE conclusions, 

the greedy ensemble performing very well again with values of 0.73 and 0.70 for CS and PCA, 

respectively. For CS, other models which scored highly include SVM radial, Gaussian Processes 

polynomial, random forests and cubist, each with an R2
 of 0.72 or 0.73. In contrast, however, the 

highest R2
 value for PCA pre-processed models was Gaussian processes with a radial function, 

obtaining a value of 0.71 – interestingly this was higher than the R2 obtained by either the 

greedy or linear ensembles. 

 

3.3 Melting Points  

The final regression problem investigated was that of predicting the melting points of 

compounds from chemical structure. Again, we used the LH dataset.[24] Based on previous work, 

melting points were expected to be the most difficult property to model here, with an expected 

error of around ±50°C. Previous rationalisations for this include that melting points may be 

related to bulk properties, and that crystal properties are not adequately described by 

descriptors designed and calculated for individual molecules. Figure 6 shows the spread of 

melting points represented in the dataset.  



 
 
 
 
RMSE RVM 

Radial 
RVM 
Poly 

SVM 
Radial 

SVM 
Poly 

GaussPr 
Radial 

GaussPr 
Poly 

nnet kNN treebag RF cubist PLS PCR ens 
greedy 

ens 
linear 

LH (PCA) 1.11 1.08 1.06 1.15 1.16 1.07 1.09 1.18 1.23 1.18 1.07 1.08 1.10 1.04 1.14 

LH (CS) 1.15 1.20 1.01 1.25 1.11 1.04 1.40 1.21 1.07 1.02 1.01 1.08 1.08 1.01 1.07 

 
Norm 
RMSE 

RVM 
Radial 

RVM 
Poly 

SVM 
Radial 

SVM 
Poly 

GaussPr 
Radial 

GaussPr 
Poly 

nnet kNN treebag RF cubist PLS PCR ens 
greedy 

ens 
linear 

LH (PCA) 0.10  0.10  0.10  0.11  0.11  0.10  0.10  0.11  0.11  0.11  0.10  0.10  0.10  0.10  0.11  

LH (CS) 0.11  0.11  0.09  0.12  0.10  0.10  0.13  0.11  0.10  0.09  0.09  0.10  0.10  0.09  0.10  

 
R

2
 RVM 

Radial 
RVM 
Poly 

SVM 
Radial 

SVM 
Poly 

GaussPr 
Radial 

GaussPr 
Poly 

nnet kNN treebag RF cubist PLS PCR ens 
greedy 

ens 
linear 

LH (PCA) 0.67 0.68 0.69 0.65 0.71 0.69 0.67 0.64 0.59 0.64 0.69 0.68 0.67 0.70 0.66 

LH (CS) 0.65 0.69 0.73 0.68 0.70 0.72 0.54 0.62 0.70 0.73 0.72 0.69 0.69 0.73 0.70 

 
 
Table 3: Results of regression models for logP using the various ML methods showing (top) RMS errors in logP units; (middle) normalised RMS errors, see text for details; (bottom) correlation 

presented as R
2
. The dataset is the Laura Hughes set,

[24]
 and results are given separately for two pre-processing protocols, Principal Components Analysis (PCA) and Centre-Scaling (CS).



RVM methods failed to run successfully in R for the melting point models. As such they were 
removed from the script for melting point modelling, and are not constituents of the greedy or 
linear ensembles for these models. Table 4 shows that again the greedy ensemble performed 
best, with RMSEs of 54.7°C and 52.9°C for CS and PCA pre-processing, respectively. Whilst this 
size of RMSE is in line with the literature, being over 50°C out for a melting point prediction is a 
significant error and limits the usefulness of the models, especially when, as shown in Figure 6, 
the spread of melting points is only around 350°C in total. Again the ‘wisdom of crowds’ 
principle is obeyed, with the greedy ensemble doing better than any of its constituent models. 
Of the kernel-based methods, SVM with the radial function performs best with PCA with an 
RMSE of 53.2°C, and Gaussian Processes with the radial kernel perform best with CS, having an 
RMSE of 54.4°C. Consistent with the logS and logP regression problems, neural networks 
perform worst for both CS and PCA pre-processing, with RMSEs of 65.7°C and 61.6°C, 
respectively. 
 
Unlike the other regression problems, it appears that more models were improved with PCA 
compared with CS pre-processing. Indeed only SVM with the polynomial function, and Gaussian 
Processes with the radial function, performed better with CS than PCA. Of the tree based 
methods, cubist performed worst, with treebag and Random Forests doing approximately 
equally well. 
 
As seen in Table 4, the R2

 values across the board are low. The highest R2 is 0.44, achieved by 

both SVM radial and the greedy ensemble with PCA pre-processing. Neural networks obtained a 

disappointing R2 of 0.23 with CS pre-processing, only slightly improving to 0.28 with PCA pre-

processing. Generally the trends in R2
 mirrored those of RMSE. PCA pre-processing did better 

than CS for most melting point models. The greedy ensemble did well, while again neural 

networks performed poorly, especially in terms of R2. Finally, as expected, melting points proved 

the most difficult of the three properties to model, as evidenced by the larger normalised RMSE 

and the smaller R2 values. 

 

3.3 Comparison across the three problems  

Table 5 shows the averaged normalised RMSE and R2 values across the three problems for a 

selection of the models investigated, demonstrating the highs and lows of the methods. The 

SVM radial, cubist, Gaussian Processes, and PLS methods all do well on these across-the-board 

measures. The linear ensemble is comparable to the best individual performance, and the 

greedy ensemble provides a small improvement on it. At the other end of the scale, the worst 

method was neural networks, which performed poorly on all three problems. Neural networks 

were also most susceptible to dataset noise, as demonstrated by the differences in score with 

different data pre-processing. This suggests that, with more refined descriptor selection, neural 

networks might do better.  



 
 
 
 
RMSE RVM 

Radial 
RVM 
Poly 

SVM 
Radial 

SVM 
Poly 

GaussPr 
Radial 

GaussPr 
Poly 

nnet kNN treebag RF cubist PLS PCR ens 
greedy 

ens 
linear 

LH (PCA) N/A N/A 53.2 58.8 54.6 58.0 61.6 58.6 55.5 55.0 56.6 56.8 56.8 52.9 53.8 

LH (CS) N/A N/A 55.0 57.4 54.4 56.5 65.7 59.3 56.9 56.4 57.0 57.6 58.2 54.7 56.3 

 
Norm 
RMSE 

RVM 
Radial 

RVM 
Poly 

SVM 
Radial 

SVM 
Poly 

GaussPr 
Radial 

GaussPr 
Poly 

nnet kNN treebag RF cubist PLS PCR ens 
greedy 

ens 
linear 

LH (PCA) N/A  N/A  0.16  0.17  0.16  0.17  0.20  0.18  0.17  0.17  0.17  0.17  0.17  0.16  0.17  

LH (CS) N/A  N/A  0.16  0.18  0.16  0.17  0.18  0.17  0.17  0.16  0.17  0.17  0.17  0.16  0.16  

 
R

2
 RVM 

Radial 
RVM 
Poly 

SVM 
Radial 

SVM 
Poly 

GaussPr 
Radial 

GaussPr 
Poly 

nnet kNN treebag RF cubist PLS PCR ens 
greedy 

ens 
linear 

LH (PCA) N/A N/A 0.41 0.39 0.42 0.39 0.23 0.31 0.35 0.36 0.38 0.37 0.35 0.41 0.39 

LH (CS) N/A N/A 0.44 0.35 0.42 0.35 0.28 0.31 0.38 0.39 0.38 0.36 0.36 0.44 0.44 

 
 
Table 4: Results of regression models for melting point using the various ML methods showing (top) RMS errors in °C; (middle) normalised RMS errors, see text for details; (bottom) 

correlation presented as R
2
. The dataset is the Laura Hughes set,

[24] 
and results are given separately for two pre-processing protocols, Principal Components Analysis (PCA) and Centre-Scaling 

(CS).



 

 
Figure 6 - Histogram of melting point distribution for the Laura Hughes dataset. 

 
 

Average SVM 
Radial 

Gausspr 
Poly 

nnet cubist PLS ens 
greedy 

ens 
linear 

NRMSE 0.12  0.13  0.15  0.12  0.13  0.12  0.12  

R
2
 0.57  0.55  0.45  0.56  0.54  0.60  0.57  

 

Table 5 - Average Normalised RMSE and average R
2
 for selected ML approaches. 

 

 

 

  



4 DISCUSSION 

Across the three related chemical regression problems, 15 different ML methods were directly 
compared. A summary of their performance is presented in Figure 4 and Tables 2, 3, 4, and 5. 
Looking at the average normalised RMSE and R2

 values, the best models were the greedy 
ensemble, RVM polynomial (when it worked), SVM radial, and cubist. The greedy ensemble, a 
dynamically generated ensemble of up to 13 models, managed to consistently do as well as, or 
better than, any of its constituent models, with the linear ensemble slightly behind it. The 
similar linear model was more susceptible to errors from poor component models, and thus did 
not perform as well. With careful model selection, it would be probably possible to train a linear 
ensemble to perform much better. Random Forests, itself an ensemble method but comprising 
only regression trees, also produced reasonable models. As shown in the lower panels of Tables 
2, 3 and 4, average R2

 values for each method with either PCA or CS pre-processing demonstrate 
how some methods are more suited to one of the other, or have no preference. This is most 
noticeable with neural networks, which averaged an R2

 of 0.41 with CS, but improved to 0.48 
with PCA. The most significant opposite trend was for Gaussian Processes with a polynomial 
kernel, which achieved an average R2

 for 0.57 with CS, but only 0.54 with PCA. 
 
Given that aqueous solubility is widely considered to be difficult to model and predict, 20,24, 27,31,69 

the RMSE and R values obtained here for solubility prediction were reasonably good. Previous 

work with the LH dataset24 did obtain better predictivity, however the experimental design and 

methodology were different in that investigation. The availability of two different datasets, of 

different sizes, provided an interesting comparison. Overall ensemble methods performed well 

for solubility, whether they were Random Forests or greedy (or linear) ensembles mixing 

different ML methods.  

Overall trends which can be drawn from our logP modelling include that, again, ensemble 

methods perform well. The linear ensemble does not perform as successfully as the greedy 

ensemble, but this is probably due to its indiscriminate formation from all models, some of 

which – e.g., neural networks – don’t perform well. Again cubist performs well, as do random 

forests – with CS only – as well as the SVM and Gaussian Processes kernel methods with radial 

functions. Finally, as expected, logP was easier to model accurately than logS. As expected, 

melting points proved the most difficult of the three properties to model, judged on R2 and 

normalised RMSE. 

 

5 CONCLUSIONS 

The most significant conclusion from this work is that ensemble Machine Learning methods 

usually provide an improvement in performance over single methodologies. This can be seen as 

a practical validation of the ‘wisdom of crowds’ principle. However, we note that there is no 

single best measure of prediction success for such regression methods and that according to 

some measures the best single method may sometimes match or better the ensemble.  



The use of relatively flexible weights allows the greedy ensemble to acquire a bigger 

contribution from the better performing single models, and this is a major factor in the greedy 

ensemble generally outperforming the linear ensemble throughout this study. 

 We used both normalised RMSE and R2 to compare predictions for the three properties. We 

found that logP gave the best predictions, with the lowest normalised RMSE and highest R2, 0.09 

and 0.73, respectively, for the best models of the LH data. LogS was slightly harder to model; its 

lowest normalised RMSE and highest R2 were 0.10 and 0.63, respectively, for the best LH 

models. Finally, as expected, melting points proved the most difficult of the three properties to 

model, as evidenced by the larger normalised RMSE and the smaller R2, the best melting point 

results for the LH data being 0.16 and 0.44, respectively. This ordering of the difficulties of 

predicting the three properties accords with Hughes et al.[24]
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