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Bayesian sequential tests of the initial size of a linear

pure death process

I. B. J. Goudie1

School of Mathematics and Statistics,
University of St Andrews, St Andrews, Scotland KY16 9SS

Abstract

We provide a recursive algorithm for determining the sampling plans of
invariant Bayesian sequential tests of the initial size of a linear pure death
process of unknown rate. These tests compare favourably with the
corresponding truncated sequential probability ratio tests.

Keywords: censored sampling; exponential order statistics; invariance;
Jelinski-Moranda model; truncated sequential probability ratio test.
2010 MSC: 62L10, 62N05, 68M15

1. Introduction

The death-times T1, . . . , Tj from a linear pure death process (LPDP) with
unknown rate parameter λ > 0 are observed sequentially. We seek Bayesian
sequential tests of the unknown initial size n of the process. The observations
obtained can equivalently be regarded as a type II censored sample from an
exponential distribution with unknown mean λ−1 <∞.

Sequential testing of the size n dates back to Hoel (1968) who assumed
that the observations were order statistics from a known distribution. The
case of exponential observations, with unknown mean, was considered by
Goudie (1985), who used a truncated sequential probability ratio test
(TSPRT). The LPDP serves as a basic model in software reliability, where
it is known as the Jelinski-Moranda model. Sequential Bayesian approaches
to estimating the number of faults and to choosing the stopping time were
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given by Zacks (2009). Washburn (2006) considered estimation of reliability
for a generalisation of this model. The cognate problem of determining
when all faults have been detected has also received attention (Fang et al.,
2003). In ecology, the LPDP arises as a removal model in continuous time
or as describing the times to first capture in a continuous-time behavioural
capture-recapture model (cf. Hwang and Chao, 2002).

2. The invariant statistics

As the times T1 < . . . < Tj can be viewed as the smallest j order statistics
of an exponential sample, their joint probability density function (p.d.f.) is

j!

(
n

j

)
λj exp

[
−λ
{

(n− j)tj +

j∑

1

ti

}]
0 < t1 < . . . < tj.

If X1 ≡ 0 and Xi = i − [(T1 + . . . + Ti)/Ti] for i = 2, . . . , n, then (Xj, Tj) is
minimal sufficient for (n, λ). It follows from Goudie and Goldie (1981) that
Xj is a maximal invariant under scale transformations and has p.d.f.

f(xj|n) = j!

(
n

j

)
(n− xj)

−j h(xj)I(0,j−1)(xj),

where I(c,d) is the indicator function for the interval (c, d) and

h(x) =
1

(j − 2)!

j−2∑

s=0

(−1)s

(
j − 1

s

)
(x− s)j−2I(s,j−1)(x),

which is the p.d.f. of an Irwin-Hall distribution, namely the distribution of
the sum of j−1 independent uniform random variables on the interval (0, 1).

In this paper we derive tests of the hypothesis H0 : n = N0 against the
alternative H1 : n = N1, where N1 > N0. We restrict attention to procedures
based on the sequence X2, . . . , Xj of invariant statistics. The tests derived
are thus suitable for a Bayesian with a knowledge of λ too weak for deriving
useful information from the component Tj of the sufficient statistic (Xj, Tj).

Before experimentation, the prior probability that hypothesis Hv is true
is πv (v = 0, 1), where π0 + π1 = 1. Having observed X2, . . . , Xj, the
likelihood ratio in favour of H1 reduces to Lj = f(xj|N1)/f(xj|N0), since
f(x2, . . . , xj|n) is the product of f(xj|n) and f(x2, . . . , xj−1|xj), where, by

2



the results of section 7 below, the latter factor does not depend on n. Note
that we use f for various sampling distributions: the same functional form
is only implied when the arguments are the same. Thus, after observing Xj,
the posterior probability p0

j that H0 is true is given by Bayes’ Theorem as
p0

j = π0/(π0 + π1Lj).

3. Cost structure

Errors of the first and second kind are assumed to result in non-negative
stopping losses of K0 and K1 respectively. For j = 2, . . . , N0, the expected
cost of stopping after observing Xj is thus min(K0 p

0
j , K1 p

1
j). In the (j, xj)

plane, we are thus indifferent between the two hypotheses at points (j, mj)
where mj is the value of Xj satisfying K0 p

0
j = K1 p

1
j . As p0

j is an increasing
function of xj, stopping after j observations implies choosing H0 if xj > mj or
H1 if xj < mj. For j = 2, . . . , N0, the cost of the jth observation xj is taken
to be cj > 0. We assume that the sequence {cj} is non-decreasing, which
will usually be realistic as the expected waiting time between observations
increases. We ignore the cost of observing X1 as it does not affect the
sampling plans generated: if it were sufficiently high, however, it would be
cheaper to take an immediate decision than to take any observations.

Under the TSPRT, a sample path can lie in the continuation region (CR)
after N0 observations, and it is then advantageous to wait to see if another
observation occurs. We permit comparable action here, and charge cN0+1 for
waiting from time TN0 to time (N0 − xN0)TN0/(N0 − AN0+1) for a suitable
constant AN0+1 > xN0 . If we wait for this time, and an (N0 +1)th observation
exists but is not seen, elementary algebra shows that XN0+1 > AN0+1. This
cost structure, however, precludes comparison within the decision theoretic
framework of sampling plans with different values of AN0+1, implying that
AN0+1 has to be chosen arbitrarily or by some other method than balancing
costs. Our optimal sampling plans are thus optimal within the class of
policies based on the invariant statistics and with a given termination point.
We will index the sampling plans not by the value of AN0+1 but by the
corresponding posterior probability π∗ on H0 at the time that sampling
terminates if no (N0 + 1)th observation is seen.

4. The shape of the optimal continuation region

Once AN0+1 is fixed, a standard result (cf. DeGroot, 2004, p. 307) shows
that, from any point (j, xj) for j ≤ N0, the cost of awaiting one further
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observation and then acting optimally is a concave function of p0
j . As the

expected stopping cost is min(K0 p
0
j , K1 p

1
j) and p0

j is an increasing function
of xj, we see that sampling continues after j observations (2 ≤ j ≤ N0) if
and only if Rj < xj < Aj, where {Aj} and {Rj} are sequences of constants
such that 0 ≤ Rj ≤ mj ≤ Aj ≤ j − 1. We also set A1 = R1 = 0. For j ≥ 2,
when sampling terminates, we accept H0 if xj ≥ Aj or reject H0 if xj ≤ Rj.

It is easy to verify that Xj+1 > Xj (j ≥ 1), implying that sample paths
have positive gradient. So we assume that Rj+1 > Rj whenever Rj > 0
(j = 2, . . . , N0−1). If this were not so, there would exist integers i1 < i2 < i3
for which it is possible to stop and accept H1 after i1 or i3 observations, but
impossible to do so after i2 observations. As the sequence {cj} of sampling
costs is non-decreasing, this would not appear to be reasonable.

It is easy to show that the upper boundary has a positive gradient. If it
were otherwise, there would be points (j, xj) from which, with probability
one, exactly one more observation would be awaited before sampling ceased.
This would be more expensive than stopping immediately, since (cf. Table 1
below) the predicted value of K1 p

1
j+1 given Xj = xj is just K1 p

1
j . A similar

argument shows that it would be inappropriate to set AN0+1 ≤ mN0 .
As the sample paths have positive gradient, from any point (j, xj), the

value of xj relative to the points {Rk} determines where the lower boundary
may be crossed. In fact, setting jr = max{j : Rj = 0}, we note that, if
xj ∈ (Rk, Rk+1), where k ≥ jr, the lower boundary cannot be crossed before
the (k + 1)th observation. For each j, the interval (Rj, Aj) of values of xj in
the CR can be sub-divided by any elements of the sequence {Rk : k > j}
lying in that interval. To index the highest and lowest sub-divisions in the
CR, for j ≥ 2, we set k(j) = max{k : Rk < Aj} and b(j) = max(j, jr). The
ordinates of the grid of points {(j, rj,k)} are then given by

rj,k =

{
Rk b(j) ≤ k ≤ k(j);
Aj k = k(j) + 1.

A simple example is given in Figure 1. We also set M = max{j : 2 ≤ j ≤
N0, Aj 6= Rj}. Thus M + 1 is the maximum number of observations that we
see or await. If, for some sample paths, the policy requires us to await an
(N0 + 1)th observation, we have M = N0.
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Fig. 1. An example showing the grid {rj,k} defined on the (j, xj) plane.

5. The minimal continuation loss

Central to the Bayesian analysis is the loss that will be incurred at any
stage by taking another observation and then pursuing the optimal policy.
We denote this loss, when starting from (j, xj), after j observations, by
Zj(xj). Setting Gv

j (xj, s) = {(Nv−xj)/(j+s−xj)}jpv
j , we prove in sections 8

and 9 that, for xj ∈ [rj,k, rj,k+1) with b(j) ≤ k ≤ k(j) and 2 ≤ j ≤M,

Zj(xj) = Cj,k + K̃0 p
0
j +

1∑

v=0

k−j∑

s=0

(
Nv − j
s

)
Dv

j+s,k G
v
j (xj, s), (1)

where Cj,k = cj+1 + . . .+ ck+1 and K̃0 = K0

(
1− δN0

k

)
, where, as throughout

this paper, the lower case delta is a Kronecker delta.
The coefficients Dv

j,k are determined recursively. The initial values are
given in section 6, while for 1 ≤ j < M we use the equations

Dv
j,k − δv

1K1U
1
j (Aj+1)−

k(j+1)∑

q=k+1

W v
j+1,q =





− δv
0 K0 U

0
j (Rj+1) k = j > 1,

− δv
0 δ

1
jr
K0 U

0
1 (R2) k = j = 1,

(δj
1 − 1)Sv

j+1,k (rj+1,k+1) k > j,

(2)

where, for j ≥ 2,

Sv
j,k(x) =

(
Cj,k + δv

0 K̃0

)
U v

j−1(x) +

k−j∑

s=0

(
Nv − j + 1

s+ 1

)
Dv

j+s,k V
s
j−1(x), (3)
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W v
j,k = Sv

j,k (rj,k)− Sv
j,k (rj,k+1) , (4)

and, for j ≥ 1,

U v
j (x) = {(j − x)/(Nv − x)}j , V s

j (x) = {(j − x)/(j + 1 + s− x)}j .
In equation (2) we use the convention that the sum is omitted if the lower
limit k+ 1 exceeds the upper limit k(j + 1). It also follows from (1) that the
total expected cost of pursuing the optimal policy from the point (1, 0) in
the (j, xj) plane is given by

Z1(0) = c2 + δ1
jr
K0p

0
1 +

1∑

v=0

Dv
1,k G

v
1(0, 0), (5)

where the coefficients Dv
1,k are given by (2) with k = b(2)− 1.

6. Implementation of the algorithm

The steps given below specify how to determine the initial values Dv
M,M

(v = 0, 1) for the recursion. They also give the order of evaluation for the
boundary points of the CR and the coefficients used in the algorithm. When,
in Step 4, solution of an equation for a lower boundary point Rj is required,
one should first check whether, as xj ↓ 0, the expected cost of stopping
exceeds that of continuing to sample. If it does then Rj = 0. If it does
not, the equation for the boundary point has a solution in (0,mj). This can
be found by the Newton-Raphson method, using numerical differentiation
to obtain the values of the relevant derivative. Similar comments apply
to Step 6, where solution of an equation for an upper boundary point is
indicated.

Step 1. Set jr = 1 and k = N0, and then test as follows whether it is
ever worthwhile to await an (N0 + 1)th observation. The expected cost at
(N0,mN0) of an immediate decision is given by K0 p

0
N0

= K1 p
1
N0
, with the

probabilities evaluated at xN0 = mN0 . On the other hand, the expected
cost of awaiting an (N0 + 1)th observation for a time not exceeding that
at which xN0+1 would equal AN0+1 is given by ZN0(mN0) with

D0
N0,N0

= 0, D1
N0,N0

= K1 U
1
N0

(AN0+1). (6)

If ZN0(mN0) < K0 p
0
N0
, set M = N0 = j = b(j) = k(j) = k and go to

Step 4.
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Step 2. Here we determine the maximum number M + 1 of observations
that will be seen or awaited, knowing in this case that M < N0. To
find M, evaluate Zj(mj) with k = j for successively smaller values of j,
starting with j = N0 − 1. For each j, the required coefficients are

Dv
j,j = (−1)v+1Kv U

v
j (mj+1) v = 0, 1. (7)

Thus let M be the largest j for which Zj(mj) is less than the value of
K0 p

0
j at xj = mj. Set AM+1 = RM+1 = mM+1, and with j = k = M =

b(j) = k(j), go to Step 4.

Step 3. Calculate the coefficients Dv
j,k for v = 0, 1. If k > b(j), go to

Step 5. If Rj+1 = 0, set Rj = 0 and go to Step 5.

Step 4. Find the value Rj of xj that satisfies Zj(xj) = K0 p
0
j . If jr = 1

and Rj = 0, set jr = j. If j = M, go to Step 6.

Step 5. By comparing the expected losses from stopping and from
continuing to sample, determine whether or not the point (j, Rk+1) lies
in the CR. If it is in the CR, go to Step 7.

Step 6. Find the value Aj of xj that satisfies Zj(xj) = K1 p
1
j .

Step 7. Calculate Sv
j,k(rj,k), Sv

j,k(rj,k+1) and W v
j,k for v = 0, 1. If the point

(j, Rk+1) lies in the CR, increase k by one and return to Step 3. Otherwise,
set k(j) = k, decrease j by one and put k = b(j). If the new value of j
exceeds one, return to Step 3. Otherwise, using (5), evaluate Z1(0).

7. Distributional results and integral formulae

The joint p.d.f. of α2, . . . , αj, where αi = i −Xi (i = 2, . . . , j) is known
(Goudie, 1985). It follows that, for v = 0, 1, the joint p.d.f. f(x2, . . . , xj;Nv)
of X2, . . . , Xj is

(j − 1)! j!

(
Nv

j

)
(Nv − xj)

−j

j−1∏

i=1

[{
(i− xi+1)

i−1/(i− xi)
i
}
I(xi,i)(xi+1)

]
.

Thus, for j ≥ 2, the conditional p.d.f. of Xj+1 given X2, . . . , Xj depends only
on Xj and equals

f(xj+1|xj;Nv) =
j (Nv − j)Gv

j (xj, 0) (j − xj+1)
j−1

pv
j (Nv − xj+1)j+1

I(xj ,j)(xj+1). (8)
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Table 1. Integrals over subsets of (xj, j)

Subset Function Integral with respect to f(xj+1|xj;Nv)

(c, d) 1 Gv
j (xj, 0)

[
U v

j (c)− U v
j (d)

]
/pv

j

(c, d) Gv
j+1(xj+1, s)/p

v
j+1 (Nv − j)Gv

j (xj, 0)
[
V s

j (c)− V s
j (d)

]
/
{

(s+ 1)pv
j

}

Subset Function Integral with respect to fp(xj+1|xj)

(c, d) pv
j+1 Gv

j (xj, 0)
[
U v

j (c)− U v
j (d)

]

(c, d) 1
∑1

v=0G
v
j (xj, 0)

[
U v

j (c)− U v
j (d)

]

(c, d) Gv
j+1(xj+1, s) (Nv − j)Gv

j (xj, 0)
[
V s

j (c)− V s
j (d)

]
/(s+ 1)

(xj, d) pv
j+1 pv

j −Gv
j (xj, 0)U v

j (d)

(xj, d) 1 1−∑1
v=0G

v
j (xj, 0)U v

j (d)

(xj, d) Gv
j+1(xj+1, s) (Nv − j)

[
Gv

j (xj, s+ 1)−Gv
j (xj, 0)V s

j (d)
]
/(s+ 1)

It may be verified that this equation is also valid for j = 1, for which it
gives the unconditional p.d.f. of X2. The p.d.f. of the predictive distribution
of Xj+1 given Xj can thus be obtained using

fp(xj+1|xj) = p0
jf(xj+1|xj;N0) + p1

jf(xj+1|xj;N1).

The integral formulae in Table 1 can now be verified. In deriving the integrals
over (c, d) with respect to the predictive p.d.f. note that, by Bayes’ Theorem,
pv

j+1fp(xj+1|xj) = pv
jf(xj+1|xj;Nv). In the final three lines of the table,

we set c = xj, and note that Gv
j (xj, 0)U v

j (xj) = pv
j and Gv

j (xj, 0)V s
j (xj) =

Gv
j (xj, s+ 1).

8. Initial values for the backward induction

Suppose an (N0 + 1)th observation is awaited. If it is observed, the
expected terminal loss in choosing H1 is zero. If, on the other hand, no such
observation has been seen by the time at which XN0+1 would equal AN0+1,
the expected terminal loss in choosing H0 at this time is the product of
K1 and the posterior probability on H1. Weighting these outcomes by their
predictive probabilities given XN0 , and also including the sampling cost, it
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follows by Bayes’ Theorem and Table 1 that

ZN0(xN0) = cN0+1 +K1p
1
N0
P [XN0+1 > AN0+1 | XN0 = xN0 ;N1]

= cN0+1 +K1G
1
N0

(xN0 , 0)U1
N0

(AN0+1)

= cN0+1 +
∑1

v=0
Dv

N0,N0
Gv

N0
(xN0 , 0), (9)

where the coefficients Dv
N0,N0

for v = 0, 1 are given by (6). As in Step 1 of
section 6, if ZN0(mN0) < K0 p

0
N0
, evaluated at mN0 , we have M = N0. In

this case, equation (9) holds for xN0 in some interval [RN0 , AN0), where the
end-points are determined in Steps 4 and 6 of the algorithm. We then have
b(N0) = k(N0) = N0, and so equation (9) agrees with the general expression
(1).

For j < N0, the expected cost of stopping after j + 1 observations is
K1p

1
j+1I(mj+1,j)(xj+1) +K0p

0
j+1I(xj ,mj+1)(xj+1). If, after seeing j observations,

we take the predictive expectation of this stopping cost, and add the cost of
the next observation, we obtain, using Table 1 and equation (7), that

Zj(xj) = cj+1 +K0p
0
j +

∑1

v=0
Dv

j,jG
v
j (xj, 0). (10)

So, when M < N0, we can, as in Step 2, evaluate Zj(mj) for successively
smaller values of j until we find the value M of j for which Zj(mj) < K0 p

0
j .

Equation (10) then holds for xM ∈ [RM , AM), where this interval is again
found as in Steps 4 and 6 of the algorithm. We then have b(M) = k(M) = M,
and so equation (10) also agrees with expression (1).

9. The backward inductive proof

Assume that the algorithm holds for b(j) ≤ k ≤ k(j), where j is such
that M ≥ j ≥ i+ 1 > 1. Using equation (1) and Table 1, it then follows that
the integral of Zi+1(xi+1), with respect to the predictive p.d.f. fp(xi+1|xi),
over the interval (c, d) ⊆ (ri+1,k, ri+1,k+1) is

[
−

1∑

v=0

Gv
i (xi, 0)

{(
Ci+1,k + δv

0K̃0

)
U v

i (x) +
k−i−1∑

s=0

(
Nv − i
s+ 1

)
Dv

i+s+1,kV
s
i (x)

}]d

x=c

.

When (c, d) = (ri+1,k, ri+1,k+1) , by equations (3) and (4), this reduces to

∑1

v=0
W v

i+1,kG
v
i (xi, 0). (11)
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Similarly, using (3) and Table 1 and writing s′ = s + 1, the corresponding
integral of Zi+1(xi+1) over the interval (xi, ri+1,k+1) , where xi > ri+1,k, is

Ci+1,k + K̃0p
0
i

−
1∑

v=0

[
Sv

i+1,k(ri+1,k+1)G
v
i (xi, 0)−

k−i∑

s′=1

(
Nv − i
s′

)
Dv

i+s′,kG
v
i (xi, s

′)

]
. (12)

For xi ∈ [ri,k, ri,k+1) , where k > i, the minimal continuation loss Zi(xi) is

ci+1+

∫ Ai+1

xi

Zi+1(xi+1)fp(xi+1|xi)dxi+1+

∫ i

Ai+1

K1p
1
i+1fp(xi+1|xi)dxi+1. (13)

The part of the first integral over (xi, ri+1,k+1) is given by (12). The sum
of the remaining part, if any, and the other two terms is given by (11) and
Table 1 as

ci+1 +K1U
1
i (Ai+1)G

1
i (xi, 0) +

k(i+1)∑

q=k+1

1∑

v=0

W v
i+1,qG

v
i (xi, 0). (14)

The sum of (12) and (14) thus gives an expression for Zi(xi). It then follows,
using equation (2), that this expression agrees with that provided by (1).

When k = i, the lower limit of the first integral in (13) becomes ri+1,k+1 =
Ri+1, implying that the contribution from (12) no longer arises. There is now,
however, an additional term, namely the integral of K0p

0
i+1 over the interval

(xi, Ri+1) with respect to the predictive p.d.f. of xi+1 given xi. By Table 1
this additional term equals K0 [p0

i −G0
i (xi, 0)U0

i (Ri+1)] and adding it to (14)
gives an expression for Zi(xi), for xi ∈ [Ri, ri,i+1) , which, using equation (2),
also agrees with that provided by (1).

10. Numerical Examples

In Table 2, for N0 = 15 and N1 = 30, we compare the above tests with
the TSPRT, in which sampling continues if A < f(xj|N1)/f(xj|N0) < R
for j ≤ N0. If no 16th observation was seen, we terminated sampling when
X16 equalled the upper boundary point for X15. The constants A and R were
taken to be 0.0809 and 6.84 respectively in order to achieve type I and type II
error probabilities of 0.05.
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For the Bayesian tests, we took the sampling costs as cj = c/(N0− j+1)
for j ≤ N0, making them proportional to the expected waiting times under
H0. We also set cN0+1 = c and K0 = K1 = 1, and, for each value of π∗, chose
c and π0 to match the error probabilities of the TSPRT.

Table 2. Properties of sequential tests of N0 = 15 against N1 = 30

TSPRT Bayesian tests
A = 0.0809 π∗ 0.925 0.95 0.975
R = 6.84 c 0.0661 0.0746 0.0825

π0 0.425 0.453 0.477
ASN when n = 15 15.02 14.76 14.64 14.51
ASN when n = 30 15.08 15.01 14.98 14.95
ATT when n = 15 2.91 2.79 2.76 2.77
ATT when n = 30 0.71 0.71 0.71 0.71

For each of the tests in Table 2, the average sample number (ASN) and
the average time to termination (ATT) can be evaluated (Goudie, 1985).
For the ASN, we assume an observation that is awaited is counted as an
observation, whether or not it occurs. For the ATT, if the upper boundary is
reached, we assume that sampling terminates immediately without waiting
for the observation to occur.

These results confirm that for this problem the TSPRT is not the optimal
design for minimising either the ASN or the ATT for fixed error rates. The
Bayesian tests show small reductions in the ASN, particularly under H0.
Further slight reductions in the ASN can be made by further increasing π∗,
though at the expense of some increase in the ATT. For small λ, however,
the most useful aspect here is the reduction of up to around 5% in the ATT
under H0, in addition to the saving in the ATT achieved by the TSPRT
compared to the fixed sample size test. The Bayesian sampling plans thus
also have merit when judged by frequentist criteria.
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