
How the Web Was Won
Keeping the Computer Networking Curriculum Current with HTTP/2

Colin Allison

School of Computer Science

University of St Andrews

St Andrews, UK

ca@st-andrews.ac.uk

Hussein Bakri

School of Computer Science

University of St Andrews

St Andrews, UK

hb@st-andrews.ac.uk

Abstract— The Internet and the Web continue to grow in

their pervasiveness and as new functionality and behavior

emerge it is a challenge to keep the computer networking

curriculum up to date. There are many excellent networking

textbooks available but they cannot always keep pace with the

rate of change. Recent developments in HTTP are a good

example of this situation. Since around 2012 many of the web

transactions between popular browsers and major web sites have

been using a protocol called SPDY, which operates significantly

differently from HTTP version 1.1 – the version covered in

networking textbooks. SPDY has been largely adopted into the

final standard of HTTP version 2. This paper seeks to fill the gap

between current textbooks and the versions of HTTP now in use.

It gives an overview of HTTP evolution from a technical

perspective before suggesting materials and approaches that can

be used as learning resources for the topic and how conceptual

understanding can be reinforced through hands-on activities

which use browsers’ native network monitoring capabilities and

other readily available tools.

Keywords—Computer Networking Education, HTTP Evolution

I. INTRODUCTION

As a consequence of the Internet boom around the year 2000

computer networking education has been well served in terms

of textbooks. A challenge for authors of the more

comprehensive networking textbooks however is keeping

them up to date.

Table I: Frequency of networking textbook publication update

 Edition and Year of Publication

 1 2 3 4 5 6 average

update

interval

T&W 1980 1988 1995 2002 2010 7 years

P &D 1996 1999 2003 2007 2011 4 years

K &R 2000 2003 2005 2007 2009 2012 2 years

If we take three major texts: Tanenbaum and Wetherall1

(T&W) [1], Peterson and Davie (P&D) [2], Kurose and Ross

(K&R) [3]; we can get a feel for the rate of change by looking

at the frequency of new editions (see Table I).

1 Andrew Tanenbaum was the sole author of editions 1 – 4; he was

joined by David Wetherall as co-author for the 5th edition.

The more recently authored books show a greater frequency of

revision and as revising a major textbook is a time consuming

process it can be assumed that these updates are considered

too important to delay for longer periods. Yet, at the same

time, we do not have to look far to find an example of a

widely used Internet protocol that is not covered by even the

most recent textbooks – SPDY – the basis for HTTP/2.

Why is the HTTP family of protocols (HTTP 1.0, HTTP 1.1,

HTTPS, SPDY, HTTP/2) an important part of the networking

curriculum? Firstly, these are the application level protocols

that carry the largest proportion of Internet traffic including

social media, e-commerce, and streaming video. As such it is

incumbent on networking education to explain the principles,

operation, benefits and drawbacks of such a widely used set of

protocols.

Secondly, in contrast to the traditional bottom-up networking

pedagogy whereby the physical layer is covered first, then the

link layer, and so on, a top-down approach starting with the

application level has been introduced by books such as K&R,

and widely adopted. Peterson and Davie's book is structured as

bottom-up but for the 5th edition they issued an alternative

pathway document on how to use their content in a top-down

manner. HTTP is naturally one of the most relevant

application level protocols to use in a top-down approach.

Students can quickly feel a sense of achievement in designing

and deploying their own web server which in turn promotes

engagement with other aspects of the discipline.

Finally, through the critical study of this family of protocols

students can gain insight into Internet protocol design,

evolution and standardization. For example, there is

educational value in covering HTTP/2 as it shows that key

features of HTTP 1.1 such as pipelining, described as

performance enhancement in textbooks, never actually worked

in practice and were not adopted or deployed. While it is

testimony to the value of layered model abstraction that few

web users are aware when they are obtaining content via

SPDY rather than HTTP 1.1 it is not an acceptable situation

for students in computer networking classes, especially as they

are still being taught about the operation of earlier forms of

HTTP in major texts.

This paper proceeds by reviewing the HTTP story so far then

makes suggestions for readily available resources which can

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by St Andrews Research Repository

https://core.ac.uk/display/31299826?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

support the inclusion of HTTP/2 in an evolutionary context,

within the networking curriculum.

II. THE HTTP STORY SO FAR….

The original Web was based around the hypertext transfer

protocol (HTTP) and the hypertext mark-up language (HTML).

There were numerous precursors in the form of distributed

hypertext systems, but in true Internet tradition the simplicity

and openness of the original HTTP and HTML standards

allowed them to be readily implemented in forms that could be

made to interoperate across the network. HTTP 0.9 was

published in 1991 [4]; it was a subset of what was called

“Basic HTTP” in 1992 [5] – much of which became known as

HTTP 1.0 [6]. In 1993 a major boost came in the form of the

Mosaic web browser [7] which was easy to use and brought

multimedia web pages to life. It was not uncommon to hear

the term “the Mosaic protocol” being incorrectly used to refer

to the web at that time. As the use of the web snowballed,

HTTP 1.0 (fully specified in 1996), attracted attention from

network researchers and they discovered considerable space for

improvement [2-5].

Figure 1. (a) http 1.0 (b) http 1.1

The most significant problem identified was the interplay

between TCP and HTTP. Most interactions between a web

client and a web server at that time were between a client and

the same server. However, each HTTP response and request

required its own TCP connection. As TCP uses three

segments to set up a connection and up to four segments to

close it down, the transport protocol overhead typically used

more network resource in terms of Round Trip Time and

bandwidth than the application level protocol. Figure 1a shows

HTTP 1.0 obtaining two web objects. This profligate use of

TCP was seen as wasteful, and of course, congestion

avoidance was also a big issue. In addition HTTP 1.0 is a

“stop and wait” protocol so if a web page consisting of some

text and a few images was to be built and rendered then

multiple TCP connections were needed and enterprising

browser designers decided to open these in parallel, reducing

the overall Page Load Time (PLT), delivering a better user

experience, but effectively subverting the aims of TCP’s

congestion management mechanisms in the sense that one

application was getting more than its “fair share” of available

network resource. However, depending on the context

consisting of the actual clients and servers, their platforms, the

web page(s) being requested, and the network path, significant

parts of the overall delay in PLT could often be traced to the

browser, the server or the TCP protocol rather than the

network throughput or HTTP protocol [8] [9].

A. HTTP 1.1

HTTP 1.1 [10] sought to improve over the previous version in

the areas of: Caching, Bandwidth optimization, Connection

management, Message transmission, Internet address

conservation, Error notification, Security, Integrity &

Authentication, and Content negotiation [11].

Briefly; IP address conservation was improved through the use

of virtual hostnames for servers, specified in the new header

“host” field; caching was better supported by the introduction

of unique ETags for objects; in practice HTTPS (HTTP over

SSL or TLS) was adopted rather than the proposed HTTP 1.1

mechanisms for security; message transmission encoding

could be treated distinctly from content encoding.

The concern over the inefficient use of TCP was addressed by

improved connection management in the form of persistent

connections. This is supported by the “Keep-Alive” header

field and is in widespread use. This means that a single TCP

connection between a client and a web server can be kept open

to support multiple HTTP request/response interactions (see

Fig. 1b).

Figure 2. a) Stop & Wait; b) Pipelining; c)Head of Line Blocking.

It was hoped that the introduction of persistent TCP

connections would reduce the number of parallel HTTP/TCP

connections opened by a browser. In practice this did not

happen.

Bandwidth optimization was addressed mainly by the

introduction of pipelining, whereby a client did not need to

wait for a response before sending a further request (see Fig

2a, b). In practice, pipelining was not adopted. It was partly

thwarted by intermediary boxes such as proxies, but also by

the “head of line blocking” situation (see Fig 2c), whereby

servicing a single long-running request could hold up all

subsequent ones, even though they could be answered

relatively efficiently. In short, bandwidth optimization did not

succeed.

Two points should be noted about HTTP 1.1. Firstly, it was

designed to be backwardly compatible with HTTP 1.0, so

older clients could still interact with newer servers and newer

clients work with older servers. This was achieved by simply

making none of the new features mandatory. Hence

pipelining could be allowed to fail through lack of popular

adoption. However, another new feature, the “Upgrade”

header, was intended to allow for both client and server to

switch entirely to an alternate protocol for content transfer.

This added some future proofing to HTTP 1.1 and is now used

for switching to HTTPS or SPDY.

B. HTTPS

As the global, public Internet became increasingly used for

commercial and mission critical purposes it became necessary

to provide security.

Figure 3: The Secure Sockets Layer

The Secure Sockets Layer (SSL) or Transport Layer Security

(TLS) does this for TCP at the transport level. SSL provides

confidentiality, integrity & end-point authentication. Any

networked application written using the TCP socket

programming abstraction can readily improve its security by

using SSL. This has led to many common networking

applications being deprecated or firewalled and replaced by

their SSL-based secure versions. The remote shell command

rsh became ssh, cp became scp, ftp became sftp and

so on. While some HTTP sites moved to HTTPS, the relative

proportion of HTTPS/HTTP traffic remains small, even

though there was a post-Snowden surge in May 2014:

“before the Snowden revelations encrypted traffic

accounted for 2.29 percent of all peak hour traffic in

North America, according to Sandvine’s report. Now, it

spans 3.8 percent. But that’s a small jump compared to

other parts of the world. In Europe, encrypted traffic went

from 1.47 percent to 6.10 percent, and in Latin America,

it increased from 1.8 percent to 10.37 percent.” [12]

While HTTPS provides a relatively high degree of security for

web traffic compared with HTTP the flawed operation of the

Public Key Infrastructure commercial market has partially

undermined its reliability [13].

C. HTTP/2 and SPDY

HTTP/2 [14] [15] is a major enhancement to HTTP 1.1,

principally motivated by the need to improve the Page Load

Time (PLT) of modern, large, complex web pages. Average

page sizes and their complexity in terms of the number of

objects have grown from approximately 10 Kbytes in 1995 to

1600 Kbytes in 2014, and from two objects in 1995 to over

one hundred objects in 2014 [16]. Not only has the number of

objects grown, but they are more varied in type and come

from an increasing number of different domains.

“Today’s Web bears little resemblance to the Web of a

decade ago. A Web page today encapsulates tens to

hundreds of resources pulled from multiple domains.

Users access the Web from diverse device form factors,

while browsers have improved dramatically…..A constant

throughout this evolution is the underlying application

layer protocol—HTTP— designed at a time of far less

page complexity.….HTTP (1.1) is not optimal, with pages

taking longer to load. Studies over the past five years

suggest even 100 milliseconds additional delay can have

a quantifiably negative effect on Web use, spurring

interest in improving Web performance” [17].

Figure 4: Impacts of Bandwidth vs RTT on Page Load Time

(from [18]).

While the network and protocol components are only part of

the overall delay in Page Load Time, the latency engendered

by HTTP 1.1 was seen a worthwhile target, and hence Google

launched the SPDY R&D project in 2009 to provide an

alternative protocol.

“SPDY adds a framing layer for multiplexing multiple,

concurrent streams across a single TCP connection (or

any reliable transport stream). The framing layer is

optimized for HTTP-like request-response streams, such

that applications which run over HTTP today can work

over SPDY with little or no change on behalf of the web

application writer…..SPDY attempts to preserve the

existing semantics of HTTP. All features such as cookies,

ETags, Vary headers, Content-Encoding negotiations, etc

work as they do with HTTP; SPDY only replaces the way

the data is written to the network.” [19]

Internet access bandwidths have increased while pages have

grown but the basis for much of SPDY’s design was the belief

that the main gains could be achieved by reducing the

aggregate Round Trip Time (RTT) in a session. The

comparison provided by Belshe [18] (see Fig. 4) pointed

towards the relative importance of reducing RTT as opposed

to increasing bandwidth beyond e.g. 3 Mb/s. In 2014 Akamai

reported the global average connection bandwidth as 4.5 Mb/s

[20].

HTTP/2, which started as a copy of SPDY in 2012, was

almost fully accepted as an Internet standard by early

2015[14].2 A very significant point is that unlike the change

from HTTP 1.0 to HTTP 1.1, a SPDY implementation must

support all the SPDY protocol features. This is achieved by

using the “UPGRADE” header in HTTP i.e. if the client and

server agree to switch to SPDY then all the new features must

be supported. All SPDY traffic is encapsulated by SSL, and

uses port 443. HTTP/2 has left open the possibility of non-

SSL based sessions, but by March 2015 this option does not

appear to have been implemented, and it is not clear that it will

be. HTTP/2 also seeks to reduce the number of concurrent

TCP connections from a browser to the same domain.

By 2014 most of the global web-based service providers

including Google, Twitter and Facebook supported SPDY at

the server side, and most of the popular browsers, Chrome,

Firefox, Safari and IE, supported SPDY at the client side, so in

effect, SPDY had already conquered a significant part of the

web before being repackaged as the HTTP/2 draft standard.

The following subsections outline the key features introduced

by SPDY and mostly adopted in HTTP/2 [21].

1) Frames, Streams and Multiplexing

The unit of communication in HTTP/2 is the frame. There are

ten different frame types: DATA, HEADERS, PRIORITY,

RST_STEAM, SETTINGS, PUSH_PROMISE, PING, GOAWAY,

WINDOW_UPDATE, CONTINUATION.

2 SPDY and HTTP/2 are used interchangeably in many papers due to

the great influence of SPDY on HTTP/2.

A stream in HTTP/2 consists of bidirectional sequences of

frames flowing between two endpoints (client and server). The

server and client can send data simultaneously. Multiplexing

allows for multiple streams of request and response frames (of

maybe similar or different data) on a single TCP connection.

2) Prioritization, Dependency of Streams

Streams can be interleaved and prioritized. This allows an

endpoint to allocate more resources to what is being

prioritized when managing concurrent streams. Priority

information can be used to select the appropriate streams for

transmitting frames when there is limited sending capacity for

any reason. A client can assign a priority number for a new

stream in the HEADERS frame. Reprioritization of reserved

streams can be regulated by the PRIORITY frames. This allows

for more effective pipelining than HTTP 1.1 in that Head of

Line blocking (see Fig 2c) can be avoided.

Streams can explicitly depend on the completion of other

streams. This also affects the priority of streams. Dependency

is assigned a weight between 1 and 256 inclusive. Dependent

streams share the resources assigned to their parent in

accordance with the weight assigned to them. Dependent

streams move with their parent stream whenever the parent is

reprioritized. A stream that is not dependent on any other

stream is given a weight of 0 [14].

3) Binary Framing Layer

The binary framing layer in SPDY “dictates how the HTTP

messages are encapsulated and transferred between the client

and server”[22]. HTTP/2 has kept the same semantics, such as

verbs and headers of HTTP 1.x. Changes occur in how these

semantics are encoded, encapsulated and then transferred. In

other words, their encoding in transit is what is different.

4) Server Push

A server can send pre-emptively (or “push”) additional objects

in addition to replying to requests from clients. For example,

a server can send images, icons, CSS or JavaScript code

before the client explicitly requests them. A client can

however request that server push be disabled during a

connection. Khalid et al. [23] have argued that this feature can

be problematic in mobile devices because it can waste battery

or bandwidth and proposes mechanisms for HTTP/2 that

adjust the overall performance on mobile devices.

5) Header Compression

In HTTP 1.x, headers are typically repetitive and verbose.

HTTP/2 compresses headers using the HPACK algorithm [24],

based on Huffman encoding.

6) Flow Control

 HTTP/2 Flow Control is used for both individual streams and

for the connection as a whole. It is regulated through the use

of the WINDOW_UPDATE frame; only DATA frames are

subject to its effect. Receivers advertise how many octets they

can receive for a specific stream or for the whole connection.

The sender must respect the limits advertised by the receiver.

Flow control in HTTP/2 aims to make it possible to utilize

network resources better by not allowing a particular stream to

starve, and by dealing with slow/fast upstream and

downstream connections adequately.

7) RTT and Liveness

 PING frames have the highest priority. They are used to

measure round trip time and check if the connection is still

functional or the peer is still alive.

III. SUPPORTING HTTP IN THE NETWORKING CURRICULUM

This section suggests resources that can be used educationally

to complement the accounts of HTTP in popular texts through

contextualization and hands-on exercises.

A. Contextualisation

The story of HTTP evolution from HTTP 0.9 to HTTP/2 is in

itself an educational topic, illustrating the standardization

process in the W3C and IETF. Popular textbooks use HTTP

1.1 as a reference, some of them including the pipelining

feature which has never been widely used in practice. It is

recommended that the sections on HTTP in such texts are

augmented by information on SPDY and HTTP/2. An

accessible, if rather uncritical, overview of SPDY can be

found in [17]. A short and readable account of the key

differences between HTTP 1.0 and HTTP 1.1 can be found in

[11]. Critical commentaries on SPDY and HTTP/2 can be

found in [25, 26]. Table II gives a summary overview of key

differences between the deployed versions of HTTP between

1995 and 2015.

Internet standards are published as RFCs. The nature of RFC

content has been referred to as “…very technical, turgid and

nearly incomprehensible” [27]. As a light-hearted poke at

RFC 2068 (HTTP 1.1), RFC 2324 uses the same language

style to describe the Hyper Text Coffee Pot Control Protocol

(HTCPCP) [28], which amongst other features introduces the

new error code 418 “I’m a teapot”.

These types of textual materials can be used by lecturers as the

basis for learning resources, or can be passed directly to

students as study topics for essays. Branches can be followed

if there is time in the curriculum. For example a particular

criticism from [26] is that all HTTP/2 sessions are being run

over TLS. Empirical studies have shown that there can be a

significant cost of using SSL [29] – so when is a secure

connection really (not) needed? Do public library opening

hours and bus timetables need to be rendered immune from

eavesdroppers?

Another criticism of HTTP/2, possibly best suited for more

advanced students, is that it violates the established network

design principle of layering and abstraction by replicating

much of the functionality already provided by TCP at the

underlying transport level. For example, both protocols

support flow control, window size negotiation and pipelining.

A further consideration is that SPDY introduces explicit state

to HTTP, by way of session initiation and closedown, in a

similar way that a TCP virtual connection is managed in its

macro state.

Studies have compared the performance of SPDY to previous

HTTP versions [30] [31]. These give mixed, sometimes

contradictory, results in terms of SPDY outperforming older

versions of HTTP or the opposite. SPDY has been studied on

mobile devices[32] and on high latency Satellite networks

[33].

Other factors such as Web page characteristics, server load

and browser processing also play an important role in the

overall perceived page load time of course [25].

Part of the wider context includes the topic of making the web

faster. This can include Content Distribution Networks

(covered in major textbooks); increasing TCP’s opening

window size [34], and domain sharding, whereby a browser is

forced into making parallel connections due to deliberately

placing web page components in different domains [35].

Table II: Summary of major differences in HTTP versions 1.0, 1.1 and 2

HTTP 1.0 HTTP 1.1 HTTP/2

“Stop and Wait”, strictly sequential

processing of requests and responses

over TCP

“Stop and Wait”, strictly sequential

processing of requests and responses

over TCP

Full duplex streams of binary frames over TLS/TCP

PDU: HTTP Message PDU: HTTP Message PDU: HTTP/2 Frame (10 Types)

New TCP connection opened for each

Request/Response pair

Browsers seek performance gain by

opening multiple parallel TCP

connections, even between client and

server in same domain

Persistent TCP connections specified

and adopted

Pipelining specified but not

mandatory and not adopted

Browsers continue to open multiple

parallel TCP connections within same

domain

Aim: One persistent TCP Connection per domain

Multiple concurrent streams within the TCP

connection

Pipelining mandatory

Stream Multiplexing and Prioritization

Dynamic stream dependencies and reprioritization

Caching, Content compression option Caching, content compression option Caching, Content compression

 Header Compression

Server Push

Flow Control

Web page content optimization is supported by systems such

as ModPageSpeed [36], an executable Apache module that

uses a complex set of rules to dynamically rewrites a page for

particular connection.

David Wetherall has prepared a MOOC based on T&W 5th

edition [1]; the videos can be accessed on demand,

irrespective of the MOOC schedule. Video 8.8 [37] lasts for

twenty minutes and addresses the future of HTTP, a topic not

covered in the book. Around four minutes is spent on SPDY

and HTTP/2 developments. The tentative nature of the

discussion suggests the video was made around 2012. It is a

useful high level introduction to the modern web.

B. Hands-on activities: observation and analyses

The use of Wireshark [38] in lab exercises has been

popularized in supporting material by Kurose and Ross [3].

Recent Wireshark releases support both SPDY and HTTP/2

identification.

The webpagetest tool [39] is a free online service that is also

useful educationally. Figure 5 shows a “Waterfall View” of

the Page Load Time for google.com (from webpagetest’s point

of view onto the Internet). There are also facilities built-in to

Chrome and Firefox that allow students to observe the

components of PLT. These can optionally be displayed in a

waterfall style (Fig.6). Note that a Firefox add-on [40] signals

in the address bar that SPDY or HTTP/2 is in use.

The web page at spdycheck.org tests user-specified sites for

SPDY, TLS, HTTP/2 and HTTP 1.1 support. Networking

students can progress from understanding to creating by

writing their own code to carry out these tests.

Figure 6: Screenshot of Firefox’s built-in network monitoring facility; an add-on [40] shows when SPDY or HTTP/2 is in use (circled)

Figure 5: A waterfall view of page load time from www.webpagetest.org after accessing google.com

Figure 7: A trace from Chrome’s built in network monitor showing a SPDY session

It is possible to get a breakdown of a SPDY or HTTP/2

conversation in Chrome by initially using the URL:

chrome://net-internals/#spdy. This brings up the

following information:

 HTTP/2 Enabled: true

 Use Alternate Protocol: true

 Force HTTP/2 Always: false

 Force HTTP/2 Over SSL: true

 Next Protocols: http/1.1,spdy/3.1,h2-14

If a live HTTP/2 session is then selected, the working of the

protocol can be observed, including streams, priorities and

flow control window size (see Fig 7). It is interesting to note

that in some cases e.g. Facebook, SPDY appears to act as an

encapsulating layer for HTTP 1.1 whereas in an all-Google

HTTP/2 conversation (Fig. 7) there is no explicit mention of

HTTP 1.1 although the familiar header fields are listed.

Entering about:config and then searching for spdy in the

Firefox address bar will elicit the list in Table III.

Table III: Firefox SPDY parameters

network.http.spdy.allow-push true

network.http.spdy.chunk-size 16000

network.http.spdy.coalesce-hostnames true

network.http.spdy.default-concurrent 100

network.http.spdy.enabled true

network.http.spdy.enabled.deps true

network.http.spdy.enabled.http2 true

network.http.spdy.enabled.http2draft true

network.http.spdy.enabled.v3-1 true

network.http.spdy.enforce-tls-profile true

network.http.spdy.persistent-settings false

network.http.spdy.ping-threshold 58

network.http.spdy.ping-timeout 8

network.http.spdy.push-allowance 131072

network.http.spdy.send-buffer-size 131072

network.http.spdy.timeout 180

Students can be asked to research and explain the meanings of

these parameters, and can also change the settings and record

the effects when interacting with the same web site.

C. Hands-on activities: Simulators and Emulators

For students with adequate time the next stage beyond

observation and analyses is to use a simulator to modify traffic

characteristics such as bandwidth, packet loss and delay, to see

how that impacts on performance. A good starting point is to

give the student a pointer towards Belshe’s comparison of

bandwidth vs RTT [18] with respect to impact on PLT (see

Fig. 4) and ask them to see if they can reproduce these figures

through simulation and measurement. Science is built on

reproducible research results but in the case of Internet

measurements, even simulations, reproducibility can be

challenging.

 There are various open source network simulation tools

available, including ns3 [41] and Trickle [42]. Opnet is now

called Riverbed Modeler [43] and is free for academic use.

In lab exercises the traffic shaping Linux kernel library (tc)

[44] and NetEm [45] can be used to emulate delay and packet

loss. Bandwidth control can be achieved using the

Hierarchical Token Bucket control feature of the queuing

discipline interface (qdisc) [46] in Linux. SPDY or HTTP/2

can be turned on and off in Chrome using the Chrome settings

option. Sites including Facebook, YouTube and StatCounter

can be used as test cases. In our experience it proved hard for

any student to replicate the performance gains expected by

moving to SPDY, but we should emphasize that this was an

educational exercise rather than a robust piece of research.

IV. QUIC

Interestingly, when observing and analyzing live HTTP/2

connections we discovered the QUIC protocol [47] being

deployed by Google.

“QUIC is an experimental protocol aimed at reducing

web latency over that of TCP. On the surface, QUIC is

very similar to TCP+TLS+SPDY implemented on UDP.

Because TCP is implement in operating system kernels,

and middlebox firmware, making significant changes to

TCP is next to impossible. However, since QUIC is built

on top of UDP, it suffers from no such limitations.” [47]

QUIC supports HTTP/2 functionality over UDP port 443.

During a SPDY session the UPDATE header is used to switch

to QUIC; this appears to be the current Google protocol of

choice for short exchanges such as visits to sites which record

advertising, analytics and marketing information. Entering

chrome://net-internals/#spdy in the Chrome address

bar reveals a comprehensive list of alternative QUIC based

URLs for Google services.

Why QUIC? Part of the performance problem for SPDY and

HTTP/2 lies in the behavior of TCP (see [48] [32]). A single

TCP congestion avoidance window can put SPDY or HTTP/2

at a disadvantage compared with multiple HTTP 1.1/TCP

connections each with a separate congestion window, which is

often the case with HTTP 1.x.

Figure 9: QUIC’s Zero Round Trip handshake

A single lost packet will impact on all the multiplexed streams

in a single TCP connection. QUIC is UDP based so avoids

this. In addition, QUIC has a zero round trip handshake

capability, see Fig. 9, conveniently avoiding the TCP

handshaking and close down exchanges (see Fig. 3) that

would increase the number of round trips.

Figure 10: HTTP/2 alternative protocol stacks

However, UDP lacks congestion control and SSL functionality

so QUIC seeks to replicate these within itself: QUIC has a

pluggable congestion control algorithm option which is

currently TCP Cubic and supports its own TLS-like security

protocol, thus seeking to recreate the semantics of HTTP/2

over TLS/TCP without the performance drawback. Figure 10

summarizes using networking layered models. Recent versions

of Wireshark can identify QUIC.

V. CONCLUSION

Areas of the Internet are undergoing a rapid rate of change. A

pertinent example is the HTTP 1.1 application-level protocol

which has been superseded by SPDY in many of the web

transactions between popular browsers and major web sites

since 2012. While it is testimony to the value of protocol

layering that web users are largely unaware of this major

change in HTTP it is not acceptable that computer networking

students remain ignorant of it. It is incumbent on educators to

ensure that the curriculum reflects such significant changes in

this pervasive web protocol. Most of SPDY has now been

adopted as the HTTP/2 standard but even the most recent

editions of established computer textbooks have not caught up

with HTTP/2. This paper makes a modest contribution

towards filling the current gap by giving recommendations for

resources that can be used to contextualize and obtain hands-

on experience of recent developments in HTTP evolution.

ACKNOWLEDGMENTS

Thanks to Faizan Agha for digging deeper.

REFERENCES

[1] A. S. Tanenbaum and D. Wetherall, Computer Networks, 5th ed.:

Pearson, 2010.

[2] L. Peterson and B. Davie, Computer Networks: A Systems Approach,
5th ed.: Morgan Kaufmann, 2011.

[3] J. Kurose and K. Ross, Computer Networking: A Top-Down Approach,

6th ed.: Pearson, 2012.

[4] T. B. Lee, "HTTP 0.9;

http://www.w3.org/Protocols/HTTP/AsImplemented.html," W3C,
1991.

[5] T. B. Lee, "Basic HTTP;

http://www.w3.org/Protocols/HTTP/HTTP2.html," 1992.

[6] T. Berners-Lee, R. Fielding, and H. Frystyk, "RFC 1945 Hypertext

Transfer Protocol -- HTTP/1.0," IETF 1996.

[7] M. Andreesen, "NCSA Mosaic Technical Summary;
http://web.archive.org/web/19991009182307/http://cbl.leeds.ac.uk/WW

W/ps/mosaic.orig.ps," 1993.

[8] C. Allison, M. Bramley, and J. Serrano, "The World Wide Wait: Where

Does the Time Go?," in Euromicro98:Engineering Systems and

Software for the Next Decade, Vasteras, Sweden, 1998, pp. 932-940.

[9] A. Ruddle, C. Allison, and R. Nicoll, "Analysing the Latency of WWW

Applications," Software Practice and Experience, vol. 33, pp. 1301-

1322, 2003.

[10] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, and T. Berners-Lee, "RFC
2068: Hypertext Transfer Protocol -- HTTP/1.1," 1997.

[11] B. Krishnamurthy, J. C. Mogul, and D. M. Kristol, "Key differences

between HTTP/1.0 and HTTP/1.1; http://www8.org/w8-papers/5c-

protocols/key/key.html," in 8th Int. World-Wide Web Conference;
http://www8.org/w8-papers/5c-protocols/key/key.html, 1999 pp. 659-

673.

[12] Sandevine Report, "Encrypted Web Traffic More Than Doubles After

NSA Revelations; http://www.wired.com/2014/05/sandvine-report/," in
Wired, ed: Wired, 2014.

[13] A. Arnbak, H. Asghari, M. V. Eeten, and N. V. Eijk, "Security collapse

in the HTTPS market," Commun. ACM, vol. 57, pp. 47-55, 2014.

[14] M. Belshe, R. Peon, E. Thomson, and A. Melnikov. (April 2014).

Hypertext Transfer Protocol version 2.0 (draft-ietf-httpbis-http2-04);
https://tools.ietf.org/html/draft-ietf-httpbis-http2-04.

[15] D. Stenberg, "HTTP2 explained," SIGCOMM Comput. Commun. Rev.,

vol. 44, pp. 120-128, 2014.

[16] "Average Web Page Breaks 1600K;

http://www.websiteoptimization.com/speed/tweak/average-web-page/,"
in http://www.websiteoptimization.com/, ed, 2014.

[17] B. Thomas, R. Jurdak, and I. Atkinson, "SPDYing up the web,"

Commun. ACM, vol. 55, pp. 64-73, 2012.

[18] M. Belshe, "More Bandwidth Doesn’t Matter (much);

https://docs.google.com/a/chromium.org/viewer?a=v&pid=sites&srcid
=Y2hyb21pdW0ub3JnfGRldnxneDoxMzcyOWI1N2I4YzI3NzE2,"

2010.

[19] M. Belshe, "SPDY Protocol; http://mbelshe.github.io/SPDY-

Specification/draft-mbelshe-spdy-00.xml," 2012.

[20] Akamai, "The State of the Internet, 3rd quarter, 2014".

[21] M. Belshe, R. Peon, and M. Thomson, "Hypertext Transfer Protocol

version 2, draft-ietf-httpbis-http2-17; https://tools.ietf.org/html/draft-

ietf-httpbis-http2-17," IETF February 2015.

[22] I. Grigorik, "Making the web faster with HTTP 2.0," Commun. ACM,
vol. 56, pp. 42-49, 2013.

[23] J. Khalid, S. Agarwal, A. Akella, and J. Padhye. (2014) Improving the

performance of SPDY for mobile devices.

[24] R. Peon, H. Ruellan, and H. W. _Group, " HPACK - Header

Compression for HTTP/2 draft-ietf-httpbis-header-compression-12,"
2015.

[25] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,

"How speedy is SPDY?," presented at the Proceedings of the 11th
USENIX Conference on Networked Systems Design and

Implementation, Seattle, WA, 2014.

[26] Kamp, P-H, "HTTP/2.0: the IETF is phoning it in," Commun. ACM,

vol. 58, pp. 40-42, 2015.

[27] E. R. Harold, Java Network Programming, 4th Edition: Developing
Networked Applications, 4th ed.: O'Reilly Media, 2014.

[28] L. Masinter, RFC 2324"Hyper Text Coffee Pot Control Protocol

(HTCPCP/1.0)," IETF, 1st April 1998.

[29] D. Naylor, A. Finamore, I. Leontiadis, Y. Grunenberger, M. Mellia, M.

Munaf, et al., "The Cost of the "S" in HTTPS," presented at the
Proceedings of the 10th ACM International on Conference on emerging

Networking Experiments and Technologies, Sydney, Australia, 2014.

[30] Y. Elkhatib, G. Tyson, and M. Welzl, "Can SPDY Really Make the

Web Faster?," Proceedings of IFIP Networking 2014, 2014.

[31] J. Padhye and H. F. Nielsen, "A comparison of SPDY and HTTP
performance," Microsoft Research, 2012.

[32] J. Erman, V. Gopalakrishnan, R. Jana, and K. K. Ramakrishnan,

"Towards a SPDY'ier mobile web?," presented at the Proceedings of

the ninth ACM conference on Emerging networking experiments and
technologies, Santa Barbara, California, USA, 2013.

[33] A. Cardaci, L. Caviglione, A. Gotta, and N. Tonellotto, "Performance

Evaluation of SPDY over High Latency Satellite Channels," in PSATS

2013, 2013, pp. 123 - 134.

[34] N. Dukkipati, T. Refice, Y. Cheng, J. Chu, T. Herbert, A. Agarwal, et
al., "An argument for increasing TCP's initial congestion window,"

SIGCOMM Comput. Commun. Rev., vol. 40, pp. 26-33, 2010.

[35] S. Souders, "Domain Sharding Revisited;
http://www.stevesouders.com/blog/2013/09/05/domain-sharding-

revisited/," ed, 2013.

[36] Google, "PageSpeed; https://github.com/pagespeed/mod_pagespeed,"

ed, 2015.

[37] D. Wetherall, "Future of HTTP;
http://mediaplayer.pearsoncmg.com/_ph_cc_ecs_set.title.8-

8_Future_of_HTTP__/ph/streaming/esm/tanenbaum5e_videonotes/8_8

_http_future_cn5e.m4v," in Computer Networks 5th edition
supplementary video, ed: Pearson, 2013.

[38] Riverbed, "Wireshark; https://www.wireshark.org/," ed, 2015.

[39] P. Meenan. (2015). Web Page Test; http://www.webpagetest.org/.

[40] C. Sun, "HTTP/2 and SPDY Indicator 2.2.1;

https://addons.mozilla.org/en-us/firefox/addon/spdy-indicator/," ed,

2014.

[41] NSF_INRIA, "ns3; https://www.nsnam.org/," ed, 2015.

[42] ArchLinux, "Trickle; https://wiki.archlinux.org/index.php/Trickle," ed,
2014.

[43] Riverbed, "Riverbed Modeler Academic Edition (formerly OpNet IT

Guru); https://splash.riverbed.com/community/product-

lines/steelcentral/university-support-center/blog/2014/06/11/riverbed-
modeler-academic-edition-release," ed, 2014.

[44] Linux, "Traffic Control; http://www.man-page.net/8/tc," ed, 2012.

[45] The_Linux_Foundation, "Netem;

http://www.linuxfoundation.org/collaborate/workgroups/networking/ne

tem," ed, 2009.

[46] Linux, "Queuing Discipline, qdisc; http://tldp.org/HOWTO/Traffic-
Control-HOWTO/classless-qdiscs.html," ed, 2012.

[47] Google. (April 2015). QUIC; https://www.chromium.org/quic.

[48] Y. Elkhatib, G. Tyson, and M. Welzl. The Effect of Network and

Infrastructural Variables on SPDY's Performance;

http://arxiv.org/abs/1401.6508. CoRR, 2014.

http://www.w3.org/Protocols/HTTP/AsImplemented.html,
http://www.w3.org/Protocols/HTTP/HTTP2.html,
http://web.archive.org/web/19991009182307/http:/cbl.leeds.ac.uk/WWW/ps/mosaic.orig.ps,
http://web.archive.org/web/19991009182307/http:/cbl.leeds.ac.uk/WWW/ps/mosaic.orig.ps,
http://www8.org/w8-papers/5c-protocols/key/key.html,
http://www8.org/w8-papers/5c-protocols/key/key.html,
http://www8.org/w8-papers/5c-protocols/key/key.html
http://www.wired.com/2014/05/sandvine-report/,
http://www.websiteoptimization.com/speed/tweak/average-web-page/,
http://www.websiteoptimization.com/
http://mbelshe.github.io/SPDY-Specification/draft-mbelshe-spdy-00.xml,
http://mbelshe.github.io/SPDY-Specification/draft-mbelshe-spdy-00.xml,
http://www.stevesouders.com/blog/2013/09/05/domain-sharding-revisited/,
http://www.stevesouders.com/blog/2013/09/05/domain-sharding-revisited/,
http://mediaplayer.pearsoncmg.com/_ph_cc_ecs_set.title.8-8_Future_of_HTTP__/ph/streaming/esm/tanenbaum5e_videonotes/8_8_http_future_cn5e.m4v,
http://mediaplayer.pearsoncmg.com/_ph_cc_ecs_set.title.8-8_Future_of_HTTP__/ph/streaming/esm/tanenbaum5e_videonotes/8_8_http_future_cn5e.m4v,
http://mediaplayer.pearsoncmg.com/_ph_cc_ecs_set.title.8-8_Future_of_HTTP__/ph/streaming/esm/tanenbaum5e_videonotes/8_8_http_future_cn5e.m4v,
http://www.wireshark.org/,
http://www.webpagetest.org/
http://www.nsnam.org/,
http://www.man-page.net/8/tc,
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem,
http://www.linuxfoundation.org/collaborate/workgroups/networking/netem,
http://tldp.org/HOWTO/Traffic-Control-HOWTO/classless-qdiscs.html,
http://tldp.org/HOWTO/Traffic-Control-HOWTO/classless-qdiscs.html,
http://www.chromium.org/quic
http://arxiv.org/abs/1401.6508

