
Transformation and Composition of Software Design

Models for Model Driven Development

Dulani Meedeniya
1
, Indika Perera

2

Department of Computer Science and Engineering

University of Moratuwa

Sri Lanka
1
dulanim@cse.mrt.ac.lk,

2
indika@cse.mrt.ac.lk

Juliana Bowles

School of Computer Science

University of St Andrews

United Kingdom

jkfb@st-andrews.ac.uk

Abstract— Software models play a significant role with the

growth of software system development based on Model Driven

Development (MDD) approach. Model transformations and

compositions are the heart of MDD and allow the development of

complex systems and their automated derivation. Moreover,

software development of large and complex systems uses a

collection of models, where model composition and

decomposition are required. Various research studies have been

done on specifying and executing MDD processes; however only a

few of those have considered the validity of such transformations,

thus safe composition and decomposition of models. This paper

presents a general approach for model composition for the

transformation from UML sequence diagrams to Coloured Petri

Nets and validates the correctness of model composition using a

mathematical proof. These transformations are based on formal

rules, which have already been proven to be strongly consistent.

Keywords—UML sequence diagram; Coloured Petri net; model

transformation; model composition

I. INTRODUCTION

Model-driven development (MDD) has recently gained
considerable attention as a promising software development
approach that helps to reduce and manage system complexity.
MDD uses multiple models as its main artifacts to describe
different aspects of a software system at various levels of
abstraction for non-trivial, large-scale software systems with
complex behaviour [1, 2]. MDD-based software development
facilitates automatic transformation and composition of system
design models, while preserving their traceability,
completeness and consistency [1]. However, it is difficult to
relate and maintain the consistency of such models when
applying model transformations or attempting to integrate
models without a well-defined automated technique to support
it. Generally, MDD uses exogenous model transformation to
synthesis a high-level abstract model into a lower-level
concrete model or vice-versa and endogenous transformations
to improve the operational qualities of the model by generating
another representation of the model while preserving the same
level of abstraction [3, 4].

Unified Modelling Language (UML) is an industry
standard modeling language with a comprehensive set of
diagrams [5]. Sequence diagram (SD), which is a popular UML
diagram for capturing inter-object behaviour, shows the object

instances participating in the interaction and their progress over
the time [5, 6].

One of the main purposes of a design model is to apply
model verification techniques before the actual
implementation. Generally, SDs lack formal semantics that are
required to apply formal verification methods. On the other
hand formal models such as Coloured Petri nets (CPNs) [7, 8]
are rich in well-defined syntax and semantics that allows
formal verification of the system model. Also, CPN is both
graphically and mathematically defined modelling language
that can capture the behaviour of a wide range of systems [7,
8]. Therefore, we have used CPNs as the underlying formal
model associated with SDs. These model transformations and
compositions enable possible analysis of the system or make it
closer to the target platform [9, 10].

In our previous work [11, 12] we have defined and
explained the formal transformation rules from a SD to a CPN
with their correctness proofs. Also we have showed a prototype
tool that automates these transformations [13, 14] and possible
application domains [13-15].

This paper presents a general setting for model composition
and transformation framework that can also be considered for
proof of correctness of the transformations; yet do not focus on
specific formal transformation rules. Here, we describe the
composition and decomposition of different design models and
formulate a consistent design mode through transformations
that shows the correctness of transformations. The formal rules
for all the main transformations described are formally defined
in our previous work [11, 12] to lay a basis for a precise
approach to model transformations and composition. The focus
of this paper is to present a general framework for model
transformation and composition; we do not consider
transformation approaches in detail due to space limitation.

The paper is structured as follows: Section II describes the
software design models used for this study; i.e. UML 2.0
sequence diagrams and coloured Petri nets. Section III explains
the basic, partial and incremental transformations from a SD to
a CPN. Model composition framework and the associated
mathematical proofs are presented in Section IV and related
work is described in Section V. Finally, Section VI concludes
the paper showing possible future research directions.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/31299922?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. SOFTWARE DESIGN MODELS

A. Sequence Diagram

A Sequence Diagram models the interaction between
objects based on a time sequence. The main elements of a SD
comprise of a name of the diagram, object instances and their
lifelines and messages that pass between them [5, 6]. Other
than that UML 2 introduces new set of elements, interaction
fragments that can model the complex behaviour of a system.
However, when modeling large scale or complex systems a
single SD is not sufficient to represent all the behaviours which
makes the diagram more complex. There is a need for splitting
the SD and show part of the interaction on a separate diagram.
Also it facilitates to reuse the part of an interaction in more
than one SD. UML 2 SDs are supported by mainly two
decomposition mechanism as described below.

This paper addresses the reference behaviour of a SD that
facilitates model composition and decomposition. Fig. 1 shows
such complex scenario representing the reference behaviour
using lifeline decomposition and interaction use [5, 6].

Fig. 1. The reference behaviour of a sequence diagram.

 Reference behaviour with lifeline decomposition shows the
decomposition of an instance itself in another SD. This allows
combination of many lifelines into one in order to reduce the
complexity of the SD. This is mainly used when modeling
component-based systems where the internals of a component
are intentionally hidden. The interaction fragment with ref
operator is called an interaction use and it contains the name of
the referred SD name. This gives an abstract representation for
the interactions given by the referred diagram. In this case, the
referred diagram should contain all the object instances
covered by the ref interaction fragment and may contain
additional object instances.

As shown in the example in Fig. 1, the instance a is
decomposed in another SD with the name L. In this case, the
interaction starts by the instance a receives a message m0 from
a gate (environment instance). Then it sends message m1 to a
gate in the ref interaction use fragment that refers to a SD
named N. Here, the instance a can be represented by a similar
or updated instance. The SD E keeps unchanged even if the
internal behavior of the referred instance is quite different.

The formal semantics of a SD and the transformation rules
from a SD to a CPN, defined in [11, 12], are used as the basis
for this work. There we have introduced the element event
indicating each sending and receiving point. The element state
location is defined in between events along a lifeline. Along
with the standard elements defined for SDs these two elements
were also incorporated into our model transformation given in
Section III.

B. Coloured Petri net

Coloured Petri Net is a comprehensive modelling and
formal validation language for systems where concurrency,
synchronisation, and communication play a major role [7, 8].
CPN consists of well-defined constructs and facilitates
simulation, state space analysis, behavioural visualisation, and
performance analysis in a wide range of application domains.

A CPN describes the states of a system using the element
place and the operations that cause the model to change its
state using the element transition (we called net transition). A
CPN graphically shows the places using circles and transitions
by rectangles. Directed arrows (arcs) are used to connect
places and transitions and vice versa. Places may contain
tokens represented by black dots. Each place and a token have
a colour that denotes its associated object type [7, 8].

Fig. 2. CPN representing the decomposition behaviour.

As shown in Fig. 2, the CPN named M contains four object
types (colours) namely a, b, c, and e, (denotes environment

object). Each initial place S0a, S0b, S0c and environment places

Se0 and Se2 contain one token of its object type. There are three

net transitions with labels t0, t1 and N (refers to another
diagram name). As we have defined in [12], the colour a is
associated with an object reference to another CPN named L,
given by r(a) =L. A transition fires when it acquires the
required tokens. This shows the object types involved in the
transition. Arcs show the flow of the model; for example

transition t1 is enabled after transition t0 has fired and when it

pass the token of colour a to place S1a.

III. MODEL TRANSFORMATION FROM SD TO CPN

A. Basic Transformations

Here we describe the transformation rules from a SD to a
CPN using an example (complete set of formal rules are given
in our previous work [11, 12]). Consider the SD shown in Fig.
3, and the corresponding CPN in Fig. 2. Here, the target CPN
has the same name as the source SD named M. The (object and
environment) instances in SD are transformed into matching
colours (object types) in the corresponding CPN; i.e. a, b, c

and e. The state locations of an instance (S0a, S1a, S2a, etc.) are
transformed into places in the CPN, such that the colour of the
place matches the instance type. In this case, only the places
corresponding to initial state locations have an initial marking
of one token per place.

Fig. 3. A SD showing decomposition behaviour.

Each sending event, message, receiving event triple in a SD
(defined as local transition [11]) is mapped to a corresponding

net transition in the CPN. The net transition labels (t0, t1)
correspond to message labels (m0, m1). The previous and next
state locations for the instances involved in the local transitions
are mapped onto places with corresponding colours in the CPN
and arcs link places and the net transition as expected to keep
the flow. Environment instances are involved in interactions
via gate events. When transforming a local transition with a

gate, equality is imposed between the places (Se0, Se1)
correspond to the initial and end environment state locations.

B. Partial and Incremental Transformations

It may be required to analyse only a part of a design model
for a given time during the software system development.
Here, a set of interactions can be separated and applied partial
transformations to obtain the corresponding target model. Also
if an extension is required for a source model, new interactions
can be added and use incremental transformations to synthesise
the integrated target model. This process reuses the models,
thus in long term it reduces the associated time, effort and cost.

Here, we mainly consider composition behaviour using ref
fragment. When a SD refers to a set of interactions in another
SD using a ref fragment, a single composite SD with the entire
behaviour of interactions can be obtained as follows. Consider
SD M in Fig. 3, which refers to SD N shown in Fig. 4, using
ref fragment. When composing the two diagrams, the ref
fragment is replaced by the behaviour of the referred diagram
and the resulted model SD MN is shown in Fig. 5. The
composite SD contains the union of the elements from both the
SD with the abstract representation and the SD with the
referred behaviour, except for the ref fragment and its
associated events and state locations. Thus, the composition
model SD MN contains all the messages m0, m1, m2 and m3.

The composite SD is obtained by imposing equality
between the state location before the beginning of the ref
fragment and the initial state location of the referred SD, for a
given instance involved in the fragment such that S0b=S0b’ and
S0c=S0c’ in SD MN. Similarly, there is equality between the
state locations after the end of the ref fragment and the end
state location of the referred SD, for all the instances involved
in the fragment (S2b=S3b’ and S2c=S2c’). If a message connects
to the ref fragment through a gate event, then the referred SD
also contains a corresponding message (m1). In the composite
SD there is equality between these messages and removes the
associated events and state locations of environment instance.

 Fig. 4. Referred SD and corresponding CPN.

Fig. 5. A SD showing composition behavior.

When transforming a SD with ref interaction fragment (SD
M in Fig. 3) to the corresponding CPN (CPN M in Fig. 2), the
CPN includes an additional net transition to represent the
abstract behaviour given by the ref fragment. This net
transition is labeled by the name of the referred diagram given
by the ref fragment; in this case it is named by N. Here, the
transition is in effect a substitution transition, which conveys
the behaviour of the referenced CPN (CPN N in Fig. 4).

Consider SDs with decomposition behavior using ref
fragment (SD M that refers to SD N). The corresponding CPN
(CPN MxN in Fig. 6) for the composition of the two SDs can
be obtained by unfolding the SDs. We impose an equality
between the CPN places that correspond to the state location
before the beginning of the ref fragment and the initial state
location of the referred SD (S0b=S0b’ and S0c=S0c) for each
instances (b and c) involved in the ref fragment. Similarly,
there is equality between the places that correspond to the state
location after the end of the ref fragment and the end state
location of the referred SD (S2b=S3b’ and S2c=S2c) for each
instances involved in the fragment.

Fig. 6. CPN showing composition behaviour.

When a message (m1 in SD M and SD N) is passed to a ref
fragment via a gate the referred SD also contains the same

message. In the integrated CPN (MxN) there is equality
between the corresponding net transitions (t1). Also it does not
have places linked to that transition for the object type
corresponds to the environment instance.

Moreover, consider the CPN M in Fig. 2, that refers to the
CPN N in Fig. 4, by the label of the composite net transition N.
The composition of these models, CPN MxN in Fig. 6, can be
obtained as follows. It contains the union of the colours, places,
net transitions of both source CPNs, except for the composite
net transition that refers to the other model and the places of
the colour environment that are linked with that net transition.

i.e. the places Se2, Se3 in CPN M and Se0’, Se1’ in CPN N that
linked with the transition t1 do not contain in the integrated
CPN MxN. There is only one net transition to represent this
common net transition t1. Also there is equality between the
source and the target places of the composite net transition,
with the initial and end places of the referred model,
respectively, for each colour.

IV. MODEL COMPOSITION

When modelling systems with a large number of
interactions it is important to be able to decompose a large SD
model into smaller units making use of an interaction-use (ref
fragment) or lifeline decomposition, so that each sub-model
can be analysed separately. Conversely, it may be necessary to
compose SD models to a single model to have a more global
view of a system model. Thus, complex and large scale
software systems are usually developed by a set of
interconnected models with the use of composition and
decomposition techniques.

Fig. 7. SD to CPN transformation paths for complex behaviour.

Previous section has described the transformation rules for
the reference behaviour allowing partial synthesis of model
transformation from SDs to CPNs. There are several ways to
transform complex SDs into CPNs as shown in Fig. 7. Given a
sequence diagram SDA with one or more references to SDB,
following transformations can be done.

 Transform both SDs into appropriate CPNs obtaining
CPNA and CPNB where CPNA is a complex CPN with
some reference (composite net transition) to CPNB.
These CPNs can be analysed directly or if intended, a
composite CPN can be obtained through CPN
composition rules (replace the occurrences of CPNB in
CPNA and obtain CPNAxB);

 Compose SDA and SDB applying SD composition
rules (replace the occurrences of SDB in SDA) and use
basic rules to obtain a composite CPN from SDAxB;

 Apply the unfolding of SDB in SDA directly obtaining
the composite CPN.

A unique CPN model CPNAxB can be obtained from each
path of transformations, i.e. the diagram of Fig. 7, is preserved
and confirms the correctness of transformations.

A. Mathematical Proof

In this context we need to identify the set of interactions
(we called as regions) in a SD that can be separated and
represented with decomposition behaviour and applied partial
transformations. We define a region as a set of local transitions
and the associated events, state locations and instances. Fig. 8,
diagrammatically shows the regions of a model in state space
and we define a region as follows.

Definition 1: Let SDd be a sequence diagram. A region of
SDd is given by SDRi; SDRi ⊆ SDd, for i ∈ N.

Fig. 8. Regions of a model in state space.

The universal set SD is the sample space that contains all
possible regions of a considered model. Let SDRi for i ∈ N be
an arbitrary region in a considered SD. Let CPNi be the

corresponding CPN of a region i, and the notation represents
a transformation. In general, for a continuous model we can
have;

We can make an approximation for a discrete model such
that

By applying partial transformation for a given region we

can obtain the corresponding CPN such that (SDRi) = CPNi.
Since SDRi ⊆ SD the transformation for the entire model can
be represented as follows:

Thus, the transformation of a given SD can be obtained by
the integration of all the sub CPN models generated through
the partial transformation of SD regions. Similarly, we can
show this is true for the composition of models as follows. Let
SDxy be the composition of arbitrary sequence diagrams SDx
and SDy and i, j, n, m ∈ N

+
.

Further, in incremental transformation we consider the
hierarchical view of a model by considering further fine-
grained (smaller) sub components over the coarse-grained
components (regions). We represent these sub components
using the ref interaction fragment. i.e., a region can contains a
set of sub components and given sub component can be shared
by different regions for a given time. Fig. 9 and Fig. 10, show
sub sections of a region and hierarchical view of the regions,
respectively. Thus a given SD consists of set of regions and a
given region SDRi contains a set of ref interaction fragments.

Fig. 9. Sub sections of a region.

Fig. 10. Hierarchical view of the regions of a model.

The transformations of sub components can be shown
similar to the proofs for the partial transformation of regions
and the incremental transformation with model composition, as
follows.

Let refk be an arbitrary reference fragment in the region
SDRi and the corresponding CPN representation CPNik. In
general for a continuous model we can have;

We make an approximation for a discrete model such that

m

k=1 refk = SD; for k, m ∈ N
+
.

For a given SD, Let SDRi be a coarse-grain region of the

SD model. Then
m

i=1 SDRi = SD; for i, m ∈ N
+
. Since SDRi ⊆

SD and refk ⊆ SDRi We can have SDRi =
p
k=1 refk ; for p ∈

N
+
. By applying partial transformation for a given ref sub

component the corresponding CPN can be obtained such that

(refk) = CPNk. The composition of CPN sub models that are
obtained using partial transformation of ref fragments can be
represented as follows:

Thus, it can be shown that the transformation of a given
SDR region can be obtained by the integration of all the sub
CPN models generated through the partial transformation of ref
sub components.

Similarly, we can show this property holds for the
hierarchical view of a model as follows.

Similarly, we can show the incremental transformation

property is held for the composition of models. Let SDxy be an

the composition of arbitrary sequence diagrams SDx and SDy

and CPNx and CPNy be the corresponding CPN models and i, j,

n, m, k, l, p, q ∈ N+
.

V. RELATED WORK

Many efforts have been aimed at model transformation and
composition [16-20]. An interesting work has been done in
[17] to transform UML sequence diagrams into free choice
Petri nets. They have proposed that the transformation process
should start by decomposing a SD into blocks and mapping
them into Petri net blocks, each with a placeholder in which
another Petri net block can be substituted. This transition has
considered in three phases, namely decomposition (identify the
model elements preserving the causality order), transformation
and composition (morph and substitute). However, they have
defined transformations in a diagrammatic way considering
only the event flow of the system and not the data flow of the
system. They have proved the correctness of transformation
using labelled event structure as a common semantic domain to
capture an identical behaviour in two models.

Formal semantics for most concepts of SDs by means of
Petri nets has been introduced in [18]. The authors have shown
the partial ordered and concurrent behaviour of the diagrams
naturally within the Petri net in a graphical way. An approach
for the composition of transformation is done in [19] that
guarantee the validity of the transformation chains. They have
considered the transformation of UML class diagram to a
relational model. Another formal approach for the composition
of model transformation is presented in [20] for the mapping
between typed graphs and semantic domains. They have
considered the mapping of activity diagram to Communicating
Sequential Process (CSP) using graph transformation rules.

Although different approaches have been used to synthesise
formal models using scenario based models, several of them
have considered only basic SD constructs with a diagrammatic
representation and have not focused on the handling of object-
oriented features. Comparatively, we have defined the

transformation and composition of UML sequence diagrams to
CPNs considering complex behaviours using formal exogenous
transformation rules.

A formal model transformation from scenario based models
to formal models considering their complex behaviour is
defined in our previous work [11-12]. We have defined formal
rules that explicitly state the mapping between UML SDs and
CPNs that can handle object oriented features. Also we have
shown that the defined languages for both models are strongly
consistent, hence the transformations are free of implied
scenarios. The transformations are supported by an automated
tool [13, 14] and have applied to many application domains
[13-15, 21]. In this paper we have contributed to a scalable
approach for formal analysis of scenario-based considering
model composition and decomposition and by enabling partial
and incremental analysis on a model.

VI. CONCLUSION

Software design models are ideal for abstraction and
handling software system with large scale and high complexity.
This paper has presented model transformations based on
composition and decomposition of sequence diagrams and
coloured Petri nets and proved its correctness. The novelty of
our approach lies in the safe composition of model
transformation framework common in model-driven
development considering the decomposition techniques of a
SD and used partial and incremental transformations that
enable local analysis as well as a global view of the system.
We have introduced the notion of a region in a sequence
diagram that can be replaced with a reference (lifeline
decomposition or ref interaction use). Thus, partial
transformations can be applied only to a region in a sequence
diagram and also can be reused the synthesized region
extending software design models, if required. Moreover, this
framework contributes to a scalable approach for formal
analysis of scenario based specifications. As future research
directions we plan to investigate the applicability of partial and
incremental transformations that are proven to be correct when
there is a large variability in the target model or when the
semantic variability lies in the source model. The model
transformation correctness proofs can be generalised in order to
prove correctness and completeness of related families of
transformations and models. Another consequence of this
work is to perform formal analysis of the synthesised models
that allows system verification.

REFERENCES

[1]. A. Kleppe, J. Warmer and W. Bast, MDA Explained: The Model Driven
Architecture: Practice and Promise, Addison-Wesley Object
Technology, 2003.

[2]. T. Stahl, M. Volter, J. Bettin, A. Haase and S. Helsen, Model Driven
Software Development: Technology, Engineering, Management, John
Wiley & Sons, Ltd, 2006.

[3]. S. Sendall and W. Kozaczynski, “Model Transformation - the Heart and
Soul of Model-Driven Software Development”, IEEE Software, vol. 20,
no. 5, pp. 42-45, 2003.

[4]. T. Mens and P. Van Grop, "A Taxonomy of Model Transformation",
Electronic Notes in Theoretical Computer Science, Vol. 152, pp. 125-
142, Proceedings of the International Workshop on Graph and Model
Transformation (GraMoT 2005), Elsevier Science, 2006.

[5]. “OMG Unified Modeling Language: Superstructure”, V2.4.1 , URL:
http://www.omg.org/spec/UML/2.4/Superstructure/PDF, 2011.

[6]. J. Arlow and I. Neustadt, UML 2 and the unified process: practical
object-oriented analysis and design, Addison-Wesley, 2005.

[7]. K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling and
Validation of Concurrent Systems, Springer-Verlag, 2009.

[8]. K. Jensen, "An Introduction to the Practical Use of Coloured Petri-
Nets",In: W. Reisig and G. Rozenberg (eds.): Lectures on Petri Nets II:
Applications, Lecture Notes in Computer Science, vol. 1492, Springer-
Verlag, pp. 237-292, 1998.

[9]. F. Mallet, M. A. Peraldi-Frati and C. André, "From UML to Petri Nets
for non functional Property Verification", IEEE International
Symposium on Industrial Embedded Systems, pp. 1-9, 2006.

[10]. S. Bernardi, S. Donatelli and J. Merseguer, "From UML Sequence
Diagrams and State charts to analysable Petri Net models", in 3rd
international workshop on Software and Performance, pp. 35-45, 2002.

[11]. J. Bowles and D. Meedeniya, “Formal Transformation from Sequence
Diagrams to Coloured Petri Nets”, in 17th Asia Pacific Software
Engineering Conference (APSEC '10), IEEE Computer Society, pp.
216-225, 2010.

[12]. J. Bowles and D. Meedeniya, “Strongly consistent transformation of
partial scenarios”, ACM SIGSOFT Software Engineering Notes (SEN),
vol. 37, no. 4, pp. 1-8, 2012.

[13]. D. Meedeniya, J. Bowles and I. Perera, "SD2CPN: A Model
Transformation Tool for Software Design Models", in 2014
International Computer Science and Engineering Conference: ICSEC
2014, pp. 461-466, IEEE Explorer, 2014.

[14]. D.A. Meedeniya and I.Perera, “Model Based Software Design: Tool
Support for Scripting in Immersive Environments", 8th IEEE
International Conference on Industrial and Information Systems
(ICIIS'13), pp.248-253, 2013.

[15]. I. Perera, D. Meedeniya, I. Benerjee and J. Choudhury, "Educating
Users for Disaster Management: An Exploratory Study on Using
Immersive Training for Disaster Management", in IEEE International
Conference on MOOC, Innovation and Technology in Education
(MITE), pp. 245-250, 2013.

[16]. M.Sgroi, et al., “Synthesis of Petri Nets from Message Sequence Charts
Specifications for Protocol Design”, in Design, Analysis, and Simulation
of Distributed Systems (DASD’04), pp. 193-199, 2004.

[17]. M. A. Ameedeen and B. Bordbar, “A Model Driven Approach to
Represent Sequence Diagrams as Free Choice Petri Nets”, in 12th
International IEEE Enterprise Distributed Object Computing
Conference, pp. 213-221, 2008.

[18]. C. Eichner, H. Fleischhack, R. Meyer, U. Schrimpf and C. Stehno,
"Compositional semantics for UML 2.0 sequence diagrams using Petri
Nets", in Lecture Notes in Computer Science, SDL 2005: Model Driven
Systems Design: 12th International SDL Forum, Vol. 3530, pp. 133-148,
2005.

[19]. F. Heidenreich, J., Kopcsek and U. Assmann, “Safe composition of
transformations”, in ICMT 2010, LNCS, vol. 6142, pp. 108 -122,
Springer-Verlag, 2010.

[20]. D. Bisztray, R. Heckel and H. Ehrig, “Compositionality of Model
Transformations”, Electronic Notes in Theoretical Computer Science,
vol. 236, pp. 5-19, Elsevier, 2009.

[21]. J. Bowles and D. Meedeniya, “Parametric Transformations for Flexible
Analysis”, in 19th Asia Pacific Software Engineering Conference
(APSEC '12), pp. 634-643, IEEE Computer Society, 2012.

