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ABSTRACT

Aims. Increasing observational evidence of wave modes brings us to a closer understanding of the solar corona. Coronal seismology
allows us to combine wave observations and theory to determine otherwise unknown parameters. The period ratio, P1/2P2, between
the period P1 of the fundamental mode and the period P2 of its first overtone, is one such tool of coronal seismology and its departure
from unity provides information about the structure of the corona.
Methods. We consider analytically the effects of thermal conduction and compressive viscosity on the period ratio for a longitudinally
propagating sound wave.
Results. For coronal values of thermal conduction the effect on the period ratio is negligible. For compressive viscosity the effect on
the period ratio may become important for some short hot loops.
Conclusions. Damping typically has a small effect on the period ratio, suggesting that longitudinal structuring remains the most
significant effect.
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1. Introduction

Since the late 1990s, Solar and Heliospheric Observatory
(SoHO) and Transition Region and Corona Explorer (TRACE)
observations of various coronal wave phenomena have been pos-
sible (see, for example, Nakariakov & Verwichte 2005). This has
led to an increased growth in the field of coronal seismology of
magnetic loops suggested 25 years ago (Roberts et al. 1984).
Recent observations with Hinode and STEREO have added fur-
ther to this record (see, for example, Wang et al. 2009; Marsh
et al. 2009). Coronal seismology helps to unveil the nature of
the solar atmosphere; studying observed waves and drawing on
their specific properties, it is possible to diagnose aspects of
the coronal structure which might otherwise remain unknown.
The period ratio between the fundamental mode and its first
overtone has been noted as an effective tool for coronal seis-
mology (Andries et al. 2005a,b, 2009; Goossens et al. 2006;
McEwan et al. 2006, 2008; Donnelly et al. 2006; Dymova &
Ruderman 2007; Díaz et al. 2007; Roberts 2008; Verth & Erdélyi
2008; Ruderman et al. 2008; Erdélyi & Morton 2009; Morton &
Erdélyi 2009). This topic has recently been reviewed in Andries
et al. (2009).

There is ever increasing observational evidence of mag-
netoacoustic waves, both standing and propagating, occurring
in the corona. Propagating slow waves have been reported by
Ofman et al. (1997, 1999), DeForest & Gurman (1998), De
Moortel et al. (2000, 2002a,b), Robbrecht et al. (2001), Ofman
& Wang (2002), McEwan & De Moortel (2006) and Marsh
et al. (2009). Standing slow waves have been observed by Wang
et al. (2002, 2003, 2009) and Srivastava & Dwivedi (2010).
Standing fast waves in the form of transverse kink waves have
been recorded by Aschwanden et al. (1999, 2002), Nakariakov
et al. (1999), Wang & Solanki (2004), Verwichte et al. (2004)

and Van Doorsselaere et al. (2007), while standing fast sausage
modes have been observed by Nakariakov et al. (2003) and
Melnikov et al. (2005), and modelled by Pascoe et al. (2007,
2009), Srivastava et al. (2008) and Inglis et al. (2009).

Standing slow modes are of particular interest here. They
have been extensively studied by Wang et al. (2002, 2003, 2009)
using SoHO/SUMER observations and in this form are recorded
in hot loops only. However, very recently intensity oscillations
in the cooler loops observed by the EUV imaging spectrome-
ter (EIS) onboard the Hinode spacecraft have been reported by
Srivastava & Dwivedi (2010) and are interpreted as the signature
of slow acoustic oscillations in a non-flaring loop.

Our interest is in the detection of multi-periods in loops.
Multi-periods (typically the fundamental mode and its first over-
tone) were first reported in standing fast waves (Verwichte et al.
2004; Van Doorsselaere et al. 2007; De Moortel & Brady 2007;
O’Shea et al. 2007; Srivastava et al. 2008) and until very recently
had not been found in slow modes. In fast waves the observed
tendency for the period ratio P1/2P2 between the fundamental
mode of period P1 and the period P2 of its first overtone to be
less than unity (the value for a simple wave on a string) has led to
an interest in this ratio. A large number of physical effects have
been assessed for their influence on the period ratio: wave dis-
persion, gravitational stratification, longitudinal and transverse
density structuring, loop cross-sectional ellipticity, the over-
all geometry of a loop and magnetic field expansion (Andries
et al. 2005a,b; McEwan et al. 2006, 2008; Díaz et al. 2007;
Ruderman et al. 2008; Verth & Erdélyi 2008; Erdélyi & Morton
2009; Morton & Erdélyi 2009; Inglis et al. 2009). The overall
conclusion seems to be that longitudinal structuring plays the
most marked role (Andries et al. 2009). Longitudinal structuring
may take the form of density stratification (e.g. Andries et al.
2005a,b; McEwan et al. 2006, 2008) or magnetic structuring
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(Verth & Erdélyi 2008). The recent reports by Srivastava &
Dwivedi (2010) suggest that slow modes also form multi-
periods; interestingly, their reported period ratios of P1/P2 =
1.54 and 1.84 (corresponding to P1/2P2 = 0.77 and 0.92) show
a strong departure from canonical values, comparable or even
larger than the period ratios measured in fast waves.

The effect of damping on the period ratio has not been as-
sessed. We take up this topic here. We discuss explicitly the one-
dimensional sound wave and the role of thermal conduction and
compressive viscosity on determining the period ratio. This case
is directly relevant to the propagation of the slow magnetoacous-
tic wave under coronal conditions, since for a low β plasma the
slow mode has been shown to decouple from the magnetohydro-
dynamic equations and obey a Klein-Gordon equation (Roberts
2006); in the absence of stratification, the Klein-Gordon equa-
tion reduces to the one-dimensional wave equation.

De Moortel & Hood (2003) studied generally the effect of
both thermal conduction and compressive viscosity, as well as
gravitational stratification and magnetic field divergence, on the
slow mode for TRACE loops (1−2 MK temperatures), and were
able to conclude that thermal conduction had an important role.
On the other hand, Sigalotti et al. (2007) have argued that com-
pressive viscosity plays a significant role when we consider hot
(≥5 MK) loops, as observed by SoHO/SUMER.

Here we consider the combined effects of thermal conduc-
tion and compressive viscosity on the period ratio, P1/2P2, of
a sound wave propagating one-dimensionally. This is the first
discussion of the influence of non-ideal effects on period ratios.
We obtain the dispersion relation for sound waves influenced by
thermal conduction and compressive viscosity and use this to
determine P1/2P2. This raises the possibility of using the period
ratio as a diagnostic tool of non-ideal conditions.

2. Period ratio for slow modes

We model a single coronal loop line-tied at footpoints located in
the photosphere. Gravity and field-line curvature are neglected.
We treat the longitudinally propagating waves as purely one
dimensional sound waves. It is generally considered that the
plasma-β is small in the corona (see, for example, the discus-
sion in Ruderman & Roberts 2002), allowing us to use the one-
dimensional form of the acoustic equations (Roberts 2006).

Consider, then, the acoustic equations

Dρ
Dt
+ ρ∇ · u = 0, (1)

ρ
Du
Dt
+ ∇p = Fν, (2)

Dp
Dt
− γp
ρ

Dρ
Dt
− (γ − 1)∇ · (κ‖∇T

)
= 0, (3)

p − R
μ̃
ρT = 0. (4)

Here ρ p, u and T represent the density, pressure, velocity and
temperature respectively; R is the gas constant, μ̃ is the mean
molecular weight and γ is the ratio of specific heats (taken to be
γ = 5/3). The thermal conductivity is κ‖ and Fv represents the
viscous forces. The operator D/Dt = ∂/∂t + u · ∇ is the material
derivative. Thermal conduction is strongly suppressed across a
magnetic field (Spitzer 1962) and so we take thermal conduction
to act purely along the z-axis, setting κ‖ = κ0T 5/2 W m−1deg−1

with κ0 = 10−11 in mks units (De Moortel & Hood 2003).
Viscous forces are here represented by the compressive viscosity

taken to act purely along the z-axis (with unit vector ẑ), so that
(see Ofman et al. 1994; Ofman & Wang 2002; De Moortel &
Hood 2003; Mendoza-Briceño et al. 2004; Sigalotti et al. 2007)

Fv =
4
3
∂

∂z

(
ν
∂vz
∂z

)
ẑ (5)

where the coefficient of viscosity ν is of the form ν =
ν0T 5/2 kg m−1 s−1 with ν0 = 10−17 (Hollweg 1985).

Equations (1)–(4) are linearised with respect to small pertur-
bations about a uniform equilibrium with density ρ0, pressure p0
and temperature T0. The velocity perturbation u = vz ẑ is taken to
be purely longitudinal (along the direction of the imposed mag-
netic field for a slow mode). The linear equations are

∂ρ

∂t
+ ρ0
∂vz

∂z
= 0, (6)

ρ0
∂vz

∂t
+
∂p
∂z
=

4
3
ν
∂2vz

∂z2
, (7)

∂p
∂t
− γp0

ρ0

∂ρ

∂t
− (γ − 1)κ‖

∂2T
∂z2
= 0, (8)

p
p0
− ρ
ρ0
− T

T0
= 0, (9)

where now ν = ν0T 5/2
0 and κ‖ = κ0T 5/2

0 .
The linearised Eqs. (6)–(9) lead to the wave-like equation

(
∂

∂t
− (γ − 1)

κ‖T0

γp0

∂2

∂z2
+

4
3
ν

γp0

∂2

∂t2

−4
3
ν

γp0
γ(γ − 1)

κ‖T0

γp0

∂3

∂t∂z2

)
c2

s
∂2vz

∂z2

=

(
∂

∂t
− γ(γ − 1)

κ‖T0

γp0

∂2

∂z2

)
∂2vz

∂t2
, (10)

where c2
s = γp0/ρ0 is the square of the sound speed.

Considering Fourier analysis of Eq. (10), we write

vz(z, t) = vz0ei(ωt−kzz), (11)

for frequencyω, wavenumber kz and complex amplitude vz0. The
dispersion relation for sound waves under the combined effects
of thermal conduction κ‖ and compressive viscosity ν is then ob-
tained,

ω3 − i

(
4
3
ν

γp0
c2

s + γ
(γ − 1)κ‖T0

γp0

)
k2

zω
2

−
(
c2

s +
4
3
ν

γp0
c2

sγ
(γ − 1)κ‖T0

γp0
k2

z

)
k2

zω

+i
(γ − 1)κ‖T0

γp0
c2

s k4
z = 0. (12)

To model a coronal loop, we suppose that it has a length 2L with
its apex at z = 0 and its footpoints at z = ±L. For motions vz that
vanish at the footpoints but nowhere else within −L < z < L,
we take kz = π/2L (with corresponding wavelength 2π/kz = 4L,
or twice the loop length); this is the fundamental mode of oscil-
lation. The first overtone of the fundamental has a wavelength
that is half the wavelength of the fundamental, corresponding to
kz = π/L; vz now vanishes at the loop apex (z = 0) as well as at
the footpoints.

The dispersion relation (12) determines the (complex) val-
ues of ω and may be used to determine the period ratio P1/2P2.
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Writing ω = ωr + iωi, where ωr is the real part of ω and ωi
denotes the imaginary part, we may solve (12) with kzL = π/2
to obtain ω1 = Real(ω), the value of ωr for the fundamental
mode. Similarly, we may solve (12) with kzL = π to obtain
ω2 = Real(ω), the value of ωr for the first overtone. Then, since
the fundamental period is P1 = 2π/ω1 and the first overtone has
the period P2 = 2π/ω2, we have

P1

2P2
=
ω2

2ω1
· (13)

It is convenient to introduce the non-dimensional constants

ε =
4
3
ν

cs

γp0L
=

4
3
ν0T 3

0

√
γR
μ̃

γp0L
,

d =
1
γ

τs

τcond
=

(γ − 1)κ‖T0

γp0Lcs
=

(γ − 1)κ0T 3
0

γp0L
√
γR
μ̃

, (14)

where τs = L/cs is the sound travel time and τcond = L2 p0/(γ −
1)κ‖T0 is the thermal conduction timescale for a loop of half-
length L. Then, setting Ω = ω/kzcs the dispersion relation (12)
becomes

Ω3 − i(V + γD)Ω2 − (1 + γVD)Ω + iD = 0, (15)

where

V = εkzL, D = dkzL. (16)

It is noted that bothV andD have a dependence upon tempera-
ture, pressure and loop half-length that is of the same form:

V = V0
T 3

0

p0L
, D = D0

T 3
0

p0L
, (17)

whereV0 andD0 are constants. The values ofV and D tend to
zero in the limit of low temperatures, high pressures or long loop
lengths.

With ε = d = 0 (i.e, in the absence of thermal conduction
and compressive viscosity), Ω = 0 or Ω = ±1 and so ω = kzcs
provides a solution of (12). The frequencyω1 of the fundamental
mode is ω1 = πcs/(2L) and the frequency ω2 of the first over-
tone is πcs/L. Thus the period ratio P1/2P2 formed from the
fundamental period P1(= 2π/ω1) and the period P2(= 2π/ω2)
of the first overtone is unity, when ε = d = 0. It is departures
of P1/2P2 from unity that are of interest. Here we consider how
thermal conduction κ‖ and viscosity ν bring about shifts in the
period ratio from unity.

2.1. The effect of thermal conduction

In the absence of compressive viscosity (ν = 0) Eq. (10)
reduces to(
∂

∂t
− (γ − 1)

κ‖T0

γp0

∂2

∂z2

)
c2

s
∂2vz

∂z2

=

(
∂

∂t
− γ(γ − 1)

κ‖T0

γp0

∂2

∂z2

)
∂2vz

∂t2
· (18)

The associated dispersion relation follows from (15) with
V = 0:

Ω3 − iγDΩ2 −Ω + iD = 0. (19)

A relation of this form has been obtained by Field (1965). This
dispersion relation is in the form of a cubic which can be solved

using the Cardano method with Vièta substitution (Abramowitz
& Stegun 1965; Press et al. 1986) to give

Ω =
1
6

(
iC1 ± 12

√
C2

)1/3
+

2C3(
iC1 ± 12

√
C2

)1/3
+ iC4 (20)

where

C1 = (36γ − 108)D− 8γ3D3, (21)

C2 = −12 + (54γ + 3γ2 − 81)D2 − 12γ3D4,

C3 = 1 − 1
3
γ2D2, C4 =

1
3
γD. (22)

We choose the root (20) such that real (Ω) > 0.
Note that in the absence of thermal conduction (D = 0),

C1 = C4 = 0, C2 = −12, C3 = 1 and Eq. (20) leads to three
solutions for Ω, namely Ω = 0 or Ω2 = 1. Also, for D � 1
the dispersion relation (19) gives roots Ω = 0 and Ω2 = 1/γ.
Thus in either extreme of weak thermal conduction (D � 1) or
strong thermal conduction (D � 1) sound propagates without
damping, at the sound speed cs forD = 0 and at the Newtonian
sound speed cs/

√
γ (= (p0/ρ0)1/2) for D → ∞. The absence of

any damping (imag(Ω) ≡ 0) in these two extremes makes clear
that there is an intermediate value of D for which damping is
a maximum. Finally, we note that if γ = 1 then the dispersion
relation (19) has the general solutions Ω = D and Ω2 = 1, cor-
responding to the thermal mode and the isothermal propagation
of sound at the Newtonian sound speed.

Thus, the importance (or otherwise) of thermal conduction
depends entirely on the magnitude of the dimensionless param-
eter D, which in turn depends on the loop half-length L en-
tirely through the wavenumber kz (the product dL being inde-
pendent of L). The parameter D (= dkzL) thus depends upon
the magnitude of the thermal coefficient d, with kzL = π/2
for the fundamental mode and kzL = π for the first overtone.
Following Sigalotti et al. (2007), we give in Table 1 the values
of d for various loop temperatures T0 and loop lengths 2L; we
fix the equilibrium loop pressure p0, choosing p0 = 0.055 Pa
(=0.55 dynes cm−2). We take the ratio of specific heats γ to
be 5/3, the gas constant R = 8.3 × 103m2s−2deg−1, the mean
molecular weight μ̃ = 0.6, and the thermal conduction coeffi-
cient κ0 = 10−11 in mks units. With fixed loop pressure p0, the
thermal measure d varies with the cube of the loop temperature
and inversely with the loop half-length L: d ∝ T 3

0/L. As an il-
lustration, a typical TRACE loop with temperature T0 = 1 MK
and a loop length 100 Mm (L = 50 Mm) gives d = 0.0096, and
thus D ≈ 0.015 for the fundamental mode and D ≈ 0.030 for
its first overtone. On the other hand, for a typical SUMER hot
loop with temperature T0 = 6 MK and length 2L = 100 Mm
we obtain d = 2.0692, and D ≈ 3.25 for the fundamental mode
and D ≈ 6.50 for its first overtone. Table 1 illustrates the range
of values that arise. In general, TRACE loops have D � 1 and
SUMER loops haveD � 1.

The period ratio can be calculated from Eq. (13) where ω1 =
Ω1kzcs, Ω1 corresponding to the solution in Eq. (20) with D =
dπ/2 and ω2 = Ω2kzcs, Ω2 being the solution corresponding to
D = dπ. Thus, the period ratio may be found from (20); the
results are displayed in Fig. 1.

Figure 1 shows the behaviour of the period ratio with d for
the exact solution given by Eq. (20). When d = 0 the period
ratio is unity, it then decreases from unity until a particular d-
value for which the period ratio has a minimum; numerically, the
minimum value of the period ratio is found to be P1/2P2 = 0.897
occurring at d = 0.291. The period ratio then increases and for d
sufficiently large it returns to unity.
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Table 1. Values of the thermal conduction parameter d.

T0 (MK) d (2L = 50 Mm) d (2L = 100 Mm) d (2L = 200 Mm) d (2L = 300 Mm) d (2L = 400 Mm)
1 0.0192 0.0096 0.0048 0.0032 0.0024
2 0.1533 0.0766 0.0383 0.0255 0.0192
3 0.5173 0.2586 0.1293 0.0862 0.0647
4 1.2262 0.6131 0.3065 0.2044 0.1533
5 2.3949 1.1974 0.5987 0.3991 0.2994
6 4.1383 2.0692 1.0346 0.6897 0.5173
7 6.5715 3.2857 1.6429 1.0953 0.8214
8 9.8094 4.9047 2.4523 1.6349 1.2262
9 13.9668 6.9834 3.4917 2.3278 1.7459

10 19.1589 9.5795 4.7897 3.1932 2.3949

Notes. Variations in the thermal conduction parameter d with changes in temperature T0 for different loop lengths 2L. We have set the equilibrium
pressure p0 = 0.055 Pa. Also, γ = 5/3, μ̃ = 0.6 and κ0 = 10−11 in mks units. See also Sigalotti et al. (2007).

Fig. 1. The period ratio P1/2P2 as a function of the thermal conduc-
tion measure d. The solid line indicates the exact solution derived from
Eq. (20), the dashed and dot-dashed curves indicate approximations for
small and large d as given by Eqs. (27) and (30).

Consulting Table 1 and Fig. 1 we note that for coronal val-
ues of d (for both TRACE and SUMER loops) the period ratio is
close to unity, suggesting that thermal conduction does not have
a dominating effect on the period ratio. However, it appears that
for a long (400 Mm) SUMER loop (T0 = 6 MK) with d ≈ 0.517
it may be possible for the period ratio to reduce to 0.937 (ob-
tained from the exact solution).

It is straightforward to obtain a series expansion for Ω in
powers of D directly from the dispersion relation (19) in order
to approximate the value of the period ratio for small D. The
result is

Ω = 1 +
1
2

i(γ − 1)D− 1
8

(γ − 1)(γ + 3)D2 + . . . , D � 1. (23)

Setting kzL = π/2 for the fundamental mode then gives

ω1 =
πcs

2L

⎡⎢⎢⎢⎢⎢⎣1 − 1
8

(γ − 1)(γ + 3)

(
dπ
2

)2

+ . . .

⎤⎥⎥⎥⎥⎥⎦ , 1
2

dπ� 1, (24)

and setting kzL = π for the first overtone gives

ω2 =
πcs

L

[
1 − 1

8
(γ − 1)(γ + 3) (dπ)2 + . . .

]
, dπ� 1. (25)

Altogether, then, the period ratio for smallD (i.e. small dπ) is

P1

2P2
= 1 − 3

32
(γ − 1)(γ + 3)(dπ)2 + . . . , dπ� 1; (26)

with γ = 5/3 this is

P1

2P2
= 1 − 7

24
(dπ)2 + . . . , dπ� 1. (27)

In a similar fashion the behaviour for largeDmay be determined
directly from (19) by expansion aboutΩ = 1/

√
γ in inverse pow-

ers ofD. The result is

Ω =
1√
γ
+

1
2γ2

i(γ − 1)D−1

− 1
8γ3√γ (γ − 1)(γ − 5)D−2 + . . . , D � 1. (28)

The period ratio is then found to be

P1

2P2
= 1 +

3
8γ3

(γ − 1)(γ − 5)
1

(dπ)2
+ . . . , dπ� 1; (29)

with γ = 5/3 this is

P1

2P2
= 1 − 9

50
1

(dπ)2
+ . . . , dπ� 1. (30)

Both the extremes of small and large dπ may arise. The case
(dπ)2 small is likely to occur for TRACE loops; for example, a
loop of length 100 Mm and temperature 1 MK gives d ≈ 0.0096
and (dπ)2 ≈ 0.00091. On the other hand, for SUMER loops (dπ)2

may be large; for example, a loop of length 100 Mm and tem-
perature 10 MK gives d ≈ 9.58 leading to (dπ)2 ≈ 906 and
1/(dγπ)2 ≈ 0.0001. It should be noted that the approximations
(26) and (29) for the period ratio, applying for small or large dπ,
fail to capture the minimum behaviour that is present in the exact
solution displayed in Fig. 1.

2.2. The effect of compressive viscosity

In the absence of thermal conduction (κ‖ = 0) Eq. (10) reduces
to

4
3
ν

ρ0

∂

∂t
∂2vz

∂z2
=

(
∂2

∂t2
− c2

s
∂2

∂z2

)
vz (31)

and the dispersion relation (15) becomes (ignoring the solution
Ω = 0)

Ω2 − iVΩ − 1 = 0. (32)

As a simple quadratic this dispersion relation is easily solved to
give

Ω =
1
2
Vi ±

(
1 − 1

4
V2

)1/2

. (33)
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Table 2. Values of the compressive viscosity parameter ε.

T0 (MK) ε (2L = 50 Mm) ε (2L = 100 Mm) ε (2L = 200 Mm) ε (2L = 300 Mm) ε (2L = 400 Mm)
1 0.883e-3 0.442e-3 0.221e-3 0.147e-3 0.110e-3
2 0.707e-2 0.353e-2 0.177e-2 0.118e-2 0.883e-3
3 0.239e-1 0.119e-1 0.596e-2 0.398e-2 0.298e-2
4 0.565e-1 0.283e-1 0.141e-1 0.942e-2 0.707e-2
5 0.110 0.552e-1 0.276e-1 0.184e-1 0.138e-1
6 0.191 0.954e-1 0.477e-1 0.318e-1 0.239e-1
7 0.303 0.152 0.758e-1 0.505e-1 0.379e-1
8 0.452 0.226 0.113 0.754e-1 0.565e-1
9 0.644 0.322 0.161 0.107 0.805e-1

10 0.883 0.442 0.221 0.147 0.110

Notes. Variations in the compressive viscosity parameter ε with changes in temperature T0 for different loop lengths 2L. Again the loop pressure
is p0 = 0.55 Pa and the other parameters are as in Table 1. The compressive viscosity is ν0 = 10−17 in mks units.

Fig. 2. The period ratio P1/2P2 as a function of the compressive vis-
cosity measure ε. The exact value determined by the dispersion rela-
tion (32) is shown as a full curve, with the approximation (35) shown
dashed.

In order to obtain a wave period we require that V < 2, so ε is
constrained by ε < 2/kzL or else the motion is purely damped.
Since kz = π/2L and kz = π/L for the fundamental mode and its
first overtone respectively we require that ε < 2/π. The period
ratio is given by

P1

2P2
=

⎛⎜⎜⎜⎜⎜⎝1 − ε2π2

4

1 − ε2π2

16

⎞⎟⎟⎟⎟⎟⎠
1/2

, επ < 2. (34)

We can expand (34) for small επ/2:

P1

2P2
= 1 − 3π2

32
ε2 − 21π4

2048
ε4. (35)

Table 2 gives values of ε for specific temperatures and loop
lengths. As before, γ = 5/3, R = 8.3 × 103 m2 s−2 deg−1 and
the mean molecular weight μ̃ = 0.6. The compressive viscosity
coefficient is ν0 = 10−17 in mks units. Then, for example, a loop
of length 100 Mm (L = 50 Mm) with temperature T0 = 6 MK
gives ε ≈ 0.0954. Thus V = 0.150 for the fundamental mode
andV = 0.300 for the first overtone.

Table 2 shows that for coronal values of the coefficient of
compressive viscosity in the majority of cases remains small
and so the period ratio remains close to unity and so we con-
clude that the effect of compressive viscosity on the period ratio
is generally small. However, for very hot short loops compres-
sive viscosity may have a significant effect on the period ratio.

For example, a loop of temperature 8 MK and length 50 Mm
gives ε ≈ 0.452 (corresponding toV = 0.710 for the fundamen-
tal mode and V = 1.420 for the first overtone) which leads to a
period ratio P1/2P2 = 0.753. However, a loop of the same length
but hotter temperature T0 = 9 MK, for example, gives ε ≈ 0.644
(corresponding to V = 1.012 for the fundamental mode and
V = 2.023 for the first overtone) and now the compressive vis-
cosity prevents the first overtone from occurring since it violates
the condition ε < 2/π (V < 2). In this case it suggests the first
overtone is entirely damped.

3. Combined effects of thermal conduction
and compressive viscosity

We turn now to consider the combined effects of thermal con-
duction and compressive viscosity determined by the dispersion
relation (15). This cubic may be solved for Ω using the Cardano
and Vièta substitution method as before, giving solution (20) as
before (with real(Ω) > 0 selected) and where now

C1 = 36V− 8V3 + (36γ − 108 + 12γV2)D
+12γ2VD2 − 8γ3D3,

C2 = −12 + 3V2 + (54V− 30γV + 6γV3 − 12V3)D
+(54γ + 3γ2 − 81 + 18γV2 − 24γ2V2 + 3γ2V4)D2

+(18γ2V + 6γ3V − 6γ3V3)D3 + (3γ4V2 − 12γ3)D4,

C3 = 1 − 1
3
V2 +

1
3
γVD− 1

3
γ2D2,

C4 =
1
3

(V + γD). (36)

WhenV = 0, expressions (36) reduce to those given in (22).
From the solution for the frequency the period ratio may

be formed as before. For each particular loop length and tem-
perature the thermal conduction parameter d and the compres-
sive viscosity parameter ε are uniquely determined as given in
Tables 1 and 2, and these in turn give specific values for D and
V. Figures 3 and 4 show the variation of the period ratio P1/2P2
with loop length 2L and temperature T0 respectively. The figures
indicate that the period ratio has a tendency to reduce for short
hot loops such as those observed by SUMER. As an example,
for a loop of length 2L = 100 Mm and temperature T0 = 10 MK
(D = 9.5795 andV = 0.442) the period ratio is P1/2P2 ≈ 0.487.
For shorter loops than this at such high temperatures the pe-
riod ratio may not be formed as the first harmonic is damped
immediately. By contrast, for TRACE loops, a loop of length
2L = 100 Mm but with temperature T0 = 1 MK (D = 0.0096
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Fig. 3. The period ratio P1/2P2 as a function of loop length 2L (in me-
tres) for various loop temperatures T0.

and V = 0.000442) produces a period ratio that is very close to
unity (P1/2P2 ≈ 1.00).

As before, it is straightforward to obtain a series expansion
for Ω in powers of D and V directly from the dispersion rela-
tion (15). Eliminating imaginary terms to derive the real part of
the frequency we have

real(Ω) = 1 − 1
8
V2 − 1

8
(γ − 1)(γ + 3)D2 +

1
4

(γ − 1)DV

− 3
64

(γ − 1)(γ − 5)D2V2 + . . . . (37)

The period ratio for small D and V (i.e. small d and ε) then
follows as

P1

2P2
= 1 − 3

32
(επ)2 − 3

32
(γ − 1)(γ + 3)(dπ)2

+
3
16

(γ − 1)dεπ2 + . . . ; (38)

with γ = 5/3 this is

P1

2P2
= 1 − 3

32
(επ)2 − 7

24
(dπ)2 +

1
8

dεπ2 + . . . (39)

These formula may be used as a guide when considering Figs. 3
and 4.

Figure 3 indicates that for loops of relatively low tempera-
ture (1−2 MK) such as observed by TRACE, the period ratio un-
der the effects of thermal conduction and compressive viscosity
hardly deviates from unity. Increasing the temperature increases
the parameters d and ε, leading to the period ratio decreasing
from unity. However, increasing the loop length acts to balance
out the effects of the increase in temperature (as d and ε are in-
versely proportional to L). Accordingly, in long loops the period
ratio hardly departs from unity. For short hot (6−8 MK) loops
such as observed by SUMER the period ratio may depart sub-
stantially from unity. The overall behaviour, is that for infinitely
short loops the period ratio increases from zero to unity before
experiencing a localised minimum value which mimics the be-
haviour of the period ratio for thermal conduction alone, finally
the period ratio again tends to unity for long loops. In terms of
the thermal conduction and compressive viscosity parameters,
d and ε, the period ratio behaves in a manner indicated by the
approximate result (39).

Fig. 4. The period ratio P1/2P2 as a function of temperture T0(◦K) for
various half-loop lengths L.

Figure 4 gives further information about the period ratio in
relation to the loop temperature and length. For all loop lengths
considered a low temperature produces small values of d and
ε and the period ratio is close to unity (as noted from Fig. 3).
For high temperature loops a short loop length can cause the pe-
riod ratio to depart from unity. Interestingly, Fig. 4 shows that
for each loop length the period ratio exhibits a dip as it first de-
creases from unity and then increases, before again decreasing at
high temperature. The dip occurs at relatively low loop temper-
atures for short loop lengths. This is likely to be associated with
the fact that the period ratio under thermal conduction alone has
a minimum, as shown in Fig. 1. This may indicate that thermal
conduction dominates the period ratio at low temperatures until
at a high enough temperature (prescribed individually for each
loop length) compressive viscosity dominates and causes the pe-
riod ratio to fall substantially from unity.

4. Discussion and conclusions

We have considered the effects of both thermal conduction and
compressive viscosity on the period ratio P1/2P2 . Typically, for
both TRACE and SUMER loops thermal conduction has a neg-
ligible effect on the period ratio in that it does not substantially
reduce the period ratio from unity. For TRACE loops compres-
sive viscosity is also unlikely to be important. However, for short
hot SUMER loops compressive viscosity may become important
and for such loops a reduction of the period ratio to as little as
P1/2P2 = 0.753, for example, is possible. This effect is in keep-
ing with the recent observations of Srivastava & Dwivedi (2010).
In fact, under the effect of compressive viscosity, the period ra-
tio is zero in the limiting case since in some cases compressive
viscosity may have more of a marked effect on the first overtone,
damping it immediately; consequently, the period ratio may not
even be formed.

It is of interest to compare the frequency shifts arising
from damping effects with those occurring due to stratification.
McEwan et al. (2006) show that in an isothermal atmosphere
stratified under gravity the period ratio is determined by

P1

2P2
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 +

(
L

2πΛc

)2

1 +
(

L
πΛc

)2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
1/2

(40)
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where Λc = p0/gρ0 = c2
s/γg is the pressure scale height of the

atmosphere and g is the gravitational acceleration. Equation (40)
shows that the period ratio declines from a value of unity in short
(L � Λc) loops to 0.5 in very long (L � Λc) loops. For loops
that are comparable in size to the pressure scale height Λc, so
that 2L ≈ Λc, Eq. (40) gives a period ratio of 0.99. Thus only in
very long loops is the effect of gravity important in an isothermal
atmosphere.

However, the effect of stratification on the sound speed is im-
portant, just as noted for kink modes and the kink speed (Andries
et al. 2005a,b; McEwan et al. 2006, 2008). We can deduce fre-
quency shifts for sound waves from the work of McEwan et al.
(2006, 2008). Figure 6 in McEwan et al. (2006) shows that in a
non-isothermal atmosphere a period ratio of about 0.8 is to be
expected for loops of length 2L = Λc, with stronger shifts from
unity in longer loops (e.g. P1/2P2 ≈ 0.7 for 2L = 4Λc.)

We conclude that damping by thermal conduction does not
play a key role in the departure of P1/2P2 from unity. For
TRACE loops we conclude that compressive viscosity is also
negligible. As such, longitudinal density structuring remains the
dominant effect (Andries et al. 2005a,b; McEwan et al. 2006,
2008; Verth & Erdélyi 2008). For SUMER loops, on the other
hand, it may be the case that compressive viscosity plays a role
in the reduction of the period ratio from unity. In general, though,
damping effects such as caused by thermal conduction or com-
pressive viscosity do not bring about significant shifts in the pe-
riod ratio P1/2P2 from unity. It would seem that longitudinal
structuring is the most likely cause of a period ratio shift below
unity, though the combined effect of longitudinal structuring and
damping may prove to be of interest.
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