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Abstract— Software models play a significant role with the 

growth of software system development based on Model Driven 

Development (MDD) approach. Model transformations and 

compositions are the heart of MDD and allow the development of 

complex systems and their automated derivation. Moreover, 

software development of large and complex systems uses a 

collection of models, where model composition and 

decomposition are required. Various research studies have been 

done on specifying and executing MDD processes; however only a 

few of those have considered the validity of such transformations, 

thus safe composition and decomposition of models. This paper 

presents a general approach for model composition for the 

transformation from UML sequence diagrams to Coloured Petri 

Nets and validates the correctness of model composition using a 

mathematical proof. These transformations are based on formal 

rules, which have already been proven to be strongly consistent.  

Keywords—UML sequence diagram; Coloured Petri net; model 

transformation; model composition 

I.  INTRODUCTION  

Model-driven development (MDD) has recently gained 
considerable attention as a promising software development 
approach that helps to reduce and manage system complexity.  
MDD uses multiple models as its main artifacts to describe 
different aspects of a software system at various levels of 
abstraction for non-trivial, large-scale software systems with 
complex behaviour [1, 2]. MDD-based software development 
facilitates automatic transformation and composition of system 
design models, while preserving their traceability, 
completeness and consistency [1].  However, it is difficult to 
relate and maintain the consistency of such models when 
applying model transformations or attempting to integrate 
models without a well-defined automated technique to support 
it. Generally, MDD uses exogenous model transformation to 
synthesis a high-level abstract model into a lower-level 
concrete model or vice-versa and endogenous transformations 
to improve the operational qualities of the model by generating 
another representation of the model while preserving the same 
level of abstraction [3, 4].    

Unified Modelling Language (UML) is an industry 
standard modeling language with a comprehensive set of 
diagrams [5]. Sequence diagram (SD), which is a popular UML 
diagram for capturing inter-object behaviour, shows the object 

instances participating in the interaction and their progress over 
the time [5, 6]. 

One of the main purposes of a design model is to apply 
model verification techniques before the actual 
implementation. Generally, SDs lack formal semantics that are 
required to apply formal verification methods. On the other 
hand formal models such as Coloured Petri nets (CPNs) [7, 8] 
are rich in well-defined syntax and semantics that allows 
formal verification of the system model. Also, CPN is both 
graphically and mathematically defined modelling language 
that can capture the behaviour of a wide range of systems [7, 
8]. Therefore, we have used CPNs as the underlying formal 
model associated with SDs. These model transformations and 
compositions enable possible analysis of the system or make it 
closer to the target platform [9, 10]. 

In our previous work [11, 12] we have defined and 
explained the formal transformation rules from a SD to a CPN 
with their correctness proofs. Also we have showed a prototype 
tool that automates these transformations [13, 14] and possible 
application domains [13-15].  

This paper presents a general setting for model composition 
and transformation framework that can also be considered for 
proof of correctness of the transformations; yet do not focus on 
specific formal transformation rules. Here, we describe the 
composition and decomposition of different design models and 
formulate a consistent design mode through transformations 
that shows the correctness of transformations. The formal rules 
for all the main transformations described are formally defined 
in our previous work [11, 12] to lay a basis for a precise 
approach to model transformations and composition. The focus 
of this paper is to present a general framework for model 
transformation and composition; we do not consider 
transformation approaches in detail due to space limitation.  

The paper is structured as follows: Section II describes the 
software design models used for this study; i.e. UML 2.0 
sequence diagrams and coloured Petri nets. Section III explains 
the basic, partial and incremental transformations from a SD to 
a CPN. Model composition framework and the associated 
mathematical proofs are presented in Section IV and related 
work is described in Section V. Finally, Section VI concludes 
the paper showing possible future research directions.  
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II. SOFTWARE DESIGN MODELS 

A. Sequence Diagram 

A Sequence Diagram models the interaction between 
objects based on a time sequence. The main elements of a SD 
comprise of a name of the diagram, object instances and their 
lifelines and messages that pass between them [5, 6]. Other 
than that UML 2 introduces new set of elements, interaction 
fragments that can model the complex behaviour of a system. 
However, when modeling large scale or complex systems a 
single SD is not sufficient to represent all the behaviours which 
makes the diagram more complex. There is a need for splitting 
the SD and show part of the interaction on a separate diagram. 
Also it facilitates to reuse the part of an interaction in more 
than one SD.  UML 2 SDs are supported by mainly two 
decomposition mechanism as described below.  

This paper addresses the reference behaviour of a SD that 
facilitates model composition and decomposition. Fig. 1 shows 
such complex scenario representing the reference behaviour 
using lifeline decomposition and interaction use [5, 6].  

Fig. 1. The reference behaviour of a sequence diagram. 

 Reference behaviour with lifeline decomposition shows the 
decomposition of an instance itself in another SD. This allows 
combination of many lifelines into one in order to reduce the 
complexity of the SD. This is mainly used when modeling 
component-based systems where the internals of a component 
are intentionally hidden. The interaction fragment with ref 
operator is called an interaction use and it contains the name of 
the referred SD name. This gives an abstract representation for 
the interactions given by the referred diagram. In this case, the 
referred diagram should contain all the object instances 
covered by the ref interaction fragment and may contain 
additional object instances.  

As shown in the example in Fig. 1, the instance a is 
decomposed in another SD with the name L. In this case, the 
interaction starts by the instance a receives a message m0 from 
a gate (environment instance). Then it sends message m1 to a 
gate in the ref interaction use fragment that refers to a SD 
named N.  Here, the instance a can be represented by a similar 
or updated instance. The SD E keeps unchanged even if the 
internal behavior of the referred instance is quite different. 

The formal semantics of a SD and the transformation rules 
from a SD to a CPN, defined in [11, 12], are used as the basis 
for this work. There we have introduced the element event 
indicating each sending and receiving point. The element state 
location is defined in between events along a lifeline. Along 
with the standard elements defined for SDs these two elements 
were also incorporated into our model transformation given in 
Section III. 

B. Coloured Petri net 

Coloured Petri Net is a comprehensive modelling and 
formal validation language for systems where concurrency, 
synchronisation, and communication play a major role [7, 8]. 
CPN consists of well-defined constructs and facilitates 
simulation, state space analysis, behavioural visualisation, and 
performance analysis in a wide range of application domains. 

A CPN describes the states of a system using the element 
place and the operations that cause the model to change its 
state using the element transition (we called net transition). A 
CPN graphically shows the places using circles and transitions 
by rectangles. Directed arrows (arcs) are used to connect 
places and transitions and vice versa. Places may contain 
tokens represented by black dots. Each place and a token have 
a colour that denotes its associated object type [7, 8].  

 

Fig. 2. CPN representing the decomposition behaviour. 

As shown in Fig. 2, the CPN named M contains four object 
types (colours) namely a, b, c, and e, (denotes environment 

object). Each initial place S0a, S0b, S0c and environment places 

Se0 and Se2 contain one token of its object type. There are three 

net transitions with labels t0, t1 and N (refers to another 
diagram name). As we have defined in [12], the colour a is 
associated with an object reference to another CPN named L, 
given by r(a) =L. A transition fires when it acquires the 
required tokens. This shows the object types involved in the 
transition. Arcs show the flow of the model; for example 

transition t1 is enabled after transition t0 has fired and when it 

pass the token of colour a to place S1a.  

III. MODEL TRANSFORMATION FROM SD TO CPN 

A. Basic Transformations 

Here we describe the transformation rules from a SD to a 
CPN using an example (complete set of formal rules are given 
in our previous work [11, 12]). Consider the SD shown in Fig. 
3, and the corresponding CPN in Fig. 2. Here, the target CPN 
has the same name as the source SD named M. The (object and 
environment) instances in SD are transformed into matching 
colours (object types) in the corresponding CPN; i.e. a, b, c 

and e. The state locations of an instance (S0a, S1a, S2a, etc.) are 
transformed into places in the CPN, such that the colour of the 
place matches the instance type. In this case, only the places 
corresponding to initial state locations have an initial marking 
of one token per place.  

 



Fig. 3. A SD showing decomposition behaviour. 

Each sending event, message, receiving event triple in a SD 
(defined as local transition [11]) is mapped to a corresponding 

net transition in the CPN. The net transition labels (t0, t1) 
correspond to message labels (m0, m1). The previous and next 
state locations for the instances involved in the local transitions 
are mapped onto places with corresponding colours in the CPN 
and arcs link places and the net transition as expected to keep 
the flow. Environment instances are involved in interactions 
via gate events. When transforming a local transition with a 

gate, equality is imposed between the places (Se0, Se1) 
correspond to the initial and end environment state locations.   

B. Partial and Incremental Transformations 

It may be required to analyse only a part of a design model 
for a given time during the software system development. 
Here, a set of interactions can be separated and applied partial 
transformations to obtain the corresponding target model. Also 
if an extension is required for a source model, new interactions 
can be added and use incremental transformations to synthesise 
the integrated target model. This process reuses the models, 
thus in long term it reduces the associated time, effort and cost.  

Here, we mainly consider composition behaviour using ref 
fragment. When a SD refers to a set of interactions in another 
SD using a ref fragment, a single composite SD with the entire 
behaviour of interactions can be obtained as follows. Consider 
SD M in Fig. 3, which refers to SD N shown in Fig. 4, using 
ref fragment. When composing the two diagrams, the ref 
fragment is replaced by the behaviour of the referred diagram 
and the resulted model SD MN is shown in Fig. 5. The 
composite SD contains the union of the elements from both the 
SD with the abstract representation and the SD with the 
referred behaviour, except for the ref fragment and its 
associated events and state locations. Thus, the composition 
model SD MN contains all the messages m0, m1, m2 and m3.    

The composite SD is obtained by imposing equality 
between the state location before the beginning of the ref 
fragment and the initial state location of the referred SD, for a 
given instance involved in the fragment such that S0b=S0b’ and 
S0c=S0c’ in SD MN. Similarly, there is equality between the 
state locations after the end of the ref fragment and the end 
state location of the referred SD, for all the instances involved 
in the fragment (S2b=S3b’ and S2c=S2c’). If a message connects 
to the ref fragment through a gate event, then the referred SD 
also contains a corresponding message (m1). In the composite 
SD there is equality between these messages and removes the 
associated events and state locations of environment instance. 

 

                                                                  Fig. 4. Referred SD and corresponding CPN. 

Fig. 5. A SD showing composition behavior. 

When transforming a SD with ref interaction fragment (SD 
M in Fig. 3) to the corresponding CPN (CPN M in Fig. 2), the 
CPN includes an additional net transition to represent the 
abstract behaviour given by the ref fragment. This net 
transition is labeled by the name of the referred diagram given 
by the ref fragment; in this case it is named by N. Here, the 
transition is in effect a substitution transition, which conveys 
the behaviour of the referenced CPN (CPN N in Fig. 4). 

Consider SDs with decomposition behavior using ref 
fragment (SD M that refers to SD N). The corresponding CPN 
(CPN MxN in Fig. 6) for the composition of the two SDs can 
be obtained by unfolding the SDs. We impose an equality 
between the CPN places that correspond to the state location 
before the beginning of the ref fragment and the initial state 
location of the referred SD (S0b=S0b’ and S0c=S0c) for each 
instances (b and c) involved in the ref fragment. Similarly, 
there is equality between the places that correspond to the state 
location after the end of the ref fragment and the end state 
location of the referred SD (S2b=S3b’ and S2c=S2c) for each 
instances involved in the fragment.  

 

 

 

 

 

 

 

 

Fig. 6. CPN showing composition behaviour. 

When a message (m1 in SD M and SD N) is passed to a ref 
fragment via a gate the referred SD also contains the same 



message. In the integrated CPN (MxN) there is equality 
between the corresponding net transitions (t1). Also it does not 
have places linked to that transition for the object type 
corresponds to the environment instance. 

Moreover, consider the CPN M in Fig. 2, that refers to the 
CPN N in Fig. 4, by the label of the composite net transition N. 
The composition of these models, CPN MxN in Fig. 6, can be 
obtained as follows. It contains the union of the colours, places, 
net transitions of both source CPNs, except for the composite 
net transition that refers to the other model and the places of 
the colour environment that are linked with that net transition. 

i.e. the places Se2, Se3 in CPN M and Se0’, Se1’ in CPN N that 
linked with the transition t1 do not contain in the integrated 
CPN MxN. There is only one net transition to represent this 
common net transition t1. Also there is equality between the 
source and the target places of the composite net transition, 
with the initial and end places of the referred model, 
respectively, for each colour.  

IV. MODEL COMPOSITION 

When modelling systems with a large number of 
interactions it is important to be able to decompose a large SD 
model into smaller units making use of an interaction-use (ref 
fragment) or lifeline decomposition, so that each sub-model 
can be analysed separately. Conversely, it may be necessary to 
compose SD models to a single model to have a more global 
view of a system model.  Thus, complex and large scale 
software systems are usually developed by a set of 
interconnected models with the use of composition and 
decomposition techniques.  

 

 

 

 

 

Fig. 7. SD to CPN transformation paths for complex behaviour. 

Previous section has described the transformation rules for 
the reference behaviour allowing partial synthesis of model 
transformation from SDs to CPNs. There are several ways to 
transform complex SDs into CPNs as shown in Fig. 7. Given a 
sequence diagram SDA with one or more references to SDB, 
following transformations can be done.  

 Transform both SDs into appropriate CPNs obtaining 
CPNA and CPNB where CPNA is a complex CPN with 
some reference (composite net transition) to CPNB. 
These CPNs can be analysed directly or if intended, a 
composite CPN can be obtained through CPN 
composition rules (replace the occurrences of  CPNB in 
CPNA and obtain CPNAxB); 

 Compose  SDA  and  SDB  applying SD composition 
rules (replace the occurrences of  SDB  in  SDA ) and use 
basic rules to obtain a composite CPN from SDAxB; 

 Apply the unfolding of SDB in SDA directly obtaining 
the composite CPN.  

A unique CPN model CPNAxB can be obtained from each 
path of transformations, i.e. the diagram of Fig. 7, is preserved 
and confirms the correctness of transformations.   

A. Mathematical Proof  

In this context we need to identify the set of interactions 
(we called as regions) in a SD that can be separated and 
represented with decomposition behaviour and applied partial 
transformations. We define a region as a set of local transitions 
and the associated events, state locations and instances. Fig. 8, 
diagrammatically shows the regions of a model in state space 
and we define a region as follows. 

Definition 1: Let SDd be a sequence diagram. A region of 
SDd is given by SDRi; SDRi ⊆ SDd, for i ∈ N. 

 

 

 

 

 

Fig. 8. Regions of a model in state space. 

The universal set SD is the sample space that contains all 
possible regions of a considered model. Let SDRi for i ∈ N be 
an arbitrary region in a considered SD. Let CPNi be the 

corresponding CPN of a region i, and the notation  represents 
a transformation. In general, for a continuous model we can 
have; 

 

We can make an approximation for a discrete model such 
that 

 

By applying partial transformation for a given region we 

can obtain the corresponding CPN such that (SDRi) = CPNi. 
Since SDRi ⊆ SD the transformation for the entire model can 
be represented as follows:  

 

 

 

Thus, the transformation of a given SD can be obtained by 
the integration of all the sub CPN models generated through 
the partial transformation of SD regions. Similarly, we can 
show this is true for the composition of models as follows. Let 
SDxy be the composition of arbitrary sequence diagrams SDx 
and SDy and i, j, n, m ∈ N

+
. 



Further, in incremental transformation we consider the 
hierarchical view of a model by considering further fine-
grained (smaller) sub components over the coarse-grained 
components (regions). We represent these sub components 
using the ref interaction fragment. i.e., a region can contains a 
set of sub components and given sub component can be shared 
by different regions for a given time. Fig. 9 and Fig. 10, show 
sub sections of a region and hierarchical view of the regions, 
respectively.  Thus a given SD consists of set of regions and a 
given region SDRi contains a set of ref interaction fragments.  

 

 

 

 

 

 

 

 

Fig. 9. Sub sections of a region. 

 

 

 

 

 

 

 

Fig. 10. Hierarchical view of the regions of a model. 

The transformations of sub components can be shown 
similar to the proofs for the partial transformation of regions 
and the incremental transformation with model composition, as 
follows. 

Let refk be an arbitrary reference fragment in the region 
SDRi and the corresponding CPN representation CPNik. In 
general for a continuous model we can have;  

 

 

We make an approximation for a discrete model such that 


m

k=1 refk = SD; for k, m ∈ N
+
.  

For a given SD, Let SDRi be a coarse-grain region of the 

SD model. Then 
m

i=1 SDRi = SD; for i, m ∈ N
+
. Since SDRi ⊆ 

SD and refk ⊆ SDRi We can have SDRi = 
p
k=1 refk ; for p ∈ 

N
+
. By applying partial transformation for a given ref sub 

component the corresponding CPN can be obtained such that 

(refk) = CPNk. The composition of CPN sub models that are 
obtained using partial transformation of ref fragments can be 
represented as follows: 

Thus, it can be shown that the transformation of a given 
SDR region can be obtained by the integration of all the sub 
CPN models generated through the partial transformation of ref 
sub components.  

Similarly, we can show this property holds for the 
hierarchical view of a model as follows. 

Similarly, we can show the incremental transformation 

property is held for the composition of models. Let SDxy be an 

the composition of arbitrary sequence diagrams SDx and SDy 

and CPNx and CPNy be the corresponding CPN models and i, j, 

n, m, k, l, p, q ∈ N+
. 

 

 

V. RELATED WORK 

Many efforts have been aimed at model transformation and 
composition [16-20]. An interesting work has been done in 
[17] to transform UML sequence diagrams into free choice 
Petri nets. They have proposed that the transformation process 
should start by decomposing a SD into blocks and mapping 
them into Petri net blocks, each with a placeholder in which 
another Petri net block can be substituted. This transition has 
considered in three phases, namely decomposition (identify the 
model elements preserving the causality order), transformation 
and composition (morph and substitute). However, they have 
defined transformations in a diagrammatic way considering 
only the event flow of the system and not the data flow of the 
system. They have proved the correctness of transformation 
using labelled event structure as a common semantic domain to 
capture an identical behaviour in two models. 

Formal semantics for most concepts of SDs by means of 
Petri nets has been introduced in [18].  The authors have shown 
the partial ordered and concurrent behaviour of the diagrams 
naturally within the Petri net in a graphical way. An approach 
for the composition of transformation is done in [19] that 
guarantee the validity of the transformation chains.  They have 
considered the transformation of UML class diagram to a 
relational model. Another formal approach for the composition 
of model transformation is presented in [20] for the mapping 
between typed graphs and semantic domains. They have 
considered the mapping of activity diagram to Communicating 
Sequential Process (CSP) using graph transformation rules.   

Although different approaches have been used to synthesise 
formal models using scenario based models, several of them 
have considered only basic SD constructs with a diagrammatic 
representation and have not focused on the handling of object-
oriented features.  Comparatively, we have defined the 



transformation and composition of UML sequence diagrams to 
CPNs considering complex behaviours using formal exogenous 
transformation rules.  

A formal model transformation from scenario based models 
to formal models considering their complex behaviour is 
defined in our previous work [11-12]. We have defined formal 
rules that explicitly state the mapping between UML SDs and 
CPNs that can handle object oriented features. Also we have 
shown that the defined languages for both models are strongly 
consistent, hence the transformations are free of implied 
scenarios. The transformations are supported by an automated 
tool [13, 14] and have applied to many application domains 
[13-15, 21]. In this paper we have contributed to a scalable 
approach for formal analysis of scenario-based considering 
model composition and decomposition and by enabling partial 
and incremental analysis on a model.   

VI. CONCLUSION 

Software design models are ideal for abstraction and 
handling software system with large scale and high complexity. 
This paper has presented model transformations based on 
composition and decomposition of sequence diagrams and 
coloured Petri nets and proved its correctness. The novelty of 
our approach lies in the safe composition of model 
transformation framework common in model-driven 
development considering the decomposition techniques of a 
SD and used partial and incremental transformations that 
enable local analysis as well as a global view of the system.  
We have introduced the notion of a region in a sequence 
diagram that can be replaced with a reference (lifeline 
decomposition or ref interaction use). Thus, partial 
transformations can be applied only to a region in a sequence 
diagram and also can be reused the synthesized region 
extending software design models, if required. Moreover, this 
framework contributes to a scalable approach for formal 
analysis of scenario based specifications. As future research 
directions we plan to investigate the applicability of partial and 
incremental transformations that are proven to be correct when 
there is a large variability in the target model or when the 
semantic variability lies in the source model. The model 
transformation correctness proofs can be generalised in order to 
prove correctness and completeness of related families of 
transformations and models.  Another consequence of this 
work is to perform formal analysis of the synthesised models 
that allows system verification. 
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