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Abstract 

   The work described in this thesis is an experimental study into the application 

of Electron Paramagnetic Resonance (EPR) Spectroscopy for the study of 

biological systems.  

   Using a variety of methods of site-directed spin-labelling (SDSL), this thesis 

aims to explore long range structure in an assortment of recombinant and native 

proteins, and complexes thereof. 

   The work described in this thesis covers all aspects of the work, from 

experimental design, molecular biology and cloning, protein expression and 

purification, as well as functional characterisation, and finally EPR distance 

measurements, data analysis and interpretation. Challenges and pitfalls will 

also be addressed. 

Chapters 1 and 2 introduce EPR spectroscopy, and its application in the study 

of long range structure in biological systems. The experimental techniques 

employed throughout this thesis are also introduced. 

Chapter 3 details an investigation into the complement C3b:factor H complex. 

This chapter addresses the challenges associated with the SDSL of cysteine 

rich proteins. Utilising hidden cysteine residues in native proteins for spin-

labelling purposes will also be addressed.  

Chapter 4 looks at the interactions of the human myosin regulatory light chain 

(RLC) with cardiac myosin binding protein C (cMyBP-C). Optimisation of 

expression and purification protocols will be the focus, as well as addressing 

issues with protein solubility and spin labelling efficiencies.  

Chapter 5 explores the development of new methods of SDSL, for the specific 

labelling of cysteine rich proteins. The ability of Escherichia coli to read through 

the amber stop codon will be exploited for the incorporation of unnatural amino 

acids for labelling purposes, and novel spin labels, specific for labelling cysteine 

pairs tested in several model systems. Furthermore, native paramagnetic 

centres in recombinant proteins will be explored as potential labelling sites.  
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Abbreviations 

A280                                                                                                               Absorbance at 280nm 

A412                                                                                                                                                                           Absorbance at 412nm 

AA                                                                                                                                  Amino Acid  

ADP                                                                                                         Adenosine Di-Phosphate 

AEC                                                                                           Anion Exchange Chromatography 

 aHUS                                                                               atypical Haemolytic Uraemic Syndrome 

Amp                                                                                                                                  Ampicillin 

AP                                                                                                                    Alternative Pathway 

AMD                                                                                        Age Related Macular Degeneration 

AOX                                                                                                                       Alcohol Oxidase 

ATP                                                                                                         Adenosine Tri-Phosphate  

BMG(Y)                                                       Buffered Minimal Glycerol (supplemented with yeast) 

BMM(Y)                                                          Buffered Minimal MeOH (supplemented with yeast) 

bp                                                                                                                                    base pairs 

BSA                                                                                                             Bovine Serum Albumin  

CaM                                                                                                                               Calmodulin 

C0                                                                                         (Myosin Binding Protein C) Domain 0  

CCP                                                                                                    Complement Control Protein 

CEC                                                                                          Cation Exchange Chromatography 

Cm                                                                                                                        Chloramphenicol 

CV                                                                                                                      Column Volume(s) 

CVFBb                                                                                    Cobra Venom Factor Bb convertase 

CW                                                                                                                      Continuous Wave 

DAB                                                                                                                  Di-amino Benzidine 
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ddH2O                                                                                                           double distilled Water 

ddNTP                                                                                  any deoxyribonucleotide triphosphate  

DEER                                                                                    Double Electron Electron Resonance  

DMSO                                                                                                               Di-methyl Sulfoxide 

DNA                                                                                                              Deoxyribonucleic Acid 

DTNB                                                                                         5,5’-dithiobis-(2-nitrobenzoic acid) 

DTT                                                                                                                             Dithiothreitol 

εACA                                                                                                             ε-Amino Caproic Acid 

E. coli                                                                                                                      Escherichia coli 

EDTA                                                                                            Ethylenediaminetetraacetic Acid  

ELC                                                                                                 Essential light chain of myosin 

ENDOR                                                                                 Electron Nuclear Double Resonance  

EPR                                                                                           Electron Paramagnetic resonance  

EtBr                                                                                                                     Ethidium Bromide 

EtOH                                                                                                                                    Ethanol 

fB                                                                                                                                        Factor B  

fH                                                                                                                                       Factor H 

fI                                                                                                                                          Factor I 

FPLC                                                                                      Fast Protein Liquid Chromatography 

FRET                                                                                      Forster Resonance Energy Transfer 

G            Gauss 

GAG                                                                                                                 Glycosaminoglycan 

HCM                                                                                                 Hypertrophic Cardiomyopathy 

HMM                                                                                                                Heavy Mero-Myosin  

HPLC                                                                            High Performance Liquid Chromatography 
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hr                                                                                                                                          hour(s) 

HRP                                                                                                        Horse Radish Peroxidase 

HYSCORE                                                                                      Hyperfine Sublevel Correlation 

IEC                                                                                                 Ion Exchange Chromatography 

IMAC                                                                           Immobilised Metal Affinity Chromatography 

IPA                                                                                                                                Isopropanol 

IPTG                                                                                   Isopropyl β-D-1-thiogalactopyranoside 

J                      Joules 

Kan                                                                                                                                Kanamycin 

kDa                                                                                                                                  kiloDalton 

LB                                                                                                           Luria Bertoni (Broth/Agar) 

LMM                                                                                                                   Light Mero-Myosin 

LSLB                                                                                        Low Salt Luria Bertoni (Broth/Agar) 

MAC                                                                                                     Membrane Attack Complex  

MCS                                                                                                                    Multi-Cloning Site 

MeOH                                                                                                                               Methanol 

min                                                                                                                                    minute(s) 

MMM                                                                 Multi-scale Modelling of Macromolecular Systems 

mRNA                                                                                                 messenger Ribonucleic Acid 

MS                                                                                                                    Mass Spectrometry 

MTSSL                          (1-Oxyl-2,2,5,5-tetramethyl-∆3-pyrroline-3-methyl) Methanethiosulfonate 

MW                                                                                                                      Molecular Weight  

MWCO                                                                                                     Molecular Weight Cut Off 

MyBP-C                                                                                                   Myosin Binding Protein C 

NaAc                                                                                                                      Sodium Acetate 
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NMR                                                                                                 Nuclear Magnetic Resonance 

NTB                                                                                                          2‐nitro‐5‐thiobenzoicacid 

OD600                                                                                                        Optical density at 600nm 

o/n                                                                                                                                     overnight 

pAcPhe                                                                                                        p-acetyl phenylalanine  

PBS                                                                                                      Phosphate Buffered Saline  

PCR                                                                                                    Polymerase Chain Reaction 

PDB                                                                                                                    Protein Data Bank 

PEG3350                                                                                                                                                           Polythylene Glycol 3350 

Pi                                                                                                                    Inorganic Phosphate 

pI                                                                                                                            Isoelectric Point  

pK                                                                                                                  propargyl lysine 

PMSF                                                                                               Phenylmethylsulfonyl Fluoride 

P. pastoris                                                                                                                Pichia pastoris 

PVDF                                                                                                       Polyvinylidene di-fluoride 

RLC                                                                                            Regulatory Light Chain of Myosin 

RNA                                                                                                                      Ribonucleic Acid  

rpm                                                                                                                 revolution per minute 

r.t.                                                                                                                     Room Temperature 

s                                                                                                                                       second(s)  

SAXS                                                                                                 Small Angle X-ray Scattering 

SDM                                                                                                      Site-Directed Mutagenesis 

SDSL                                                                                                   Site-Directed Spin Labelling  

SDS-PAGE                                          Sodium Dodecyl sulphate Polyacrylamide Electrophoresis 

SEC                                                                                              Size Exclusion Chromatography 
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s/n                                                                                                                                 supernatant  

SOB                                                                                                                Super Optimal Broth 

SOC                                                                    Super Optimal Broth (with catabolite repression) 

SPPS                                                                                              Solid Phase Peptide Synthesis 

T                                                                                                                                              Tesla 

TBE                                                                                                                     Tris-Borate EDTA 

TBTA                                                                                            Tris(benzyltriazolylmethyl)amine 
TCEP                                                                                             Tris(2-carboxyethyl) Phosphine   

TE                                                                                                                                     Thioester 

TED                                                                                                                     Thioester Domain 

TEMPO (2,2,6,6-TetraMethylPiperidin-1-yl)Oxyl – a small molecule containing a nitroxide radical 

Tet                                                                                                                                Tetracycline  

TEV                                                                                                                  Tobacco Etch Virus  

Tmelt                                                                                                      primer melting temperature  

TOAC                                         2,2,6,6-Tetramethylpiperidine-N-oxyl-4-amino-4-carboxylic Acid 

tRNA                                                                                                        transfer Ribonucleic Acid  

UAA                                                                                                              Unnatural Amino Acid 

UV-Vis                                                                                                                  Ultraviolet visible 

wt                                                                                                                                       wild type  

XRC                                                                                                             X-Ray Crystallography 

YNB                                                                                                                Yeast Nitrogen Base  

YPD                                                                           Yeast-Peptone Dextrose Media (broth/agar) 

YPDS                       Yeast-Peptone-Dextrose Media supplemented with 1M Sorbitol (broth/agar) 

Zeo                                                                                                                                    Zeocin
TM
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Amino Acids 

Alanine   (Ala)                                                                                                                               A 

Arginine   (Arg)                                                                                                                              R 

Asparagine   (Asn)                                                                                                                        N 

Aspartic Acid   (Asp)                                                                                                                     D   

Cysteine   (Cys)                                                                                                                            C 

Glutamine   (Gln)                                                                                                                          Q 

Glutamic Acid   (Glu)                                                                                                                     E 

Glycine   (Gly)                                                                                                                               G 

Histidine   (His)                                                                                                                              H 

Isoleucine   (Ile)                                                                                                                              I 

Leucine   (Leu)                                                                                                                              L 

Lysine   (Lys)                                                                                                                                 K 

Methionine   (Met)                                                                                                                         M 

Phenylalanine   (Phe)                                                                                                                    F 

Proline   (Pro)                                                                                                                                P 

Propargyl Lysine                                                                                                                         pK 

Serine   (Ser)                                                                                                                                 S 

Threonine   (Thr)                                                                                                                           T 

Tryptophan   (Trp)                                                                                                                        W 

Tyrosine   (Tyr)                                                                                                                              T 

Valine   (Val)                                                                                                                                  V 
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Chapter 1: An Introduction to Electron Paramagnetic 

Resonance Spectroscopy (EPR) and its Application in 

Measuring Nanometre (nm) Scale Distances in Proteins 

1 An Introduction to EPR Spectroscopy  

   Understanding how proteins and their complexes interact at a three dimensional, 

structural level is crucial in elucidating function. Obtaining distances between sites of 

interest in proteins and complexes thereof offers further insight into such interactions. 

   This thesis aims to explore the application of EPR Spectroscopy, in particular the use 

of Double Electron-Electron Resonance (DEER) Spectroscopy, in the study of protein-

protein interactions in large functional bio-macromolecular complexes.  

   The introduction to EPR spectroscopy is summarised by Atkins & de Paula, 2011, and 

Brustolon & Giamello, 2009. 

 

1.1 Distance Measurements in Proteins 

   Generally, spectroscopy can be defined as a measurement of the interaction of a given 

material with electromagnetic radiation. Molecules, or atoms, have discrete states, each 

of which has a corresponding energy. Spectroscopy can be used to measure and 

interpret the difference between these energy states (∆E), gaining further insight into the 

structural dynamics of the sample of interest. EPR is no exception, and involves the 

application of microwave frequency electromagnetic radiation to activate and 

specifically detect unpaired electrons.  

   Naturally occurring organic cofactors, e.g. flavin radicals, metal centres, e.g. copper, 

and metal clusters, e.g. ferric heme, in proteins are held in a fixed orientation with 

respect to the protein structure, and therefore are ideal spin probes, if paramagnetic. 

Very often, however, the EPR spectra of metal centres and naturally occurring radicals 

are too broad, and consequently very difficult to study by DEER (Bowen et al, 2013). 

Alternatively, spin labels containing radicals which are sensitive to their local 

environment can be incorporated site-specifically into proteins of interest, allowing 

indirect molecular observations of the protein/complex under study, at precisely defined 

locations within the protein structure. 
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   Due to the relationship between the coupling of unpaired electrons and the distance 

between them, one can collect several long range nm distance constraints between spin 

labels. This allows one to yield global structural elements from proteins of interest, and 

gain further insight into how the small pieces come together, and how this contributes to 

overall biological function. 

 

1.2 EPR Theory - The Static Spin Hamiltonian 

   These energy differences, ∆E, can be measured due to the relationship between ∆E 

and the absorbance of electromagnetic radiation, as shown in equation 1.1 

∆E = hν,  (EQUATION 1.1) 

where h is Plank’s constant (6.62607x10
-34

 Js) and ν is the frequency of the radiation. 

The EPR spectrum of an unpaired electron in an external magnetic field B0, can be 

described by a Hamiltonian of the form described in equation 1.2: 

 

H0 = HEZ + HHFS + HEE + HZFS + HQ + HNZ (EQUATION 1.2) 

     

where the above terms stand for the Electronic Zeeman Interaction (EZ), Hyper-Fine 

Splitting (HFS), the Electron-Electron Interaction (EE), Zero-Field Splitting (ZFS), the 

Quadrupolar Interaction(Q), and the Nuclear Zeeman Interaction (NZ), respectively.  

   The greater majority of the work undertaken in this thesis has been done so using spin 

labels containing the nitroxide radical (NO
.
), with spin ½. For such spin systems the 

HEZ, HZFS and HEE contributions are the most significant, although all contributions to 

the spin Hamiltonian will be discussed. 

 

1.2.1 The Electronic Zeeman Splitting Effect 

   Each unpaired electron has an intrinsic angular momentum, or ‘spin’, denoted S. Due 

to the charge carried by each unpaired electron, the angular motion of this particle 

generates a magnetic field, resulting in each unpaired electron displaying 

paramagnetism when aligned with an external magnetic field (B0). The magnetic field, 

B0, produces two energy levels for the magnetic moment, µ , of the electron, causing a 

splitting of the otherwise degenerate spin energy levels.  
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   A single electron has a spin, S of ½, with magnetic components of ms ± ½, making it 

doubly degenerate, and restricted to two positions, referred to as up and down. When an 

external magnetic field is applied there is an absorption of energy, causing an EPR 

transition from the lower energy state (when aligned in the same direction as the field 

(ms= - ½)) to the higher energy state (when aligned against the magnetic field direction 

(ms = +½)). This movement between energy levels is the Zeeman Splitting Effect, which 

is illustrated in Figure 1.1. 

 

 

 

 

 

 

Figure 1.1: The Electronic Zeeman Splitting Effect. Divergence of energy levels of discrete spin states 

with application of magnetic field for a S= ½ system.  

The energies for an electron with magnetic moments ms ± ½ are given by equations 1.3 

and 1.4, respectively 

                                                 E +½ =   ½ geβB0   (EQUATION 1.3).  

                                       and    E -½ = - ½ geβB0     (EQUATION 1.4). 

for each electron, µ = msgeβ, where β is a conversion constant called the Bohr magneton 

(9.27401 x10
-24

 J x T
-1

) and ge is the spectroscopic g-factor of the electron. The g factor 

is a constant of proportionality, whose value is the property of the electron in a certain 

environment.  

 

1.2.1.1 The Spectroscopic g-factor 

   In order to interpret EPR spectra of radicals incorporated into proteins, one must first 

be able to compare the spectrum of the sample of interest with that of a free electron. 

The g-factor of a dimensionless electron in space is 2.003192778 (~2.00). Combining 
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equations 1.3 and 1.4, in a magnetic field (B0) the energy levels of a free electron are 

split by the following, equation 1.5: 

∆E = hν = ge.β.B0   (EQUATION 1.5). 

however, the magnetic moment of the nitroxide radical interacts with the external 

magnetic field in a different manner than that of a free electron.  

   Therefore, on account of local magnetic fields induced in the specific molecular 

framework of the nitroxide radical, the resonance condition is normally denoted by that 

described in equation 1.6: 

∆E = hν = g.β.B0   (EQUATION 1.6), 

where g is equal to the g-value of the specific radical under study.  

   Typically, organic radicals have g-values of ~ 2.0027, inorganic radicals between 

1.9-2.1, and paramagnetic d-metal complexes anywhere between 0 and 6. A 

measurement of a system’s g factor yields some level of information about electronic 

structure, although it does not give much in way of structural dynamics. 

 

1.2.1.2 Resonance and the CW EPR Experiment 

   By keeping the electromagnetic radiation frequency constant and scanning the 

magnetic field, a peak in absorption will occur when the magnetic field tunes the two 

spin states, so that the difference in energy, ∆E, matches the energy of the radiation. 

This is called the field for resonance and is the technique used in Continuous Wave 

(CW) EPR Spectroscopy. Typically for such experiments, in a 0.3 T static field, the 

frequency, ν, of electromagnetic radiation required to cause an inversion of the 

unpaired electron spin is about 9 GHz. This is often referred to as X-band frequency.  

   The application of a resonant microwave frequency magnetic field induces the 

transitions between energy states, and is how CW EPR can be used to measure the 

resonance. Electrons are not isolated, and can exchange energy with their 

surroundings and with other spins in the system. Relaxation of the electron to its 

ground state is crucial in understanding magnetic resonance, as the shape of the EPR 

spectra obtained is determined by both the spin-lattice (T1) and spin-spin (T2) 

relaxation rates.  
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Table 2.1 Microwave bands found in commercial EPR spectrometers, with the static magnetic field 

required for resonance of a free electron 

Designation (band) ν (GHz) Field (T) 

   

X-Band 9 0.3 

Q-Band 35 1.0 

W-Band 95 3.4 

  

Historically, microwave frequencies are divided into bands, with most commercially 

available EPR spectrometers operating at X, Q and W band, which are outlined in Table 

1.1 with the corresponding magnetic field required for the resonance of a free electron. 

At higher field, the spectral resolution of the nitroxide radical improves since the 

Zeeman splitting increases with the applied magnetic field.   

 

1.2.2   The Hyperfine Splitting   

   In order to interpret EPR spectra, one must take into account the effect that magnetic 

nuclei have on the energy of the unpaired electron. In EPR, the hyperfine structure is the 

result of the magnetic interaction between the electron spin, and the magnetic dipole 

moments of the nuclei, in the radical under study. Generally a nucleus with spin, I, splits 

the EPR spectrum into 2I+1 hyperfine lines. For a nitroxide radical (I=1), the EPR 

spectrum consists of three lines of equal intensity (Figure 1.2), due to the three possible 

spin orientations of the 
14

N nucleus.  

 

 

 

 

 

 

 

 

   

Figure 1.2: Near Isotropic 3 line Spectrum of 4-amino-TEMPO. The nitroxide containing small 

molecule TEMPO is in double distilled H2O (ddH2O) (spectrum normalised to maxima). 
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   In theory, the total energy absorbed by a sample is measurable, however, in practice 

the noise component significantly obscures the resonance signal. For this reason, the 

static magnetic field is modulated, and only the modulated part of the output voltage 

detected. The output is therefore the detection of the first derivative of the absorption, 

rather than the absorption itself, but with an enhanced signal to noise ratio. The 

hyperfine structure of the EPR spectra is a basic fingerprint of this interaction from 

which it is possible to gleam a host of information. Figure 1.2 shows the near isotropic 

CW spectra of the nitroxide containing 4-amino TEMPO. 

  The hyperfine coupling has anisotropic components which influence the CW EPR line-

shape. A small molecule containing a nitroxide radical, such as TEMPO – see Figure 

1.2, tumbling rapidly in solution has an average hyperfine splitting, typically of about 

15G. The hyperfine anisotropy is due to the majority of the electron density being 

distributed in molecular orbitals (p orbitals of the nitrogen lone pair), aligned parallel to 

the molecular z axis of the paramagnetic moiety. Typically therefore Azz>Ayy,Axx and 

this becomes evident for crystal or powdered samples.  

   Furthermore the hyperfine coupling, and consequently the CW EPR linewidth is 

sensitive to variation from the spin label side chain sampling different water, protein 

and lipid environments.  Bordignon & Steinhoff, 2007 confirmed this with their studies 

on solvent accessibility in membranes.  

   Generally as the polarity and proticity of the environment increases, so does the 

hyperfine coupling, showing the potential for defining the topology of the spin label 

side chain with respect to other proteins, as well as the identification of water-

membrane boundaries.        

   Characterising specific regions of proteins in terms of their polarity/proticity profiles, 

as well as identifying hydrophobic barriers by monitoring changes in hyperfine 

coupling, may provide means to obtain structural and topological detail of proteins, and 

help elucidate further specific biological process. 

 

1.2.2.1 Spin Label Dynamics 

   The appearance of the EPR spectrum changes as the motion of the radical is restricted, 

and rotational correlation time increases due to the anisotropic nature of the hyperfine 

tensor. Figure 1.3 shows the effect of an increased rotational correlation time on the 
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EPR line-shape, as well as the effect of freezing. Restricted motion may be as a result of 

a reduced tumbling rate due to attachment of the spin label to a particularly large 

protein, or restriction of the label’s rotation through binding position, temperature 

reduction or an increase in viscosity (Beier & Steinhoff, 2006). 

 

 

Figure 1.3: Spectral Simulations of a nitroxide radical (such as TEMPO), at X-band. Shows 

increasing correlation times, as simulated using the Easyspin Spectral Simulation Software (Chili and 

Pepper Functions) for MatLab® (spectra normalised to maxima). (A) correlation time of 0.1x10
-9

s, (B) 

correlation time of 1x10
-9

s, (C) correlation time of 10x10
-9

s, (D) simulated powder spectrum of a 

nitroxide (e.g. frozen). 

 

   Ideally, spin labels should produce an EPR spectrum that significantly broadens as its 

motion is even slightly restricted. This is true for nitroxide spin labels, as we can see an 

increased rotational correlation time from Figures 1.3A to 1.3C. Assuming total 

intensities are the same across all simulated spectra, it is clear that an increase in 
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correlation time results in a broadening of the spectral lines due to an increased rigidity, 

and more restricted motion of the spin label.  

1.2.3 The Electron-Electron Interaction 

   The interaction of two (or more) electrons results in a coupling of spin states. There 

are two magnetic interactions that operate between two interacting unpaired electrons, 

one being the isotropic exchange coupling interaction and the second the anisotropic 

through space dipole-dipole interaction. 

 

1.2.3.1 Exchange Coupling 

   The exchange interaction, characterised by the exchange coupling tensor, J, is 

dependent upon the electric interaction between electrons, from a combination of 

repulsion and overlapping of orbital densities. This interaction falls off exponentially as 

the distance between interacting centres increases, assuming no orbital overlap. 

 

1.2.3.2 Dipolar Coupling 

   The dipolar coupling interaction will be discussed in greater detail in 1.4. Briefly, the 

dipolar coupling is the interaction between two magnetic moments, which for the 

purpose of this thesis will be the magnetic moments between two interacting electrons 

separated in space. 

 

1.2.4 Zero-Field Splitting 

   The ZFS interaction is only relevant when applied to high spin systems, i.e. S > ½. 

Zero-field splitting describes various interactions of the energy levels of an electron spin 

in the absence of an applied magnetic field. The electrons couple to one another, 

causing an energy level splitting called the ZFS. This can be very large, e.g. common 

transition metal ions in biological systems, such as iron, have such large ZFS energies 

that their spectra have still to be fully measured even at very high magnetic fields 

(Bowen et al, 2013). 

 

1.2.5 Nuclear Quadrupole Interaction 

   The Nuclear quadrupole interaction is analogous to the zero-field interaction, as these 

transitions can be detected in the absence of an applied external field. Nuclei with I ≥ 1, 
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possess an electrical quadrupole moment Q, arising from their non-spherical charge 

distribution. This charge distribution then interacts with the electric-field gradient 

produced by the electrons in the vicinity.  

   In EPR spectra, nuclear quadrupole interactions can cause a shift in resonance, and the 

appearance of forbidden transitions, however, such effects are usually of the second 

order and difficult to observe.  

 

1.2.6 Nuclear Zeeman Interaction 

   This contribution is analogous to the electronic Zeeman, but addresses the coupling of 

nuclear spins to the external magnetic field. For the most part, this can be considered 

isotropic. This small energy contribution has little influence on EPR spectra, however, 

may affect nuclear frequency spectra measured by EPR techniques, such as Electron-

Nuclear Double Resonance (ENDOR) Spectroscopy. 

 

1.3   Obtaining Distances Between Paramagnetic Centres Using EPR  

   Distance determination across all methods of EPR relies upon the magnetic dipole-

dipole interaction between the magnetic moments µA and  µB, of two spins A and B. For 

the purpose of this thesis, the focus will be on dipolar interactions between pairs of 

electrons, from which the distance between them can be resolved. 

   The energy of the dipolar interaction is a result of the change in Zeeman energy of the 

observed spin A, due to the presence of the second spin, B. In the high field 

approximation, the dipolar coupling to the external magnetic field dominates all other 

contributions. Hence the dipoles align parallel to B0. The energy of the dipolar coupling 

interaction is simplified to that shown in equation 1.7: 

E= 
𝜇0

4𝜋
 

1

𝑟3
 (1 - 3cos

2 
θ)    (EQUATION 1.7) 

where µ0 is equal to the vacuum  permeability constant, r is the distance between the 

two unpaired electrons and θ is the angle formed by the applied field and the vector 

connecting the unpaired electrons.  

   The θ value can give information on the orientation, (Prisner et al, 2015, Gophane et 

al, 2014) however, this is not of interest for the work described in this thesis, where the 

focus is nitroxide spin labels at X and Q bands, which, due to conformational freedom, 
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and limited g-value splitting at X and Q band, do not give much away in terms of 

orientation. 

 

1.3.1 Distance Measurements Using CW EPR Spectroscopy 

   CW EPR is most often applied to nitroxides whose powder spectra (i.e. static, e.g. 

frozen) are dominated by the (inhomogeneous) broadenings from nitrogen hyperfine 

interactions and g tensors (Bowen et al, 2013). The effect of dipolar coupling is a small 

broadening effect, which can be extracted using deconvolution methods,  (Rabenstein & 

Shin, 1995) or multi-parameter fits (Hustedt et al,  1997) and from the dipolar coupling 

interaction, distances can be determined. 

   CW EPR is practical for the measurement of short distances of ~ 0.8nm up to a 

maximum of 1.5-2.0nm, with those distances less than 1.5nm being the most reliable 

(Banham et al, 2008). For protonated spin labels, the inhomogeneous line broadening 

(in part due to unresolved hyperfine coupling) obscures dipolar broadening for distances 

in the 1.5-1.7nm range resulting in lower distance resolution.  

   With increasing distance between paramagnetic centres, it becomes progressively 

more difficult to measure the dipolar interaction with CW EPR as an effect on line 

broadening, as the coupling strength becomes comparable to the linewidth. To extend 

this limit, with respect to CW EPR, the spin label can be deuterated (de Vira et al, 2015) 

or trityl spin labels may be used as an alternative to nitroxides.  Due to the  much 

narrower line-shape of trityl radicals (Kunjir et al, 2013) inter-spin distances can be 

accurately measured from the CW EPR spectrum up to ~2.4nm (Reginsson et al, 2012). 

 

  1.4   Pulsed Methods of EPR Spectroscopy 

   Unlike CW EPR spectroscopy, where the microwave frequency is kept constant 

throughout, pulsed methods of EPR spectroscopy apply a series of microwave pulses, in 

order to refocus the broadening that occurs in spectra obtained from CW EPR, and 

collect more high resolution data. The Hahn echo pulse set (π/2-τ-π-τ) is the basis for 

the majority of pulse sequences used in such techniques (Figure 1.4). 
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Figure 1.4: The Principle of the Hahn Spin Echo. (A) The vertical red arrow is the average magnetic 

moment of a group of spins. All are vertical in the vertical magnetic field and spinning on their long axis, 

but this illustration is in a rotating reference frame where the spins are stationary on average. (B) A 90° 

(π/2) pulse is applied that flips the arrow into the horizontal plane. (C) Due to local magnetic field 

inhomogeneity some spins slow due to lower local field strength while some speed up due to higher field 

strength. This makes the signal decay. (D) A 180° (π) pulse is applied so that the slower spins lead ahead 

of the main moment and the fast ones trail behind. (E) The fast moments catch up with the main moment 

and the slow moments drift back toward the main moment. (F) Complete refocusing has occurred and at 

this time, an accurate T2 echo can be measured. 

 

   Pulsed methods of EPR spectroscopy come in many flavours. Electron Nuclear 

Double Resonance (ENDOR) and Hyperfine Sublevel Correlation Spectroscopies 

(HySCORE) are just two pulsed methods of EPR spectroscopy that can be used to probe 

the environment surrounding paramagnetic centres.  

   For more on other pulsed EPR methods see Borbat & Freed, 2013. However, the 

focus of this thesis is the use of DEER spectroscopy in obtaining nm scale distance 

measurements between paramagnetic centres, based on the dipolar interactions between 

them.  

 

  1.4.1   Distance Measurements Using Pulsed EPR Techniques - DEER 

   Whilst CW EPR is used for accurate distance determination of the shortest distances, 

it is the pulse techniques which allow access to long range distance distributions, more 

synonymous with large functional biological complexes. The focus of this thesis is the 

A                                                B                                             C 
 
 
 
 
 
 
 
 
 
 
 
 
D                                                E                                             F 
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use of DEER for studying the structure of biomolecules on the nanoscale, by measuring 

the dipolar coupling between paramagnetic centres.  

   Using DEER, the dipolar couplings are isolated by suppression of the hyperfine 

couplings, allowing longer range distance measurements to be obtained. Until recently 

the often quoted range for DEER distance measurements was 1.5-8nm (Tsvetkov & 

Grishin, 2009) (Gunnar Jeschke, 2012), however recent work by El Mkami (2014) and 

co-workers have pushed the limits to a theoretical maximum of 13nm. 

 

1.4.1.1   3-Pulse DEER 

   The constant time 3-Pulse DEER sequence (shown in Figure 1.5) was initially used to 

gain further insight into molecular distribution by Milov et al, 1981. 

 

 

 

 

 

 

 

 

 

Figure 1.5: Schematic representation of the 3-pulse DEER sequence. Observer and pump pulses 

shown at frequencies A and B (νA, νB). 

 

   Application of the π pulse at νB, between the Hahn Echo pulse sequence (π/2, π) 

causes a focusing of the electrons coupled to the observer spins. At time T, the local 

field at the A spins (in resonance with νA) is altered. T is incremented, and the extent of 

coupling determines the modulation period.  

   However, the start of the DEER time trace is usually distorted due to application of 

the pump pulse, at νB, at the same time as the first observer pulse, π/2, at νA. 

Consequently, the complete shape of the dipolar spectrum is not recovered, leading to a 

‘dead-time’, which proves detrimental if distance distributions are broad (Lovett et al, 

2012).  
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   4-Pulse DEER, although less sensitive than 3-pulse DEER, is commonly used in 

measuring distance distributions in structural biology investigations, where broad 

distance distributions are more commonplace. 

 

1.4.1.2   4-Pulse DEER 

   The four pulse DEER technique provides a dead-time-free method for measuring the 

frequency of the dipolar coupling interactions and is the chosen method used in this 

thesis.  

   For a two spin system containing spins A and spin B, both from nitroxide radicals, the 

spins are differentiated by exciting different parts of the nitroxide spectrum, using two 

very different microwave frequencies (νA and νB), as illustrated in Figure 1.6B and 1.6C.  

   A two-pulse Hahn echo sequence is employed to selectively monitor the intensity of 

the echo (Figure 1.6C), ν(T), of the paramagnetic species A, at frequency νA, in 

resonance with spins A. This particular pulsed sequence generates a refocused echo 

after the last delay, τ2, which is the measurable DEER signal. The π pulse at microwave 

frequency νB, applied during the time interval T, often referred to as the pump pulse, 

then excites spins B, in resonance with frequency B, νB. This introduces a coupling 

between spins A and B. 

   Using the two microwave frequencies νA and νB, and keeping the refocused echo at a 

fixed position in the time domain, strongly suppresses the hyperfine interactions. The 

time T, at which the pump pulse is applied, is incremented, resulting in an increase or 

decrease in the intensity of the refocused echo. The frequency of this oscillation, νAB, 

can be used to obtain the dipolar coupling.  
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Figure 1.6: Schematic representation of the 4-Pulse DEER Experiment. (A) For a two spin system, 

the distance between Spin A (green sphere) and Spin B (purple sphere) is denoted rAB. (B) Field sweep 

spectrum of a nitroxide at X-band, illustrating where in the spectrum Spins A and Spins B are excited 

(green and purple respectively). (C) The dead-time free 4 pulse DEER sequence. (D) The four pulse 

DEER time trace (black line) together with the fitted intermolecular background decay (red line). (E) 

Background corrected distance distributions rAB obtained following Tikhonov regularisation of the DEER 

time trace (Jeschke 2006).  

 

   Due to potential intermolecular spin-spin interactions, there may be an exponential 

decay of the DEER signal. These interactions are the background contribution (as 

shown in Figure 1.6D), and so the DEER trace obtained must first be background 

corrected, in order to obtain an accurate representation of the intramolecular spin-spin 

distance distribution (as shown in Figure 1.6E). A spin concentration of between 50µM 
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and 200µM will minimise this contribution, whilst ensuring sensitivity. For the 

experiments performed throughout, a final sample of ~80µL is required. 

 

1.4.2 Enhancing DEER Sensitivity - Solvent, Temperature and Deuteration Effects     

   Typically, DEER experiments are conducted at temperatures in the range of 50K, with 

the protein solution forming a frozen glass. At 50K, one of the major factors 

contributing to the persistence of an echo, and therefore the sensitivity and measureable 

distances between spin labels, is the electron spin echo dephasing time, TM.  

   Due to the cryogenic temperatures involved, cryo-protectants are required to prevent 

ice crystal formation and protein aggregation, which can leads to a dramatic decrease in 

the TM, therefore seriously compromising the signal to noise ratio (S de Vera et al, 

2015).  

   Due to relatively short TM (Ward et al, 2010) when measuring proteins, it is standard  

practice to deuterate the solvent in which the proteins are present, which slows 

relaxation and extends the range of distance measurements and level of sensitivity 

(Huber et al, 2001). 

   In a non-deuterated environment, short spin echo dephasing times – between 2-4µs-

would only allow for distances in the 3-4nm range, with limited sensitivity (El Mkami 

et al, 2014), however, deuteration of the solvent can significantly increase the TM in the 

5-6µs range (El Mkami et al, 2014). This was demonstrated by Banham et al, 2006, in 

the study of a von Willebrand factor  domain, where deuteration of the solvent matrix 

(60% D2O, 40% deuterated glycerol), doubled the TM, compared to the protonated 

sample, extending the dipolar evolution time to 6µs, allowing distances in the 6.8nm 

range.  

   It is quoted throughout the literature that the upper distance limit for measuring using 

EPR spectroscopy is 8nm (Gunnar Jeschke, 2012). However, full deuteration of not 

only the sample, but the protein itself (if expressed in deuterated conditions) has the 

potential to increase TMs, therefore allowing access to longer distances. This was 

demonstrated beautifully by Bowman et al, 2014 in their work on the histone chaperone 

proteins Vps75 and NapI.  

   Using entirely deuterated samples, a distance of 10.2nm was obtained, a record for 

distances obtained using 4-pulse DEER. As stated above, DEER measurements are 
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typically taken at 50K, as at this temperature, TMs are increased. It is generally accepted 

that at higher temperatures, a decreased TM limits the distance range that can be 

measured, however entire deuteration of the protein could circumvent this. As 

demonstrated by Ward et al., 2010, the TM of an entirely deuterated protein at 100K was 

comparable to a non-deuterated protein at 50K, highlighting the potential to measure at 

higher temperatures which previously were not possible. 

 

1.4.3   DeerAnalysis 

   The initial time trace (Figure 1.6D) represents both inter and intra molecular 

contributions as a function of time. The desired intra-molecular signal is obtained 

following division of the original time trace (D) by the intermolecular contribution. 

Fourier transformation of the intra molecular interaction trace generates a Pake pattern 

(as reviewed in Jeschke, 2012). 

   Small distortions in the DEER signal such as noise or some orientation selection, as 

well as the measurement of a distribution of distances, will make reading distances from 

the Pake spectrum difficult. Tikhonov regularisation of the intramolecular time trace is 

carried out to yield distance distributions, using the software package DeerAnalysis2015 

(G. Jeschke et al, 2006). DeerAnalysis will take the experimental DEER data, 

background fit and then use Tikhonov regularisation, or models such as Gaussian 

lineshapes, to extract distances and distance distributions. 

 

1.5 Site-Directed Spin Labelling (SDSL) – Cysteine Substitution 

Mutagenesis 

   As stated before, EPR spectroscopy specifically detects unpaired electrons within a 

system. These unpaired electrons, or radicals, can be naturally occurring, or are more 

commonly specifically introduced. Consequently, this allows one to look at many 

different proteins, regardless of cofactors, precisely where desired within the protein 

structure.  

   When studying biological complexes, radicals are specifically introduced at specific 

sites of interest within recombinant proteins, in a process known as site-directed spin 

labelling (SDSL). 
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1.5.1 Cysteine Chemistry 

   The chemical versatility of the thiol group of a cysteine residue is commonly 

exploited for a wide range of chemical transformations of proteins. Illustrated in Figure 

1.7 is the chemical structure of cysteine.  

   Cysteine is usually the most powerful nucleophile in a protein, and, as a result, is 

frequently the easiest to selectively modify with a variety of reagents, including the site 

specific incorporation of spectroscopic probes, allowing one to obtain precise structural 

detail on proteins of interest.  

 

 

 

 

 

Figure 1.7: Chemical structure of the amino acid cysteine. Visualised using ChemDraw
TM

. The highly 

reactive thiol group of the cysteine residue is circled. 

   Native cysteine residues can be used as a chemical handle for the incorporation of 

spin labels, or, alternatively, as demonstrated in pioneering work by Hubbell et al, 1994, 

reactive native cysteine residues can be replaced by a non-reactive amino acid, and 

further cysteine residues introduced at sites of interest, creating a specific labelling site. 

1.5.2 Nitroxide-Radical Spin Labels 

 

   The first attempt to introduce a paramagnetic reporter group into an otherwise EPR 

silent macromolecule, was carried out by Stone et al, 1965, where a nitroxide radical 

was introduced into Bovine Serum Albumin (BSA), in order to obtain conformational 

information about the biomolecule via EPR spectra.  

   Since then, the technique has evolved, and is now used to gain insight into dynamics 

(Abdullin et al, 2014), orientation selection (Lovett et al, 2009), conformational 

transitions and protein folding in real time (Steinhoff et al, 1994), whilst not being 

limited to the size of the biological complex under study (Hubbell et al, 1996).  
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   The process of SDSL incorporates a stable radical into the protein structure. Many 

commercially available spin labels contain thiol-reactive functionalities including 

methanethiosulfonate, maleimide, and iodoacetamide, which all form a covalent bond 

with the thiol of cysteine residues, however, the most commonly used spin label is 

MTSSL (1-Oxyl-2,2,5,5-tetramethylpyrroline-3- methyl) Methanethiosulfonate), the 

chemical structure for which is shown in Figure 1.8. 

   MTSSL contains a nitroxide radical, protected by bulky methyl groups, which 

function to sterically hinder the radical, preventing collisions, and therefore limiting its 

reactivity (Brown et al, 2002). Unlike the vast majority of free radicals that are highly 

unstable, the nitroxide radical is stable under a variety of physicochemical conditions, 

including different solvents, pH and temperatures (Schreier et al, 2012), which proves 

desirable when working with biological systems. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.8: Structural composition of Pyrrolinoxyls, and SDSL of Cysteine Residues with MTSSL. 

(A) General structure of pyrrolinoxyls, highlighting key features which make them amenable, and 

therefore more commonly used for protein labelling. (B) Schematic representation of any given protein, 

with the thiol group (-SH) of a given cysteine residue (be it naturally occurring, or incorporated via site 

directed mutagenesis) shown. (C) Chemical structure of the commercially available MTSSL. (D) 

Illustrates the MTSSL covalently bound to the thiol group of the cysteine residue, forming a disulphide 

bond (Visualised using ChemDraw
TM

). 
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   MTSSL is highly selective in its reactivity for cysteine, and undergoes covalent 

attachment to the thiol group of the incorporated cysteine residue, forming a disulphide 

bond, and sidechain designated R1 (Hubbell et al, 1996). Due to its notably smaller 

molecular weight compared to other commercially available spin labels, and the degree 

of flexibility it exhibits around single bonds, the MTSSL should not interfere with the 

native fold of the protein (Longhi et al, 2011), therefore resulting in minimal structural 

and functional perturbation. 

1.6 SDSL – Incorporation of Unnatural Amino Acids (UAAs)  

   SDSL using cysteine substitution mutagenesis proves difficult when the protein of 

interest is cysteine rich and there is a driving force to be able to tag or label proteins in 

cell using unique chemistries. Both these aspects can be tackled by the site-specific 

incorporation of non-canonical UAAs with novel functional groups into peptides and 

recombinant proteins, with a subset containing chemically reactive functional groups for 

the selective incorporation of biophysical probes (see Lang & Chin, 2014, and 

references therein). 

 

1.6.1 Solid Phase Peptide Synthesis (Merrifield Coupling) and Semi- Synthesis 

   Several methods have been established for UAA incorporation in both peptides and 

recombinant proteins. The spin label amino acid TOAC ( 2,2,6,6-tetramethyl-N-oxyl-4-

amino-4-carboxylic acid) was the first spin label probe incorporated into the peptide 

backbone by means of a peptide bond (as reviewed in Schreier et al, 2012), allowing 

one to study backbone dynamics and peptide secondary structure. However, due to its 

rigidity, TOAC has a limited range of backbone dihedral angles, resulting in a 

significant distortion of the secondary structure of proteins. Consequently it currently 

can only be incorporated into small peptides and proteins by total solid phase synthesis 

(Fielding et al, 2014).  

   Work carried out by Becker et al, (2005) has tried to overcome such obstacles, by 

combining  SPPS with recombinant techniques, providing the tool for introduction of 

UAAs at specific sites of interest in large proteins, and even membrane proteins. Using 

SPPS, paramagnetic UAAs can be incorporated into short peptides via protected lysine 

residues. Using chemical ligation, the peptide can then be incorporated into recombinant 
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proteins of interest, which in this case is the kinase, cRaf1. The combination of 

chemically synthesised peptides with recombinant polypeptides greatly increases the 

versatility and applicability of chemical synthesis of labelled proteins. 

 

1.6.2 Expanding the Genetic Lexicon  

   Continuous Exchange Cell Free Systems allow incorporation of unnatural amino acids 

at multiple sites within the same protein. Using S30 extracts is an effective tool for the 

complete cell free synthesis of recombinant proteins (Loscha et al, 2012) (Kanda et al, 

2000) (Cornish et al, 1994). S30 extracts are named as such, due to their sedimentation 

rate by ultracentrifugation (30,000 x g) (Meyers, 1995). The expense of the systems, the 

degradation of essential components, and the comparatively poor protein yields 

associated, mean that methods for UAA incorporation in recombinant proteins are 

continuously evolving.  

   Pioneering work by Peter Schultz (Scripps Institute) and Jason Chin (Medical 

Research Council Centre, Cambridge) aims at expanding the genetic lexicon by 

engineering the translational machinery of cells, for the in vivo incorporation of novel 

amino acids (Young & Schultz, 2010) (Chin, 2011). 

 

1.6.2.1 Reprogramming Translation Using Orthogonal Ribosomes 

   The engine of translation and where mRNA is ultimately decoded into protein is the 

ribosome. Engineering orthogonal ribosomes, uncoupled from the requirement to 

synthesise the cellular proteome, results in a non-essential cellular ribosome with the 

potential for the incorporation of specific UAAs, in response to unique codons. To 

exemplify this approach, Neumann et al, 2010, evolved an orthogonal ribosome, Ribo-

Q,  that was able to efficiently decode a series of quadruplet codons using extended 

tRNA anti-codons. These codons were not read by endogenous ribosomes, and so 

corresponding tRNAs can be loaded with new amino acids, and these incorporated into 

proteins in response to the quadruplet codon at the orthogonal ribosome.  
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1.6.2.2 Orthogonal Amino-acyl tRNA Synthetase/ tRNA Pairs 

   Whilst there are no blank codons in the genetic code, Schultz took advantage of the 

amber stop codon, and its ability to be decoded, using amber suppressor tRNAs, for the 

incorporation of UAAs. Amber suppression provides a codon TAG, that can be used as 

an initial insertion signal for UAA incorporation into recombinant proteins in 

Escherichia coli (E. coli). By employing tRNA synthetase and tRNA pairs from other 

organisms, UAAs can be incorporated in response to the amber stop codon TAG, as 

long as no cross talk exists between the orthogonal tRNA synthetase/tRNA and 

exogenous pairs. 

 

1.6.2.3   Incorporation of the UAA p-acetyl Phenylalanine (pAcPhe) in response to 

the amber Stop Codon  

   The chemical structure of the UAA pAcPhe is shown in Figure 1.9. This UAA 

contains the chemically versatile keto functional group that is not present in any of the 

common amino acids, and readily reacts with hydroxylamines in aqueous solution, due 

to the accessibility of the ketone functionality to the nucleophile. 

 

 

 

 

 

 

 

 

Figure 1.9: Chemical Structure of the unnatural amino acid p-acetyl-phenylalanine (pAcPhe). 

Visualised using ChemDraw
TM

 

   Work carried out by Fleissner et al, 2009 incorporated the pAcPhe into T4 lysozyme, 

forming a keto linked spin label when reacted with hydroxylamine-nitroxide. In this 
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strategy, a non-native suppressor tRNA and aminoacyl tRNA synthetase pair is used to 

incorporate the UAA into the protein site specifically, in response to the unique amber 

stop codon TAG. The conditions of such reactions are perhaps not favourable for most 

protein systems (pH 4, 37
o
C). Recent modification of protocols (Hahn et al, 2014) has 

shown that the pAcPhe can be labelled at physiological pH, which is more amenable to 

the study of bio-molecules, however now the caveat is that organic solvents are 

necessary.    

1.7 Simulation of DEER Data 

   Having a fast and reliable approach for the prediction of spin label conformations in 

bio-macromolecular complexes facilitates the application of SDSL-EPR methods in the 

study of protein structure and function. In order to obtain global structural elements of a 

protein from DEER, one must first have an understanding of the environment in which 

the spin-label resides, so as to obtain distance distributions which can be critically 

interpreted.  

   Comparison of the simulations with the experimental DEER distance distribution can 

be used to validate structures in solution, or indeed differentiate between different 

conformational states of a protein. If two or more potential models for a particular 

structure exist, comparison of the experimental data obtained with the in silico can often 

help decide which model is in in best agreement. 

 Modelling programmes such as Multiscale Modelling of Macromolecules (MMM) 

(Polyhach et al, 2011) and MtsslWizard (Hagelueken et al, 2012) can be used to 

generate a model distance distribution between spin labels.  

 

1.7.1   Multiscale Modeling of Macromolecules (MMM) 

   MMM is a freely available tool for predicting spin label orientations and the resultant 

DEER, and can be used within Matlab. MMM is based on a rotamer library of 

computationally-calculated likely conformations of the MTSSL in relation to a protein 

of interest, which then simulates the resulting DEER. The MMM simulation is 

calculated at 175K – the water/glass transition temperature. 
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1.7.2   Mtssl Wizard 

   The wizard operates as a plugin for the PyMOL molecular graphics system and works 

by estimating distances between spin labels on proteins quickly, and with user 

configurable options, searching for MTSSL conformations that do not clash with a static 

model of the protein of interest. 

These particular programmes work by modelling the MTSSL onto user-specified 

positions with the protein structure, therefore allowing the spin label to sample different 

conformations in relation to the protein.  

    

1.8 Advancing the Field of Structural Biology 

   Established biophysical techniques applicable for the study of biological systems, 

such as high resolution Nuclear Magnetic Resonance (NMR) Spectroscopy and X-Ray 

Crystallography (XRC), have contributed significantly to advancement in the field of 

structural biology (as reviewed by Maslennikov & Choe, 2013, Zheng et al, 2014, 

Malito et al, 2015), and have made it possible to visualise individual biological 

molecules, as well as their bio-macromolecular complexes at an atomic level.     

   Fluorescence based methods such as FRET, are also very powerful methods for 

exploring long range structure, and can be used to obtain nanometre length distance 

restraints in biological systems. FRET is a technique, that can be applied at the single 

molecule level providing real time dynamics over several time scales (Reginsson & 

Schiemann, 2011), however, it is not without its caveats. There is a lack of precision 

when it comes to quantifying distances and distance distributions, and the labels used 

for FRET are significantly bigger than those used for EPR, and may affect the structural 

integrity and conformation of the protein complexes.  

   Employing EPR spectroscopy in place of, or indeed in collaboration with such 

techniques, allows structural resolution at the level of the backbone fold, and allows one 

to monitor changes in equilibria, as well as check conflicting interpretations.  

 

1.8.1 EPR Spectroscopy in the Study of Large and Flexible Soluble Proteins 

   Using EPR as a tool for measuring nm length distances in proteins, and complexes 

thereof, is a useful tool in the study of protein structure, and protein-protein interactions, 

and how such interactions contribute to overall function. The application of EPR 
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spectroscopy has resulted in the structures of many large and complex biologically 

significant proteins being elucidated.  

   The combined use of NMR and EPR proved to be a powerful approach in the study of 

the cytoskeletal complex, talin and vinculin, due to the large nature of both proteins 

involved in the complex, coupled with the high degree of flexibility exhibited in the 

extended talin rod (Gingras et al, 2006).  These variables would deem this complex 

unsuitable to be studied by NMR alone, and so in collaboration with EPR, one can gain 

insight into such interactions, which otherwise would be inaccessible. 

 

1.8.2 EPR in the Study of Membrane Proteins 

   Membrane proteins account for ~25% of all proteins within the cell. Structural 

determination of membrane proteins by X-Ray diffraction (Bai, Yan et al, 2015), 

solution NMR (Mineev et al, 2015) and more recently single-particle electron cryo-

microscopy (cryo-EM) (Schmidt-Krey et al, 2011) has resulted in more than 2,000 

structures deposited (Rodriguez et al, 2014).  

   However in the majority of cases, determination by such means does not reveal the 

structure of the protein in a membrane, but rather in a crystal lattice or in a 

micelle/bicelle. Using EPR to obtain some simple distance restraints, it is possible to 

check for potential crystallisation artefacts. 

   Work carried out by Pliotas et al, 2012 looks at the different conformational states of 

the membrane protein MscS, a mechanosensitive ion channel, composed of 7 monomers 

made up of 21 transmembrane helices. This particular multi-domain protein has been 

crystalized, although the crystal repeatedly challenged, with three mutually 

incompatible models hypothesised, which proves detrimental to the field.      

   Using SDSL in collaboration with XRC, Pliotas et al, 2012 demonstrated the wider 

utility of EPR, and showed it to be a reliable technique when studying such a complex 

system. Similarly, Endeward et al, 2009 and  Padmavathi & Steinhoff, 2008  used 

SDSL to study the tetrameric potassium ion channel KcsA, and the closed channel of 

Colicin A, respectively.  

   Using EPR, it was possible to gain information on side chain mobility, solvent 

accessibility, and the orientation of specific regions, and follow dramatic 
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conformational changes (as a function of time), which had been disputed in the 

literature.  

 

   1.8.3 EPR as a Stand Alone Technique 

   Although using EPR in collaboration with other higher resolution structural 

techniques has proven successful in elucidating the structures of previously disputed 

complexes, EPR stands alone as a powerful structural technique. Many transporter and 

importer structures have been solved using EPR and SDSL (see Joseph et al, 2011, and 

Borbat et al, 2007) as many of these systems are important pharmaceutical targets. 

   Hilger et al, 2009, used ab initio protein modelling to build a three dimensional model 

of the Na
+
/Proline transporter PutP of E. coli from scratch, solving the backbone 

structure by obtaining distances between spin labelled mutants at 2Å resolution, 

allowing insight into the structural and functional relationship. The crystal structure was 

later solved, verifying the original model. 

 

1.9 Beyond in vitro EPR, and towards physiological conditions 

   The next level in elucidating protein structure and ultimately function, requires one to 

consider the natural cellular environment in which the protein of interest resides. 

The use of DEER for obtaining nm distance restraints is typically done in frozen 

solutions at cryogenic temperatures, in order to reduce the rapid electron spin relaxation 

rates. Also, the matrix in which the proteins are present must be carefully considered, in 

order to stop tumbling of the protein averaging the dipolar interaction to zero. 

Measurements cannot be taken in an aqueous matrix, as the high dielectric constant of 

liquid water absorbs microwaves. 

    However, using EPR spectroscopy at ambient temperatures would allow for a more 

direct comparison of the experimental environment with how proteins interact in 

physiological environments. The process of SDSL and the pulsed EPR techniques 

themselves have evolved considerably from when the techniques were in their infancy, 

however, comparatively, the labelling process, and evolution of the labels themselves 

has lagged somewhat behind.  

 

 



Chapter 1: An Introduction to EPR Spectroscopy 

 

50 
 

1.9.1 Trityl and Spiro Radical Spin Labels 

   In order to obtain measurements in liquid solution without the need for cryogenic 

temperatures, a number of groups have successfully incorporated trityl spin labels into 

proteins such as T4 lyzosyme (Yang et al, 2012) and into nucleic acids (Shevelev et al, 

2014). Due to the relatively long relaxation times exhibited by these labels, using pulsed 

methods, namely Double Quantum Coherence (DQC), these bio-macromolecules could 

be measured in solution. Shown in Figure 1.10 is an example of a cysteine specific trityl 

radical such as that used in the study of T4 lyzosyme. 

 

 

 

 

 

 

 

 

 

Figure 1.10: Chemical structure of a cysteine-specific trityl radical. 

  

   Using trityl radicals in these model systems, distances of up to approximately 4.6nm 

at 310K (37
o
C) have been measured (Shevelev et al, 2014), demonstrating the potential, 

with significant improvement to the overall size and hydrophobicity of the label, for the 

future application of trityls as spin labels, at temperatures comparable to physiological.     

   Studies by Eaton et al, 2015, have shown that the incorporation of spiro-cyclohexyl 

radical labels using SDSL to sites on T4 lysozyme resulted in inter-spin distances of up 

to ~4nm being measured by DEER at 160K, however, when in a trehalose matrix, an 

extended TM allowed a distance of ~3.2nm to be measured at room temperature (r.t).     

   These distances could not be measured using the conventional MTSSL label, and so 

evolution of labelling and labels themselves, will allow long range distances to be 

obtained at temperatures and in environments which are closer to the physiological 

environment in which the proteins natively reside.  
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1.9.2 in vivo EPR Studies  

 

   Ultimately, in order to truly elucidate protein structure and function, one must be able 

to mimic, as closely as possible the natural cellular environment. The in-cell 

environment is characterised by thousands of cellular components that can interfere 

with the biomolecule under study. Due to the sensitivity of DEER for paramagnetic 

systems, background interference is negligible and so DEER could be adapted for in 

vivo structural studies. 

   Schmidt et al, (2014) have successfully encoded an UAA in E. coli, in response to the 

amber stop codon, TAG. Direct incorporation of the nitroxide radical with the 2,2,5,5-

tetramethyl-pyrrolin-1-oxyl moiety enables intracellular biosynthesis of spin labelled 

proteins in vivo. The chemical structure of the radical is shown in Figure 1.11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.11: Chemical structure of the UAA containing the 2,2,5,5-tetramethyl-pyrrolin-1-oxyl 

moiety. (Visualised using Chemdraw ®) (Schmidt 2014). 

 

   The higher stability of the nitroxide radical in E. coli than other intracellular 

environments enabled cells expressing thioredoxin with two of the nitroxide containing 

UAAs to be frozen and a DEER measurement taken. Furthermore, using specific E. coli 

cell lines, such as Origami, which are deficient in specific reducing agents, it is possible 

to extend the lifetime of the nitroxide radical in cell (Dunkel et al, 2015).  
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   In human cells, nitroxide radicals are reduced and converted into a diamagnetic 

hydroxylamine with a half-life of approximately 50min (Martorana et al, 2014) 

however, it is also possible to adapt the nitroxide spin label itself to one that is more 

resistant to reduction. Studies by Jagtap et al, 2015 and  Kinoshita et al, 2010 have 

found that sterically shielded spin labels, such as tetraethyl substituted nitroxides 

(pyrrolidine and piperidine derivatives) are more resistant to reduction by ascorbic acid, 

and in the presence of cellular extracts and oocytes.  

   Furthermore, reduction resistant Gd
3+

 chelates have been proposed as a potential 

alternative for in-cell DEER distance measurements in human cells (Martorana, 2014).  

Building on adapting nitroxide spin labelling in vivo, and labelling with Gd
3+

 chelates 

will broaden the application of SDSL EPR, allowing one to further characterise proteins 

which before were not suited to study by DEER. 

 

1.10 Application of EPR in this Thesis 

   Following thorough exploration of the literature, it is clear than EPR has advanced 

from a technique that was once used by few, in complement with high resolution 

structural biology techniques, to a powerful technique in its own right. Using a variety 

of methods of SDSL, this thesis aims to explore long range structure in an assortment of 

recombinant and native proteins, and complexes thereof.  

   Using various expression systems, different methods of SDSL will be explored in the 

study of various protein complexes, in hopes of confirming proposed structural 

hypotheses. This will include the SDSL of highly flexible, cysteine rich recombinant 

proteins, and the manipulation of native plasma proteins for SDSL purposes. 

   New methods for the specific labelling of cysteine rich proteins will be explored. The 

ability of E. coli to read through the amber stop codon will be exploited for the 

incorporation of UAAs for SDSL, and novel spin labels, specific for labelling cysteine 

pairs tested in several model systems. Furthermore, native paramagnetic centres of 

recombinant proteins will be explored as potential labelling sites.  

   The work described in this thesis covers experimental design, molecular biology and 

cloning, protein expression and purification, as well as functional characterisation, and 

finally EPR distance measurements, data analysis and interpretation. Challenges and 

pitfalls will also be addressed. 



Chapter 2: Materials and Methods 

53 
 

Chapter 2: Materials & Methods 

   All chemicals, unless otherwise stated, were purchased from Sigma Aldrich 

(Gillingham, UK). All buffers, stock solutions and media recipes are included in 

Appendix A. Primers were ordered from Sigma Aldrich and stored at -20
o
C as 100µM 

stocks, and a 10µM working stock concentration of each primer used for each PCR 

reaction. All primer sequences are included in Appendix A. 

2.1 Mutagenesis, Purification, and Manipulation of DNA for 

Transformation into Chemically Competent E. coli 

2.1.1 Site – Directed Mutagenesis (SDM)  

    In vitro SDM is a commonly used technique in molecular biology for generating 

point mutations in DNA coding genes of interest. It is possible to alter the primary 

amino acid sequence by replacing, inserting or deleting specific residues. All 

mutagenesis was carried out following the protocols set out in the Quikchange© site-

directed mutagenesis manual (Stratagene, California, USA). Reactions were carried out 

(Eppendorf Mastercycler personal, Eppendorf, Hamburg, Germany) according to the 

pipetting scheme and PCR programme detailed in Tables 2.1 and 2.2, using the 

mutagenic primers, and thermo-stable PfuTurbo® DNA polymerase as it exhibits high 

fidelity 3’-5’ proof reading capability, thus minimizing the number of PCR induced 

mutations. 

Each PCR reaction mixture (Table 2.1) underwent the following cycle for mutagenesis. 

Table 2.1: PCR Reaction Mixture for SDM 

               5.0µL    Pfu-buffer (10x) 

               1.0µL ddNTPs 

               1.0µL Primer 5’ 

               1.0µL Primer 3’ 

               3.0µL DMSO (dimethyl sulfoxide) 

               1.0µL Template (125ng) 

               1.0µL PfuTurbo® 

polymerase 
             37.0µL ddH2O* ( to 50µL) 

*double distilled H2O  
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Table 2.2: Programme used for Site-Directed Mutagenesis PCR 

Step Temperature (
o
C) Time (s) Cycles 

INITIATION 95 30 1 

DENATURATION 95 30 12-18
*
 

ANNEALING 55 30  

ELONGATION 68 60/kb plasmid length  

HOLD 4 ∞  

 

* = 12 for point mutation, 16 for single amino acid change, 18 for multiple amino acid deletion/insertion 

 

   Immediately following the reaction, the PCR product was treated with 2µL of the 

restriction endonuclease DpnI which promotes the specific digestion of methylated 

template (parental) DNA (target sequence: 5’-GM6ATC-3’). The PCR product was 

incubated with the DpnI enzyme at 37
o
C for 2hr, before 3µL of the digested mutated 

DNA-plasmid was transformed into XL1 Blue or Top 10 (homemade cells cultured 

from Life Technologies stocks – see Appendix B) chemically competent E. coli cells, as 

described in 2.1.2.  

 

2.1.1.1 Designing Mutants Suitable for EPR 

   Generally, to be considered a suitable candidate for SDSL, mutations are made in 

non-conserved, hydrophilic, surface exposed regions, usually alpha helices, to facilitate 

efficient incorporation of spin labels into proteins of interest, whilst maintaining 

stability.  

   When making mutations, one must take into consideration which amino acids are 

being substituted, and opt for substitutions which are conservative, with amino acids 

possessing similar characteristics. For example, serine, glutamate and asparagine are all 

uncharged residues, as is cysteine, which makes substitution to cysteine for SDSL less 

drastic.  

 

2.1.1.2 Primer Design 

   Following guidelines set out in the Stratagene Quikchange © SDM manual, primers 

were designed to facilitate directional cloning. Generally, both forward and reverse 

mutagenic primers were designed to contain the desired mutation, and anneal 

complementarily to the plasmid. Primers should be between 25 and 45 bases in length, 
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with a melting temperature (Tmelt), higher than, or equal to 78
o
C. The Tmelt for each 

primer was determined using equation 2.1: 

 

Tmelt = 81.5 + 0.41 (%GC) – 675/N - % mismatch (EQUATION 2.1), 

 

where N is the primer length in bases and % GC and % mismatch are whole numbers. 

The mutation was designed to be in the centre of the mutagenic primer, flanked on 

either side by 10 – 15 bases homologous to the plasmid. The overall GC content of the 

primer did not exceed 40%, and the primer terminated in one or more C or G bases. 

 

2.1.2 Transformation of Plasmid DNA into Chemically Competent E. coli Cells 

   For each transformation reaction, 50µL of XL1 blue or Top 10 (for high efficiency 

cloning) chemically competent cells were thawed on ice before being transferred to 

chilled, round bottomed 15mL Falcon© tubes. The cells were mixed with 3µL of DpnI 

digested DNA following the mutagenesis PCR. Following heat shock at 42
o
C in a 

circulating water-bath for 30s (Top 10) or 45s (XL1 Blue), cells were cooled on ice for 

2min, before 300µL of pre-warmed (37
o
C) super optimal broth (SOB) with catabolite 

repression (SOC, Life Technologies) was added to each transformation reaction to allow 

cell recovery. Cells were then incubated with shaking at 200rpm at 37
o
C.  

   This outgrowth step allows the bacteria time to generate the antibiotic resistance 

proteins encoded on the plasmid backbone so that they are able to grow once plated on 

the antibiotic containing agar plates. Following outgrowth, cells were spun down at 

13,000rpm, and pelleted cells re-suspended in 200µL SOC, before being plated onto LB 

or LSLB (Zeocin
TM

 only) agar plates containing the appropriate antibiotics for selection 

(Table 2.3) (50 and 150µL). 
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Table 2.3: Final concentration of antibiotics for selection following E. coli transformation 

 

 

 

 

 

 

 

 

 

 

 

 

2.1.3 Isolation and Purification of Plasmid DNA 

 

   To prepare plasmid DNA from bacterial cultures, a QIAprep Spin MiniPrep kit was 

used for the preparation and purification of plasmid DNA on a small-scale (up to 20µg 

of high copy plasmid DNA from 5mL of E. coli culture grown overnight in LB broth) 

and the HiSpeed Plasmid Maxi (QIAgen, Hilden, Germany) kit for large-scale isolation 

(up to 500µg from up to 500mL of culture). The QIAquick Gel extraction kit (QIAgen) 

was used to recover and purify DNA from agarose gels. All buffers used in 2.1.3.1, 

2.1.3.2, and 2.1.3.3 were provided with, and used according to the manufacturer’s 

instructions (Qiagen, Hilden, Germany). Purified DNA was stored at -20°C.  

 

2.1.3.1 Mini-Prep  

 

   A single colony from a freshly streaked transformation plate was used to inoculate 

5mL of LB/LSLB medium containing the appropriate antibiotic for selection. The 

cultures were incubated with shaking at 200rpm at 37
o
C for 16hr before cells were 

harvested by centrifugation at 4,500rpm, for 10min at 4
o
C. Pelleted bacterial cells were 

re-suspended in 250µL of Buffer P1, followed by the addition of 250µL of P2 to initiate 

cell lysis.  

Kanamycin (Kan.) 

A 

100µg/mL 

 

 

 

 

 

Ampicillin (Amp.) 

T 

100µg/mL 

 

 

 

 

Tetracycline (Tet.) 25µg/mL 

Chloramphenicol (Cm.) 100µg/mL 

Zeocin
TM 

(Zeo.) 25µg/mL 

Amp. & Kan. 50 & 50µg/mL 

Amp. & Cm. 50 & 50µg/mL 

Kan. & Cm. 50 & 50µg/mL 

Kan. & Tet. 50 & 25µg/mL 
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   Buffer N3 was then added at a volume of 350µL to neutralise the lysis reaction, and 

the reaction mixture was spun at 13,000rpm at 4
o
C for 10min. The resulting supernatant 

was then loaded onto the QIAprep® spin column. The column was spun at 13,000rpm 

for 1min, discarding the flow-through. The column was washed with 500µL of PB 

Buffer and 750µL PR Buffer, spinning between washes to remove residual buffer. DNA 

was eluted by the addition of 50µL of EB buffer to the column, followed by spinning at 

13,000rpm for 1min, and the plasmid DNA concentration checked by UV spectrometry.  

 

2.1.3.2 Maxi-Prep 

 

   A single colony grown on selective media was used to inoculate 5mL of LB/LSLB 

containing the same antibiotic. The culture was incubated by shaking at 200rpm at 37
o
C 

for 9hr, before being used to seed a fresh 250mL of LB/LSLB, again with the same 

antibiotic concentrations. This culture was incubated by shaking for 16hr at 37
o
C before 

being harvested by centrifugation at 4,500rpm for 10min at 4
o
C.  

   Pelleted cells were re-suspended in 10mL of Buffer P1 before the addition of 10mL of 

Buffer P2. Cells were mixed gently by inverting, and incubated at r.t for 5min. To the 

lysed cells, 10mL of chilled Buffer P3 was added, and the mixture was allowed to 

separate into two distinct layers. The aqueous layer was applied to a QIAgen-HiSpeed 

Maxi tip, equilibrated in 10mL QBT Buffer, and allowed to enter the resin by gravity 

flow. The tip was washed with 60mL of Buffer QC, and DNA eluted from the tip by 

applying 15mL of Buffer QF by syringe, and collecting the DNA in the flow through. 

DNA was precipitated by the addition of 10.5mL of r.t isopropanol (IPA) and incubated 

at r.t for 5min after mixing. The mix was applied to the QIAprecipitator. Using a 

syringe, 2mL of 70% ethanol (EtOH) was added to the precipitator.  

   The DNA (contained within the precipitator) was eluted by adding 1mL of Elution 

Buffer (EB) to the precipitator with a syringe. The concentration of the DNA in the 

flow-through was determined by UV spectrometry.  

 

2.1.3.3 Gel Extraction 

 

   For isolation of plasmid DNA from agarose gels following DNA agarose gel 

electrophoresis (described in 2.2.2), all extractions were carried out using the QIAquick 

Gel Extraction Kit (QIAgen). The desired DNA fragment was excised from the agarose 
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gel, with a clean, sharp scalpel, taking care to avoid the inclusion of excess agarose. The 

gel slices were then weighed, and 300µL of Buffer QG added per 100mg of gel slice, 

before incubation at 50
o
C for 10min, or until gel slices dissolved. One gel volume (e.g. 

100µL to 100mg of gel) of r.t IPA was added. The mixed sample was placed in the 

QIAquick spin column and the column placed in a 2mL collection tube. The sample was 

spun at 13,000rpm for 1min and flow-through discarded. Buffer QG (500µL) was then 

added to the column, followed by spinning at 13,000rpm for 1min, discarding the flow-

through.  

   The bound DNA was washed by applying 750µL of PE Buffer to the column, 

spinning at 13,000rpm for 1min, discarding the flow-through. The column was spun 

once more to remove residual buffer, before the column was placed in a clean 2mL 

collection tube. DNA was eluted by the addition of 30µL of EB Buffer to the centre of 

the column membrane. The column was left at r.t for 3min, before being spun at 

13,000rpm for 1min to elute the now unbound DNA. Concentrations of recovered DNA 

were determined by UV spectroscopy. 

2.1.4 Sequencing of Plasmid DNA   

   In order to confirm whether mutagenesis or cloning have been successful, the plasmid 

DNA was screened using the automated service GenePool (University of Edinburgh). 

DNA sequencing for all fH constructs cloned into the pPICZα vector used primers 

targeting the alpha secretion factor, the sequences for which are shown in Table 2.4. 

Table 2.4: Sequencing primers for pPICZα 

Primer Sequence 

5’α-factor 5’-TACTATTGCCAGCATTGCTGC-3’ 

3’α-factor 5’-GCAAATGGCATTCTGACATCC-3’ 

 

   DNA sequencing for all constructs cloned into vectors carrying the T7 promoter and 

terminator (common in IPTG inducible proteins) was carried out at Genepool, 

University of Edinburgh. Primers used for targeting the T7 promoter and terminator are 

shown in Table 2.5. 

 

 



Chapter 2: Materials and Methods 

59 
 

 

Table 2.5: Sequencing primers for T7 promotor and terminator 

 

 

 

   For each sequencing reaction, 250-300ng of template DNA was added to 1µL of 

forward or reverse primer, and 4µL of prism BigDye Terminator Mix (Applied 

Biosystems, California, USA), and the reaction mixture  made up to 20µL with the 

addition of ddH2O. The BigDye Reagent is necessary for the dideoxy method for 

sequencing as developed by Sanger et al, 1977, which utilizes the ability of DNA-

polymerases to incorporate nucleotide analogues such as 2’,3’-dideoxynucleotides 

(ddNTPs).   

   When a dideoxynucleotide is incorporated at the 3’-end of the growing chain, chain 

elongation is terminated selectively at A, C, G, or T because the ddNTP lacks a 3-

hydroxyl group. The BigDye terminator mix contains four different fluorescently 

labelled ddNTPs, which are added sequentially to the primer through cycled sequencing 

reactions. The outcome is a mixture of fragments with different ddNTP residues at the 

3’-end which can be separated by polyacrylamide gel electrophoresis, where a pattern of 

bands is obtained from which the sequence can be read off. Table 2.6 outlines the 

parameters for the PCR reaction for these sequencing reactions. 

 

 

                                Table 2.6: Programme used for Sequencing PCR 

Step Temperature (
o
C) Time (s) Cycles 

INITIATION 95 30 1 

DENATURATION 96 30 24 

ANNEALING 50 30 24 

ELONGATION 60 240 

plasmid 

length 

24 

HOLD 4 ∞ - 

 

 

Primer Sequence 

5’α-factor 5’-TACTATTGCCAGCATTGCTGC-3’ 

3’α-factor 5’-GCAAATGGCATTCTGACATCC-3’ 
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2.2 Mutagenesis, Purification, and Manipulation of DNA for 

Transformation into Electro-Competent Pichia pastoris (P. pastoris) 

2.2.1 Amplification of specific CCPs from the full length codon optimised fH gene 

using PCR 

   The gene encoding full length fH, codon optimised for expression in P. pastoris, was 

purchased from GeneArt® (California, USA). This served as the template DNA from 

which both of the fH fragments used in this study were amplified. Primers were 

designed to match the first 25 bases of the desired CCP fragment for the 5’ annealing, 

and the last 25 bases of the fragment for 3’ annealing. Designing primers would result 

in amplification of just the desired fragment, either fH1-4 or fH19-20, from the full 

length gene. The following pipetting scheme and PCR programme were used to 

facilitate this (Tables 2.7 and 2.8). 

 

 

Table 2.7: PCR Reaction Mixture for CCP Amplification 

 

 

 

 

Table 2.8: Programme used for fH CCP Amplification PCR 

 

 

 

 

 

 

             5.0 µL    Pfu-buffer (10x) 

             1.0 µL ddNTPs 

             1.0 µL Primer 5’ 

             1.0 µL Primer 3’ 

             1.5 µL DMSO 

             1.0 µL Template DNA (fH gene) 

             1.0 µL Pfu Turbo® polymerase 

            38.5 µL ddH2O (final volume 50µL) 

Stage Temperature (
o
C) Time (s) Cycles 

    

INITIATION 95 300 1 

DENATURATION 95 30 35 

ANNEALING Tmelt  -5
o
C 30 35 

ELONGATION 68 120 (60/kb plasmid) 35 

EXTENSION 72 600 1 

HOLD 4 - - 
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2.2.2 DNA Agarose Gel Electrophoresis 

 

   Agarose gel electrophoresis is a well-established method for separation of DNA 

molecules according to their size. Following amplification of the fH fragments by PCR, 

the resulting PCR product was run on an agarose gel to confirm the size. Upon 

application of an external electrical field, DNA molecules migrate through the gel due 

to the nature of the negatively charged nucleic acids. DNA fragments of smaller size 

migrate readily and more quickly through the agarose gel matrix than those of larger 

size, and so are resolved further down the gel.   

   To prepare a 1% gel, 1g of agarose was added to 100mL of TBE Buffer, and the 

mixture heated in a microwave oven until the agarose was fully dissolved and the 

mixture molten. The mixture was allowed to cool to 55
o
C, before either 10µL of EtBr 

(10mg/mL stock) or 10µL of SYBR®Safe (Life Technologies, California, USA) 

(1:10,000 dilution) was added. The gel was cast with combs to create wells, and allowed 

to set.  

   Dependent on the size of construct being resolved, either a 100bp or 1kbp DNA 

ladder (2µL) was used as a size standard (New England BioLabs (NEB), Massachusetts, 

USA). Samples were prepared by the addition of sample DNA (2µL) to (5x) DNA 

loading buffer (8µL) (New England BioLabs (NEB), Massachusetts, USA). The gel 

tank was filled with TBE buffer and samples run at 90V for 30min, or until bands were 

nicely separated. EtBr and SYBR®Safe are hydrophobic molecules that work by 

intercalating DNA between the stacked bases which can then be visualised using UV 

light and a trans-illuminator (Benchtop 3 UV transilluminator, UVP, Cambridge, UK).  

 

2.2.3 Cloning of fH Fragments into pPICZαB Vector, Using Restriction Enzymes  

   Once fragment size was confirmed, SDM was carried out, as detailed in 2.1.1, to 

incorporate cysteine residues for SDSL purposes, and the restriction sites PstI and XbaI 

at the N’ and C’ termini of each fragment, respectively. Incorporation of these 

restriction sites allows for ligation of the DNA fragments into the Multiple Cloning Site 

(MCS) of the pPICZαB vector. The chosen mutations in each fragment were K247C 

and G1107C for the fH1-4 and fH19-20 fragments, respectively. Following 

unsuccessful expression tests of the fH1-4 fragment, the fH1-4 fragment was further 

mutated by the inclusion of a C’ terminal hexa-histidine tag. 
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2.2.3.1 Double Digest   

   The remainder of the PCR products of the amplified fH fragments were run on an 

agarose gel, alongside some of the empty pPICZαB vector, as detailed in 2.2.2, and gel 

extraction carried out, as detailed in 2.1.3, in order to purify the DNA. Once eluted from 

the gel extraction columns, the DNA was treated with 1µL each of the restriction 

enzymes PstI and XbaI, 1µL of Bovine Serum Albumin (BSA), and 60µL of Buffer 3.1 

(all NEB). Each fragment, and the empty vector, was incubated with the restriction 

enzymes for 2hr at 37
o
C before the enzymes were heat inactivated at 80

o
C for 20min. 

2.2.3.2 Ligation of Digested Fragments into pPICZαB   

    Following digestion with the restriction enzymes, 50ng of the cut vector was 

combined with 150ng of the relevant fragment, 2µL of 10x ligation buffer (NEB) and 

the reaction left at r.t for 10min, before 1µL of T4 DNA ligase (NEB) was added, and 

the reaction mixture adjusted to a final volume of 20µL with the addition of ddH2O. The 

reaction was left at r.t for 3 hr, before 5µL of the ligation reaction was transformed into 

Top 10 chemically competent E. coli cells, as described in 2.1.2, using Zeocin
TM

 for 

selection. 

2.2.3.3 PCR Colony Screen 

   In order to confirm whether a ligation reaction has been successful following 

transformation, it is possible to screen any colonies that form and differentiate between 

those which contain the plasmid with insert, or those that contain the empty plasmid 

vector. From fresh ligation transformation plates, several colonies were re-streaked onto 

relevant agar media with appropriate antibiotic to give more working material. After a 

20hr period, a scraping from each colony restreak was used to inoculate a separate 20µL 

of EB Buffer (QIA Prep MiniPrep Kit), until the reaction mixture was cloudy. The 

samples were heated at 95
o
C for 5min to lyse the bacteria and solubilize the plasmid 

DNA. To 5µL of PCR MasterMix (Promega), 2µL of both the forward and reverse 

sequencing primers (Tables 2.4 and 2.5) were added, alongside 2µL of the lysed 

bacteria. The programme used for thermal cycling is outlined in Table 2.9. 
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Table 2.9: Programme used for PCR Colony Screen 

Step Temperature (
o
C) Time (s) Cycles 

INITIATION 95 120 1 

DENATURATION 95 45 39 

ANNEALING 55 45 39 

ELONGATION 72 120 39 

EXTENSION 72 300 39 

HOLD 4 ∞ - 

 

   Immediately following the PCR reaction, each colony was tested for successful 

ligation by analysing each PCR product by DNA agarose gel electrophoresis (2.2.2). 

This procedure distinguishes between those colonies carrying the relevant insert and 

those which contained empty plasmid vector, which still contains the relevant antibiotic 

resistance markers. Those clones which appear at the expected size for the fragment 

successfully ligated into the vector were confirmed by sequencing (2.1.4), before maxi-

preps (2.1.3) were carried out to yield more DNA. 

2.2.4 Preparation of DNA for Transformation into P.  pastoris                                     

   Purified plasmid DNA that had been previously transformed into E. coli required 

linearization before it could be successfully incorporated into P. pastoris via 

homologous recombination. Therefore, 25µg of plasmid DNA (from maxiprep), was 

incubated with 5µL of the restriction enzyme SacI (plus 6µL BSA and 60µL Buffer I, 

NEB) which cuts at a specific recognition site in pPICZαB. Consequently, it is vital that 

the gene of interest does not contain this restriction site. Successful linearization was 

confirmed by agarose gel electrophoresis (2.2.2) and the enzyme heat-inactivated by 

incubating at 62
o
C for 30min. 

2.2.4.1 Phenol-Chloroform Extraction              

   To clean the DNA and eliminate any residual enzyme, a phenol-chloroform extraction 

was performed using a phenol:chloroform:isoamyl alcohol mixture (25:24:1) saturated 

with 10mM Tris, pH 8.0, 1mM EDTA. Briefly, the DNA was washed with an equal 

volume of phenol:chloroform before being spun for 1min at 13,000rpm (4
o
C). The 

aqueous layer was then washed in the same manner. Finally, an equal volume of 
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chloroform was added to the aqueous layer, the mixture spun, and the aqueous layer 

taken off. A 10% solution (v/v) of sodium acetate (NaAc) was added (3M, pH 5.2) as 

well as 2.5mL of ice cold 100% EtOH. The mixture was then kept at -20
o
C overnight 

before undergoing EtOH precipitation. 

2.2.4.2 EtOH Precipitation 

   Following overnight incubation at -20
o
C, the DNA sample was spun at 13,000rpm for 

30min at 4
o
C. The supernatant was discarded and 400µL of ice cold 70% EtOH added. 

Further spinning at 13,000rpm for 10min at 4
o
C followed. The supernatant was 

removed and the pellet allowed to air dry, before being re-suspended in 11µL of ddH2O. 

DNA was stored at -20
o
C. 

2.2.5 Preparation of electro-competent P. pastoris cells 

   From a stab culture (Invitrogen) of P. pastoris strain KM71H, YPD agar plates were 

streaked to obtain single colonies. A single colony was used to inoculate 5mL of YPD 

medium and this was left shaking overnight at 30
o
C. The overnight culture was then 

used in volumes of 20,40 and 80µL to inoculate a fresh 100mL of YPD medium (in 

3x1L baffled flasks), and left overnight at 30
o
C until an OD600 of between 1.3 and 1.5 

was achieved. Three different inoculation volumes were used to ensure there were cells 

available should one culture overgrow.  

   Cells were harvested by centrifugation at 1,500 x g for 5min at 4
o
C and the pellet re-

suspended in 100mL of ice-cold ddH2O (sterilized by autoclaving). Spinning was 

repeated, and cells re-suspended in 50mL of ice-cold ddH2O. Following another spin 

the cells were re-suspended in 4mL of ice cold IM sorbitol (sterilized by autoclaving) 

before the final spin and re-suspension in 200µL of ice-cold 1M sorbitol. Cells were 

kept on ice for use that day as they cannot be stored. 

2.2.6 Electro-transformation of P. pastoris 

   Linearised DNA (~30µg in no more than 10µL) was added to the wall of a pre-chilled 

electroporation cuvette (Gene Pulser Cuvettes 0.2cm gap, BioRad, Hemel Hempstead, 

UK) and 80µL of the electro-competent P. pastoris cells allowed to wash over the 

DNA. The cuvette was incubated on ice for 5min then cells pulsed at 1.5V for 6s 

(resistance selection: low range 200Ω, high range 1500Ω, BioRad Genepulser © II, 
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BioRad). Immediately after, 1mL of ice cold YPDS media was added to the cuvette and 

the contents transferred into a sterile pre-chilled 15mL Falcon 
TM

 conical tube.  

   The cells were incubated without shaking for 3hr at 30
o
C, before being plated in 

volumes of 150µL and 250µL on YPDS agar at varied Zeocin
TM

 concentrations (100, 

200, 300, and 500µg/mL). Plates were incubated for 5 days at 30
o
C until colonies 

formed. Colonies found on those plates with higher Zeocin
TM

 concentration contain 

multiple plasmid inserts and are therefore likely to yield higher levels of protein due to 

higher expression levels.                 

2.3 Recombinant Protein Expression Using E. coli Expression Systems 

   Expression on all scales (unless otherwise stated) was carried out at 37
o
C in a shaking 

incubator (250rpm, New Brunswick Scientific Model G25, Innova 4430 incubator 

shaker, New Brunswick Scientific, St Albans, UK). For overexpression of recombinant 

proteins, plasmid DNA was transformed into either DH10β or BL21 (DE3) E. coli cells, 

as described in 2.1.2, using heat shock at 42
o
C for 45 and 30 s respectively. Otherwise, 

cells provided as glycerol stocks in Rosetta
TM

2(DE3) cells were plated on LB agar 

containing the appropriate concentrations of antibiotic in order to isolate single 

colonies. All cells were harvested by centrifugation with the Sorvall© legend RT 

centrifuge, using the Sorvall© SH-3000 swinging bucket rotor and SS-34 fixed angle 

rotor (Thermo Scientific, UK). 

 

2.3.1 Expression of RLC/MiniHMM Constructs 

 

   Original plasmids for expression of the MiniHMM fragment, human cardiac RLC and 

cardiac myosin binding protein C, domain C0, were provided by Dr Mark Pfuhl Kings 

College, London.  

   The antibiotics used for selection throughout were Amp and Kan at the concentrations 

outlined in Table 2.3. Following successful transformation of the plasmids containing 

the MiniHMM construct and the myosin RLC, a single colony was used to inoculate 

10mL of LB broth, and the culture grown over the course of one day, before 600µL was 

used to inoculate 10mL of fresh LB media. From the new culture, 500µL was added to 

each litre of LB broth (for large scale expression), and cultures grown overnight at 30
o
C 

with shaking at 200rpm. 
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    Following overnight incubation, the temperature was increased to 37
o
C, and cells 

grown until an OD600 of ~1.00 was achieved. At this point, cells were moved to 4
o
C for 

30min, before expression was induced overnight at 18
o
C, with shaking at 200rpm, with 

the addition of 100mg of IPTG (dissolved in 1mL of ddH2O) per 1L of cell culture. 

Cells were harvested by centrifugation at 6,000 rpm for 15min at 4
o
C. Supernatants 

were discarded and cells lysed. 

 

2.3.1.1 Cell Lysis of RLC/MiniHMM Constructs 
 

   Following pelleting of cells, 100mL of lysis buffer was added, and cells re-suspended. 

Cells were kept on ice for 30min, and 10mg of lysozyme added to the mixture, with 

frequent stirring. To this, 1mL of Triton X-100 (25% stock) was added, giving a final 

detergent concentration of 0.25%,  and cells kept on ice for 15min, again with frequent 

stirring.   

   Cells were frozen in liquid nitrogen for 5min before being removed and left at r.t for 

10min. Cells were broken up, and 100mL of lysis buffer added with stirring at r.t for 

15min, until all cells were thawed, and the mixture homogeneous. Cells were then 

transferred back to ice, and 500µL of DNase (2mg/mL stock) added, and cells stirred 

frequently on ice, until no longer viscous. Cells were diluted with a half volume of lysis 

buffer before being spun at 9,000rpm for 2hr at 4
o
C. 

 

2.3.2 Expression of Myoglobin Mutants and cMyBP-C Domain C0 

 

   Original plasmids for the expression of sperm whale myoglobin, as well as the 

plasmid containing the pyrrolysyl tRNA synthetase / tRNACUA(Pyl) pair for Unnatural 

amino acid incorporation were provided by Prof Jason Chin, MRC, Cambridge. 

   The antibiotics used for selection were Kan and Tet at the concentration outlined in 

Table 2.3 for cMyBP-C and Myoglobin respectively. Following successful 

transformation of plasmid DNA (2.1.2) into DH10β E. coli cells, a single colony was 

used to inoculate 100mL of LB, supplemented with the appropriate antibiotic, and the 

culture grown overnight at 37
o
C with shaking (200 rpm). Following overnight 

incubation, 10mL of the starter culture was used to sub-culture each litre of LB. Cells 

were grown until an OD600 of between 0.6 -0.8 was achieved, before protein expression 

induced for 5hr at 37
o
C with the addition of L-arabinose (0.2% final concentration) for 
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myoglobin, and 1mM (final concentration) IPTG for the cMyBP-C domain C0. Cells 

were pelleted by centrifugation, supernatants discarded, and cells kept at -20
o
C until cell 

lysis by sonication. 

 

2.3.2.1 Cell Lysis of Myoglobin Mutants and cMyBP-C Domain C0 by Sonication 

 

   All cells were allowed to thaw on ice, before being re-suspended in lysis buffer. 

Sonication was carried out on ice, using a 30s on/off cycle for 15min at 15 amplitude 

microns. The suspension was clarified by centrifugation (16,000rpm, 4
o
C) for 30min, to 

precipitate cellular debris and insoluble materials, and obtain a cell free extract. 

2.3.3 Expression of 6xHis TEV Protease 

   A glycerol stock containing Rosetta
TM

 2(DE3) cells successfully transformed with the 

recombinant 6xHIS TEV protease was kindly donated by Dr Huanting Liu and Prof. 

James H. Naismith, University of St Andrews, Scotland, UK.  

   The antibiotics used for selection throughout were Cm and Amp at the concentrations 

outlined in Table 2.3. To 10mL of LB broth, a single colony was added, and cells grown 

overnight at 37
o
C with shaking at 200rpm, before being used to inoculate 1L of LB 

broth. Cells were grown until an OD600 of 0.6 was achieved, before protein expression 

was induced by the addition of IPTG at a final concentration of 0.4mM, and cells 

incubated with shaking overnight at 37
o
C. Following overnight induction, cells were 

harvested by centrifugation at 6,000rpm for 10min at 4
o
C, and the pelleted cells kept at -

70
o
C until ready to be lysed. 

 

2.3.3.1 Cell Lysis of 6xHis TEV Protease by Sonication 

 

   Pelleted cells were thawed on ice, and re-suspended in 10mL of Lysis Buffer . Once 

homogenous, cells were sonicated on ice for 3x45s intervals, with a 1min break in 

between, at 15 amplitude microns, before being centrifuged at 10,000 rpm for 20min at 

4
o
C. The supernatant was collected and further clarified by further centrifugation at 

18,000 rpm for 30min at 4
o
C. 

 

2.3.4 Expression of Myoglobin with the UAA pK Incorporated 

 

   The antibiotics used for selection throughout were Tet and Kan at the concentrations 

outlined in Table 2.3. Following successful co-transformation of the plasmids 
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containing the myoglobin construct and the plasmid containing the relevant tRNA and 

tRNA synthetase for incorporation of the UAA pK, a single colony was used to 

inoculate 100mL of LB broth and this incubated with shaking (200rpm) overnight at 

37
o
C. Following overnight incubation, the starter culture was used to seed more LB 

broth. Cells were grown until an OD600 of 0.6-0.8 was achieved.  

   At this point, the UAA pK was added at a final concentration of 2mM and 3mM for 

single and double mutants respectively. The UAA was dissolved in DMSO. Cells were 

left shaking for 30min at r.t, before L-arabinose was added at a final concentration of 

0.2% to initiate induction. Cells were induced for 5hr at 37
o
C, before being harvested by 

centrifugation at 4,500 rpm for 15min at 4
o
C. Pelleted cells were kept at -20

o
C until 

ready to be lysed. 

 

2.3.4.1 Cell Lysis of Myoglobin containing the UAA, pK,  

 

   Pelleted cells were allowed to thaw on ice, before 10mL of r.t BugBuster
TM 

(MerkMillipore,  Massachusetts , USA) was added, and cells re-suspended. Cells were 

shaken at r.t for 60min before lysed cells were pelleted by centrifugation at 10,000rpm 

for 20min at 4
o
C. 

 

2.3.5 Expression of 14-3-3ϛ and Vps75 mutants 

 

   Agar plates from the successful transformation of the recombinant 14-3-3 ϛ and 

Vps75 proteins into Rosetta
TM

 2(DE3) were kindly provided by Dr David Norman, 

University of Dundee, Scotland, UK. From these glycerol stocks were made for 

subsequent expression. 

   The antibiotics used for selection throughout were Amp and Cm for 14-3-3ϛ and 

Vps75, respectively, at the concentrations outlined in Table 2.3. To 10mL of LB broth, 

a single colony was added, and cells grown overnight at 37
o
C with shaking at 200rpm, 

before being used to inoculate 1L of LB broth.  

   Cells were grown until an OD600 of between 0.6 and 0.8 was achieved, before protein 

expression was induced by the addition of IPTG at a final concentration of 1mM, and 

cells incubated with shaking for 4hr at 37
o
C. Following induction, cells were harvested 

by centrifugation at 6,000rpm for 10min at 4
o
C, and the pelleted cells kept at -20

o
C until 

ready to be lysed. 
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2.3.5.1 Cell Lysis of 14-3-3ϛ and Vps75 Mutants by Sonication 

 

   All cells were allowed to thaw on ice, before being re-suspended in lysis buffer. 

Sonication was carried out on ice, using a 30s on/off cycle for 15min at 10 amplitude 

microns. The suspension was clarified by centrifugation (16,000rpm, 4
o
C) for 30min, to 

precipitate cellular debris and insoluble materials, and obtain a cell free extract. 

2.4 Recombinant Protein Expression Using the P. pastoris Expression 

System 

   Expression on all scales (unless otherwise stated) was carried out at 30
o
C in a shaking 

incubator (250rpm, New Brunswick Scientific Model G25, Innova 4430 incubator 

shaker, New Brunswick Scientific, St Albans, UK). In order to optimise protein 

expression in P. pastoris there must be sufficient aeration, in particular during the 

methanol (MeOH) induction phase and therefore culture volumes did not exceed 30% of 

the total volume of the baffled flasks. All cells were harvested by centrifugation with 

the Sorvall© legend RT centrifuge, using the Sorvall© SH-3000 swinging bucket rotor, 

Thermo Scientific, UK). All media used for the expression of recombinant proteins in 

P. pastoris are included in Appendix A1 and A12. 

 

2.4.1 The P. pastoris Expression System 

   P. pastoris is a eukaryotic, single celled microorganism, ideally suited for protein 

over-expression due to the ease with which it can be manipulated and cultured. P. 

pastoris can be cultured to high cell densities for high level production of recombinant 

proteins, with the added capability in the form of post translational modifications, such 

as disulphide bond formation, protein folding, and glycosylation (Zhang et al, 2009). 

The ability to fold proteins correctly, as well as the efficient secretion of proteins extra-

cellularly puts P. pastoris at a major advantage over more traditional expression 

systems such as E. coli, especially when working with proteins with internal disulphide 

bonds and additional free cysteine residues.  

   P. pastoris is one of several expression systems capable of utilizing MeOH as both a 

carbon and energy source. This organism has a metabolic pathway for the consumption 

of MeOH based upon its oxidation to formaldehyde, catalysed by the enzyme alcohol 
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oxidase (AOX). There are numerous host strains of P. pastoris, each varying in their 

ability to utilise MeOH, due to deletions in one or both of the AOX genes. The KM71H 

strain used throughout has the Mut
S
 phenotype, meaning that it is particularly slow in 

MeOH utilisation, due to a disrupted AOX I gene. In Mut
S
 strains, transcription of the 

AOX genes is repressed when grown in the presence of sufficiently high concentrations 

of either glucose or glycerol, meaning that addition of MeOH serves primarily as an 

inducer of the disrupted AOX I promoter, whilst the alternative carbon source acts as 

the growth medium. 

   The pPICZα vector (Invitrogen) illustrated in Figure 2.1 contains the promoter for the 

AOX I region, one of the strongest known promoters in nature (Schmidt et al, 2011). 

The vector used throughout is the 3.6kb pPICZαB.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1: The pPICZαB vector: The vector map summarises the features of the pPICZαB vector, and 

its use for protein expression in P. pastoris. From Invitrogen.com 

  Upon induction with MeOH, the organism expresses the protein of interest, the gene of 

which is inserted directly behind the promoter. Insertion of the foreign gene is done so 

in the multi-cloning site which houses several unique restriction sites for the insertion of 

the desired gene.  

   The transcriptional termination sequence of the AOX I gene follows. Pichia secretes 

only a small number of proteins, and so insertion of the gene encoding the yeast mating 



Chapter 2: Materials and Methods 

71 
 

α factor peptide downstream from the AOX I targets the secretory pathway, and allows 

most proteins to be secreted directly into the media. P. pastoris has favourable 

properties for the secretion of high molecular weight proteins which are otherwise 

inefficiently secreted in most other yeast species, due to the retention of the recombinant 

protein in the periplasmic space (Schmidt et al, 2011). Lastly a Zeocin
TM

 resistance 

cassette is incorporated to allow for selection in both E. coli for plasmid 

manipulation/cloning purposes and in P.  pastoris for recombinant protein expression. 

2.4.2 Small-scale protein production 

   Due to the slow growing nature of this particular strain of P. pastoris, it is necessary 

to identify those clones which show higher levels of recombinant protein expression. 

Following transformation, small – scale expression tests were carried out for this 

purpose, allowing the best clones to be selected for larger scale flask expression or for 

fermentation purposes. A single colony was used to inoculate 5mL of BMGY media 

(for test expressions from glycerol stocks, the stock was first streaked onto the 

appropriate concentration of Zeocin
TM

 on YPDS agar, to achieve single colonies) and 

grown overnight with shaking at 30
o
C. This 5mL starter culture was then used to 

inoculate a further 95mL of fresh BMGY media and shaken at 30
o
C for 72hr, allowing 

the cell density to increase with the addition of a carbon source, whilst inhibiting 

induction. Each 100mL culture was spun down at 3,000 x g for 15min to pellet cells, 

which were then re-suspended in 25mL of BMMY media. 

    Cells were incubated at 18
o
C for 96hr with shaking, supplementing cultures with 

0.5% (v/v) MeOH once every 24hr, and twice (AM and PM) in the final 24hr period. 

Cell cultures were harvested by centrifugation at 3000 x g for 15min, and supernatants 

filter sterilized (using Millex® Syringe Filter Units, 33mm, 0.22µM PES, Merck 

Millipore, Nottingham, UK). Supernatants were either concentrated by centrifugation at 

3,000rpm using Vivaspin® 20 10,000 Dalton MWCO spin concentrators (Merck 

Millipore, Nottingham, UK) to a final volume of 1mL, or samples were taken from un-

concentrated supernatants. The supernatants were analysed for protein expression by 

sodium dodecylsulfate (SDS) polyacrylamide gel electrophoresis (Section 2.7.1). Those 

clones which were found to express best were used to make glycerol stocks, from which 

all future expression and purification were performed. 
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2.4.3 Large-scale protein production 

   Once small-scale expression tests had established which clones were better expressers 

of the protein of interest, large scale flask expression could then be carried out to 

increase yield. In a similar fashion, a single colony was used to inoculate 5mL of 

BMGY media. Following overnight incubation at 30
o
C, the 5mL starter culture was 

used to inoculate 95mL of fresh BMGY media. Cells were left shaking overnight at 

30
o
C before the 100mL was used to inoculate 400mL of fresh BMGY media, giving a 

final culture volume of 500mL per 2L baffle flask. Cells were left shaking at 30
o
C for 

48hr before being spun down at 3000 x g for 15min at 4
o
C and cells re-suspended in 

125mL BMMY media. Cells were grown for a further 96hr at 18
o
C with shaking, 

supplementing the cells with 0.5% MeOH (v/v) every 24 hr for the first 48 hr, and 

subsequently 1% MeOH every 24hr for the last 48hr (AM and PM).  

   Cell cultures were then harvested by centrifugation at 3000 x g for 15min, and 

supernatants filter sterilized. Supernatants were either concentrated by centrifugation at 

3,000rpm to a final volume of 1mL, or samples were taken from un-concentrated 

supernatants. The supernatants were analysed for protein expression by sodium 

dodecylsulfate (SDS) polyacrylamide gel and kept at 4
o
C until required for purification.  

 

2.4.4 Fermentation 

   All large-scale (ten-litre) fermentations were performed by Dr. John White at the 

University of Edinburgh. Fermentation, conducted on a Bioflow 3000 (New Brunswick 

Scientific, New Jersey, USA), allowed the temperature, pH, agitation, and air flow to be 

monitored and adjusted as required to optimise protein expression. Following successful 

transformation of fH fragments into P. pastoris, the clone which was found to express 

best was used to inoculate 2x 5mL of BMGY. The starter cultures were grown 

overnight at 30
o
C, 200rpm before being used to inoculate 2x95mL of fresh BMGY 

media. This was then grown overnight at 30
o
C, 200rpm, before the two cultures were 

used to inoculate 2x400mL of fresh BMGY media, giving a final culture volume of 1L 

(2x500mL).   

   The final 2x500mL cultures were grown overnight for 48hr at 30°C, 200 rpm and 

were used to inoculate the fermenter. The fermenter was previously supplemented with 

autoclaved fermentation media. To induce gene transcription, 0.5 % (v/v) MeOH and 
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1.5% PTM1 salts were added. After the initial MeOH had been consumed, further feeds 

of MeOH – to 1.5% (v/v) - and 1% tryptone (w/v) were given for three days; the timing 

of which was based on the agitation rate and the amount of dissolved oxygen present in 

the vessel, so as to avoid overfeeding or poisoning of the cells. Following the 

fermentation procedure, cells were spun at 4,000 rpm for 60min.  

   The supernatant was then transferred to sterile centrifuge bottles and spun again for 

60min at 7,000rpm to ensure all cell mass was removed. The spinning was all carried 

out at 4
o
C. Supernatants were then carefully decanted and a final concentration of 5mM 

EDTA and 0.5mM PMSF were added to reduce protease activity. The supernatant was 

then stored at 4
o
C for immediate purification, or at -80

o
C for long term storage before 

purification. 

2.5 Purification of Recombinant Proteins 

   All columns and resins, with the exception of the Ni-NTA Superflow cartridges 

(5mL) (QIAgen), were purchased from GE healthcare Bio-Sciences (Amersham, UK).    

Dialysis was carried out using SnakeSkin™ Dialysis Tubing, with a molecular weight 

cut off (MWCO) suitable for the protein of interest, at 4
o
C with stirring. In between 

each purification step, samples were concentrated using Vivaspin® Centrifugal 

concentrators, with MWCO suitable for the protein of interest.  

   With the exception of purification steps being performed using a peristaltic pump (P-

1, GE Healthcare, Amersham, UK), all chromatography was performed using the  fast 

protein liquid protein chromatography (FPLC) systems, AKTA FPLC (GE Healthcare 

Bio-Sciences, Amersham, UK) and AKTAxpress (Amersham Bio-Sciences, Amersham, 

UK).  

   For Immobilised Metal Affinity Chromatography (IMAC), the column was stripped 

with 5CV of 100mM EDTA, washed with 5CV of ddH2O, recharged with 5CV of 

100mM NiS04 and finally washed with 5CV of ddH2O to remove residual NiSO4, before 

purification. Before being loaded onto the Ni-NTA columns, all supernatants were filter 

sterilised using Millex® Syringe Filter Units, 33mm, 0.22µM PES, Merck Millipore, 

Nottingham, UK). 
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2.5.1 Purification of 6xHIS TEV Protease Using IMAC 

   All buffers used for the purification of the TEV protease are included in Appendix 

A8. Following centrifugation to obtain a cell-free extract, the supernatants were applied 

to a 5mL Ni-NTA Superflow Cartridge, pre-equilibrated in 5CV of equilibration buffer, 

using a peristaltic pump at a flow rate of 0.5mL/min. The column was washed with 5 

CV, and the TEV protease eluted over 5CV of elution buffer in 3 mL fractions. 

Following SDS-PAGE analysis those fractions containing TEV protease were pooled, 

and the pool dialysed for 2hr at 4
o
C (Buffer 1). This was repeated, before a final 2hr 

dialysis at 4
o
C (Buffer 2). The protein was then centrifuged at 14,000rpm for 10min at 

4
o
C to remove any precipitate, and the TEV protease stored at -80

o
C at a final 

concentration of ~ 6mg/mL. 

2.5.2 Purification of RLC/MiniHMM Constructs Using IMAC 

   All buffers used for the purification of the RLC/MiniHMM are included in Appendix 

A7. Following centrifugation to obtain a cell-free extract, the supernatants were applied 

to a pre-equilibrated (5CV) 5mL Ni-NTA Superflow Cartridge, using a peristaltic pump 

at a flow rate of 5mL/min. The column was washed with 10CV of equilibration buffer, 

before a second wash of 5CV was performed. The protein was eluted in 5CV of elution 

buffer in 3mL fractions, and protein containing fractions analysed by SDS-PAGE. 

2.5.2.1 Cleavage of the Histidine Tag 

   Fractions found to contain the myosin RLC/MiniHMM complex were pooled, and to 

this, recombinant TEV protease was added in the ratio of 1 unit of TEV protease to 100 

units of target protein (weight : weight). The cleavage reaction was allowed to persist 

for 3hr at r.t, before the mixture was dialysed overnight at 4
o
C into non-imidazole 

buffer. Following overnight dialysis, the pooled protein fractions were flowed back over 

the recharged pre-equilibrated (5CV) Ni-NTA cartridge at a flow rate of 2mL/min. The 

flow through containing the cleaved RLC/MiniHMM complex was collected from the 

column, and the column washed with 5CV of wash buffer, followed by 5CV of elution 

buffer, which acts to remove un-cleaved protein, the cleaved tag and residual TEV 

protease from the column. The elution fractions were confirmed by SDS-PAGE 
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analysis, and the cysteine mutants treated with a final concentration of 10mM DTT to 

ensure the cysteine residue incorporated for SDSL purposes is free for labelling.   

2.5.3 Purification of Wild Type, Cysteine and pK Containing Myoglobin Mutants, 

and cMyBP-C Domain C0 Using IMAC 

   All buffers used for the purification of domain C0 and the myoglobin mutants are 

included in Appendix A7 and A9, respectively. Following centrifugation to obtain a 

cell-free extract, the supernatants were applied to a pre-equilibrated 5mL Ni-NTA 

Superflow Cartridge, using a peristaltic pump at a flow rate of 2mL/min, or manual 

injection using a syringe for the UAA pK containing mutants. The column was then 

washed with 20CV, and the protein eluted in 6CV, in 1.5mL fractions, and purity 

determined by SDS-PAGE analysis. Concentrated protein was stored in 50% glycerol at 

-20
o
C before the labelling reaction was carried out.  

   Purification of low spin myoglobin for data collection on HiPER differs slightly to 

that detailed in 2.5.3, and as such is described separately in detail in 5.13. 

2.5.3.1 Size Exclusion Chromatography 

   For cysteine mutants which would be subsequently spin-labelled (2.9.1.), the sample 

was treated with a final concentration of 10mM DTT at r.t for 1 hr. A pre-equilibrated 

HiLoad
TM

 16/600 Superdex
TM

 S-75 size exclusion column was loaded with the 7.5mL 

concentrated sample, which was eluted over 1CV of elution buffer, collecting 2mL 

fractions.  

 

2.5.4 Purification of 14-3-3 ϛ Using IMAC 

   All buffers used for the purification of 14-3-3ϛ are included in Appendix A10. 

Following centrifugation to obtain a cell-free extract, the supernatants were applied to a 

pre-equilibrated (5CV) 5mL Ni-NTA Superflow Cartridge, using a peristaltic pump at a 

flow rate of 5mL/min.  

   The column was washed with 10CV of equilibration buffer, before a second wash of 

5CV was performed. The protein was eluted in 5CV of elution buffer in 3mL fractions, 

and protein containing fractions analysed by SDS-PAGE. Samples were concentrated 

using Vivaspin® centrifugal concentrators. 
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2.5.4.1 Size Exclusion Chromatography 

   A HiLoad
TM

 16/600 Superdex
TM

 S-75 size exclusion column was pre-equilibrated 

with 2CV, and the concentrated 14-3-3ϛ sample loaded onto the column, and eluted 

over 1CV with elution buffer (AKTAxpress, Amersham Biosciences, UK), collecting 

2mL fractions. 

2.5.5 Purification of Vps75 Using IMAC 

   All buffers used for the purification of Vps75 are included in Appendix A11. 

Following centrifugation to obtain a cell-free extract, the supernatants were applied to a 

pre-equilibrated (5CV) 5mL Ni-NTA Superflow Cartridge, using a peristaltic pump at a 

flow rate of 5mL/min. The column was washed with 10CV of equilibration buffer, 

before a second wash of 5CV was performed. The protein was eluted in 5CV of elution 

buffer in 3mL fractions, and protein containing fractions analysed by SDS-PAGE. 

Samples were concentrated using Vivaspin® centrifugal concentrators. 

 

2.5.5.1 Size Exclusion Chromatography 

   A HiLoad
TM

 16/600 Superdex
TM

 S-75 size exclusion column was pre-equilibrated 

with 2CV, and the concentrated Vps75 sample loaded onto the column, and eluted over 

1CV with elution buffer (AKTAxpress, Amersham Biosciences, UK), collecting 2mL 

fractions. 

2.5.6 Purification of fH 1-4 K247C Fragment Using IMAC 

   All buffers used for the purification of fH1-4 K247C are included in Appendix A3. 

The inclusion of a hexa-histidine tag at the C’ terminus of the fH1-4 facilitates the use 

of IMAC as the first catchment step in the purification of fH1-4 K247C. Due to the 

addition of EDTA (5mM) following harvesting of fermentation, the supernatant was 

diluted with wash buffer to give a final concentration of <1mM EDTA, so as not to strip 

the charged Ni-NTA cartridge. The diluted supernatant was loaded onto the pre-

equilibrated column (5CV), using a peristaltic pump at a flow rate of 2mL/min. The 

column was washed with 10CV, before the bound protein was eluted using an imidazole 

gradient of 50-500mM, over 10CV, collecting 5mL fractions. Fractions were analysed 

by SDS-PAGE. 
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2.5.6.1 Anion Exchange Chromatography  

   The concentrated samples were exchanged into wash buffer to eliminate NaCl and 

facilitate binding of the fH1-4 K247C mutant to the TricornMonoQ 4.6/100 (1.7 mL 

CV) Mono Q anion exchange column. Elution of the desired protein was achieved by 

applying a linear NaCl-gradient from 100% wash buffer to 100% elution buffer, over 

20CV, at a flow rate of 2mL/min, collecting 2mL fractions. Fractions were then 

analysed using SDS-PAGE and relevant fractions pooled and concentrated before being 

treated with a final concentration of 250µM TCEP-Hydrochloride, which acts to keep 

the incorporated cysteine free for SDSL purposes, whilst maintaining the integrity of the 

internal disulphide bonds of the fH1-4 fragment (Burns et al, 1991). 

 

2.5.6.2 Size Exclusion Chromatography 

   A HiLoad
TM

 16/600 Superdex
TM

 S-75 size exclusion column was pre-equilibrated 

with 2CV, and the concentrated fH1-4 sample loaded onto the column, and eluted over 

1CV with elution buffer (AKTAxpress, Amersham Biosciences, UK), collecting 2mL 

fractions.  

2.5.7   Purification of fH19-20 G1107C Fragment Using SP Sepharose FastFlow 

Cation Exchange Chromatography Resin 

   All buffers used for the purification of fH19-20 G1107C are included in Appendix 

A4. SP Sepharose FastFlow resin was used as the first catchment step in the purification 

of the fH19-20 G1107C fragment. To an empty XK 26/20 column (GE Healthcare), 

30mL of the resin was added, and the column packed using a peristaltic pump. 

Following expression, the supernatants were diluted by a factor of 10 using ddH2O, in 

order to reduce the conductivity, which rises as a result of the addition to PTM1 salts, 

and aids binding of the fH19-20 fragment to the ion exchange resin.  

   The diluted supernatant ranges from a final volume of between 10 and 80 litres, and 

so the supernatant was applied to the packed XK 26/20 column using a peristaltic pump, 

overnight at 4
o
C at the maximum flowrate. Elution of the desired protein was achieved 

by applying a linear NaCl-gradient from 100% wash buffer to 100% elution buffer, over 

20CV, at a flow rate of 2mL/min, collecting 2mL fractions. 
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2.5.7.1 Cation Exchange Chromatography 

   The concentrated samples were exchanged into wash buffer to eliminate NaCl and 

facilitate binding of the fH19-20 G1107C mutant to the Resource
TM

 15S cation 

exchange column. Elution of the desired protein was achieved by applying a linear 

NaCl-gradient from 100% wash buffer to 100% elution buffer, over 20CV, at a flow 

rate of 2mL/min, collecting 2mL fractions. Fractions were then analysed using SDS-

PAGE and relevant fractions pooled and concentrated before being treated with a final 

concentration of 250µM TCEP-Hydrochloride, which acts to keep the incorporated 

cysteine free for SDSL purposes, whilst maintaining the integrity if the internal 

disulphide bonds of the fH19-20 fragment. 

 

2.5.7.2 Size Exclusion Chromatography 

   A HiLoad
TM

 16/600 Superdex
TM

 S-75 size exclusion column was pre-equilibrated 

with 2CV, and the concentrated fH19-20 sample loaded onto the column, and eluted 

over 1CV with elution buffer (AKTAxpress, Amersham Biosciences, UK), collecting 

2mL fractions.  

2.6 Isolation and Purification of Complement Proteins From Human 

Blood/Plasma 

   Experiments looking at the interactions of Complement Factor H and C3b began at 

the University of Edinburgh in collaboration with Prof Paul N. Barlow (2011-2013). 

Following relocation of our research group to the University of St Andrews, work 

carried out was done so in compliance with the Ethical Application Submitted to The 

University of St Andrews, School of Physics and Astronomy (Ethics Reference No: 

PA10837, 20
th

 February 2014). Copies of the application form, participant information 

forms, statement of approval, and consent forms are included as Appendices. 

2.6.1 Small-scale isolation of complement C3 

All buffers used for the purification of C3 are included in Appendix A5. 
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2.6.1.1 Obtaining the Plasma Fraction from Whole Blood 

   Complement C3 is one of the most abundant plasma proteins, present in the plasma at 

a concentration of ~ 1.2 mg/mL (Sahu & Lambris, 2001), and so was purified from 

fresh human plasma using methods adapted from Dodds, 1993. Plasma was prepared by 

collecting freshly drawn blood (typically 20mL) from healthy volunteers into 50mL 

falcon tubes containing sodium EDTA at a final concentration of 10mM. Tubes were 

inverted to ensure thorough mixing and samples left on ice for 15min before 

centrifugation at 2,000g, for 10min at 4
o
C to obtain the plasma fraction. 

2.6.1.2 Precipitation of Major Blood Proteins 

   The plasma was made 5% (w/v) by the addition of polyethylene glycol3350 (PEG3350). 

To the plasma, 5mL of a 15% PEG3350 solution (in wash buffer) was added to 

precipitate major blood proteins, such as antibodies (e.g. IgG and IgM), and rolled for 

30min at 4
o
C, before being spun at 10,000rpm for 20min to pellet the resulting 

precipitate.  

2.6.1.3 Anion Exchange Chromatography – Q-Sepharose Fast Flow Resin 

   The supernatant was then loaded at a flow rate of 2mL/min at 4
o
C onto a 20cm x 

1.6cm diameter column (GE Healthcare) packed with Q-Sepharose® FastFlow resin, 

pre-equilibrated in 95% wash buffer and 5% elution buffer. C3 was eluted with a linear 

NaCl gradient (10CV, 5-50% elution buffer at a flow rate of 1mL/min) to a final 

concentration of 500mM NaCl, collecting elution fractions (2mL) on ice. The C3 pool 

then underwent three rounds of dialysis in a final volume of 5L of wash buffer to 

eliminate NaCl and ultimately lower the ionic strength and allow binding to the higher 

resolution Mono Q column for subsequent purification steps. (Zhang et al, 2003) 

2.6.1.4 Anion Exchange Chromatography – Mono Q 

   The 5/50 Mono Q column was pre-equilibrated with 90% wash buffer, 10% elution 

buffer. The pooled C3 fractions were eluted over several rounds of anion exchange 

chromatography using a 1M NaCl gradient (20mL, 10-30% elution buffer, at a flow rate 

of 1mL/min).  Following purification on the Mono Q column, C3 fractions were pooled 

and again dialysed three times against 5L of wash buffer to again eliminate NaCl and 
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lower ionic strength. The concentration of the purified C3 was determined to be 

0.3mg/ml using a UV spectrophotometer (Eppendorf) using C3 molar Extinction 

Coefficient at 280nm of 180,000M
-1

cm
-1

. 

2.6.1.5 Size Exclusion Chromatography 

   A HiLoad
TM

 16/600 Superdex
TM

 S-75 size exclusion column was pre-equilibrated 

with 2CV, and the concentrated C3 sample loaded onto the column, and eluted over 1 

CV, collecting 2mL fractions.  

2.6.2 Large Scale Isolation of Complement C3 

   All buffers used for the purification of C3 are included in Appendix A5. The process 

was scaled up, from a starting material of 20mL of blood (giving 10 mL plasma) to 

150mL of blood (75mL plasma). The purification process was carried out as detailed 

above, however, a Resource
TM

 15 Q column (20ml) was used between the QSFF and 

Mono Q purification steps. The concentrated samples were exchanged into wash buffer 

to eliminate NaCl and facilitate binding of the protein to the Resource
TM

 15Q anion 

exchange column. Elution of the desired protein was achieved by applying a linear 

NaCl-gradient from 100% wash buffer to 100% elution buffer, over 20 CV, at a flow 

rate of 2mL/min, collecting 2mL fractions. The remainder of the purification proceeded 

as detailed above. 

2.6.3 Conversion of C3 to C3b using Trypsin 

   All buffers used for the purification of C3b are included in Appendix A6. 

   Purified C3 was then converted to C3b using methods adapted from (Wu et al,  2009). 

To successfully convert C3 to the activated C3b and release the cysteine residue in the 

thioester for spin labelling purposes, C3 must undergo a limited trypsin proteolysis at 

37
o
C to release the C3a fragment, leaving activated C3b. Purified C3 at a concentration 

of 1mg/ml was treated with a 1% trypsin solution (w/w, enzyme/protein) for 2min at 

37
o
C in PBS, to simulate physiological pH. Immediately after incubation, 5% (w/w 

inhibitor/enzyme) soybean trypsin inhibitor was added to stop the reaction.  

   For the proposed DEER experiments, C3b is required in both a labelled and non-

labelled form. For the unlabelled reaction, following trypsin proteolysis and trypsin 
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inhibition, the sample was immediately transferred to ice, followed by treatment with a 

final concentration of 20mM iodoacetamide for 30min. Iodoacetamide binds covalently 

with the newly released cysteine residue on the activated thioester on C3b, therefore 

blocking this binding site.  

   The C3b was then diluted at a ratio of 1:1 with wash buffer, and eluted over 30 CV 

with a linear salt gradient of 100-300mM NaCl from the pre-equilibrated Mono Q 

column. The fractions containing C3b in its pure form were pooled and dialysed against 

PBS, before being stored at -80
o
C. The purity of C3b was verified using SDS-PAGE. 

2.6.4 Conversion of C3 to ‘C3 (N)’ – An Alternative to C3b 

   All buffers used for the purification of C3(N) are included in Appendix A6. 

Conversion of C3 to C3(N) was done so using protocols adapted from Holm et al, 

2012). Purified C3 was treated with a final concentration of 200mM methylamine in 

wash buffer, at 37
o
C for 3hr. The pH of the buffer was adjusted following the addition 

of methylamine (pH7.5). The reaction mixture was incubated in the presence of either 

iodoacetamide (20mM final concentration) or with a 10x molar excess of MTSSL spin 

label, depending on whether the protein was required in its labelled or unlabelled form. 

   Following the 3hr incubation period, the C3 pool was then purified in the same way 

detailed above, as for C3b. Following the final SEC step, purity of the methyl amine 

treated C3, or C3 (N), was determined by SDS-PAGE analysis, and proteins 

concentrated to ~1mg/mL before being stored at -80
o
C. 

2.7 Protein Quantification 

2.7.1 Sodium-Dodecyl Sulphate Polyacrylamide Gel Electrophoresis(SDS-PAGE) 

   All gels used for protein identification were 4-12% NuPage® Bis-Tris gels (Life 

Technologies) and were run in 1X in NuPage® MES or MOPS Buffers. For improved 

resolution of high molecular weight proteins, e.g. C3, C3b and C3(N), MOPS was the 

preferred buffer. Samples were prepared, and 4x NuPage® LDS sample buffer was 

added to a final concentration of 1x. If samples were being run in their reduced form, 

then 10x NuPage® sample-reducing agent (Life Technologies) was added to a final 

concentration of 1x.  
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   Samples were heated at 95 – 100 °C for 5min. The samples were run alongside a 

protein ladder (10 – 250 kDa range) to provide a size standard, at 250V until good 

separation of the ladder was achieved (~ 25min). Prior to staining, the gel was washed 

in water followed by heating, using a microwave oven, for 30s; this was repeated 3 

times to remove the SDS from the gel.  

   Staining was performed using traditional Coomassie Blue staining for 15min with 

shaking. The gel was then destained by the addition of Coomassie Destain and heated 

for 1min before shaking, until the Coomassie was removed from the gel, and protein 

bands could be visualised. 

2.7.2 Western Blotting 

   Western Blotting was carried out for more specific detection of particular constructs 

if, following Coomassie staining, the SDS-PAGE gels was inconclusive. All antibodies 

(Table 2.10) were diluted as per the manufacturer’s instructions. 

          Table 2.10: Antibodies used for Blotting, company purchased from, and working dilution 

Anti-Factor H polyclonal antibody (raised in 

goat)  

Calbiochem 1:200 

Anti-Goat IgG (whole molecule)–Peroxidase 

antibody (raised in rabbit)  

 

Sigma Aldrich 1:50,000 

Histidine Tag (6xHis) Monoclonal Antibody 

(raised in mouse) HRP Conjugate 

 

Life Technologies 1:5,000 

 

    In this instance, a gel was run as detailed in 2.7.1, however, the Coomassie staining 

procedure was omitted. Western blotting was carried out using standard protocol and 

PVDF membrane. Blotting pads and filter paper were soaked in Towbin Transfer 

Buffer, before being layered in the blotting module with the SDS-PAGE gel, and PVDF 

membrane, pre-soaked in 100% MeOH. The transfer was carried out using XCell II.Blot 

Module (Life Technologies) at a constant voltage of 30V for 1hr in Towbin Transfer 

buffer. The transfer was monitored by staining the gel afterwards and using pre-stained 

molecular-weight markers.  
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   After the transfer, the membrane was blocked overnight on an orbital rocking platform 

at 4
o
C using PBS containing 5 % non-fat dried milk (w/v) (blocking solution, 

supermarket brand). The membrane was then placed in a 5% (w/v) non-fat milk solution 

(in PBS) with the recommended dilution (Table 2.10) of the primary antibody, and 

incubated at 4
o
C for 3hr.  

   The membrane was rinsed with PBS and washed three times with PBS containing 

0.05 % TWEEN®20 for 30min, and washed with PBS for another 10min. The 

membrane was then probed with the secondary antibody at the desired dilution in a 5% 

(w/v) solution of non-fat milk in PBS. The secondary antibody is conjugated to horse 

radish peroxidase. This was incubated for 2hr at 4
o
C. The blot was then washed as 

described above with PBS and PBS-TWEEN® before being developed.  

   The blot was developed in the developing buffer, containing 1 diamino benzidine 

(DAB) tablet and 1 urea hydrogen peroxide tablet in 15mL of ddH2O. The HRP 

conjugated to the secondary antibody oxidizes the DAB in the presence of hydrogen 

peroxide, giving the characteristic brown staining on the membrane, indicative of the 

secondary antibody bound to the primary. The membrane was shaken for 15min to 

develop and washed with water to remove excess stain, and dried overnight.  

2.7.3 Determination of Protein Concentration Using Absorbance A280 

   Protein concentrations can be determined using the Beer-Lambert Law, shown in 

equation 2.2, where (A) = the absorbance at a given wavelength, (ε) = the molar 

extinction coefficient, (c) = Protein concentration, and (l) is the path length.   

A= εcl (EQUATION 2.2) 

   The molar extinction coefficients can be determined by entering the amino acid 

sequence of the protein of interest into the ExPASy ProtParam Tool. Proteins absorb 

light at 280nm due to the presence of chromophores such as tryptophan, tyrosine and 

phenylalanine residues. 

2.7.4 Determination of Protein Concentration Using the Micro-Bradford Assay 

   The concentration of purified proteins could be determined using a modified ‘micro’ 

version of the Bradford assay (Bradford, 1976)With the micro-Bradford assay one can 
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determine protein concentrations in the range of 1 - 10 μg/mL. The assay is a 

colourimetric technique, based on a shift in absorbance from 465 to 595nm, upon 

binding of Coomassie brilliant blue to proteins. For the purposes of this assay, the 

Bradford reagent (BioRad) was diluted by a factor of 5, and a standard series of BSA at 

concentrations 0,1,3,5,7, and 10µg/mL used for calibration. The standard and samples 

were incubated with the Bradford reagent for 10min at r.t and the absorbance was read 

at 595 nm.  

 

2.8 Protein Characterisation 

 
2.8.1 Mass Spectrometry (MS) Analysis 

 

   Samples were submitted to the Scottish Instrumentation and Resource Centre for 

Advanced Mass Spectrometry (SIRCAMS) at the University of Edinburgh for high 

resolution liquid chromatography (LC) – MS, with the aim of acquiring an approximate 

mass. The samples were supplied in 2–5μM concentrations in 20μl of either 20mM 

potassium phosphate, pH 6, or PBS. Data was collected by passage through an LC-MS 

U300HPLC 500μM PSDVB monolyth column (Dionex) followed by Fourier-transform 

ion-cyclotron resonance (FT–ICR) mass spectrometry (Bruker Daltonics 12T SolariX 

Fourier Transform Ion Cyclotron Resonance Mass Spectrometer).  

   MS was carried out at the University of Edinburgh SIRCAMS facility by Dr David 

Clarke and Dr Logan Mackay.  

   At the University of St Andrews MS facility, analysis was carried out by Dr Catherine 

Botting, and Dr Sally Shirran. Proteins submitted for intact mass determination by 

Electro-Spray Ionisation-Time of Flight MS were run at a concentration of 

10pmoles/µL.  

 

2.8.2 Ellman’s Assay - For the Quantification of Free Cysteine 

 

   This assay for the quantification of free thiols was developed in 1959 by Ellman et al, 

and further modified in 1968 by Sedlak & Lindsay. When in its reduced form, one can 

use the assay to determine the concentration of free cysteine (thiol) in a given sample, 

which proves useful for this work, when quantifying free cysteine levels before SDSL is 

carried out. The Ellman’s reagent 5,5’-dithiobis(2-nitrobenzoic acid) (DTNB), as shown 
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in Figure 2.2A, reacts quantitatively with free thiol groups, forming a mixed disulphide. 

(SH group of free cysteine, and 2-nitro-5-thiobenzoate (NTB). The NTB component is 

shown in Figure 2.2B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.2: Ellman’s Assay Reaction. DTNB (A) reacts with a free thiol to form NTB (B), the reactive 

reagent of the Ellman’s assay.   

 

 

   During the reaction of the Ellman’s Reagent with proteins containing free thiols, the 

2-nitrobenzoate-thio-anion, NTB, is stoichiometrically released, and can be detected by 

UV at 412nm. By measuring this, one can calculate the concentration of the NTB anion 

and thus the concentration of sulfhydryl groups. To ensure all proteins were in their 

reduced form prior to performing the assay, they were treated with a final concentration 

of 1mM DTT or 250µM TCEP, for 1h at r.t. The reducing agent was then removed by 

either dialysis or buffer exchange, and the Ellman’s assay was performed. 

   The DTNB working stock was made by dissolving 40mg in 10mL of DMSO, before 

diluting this 100 fold with 0.1M Tris-HCl, pH7.5, giving a 0.1mM DTNB working 

solution. Samples were prepared by adding 50µL of standard or protein to 950µL of 

DTNB working solution, incubating at r.t for 15min before measuring the absorbance of 

samples at 412nm. The assay was calibrated using a solution of L-Cysteine at various 
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known concentrations, and utilising the known extinction coefficient of the reaction 

product, NTB (13,800 M
-1

cm
-1

). The L-cysteine calibration curve is shown in Figure 

2.3. 

 

 

 

 

 

 

 

 

Figure 2.3: L-cysteine calibration curves for determining free cysteine concentration. (A) L-cysteine 

standards measured at 412nm upon reaction with DTNB. (B) Determination of thiol concentration from 

each standard, using the extinction coefficient of the NTB component at 412nm. 

 

2.9   Protein Chemistry 

 
2.9.1 SDSL of Incorporated Cysteine Residues 

 

   As stated previously, each protein was treated with a reducing agent prior to labelling, 

to ensure that the incorporated cysteine residue was free for spin labelling purposes. 

Following quantification of free thiol levels (2.8.3), each protein could then be spin-

labelled. Typically, the MTSSL spin label (Toronto Research Chemicals, Ontario, 

Canada) was added in a 10x molar excess.  

   The spin label was first dissolved in 100µL of DMSO, before the dissolved label was 

added to ~1mL of r.t 50mM Tris-HCl (pH7.5). The label was then added directly to 

pooled protein fractions, and left overnight at 4
o
C, before excess spin label was 

removed by successive rounds of dialysis or by buffer exchange using Vivaspin® 

concentrators. 

 

 

 

 

 

       A                                                                          B 
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2.10 Functional Characterisation 

 
2.10.1 Assessing Cofactor Activity of C3b, C3 (N) and fH1-4 K247C 

 

   FH regulates the activation of the complement system by acting as a cofactor in the 

cleavage of complement C3b to its inactive form, iC3b, by fI. A fluid-phase cofactor 

assay can be used to definitively say whether plasma purified C3, converted to 

C3b/C3(N), functions as such.  

   In this particular assay, the 110kDa alpha chain of C3b is cleaved into two smaller 

components (67 and 40 kD). Figure 2.4 shows a schematic representation of cleavage of 

the alpha chain, in the presence of fH and fI. 

 

 

 

 

 

 

 

 

 

Figure 2.4: Schematic Representation of the Fluid-Phase Cofactor Assay. C3b is composed of two 

disulphide linked chains, α and β. Following incubation with both fH and fI, cleavage of the 110kDa 

alpha chain results in two smaller 67 and 40kDa components. C3b is converted to iC3b, which is 

visualised using SDS-PAGE. 

 

   Upon cleavage, C3b is converted to iC3b, and no longer functions in complement 

activation, ultimately limiting the production of the convertase C3bBb, therefore 

stopping the positive feedback loop of complement activation, and limiting activation. 

FH, fI, and C3b were purchased from Complement Technology (CompTech, Texas, 

USA). For the control reactions, all three components of the assay were from 

CompTech stocks, with the negative control being carried out in the absence of fH.  

   When assessing the function of the C3b, C3 (N) and fH1-4 K247C expressed and 

purified in this work, these proteins were used in place of the CompTech standards. For 

each reaction 45ng of fI, 120ng of fH and 3µg of C3b/C3 (N) were combined in a final 

assay volume of 20µL in PBS, pH7.4. The reaction mix was vortexed and incubated at 
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37
o
C for 2 hr in a circulating water bath. An aliquot of SDS loading dye was added to 

stop the reaction, and samples were analysed by SDS-PAGE. 

 

 2.11   EPR Spectroscopy 

   R.t. CW EPR Spectra were recorded at the University of Edinburgh on a Bruker 

ESP300 X-band EPR spectrometer. At the University of St Andrews CW EPR spectra 

were recorded on a Bruker EMX X-band EPR spectrometer, using either a rectangular 

low sensitivity cavity or high sensitivity SHQE resonator, and using the AffirmoEx 

benchtop spectrometer, by ActiveSpectrum. 

DEER experiments were performed on a Bruker Elexsys 580 X-band spectrometer, 

until 2014 when high powered Q-band was introduced.  

   For DEER measurements performed at X-band the 12ns pump pulse was set to the 

maximum of the echo detected spectrum. The 32ns observer pulse was set to 65MHz 

above.  

   For DEER measurements performed at Q-band the 14ns pump pulse was set to the 

maximum of the echo detected spectrum. The 24ns observer pulse was set to 80MHz 

below. 

   Typically, CW measurements were taken in non-deuterated buffer. Where samples 

had to be frozen for DEER, a cryo-protectant was added, either glycerol or deuterated 

glycerol to a final concentration of 50%. The glycerol helps in glass formation during 

freezing, which helps with relaxation. Deuterated buffers also help prolong spin 

coherence. 

   All experiments conducted at W-band using HiPER (Cruickshank et al, 2009) were 

performed by Miss Claire Motion, University of St Andrews, Scotland, UK. 
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Chapter 3:   The Complement Factor H (fH) – C3b 

Complex: An EPR Study 

AIMS: This body of work uses EPR spectroscopy to probe the interactions of 

complement proteins C3b and Factor H (fH). Complement is a complex cascade of 

enzymatic cleavages, cumulating in cleavage of C3 to C3b, marking cells for 

destruction by the immune system. This is tightly regulated by Factor H (fH). FH 

domains 1-4 and 19-20 are known binding sites for C3b. DEER will be used to gain 

further insight into the structure of fH in the context of C3b. FH fragments are 

expressed recombinantly in Pichia pastoris yeast, and cysteine residues incorporated 

using mutagenesis for SDSL. C3b cannot be made recombinantly, and in this work is 

generated from cleavage of the purified plasma protein C3. A hidden thioester is then 

utilised as a spin-labelling site. 

3.1 The Role of the Complement System in Innate Immunity 

   First identified in human serum in the late 19
th

 century as a complement to antibodies 

in mediating bacterial lysis, the complement system emerged more than one billion 

years ago, probably as the first humoral immune system (Liszewski & Atkinson, 2015). 

The complement system is a major primary defence and clearance mechanism which 

straddles both the innate and adaptive immune systems, providing a non-specific and 

potent first-line in defence against infection (Walport, 2001). Complement activity is 

established by the orchestration of between 35 and 40 soluble plasma and cell surface 

proteins circulating as inactive precursors, which function to mark pathogenic surfaces 

and host apoptotic cells for cell lysis and clearance, whilst stimulating the adaptive 

immune response (M. C. Carroll, 2004) (Carroll & Sim, 2011). 

    Initial protection against infection occurs as a result of generation of large numbers of 

active complement proteins that bind and target cells for phagocytosis. Cleavage of 

specific complement proteins follows, which results in the release of inflammatory 

anaphylatoxins, recruitment of immune cells to the vicinity, and the initiation of an 

amplifying cascade of further cleavages, cumulating in assembly of the membrane 

attack complex (MAC), and ultimately cellular destruction (Ricklin et al, 2010). 

Regulation of these amplification cascades is of critical importance for maintaining 
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homeostasis, as well as preventing rapid depletion of complement proteins, whilst 

limiting damage to the host (Markiewski & Lambris, 2007). 

 

3.1.1 Mechanisms of Complement Activation 

 

   Dependent upon the trigger, complement can be activated via three very distinct 

cascades, namely the classical, lectin and alternative pathways of complement 

activation. Initiation of each of these biochemical cascades occurs via the proteolytic 

cleavage of inactive complement pre-cursors upstream, producing the active enzymatic 

form, enabling activation of complement proteins further downstream.  

   Although each of the three pathways is distinct in its activation, they all converge at 

the production of C3 and its cleavage to C3a and C3b, resulting in the generation of 

anaphylatoxin C5a, activation of the common terminal pathway, and assembly of the 

MAC (as reviewed by (Merle, Church et al,  2015) and (Merle, Noe et al, 2015)). 

    Activation of complement via the alternative pathway (AP) differs somewhat from 

other means of complement activation, and it is the interactions, and protein complexes 

associated with the AP of complement activation on which this work will focus.  

 

3.1.2 The Alternative Pathway of Complement Activation 

 

   Complement activation via the AP contrasts significantly with other means of 

complement activation, in that it is continuously stimulated due to an inherent ‘tick-

over’ mechanism (Janssen & Gros, 2007), whereby a buried thioester (TE) moiety in the 

thioester domain (TED) on component C3, is spontaneously hydrolysed at a slow but 

constant rate, by nucleophilic attack by water, leading to the generation of C3(H2O).  

The tick-over mechanism of the AP of complement activation is illustrated in Figure 

3.1.  

   Binding of Factor B (fB) to the C3(H2O) complex, makes it susceptible to cleavage by 

Factor D (fD), a serine protease, generating a C3 convertase, C3(H2O)Bb, which 

initiates the proteolytic cleavage of C3, releasing anaphylatoxin C3a, and main fragment 

C3b. C3b is structurally similar to C3(H2O), and so in a similar fashion, it binds fB, 

forming C3bB – the ‘pro-convertase’ complex. This encourages cleavage by fD, 

forming the fluid phase AP convertase, C3b.Bb. 
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Figure 3.1: ‘Tick-Over’ Mechanism of the AP of Complement Activation. Spontaneous hydrolysis of 

C3 at low level, leads to the formation of C3(H2O). C3(H2O)  binds fB, enabling cleavage of this complex 

by fD, resulting in formation of a soluble C3 convertase, C3.H2O.Bb. Low levels of the C3 convertase 

C3.H2O.Bb are constantly generated resulting in cleavage of C3 to C3b, which in turn, forms the AP 

convertase C3b.Bb. 

 

   Formation of this AP convertase amplifies the response, generating a positive 

feedback loop of C3 conversion to C3b, allowing rapid deposition of large numbers of 

C3b molecules (in excess of 10
8
) onto individual cellular surfaces in a process known as 

opsonisation. This amplification loop is believed to account for up to 80% of total 

complement activation (Pouw et al, 2015).  

   Some C3b re-associate with C3b.Bb complexes, resulting in the formation of 

C3b.Bb.C3b, the C5 convertase, switching the substrate to C5, and initiating the 

terminal pathway of complement activation – formation of the MAC – and targeted 

cellular destruction (Gros, 2011).   

 

3.1.3 Complement Activation – Driven by Conformational Change 

 

   Complement component C3 is a member of a family of α2-macroglobulins (α2-M), 

also containing homologous proteins C4 and C5 (Sottrup-Jensen et al, 1985), which are 

characterised by homologous sequence features including a unique and eponymous TE 

motif (Gros, Milder, & Janssen, 2008).  
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   Human C3 is synthesised in the body as a large, 185kDa, single chain polypeptide  

(Janssen & Gros, 2007), which is processed by the selective removal of four 

consecutive arginine residues (Arg 646-Arg 649), resulting in a 110kDa alpha chain 

(residues 650-1641) and a 75kDa beta chain (residues 1-645), linked by a single 

disulphide bond. Figure 3.2 shows the XRC structures of both C3 and C3b, as well as 

the TE in both its open and closed formation. 

 

 

 

 

 

Figure 3.2: Conversion of Complement C3 to its activated form C3b. Upon activation, a previously 

hidden TE, responsible for binding of C3b to target cells in the opsonisation process, is exposed. (A) 

Cartoon representation of C3 with alpha chain shown in Cyan and beta chain in Slate. The TE domain is 

shown as purple spheres. The ANA domain (C3a) is shown in magenta. PDB_ID: 2A73 (Janssen et al, 

2006). Upon cleavage to C3b (B), the ANA domain is lost, and the remainder of the protein (now C3b) 

undergoes conformational change, exposing the previously hidden TE. PDB_ID: from 2WII (Wu et al, 

2009). (C) Stick representation of the TE formed between Cys 988 and Gln 991, which is in the closed 

state in C3. Upon conversion to C3b from C3, the TE bond is broken (D), and C3b uses the newly 

exposed and activated TE for cell binding. 

   Activation of component C3 to C3b is a crucial step in each of the distinct pathways 

of the complement cascade, in which a previously unexposed TE domain becomes 

exposed, as well as multiple cryptic binding sites on C3b for interacting complement 

proteins (Janssen et al, 2005).  

   C3 is composed of 13 domains, with the eponymous TE domain housing the iso-

glutamyl cysteine TE bond (formed between the sulphur of Cys 988 and the carbonyl 

group of Gln 991). Ultimately, localization of immune response is determined by the 

reactive TE moiety of C3 (Lambris, 1988), which is buried in a hydrophobic pocket 

(residues Met 1378, Tyr 1425, Tyr1460, Phe 1047, which are conserved across the α2-M 

family), but becomes exposed in C3b after the C3a anaphylatoxin (protective ANA 

domain) is lost from C3 (following cleavage at Ser726, Arg 727).  This results in a 

truncated alpha chain (residues 727 – 1641), whilst the beta chain remains unaffected.  

Cys 988 

Cys 988 

Gln 991 
Gln 991 

Gly 989 Gly 989 

Glu 990 
Glu 990 

      A                                  B                                     C                                           D 
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   Subsequent reshuffling of the domains via conformational change, rotates the TED by 

85
o
, rendering the TE solvent-accessible (Gros et al, 2008). Rearrangement of the TED 

cleaves the newly exposed TE into a highly reactive thiolate anion on Cys 988 and an 

acyl-imidazole intermediate by Gln 991, which will react with any nucleophile, 

particularly carbohydrates and hydroxyl groups on target cellular surfaces.  

   It is via this TE moiety that nascent C3b molecules bind covalently to cellular surfaces 

in a process known as opsonisation. Amplification of complement activity is achieved 

by association of surface bound C3b and pro-enzyme fB, yielding the short-lived C3 

convertase C3bBb of the AP (Half Life (T1/2) = 90s). Conversion of subsequent C3 

molecules to C3a and C3b stimulates the relevant immune response whilst amplifying 

the positive feedback loop of complement activation (Law & Dodds, 1997a), enabling 

elimination of both self and non-self target cells. It is the covalent coupling of C3b via 

this TE to target particles which is critical in the generation of local complement 

activation and amplification (Gros et al, 2008). 

3.1.4 Derivatization of Complement C3 – Labelling with Bio-Reporters 

   The highly labile and conserved TE motif of the α2-M class of proteins is an 

extremely rare and distinctive post –translational modification, making these proteins 

theoretically amenable to selective, site specific, labelling (Cole et al, 2009). 

  Upon activation from C3 to C3b, although the TE becomes more exposed, and 

extremely reactive to many nucleophiles, this reactivity is very short lived, and the 

coupling efficiency of C3b to targets is greatly reduced, due to the shortened life span of 

the TE (Holm et al, 2012). The fast hydrolysis of the TE in C3b provides  means to 

contain the potentially damaging reaction to the immediate proximity of the site of 

activation, however, this greatly reduces the potential of labelling the free cysteine of 

the newly cleaved TE with specific probes e.g. with nitroxide spin labels for EPR 

studies.  

   The previously discussed inherent ‘tick over’ mechanism of the AP of complement 

activation, whereby intact C3 is slowly hydrolysed at low level to C3(H2O), 

demonstrates that the TE bond of C3, although buried in the inactive form, is solvent 

exposed. The intact TE protein behaves as a typical protein TE, with an estimated half- 

life of hydrolysis of ~160 hours (Holm et al, 2012), and so it seems that this particular 

part of the pathway would be an ideal point for the incorporation of such probes.  
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This hydrolysis of C3 to C3(H2O) demonstrates that protection of the TE before 

activation from C3 to C3b is not absolute, with small nucleophiles capable of making 

similar conformational rearrangements in the native C3 (Cole et al, 2009).  

   C3 can be treated with small nucleophiles, such as methylamine, which are covalently 

incorporated into the protein, in this case forming C3(N). The TE is amino-lysed, and 

the metastable cysteine side chain of the TE bond becomes transiently available for 

chemical derivatization. This is demonstrated in Figure 3.3. 

 

 

 

 

 

 

Figure 3.3: Generalised Reaction Mechanism for the Reaction of a Nucleophile with the TE of C3. 

This gives route for the modification of the intact C3 protein without need for activation. 

   This was demonstrated by (Cole et al, 2009) and their incorporation of nucleophiles 

with different functionalities (biotin, various small peptides, tags (V5 and FLAG) and 

fluorescein) into C3 via the TE. Breaking of the TE bond using small nucleophiles 

generates C3(N), which adopts a ‘C3b-like’ structure (Law & Dodds, 1997), with ‘C3b-

like’ function (Isenman, et al, 1981), whilst the ANA domain remains bound, with 

interaction sites for fH and fI remaining exposed.  

   The TE of C3b has a t1/2 of ~60µs, making derivitization with EPR spin labels 

particularly challenging.  However, using C3(N) as an alternative, it is still possible to 

incorporate spin labels via the cysteine residue that becomes accessible following 

treatment with a nucleophile. Although the cysteine has to be derivatized relatively 

quickly, to prevent oxidation or disulphide bond formation, the potential labelling time 

is greatly increased, and should facilitate more efficient labelling of C3(N).  
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3.1.5 Regulators of Complement – fH 

   The efficacy of complement mediated immunity is dependent on maintaining a 

delicate balance between activation and regulation (Wu, et al 2010).  Labelling of cells 

with complement component C3b is indiscriminate between pathogenic invaders and 

host cells (as reviewed by Pangburn, 2000) and so the system is tightly regulated by a 

number of proteins, which ensure C3 activation in the fluid phase is kept to a minimum, 

whilst deposition of C3b on cellular surfaces, and therefore further amplification of 

complement activation, is limited to pathogenic surfaces (as reviewd by De Córdoba & 

De Jorge, 2008) 

   FH is the chief regulator of complement C3, and circulates abundantly as a 155kDa 

single chain glycoprotein in the serum, at a concentration of ~300-800µg/mL (Sim & 

DiScipio, 1982), however recent estimates have been lowered to ~150-300µg/mL 

(Hakobyan et al, 2008). Upon binding to cellular membranes via the recognition of 

specific poly-anions (Pangburn, 2000), and to C3b, fH can modulate surface-associated 

and fluid-phase amplification of complement (Pangburn, et al 2000) (Sharma & 

Pangburn, 1996).  

   FH is composed of twenty homologous repeating domains, or complement control 

protein domains (CCPs), arranged in a ‘beads on a string’ like motif, each containing 

approximately 60 amino acid residues, and separated by short linkers of between 3 and 

8 amino acids (as reviewed by Makou et al, 2013) (Pouw, et al 2015). Figure 3.4 shows 

a schematic representation of fH, showing the number of residues per CCP, and the 

number of linking residues. 

 

 

 

 

Figure 3.4: Linker lengths and residues in Complement fH. Each CCP domain is labelled 1-20 on 

complement fH, with the number of residues found in each CCP stated underneath, as well as the number 

of linking residues between neighbouring CCP domains. Figure generated from data obtained from: 

http://www.bionmr.chem.ed.ac.uk/bionmr/public_html/Residue_lengths.pdf 

http://www.bionmr.chem.ed.ac.uk/bionmr/public_html/Residue_lengths.pdf
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   It is these short linker sequences which introduce a degree of flexibility in the protein, 

and it is proposed that these linkers allow the protein to adopt a ‘bent-back’ 

arrangement, bringing the N’ and C’ termini in close proximity.  

   With the exception of CCPs 9, 14, and 17, which have not yet been solved, it has been 

found that all CCPs share a similar globular structure (Makou et al, 2012, Morgan et al, 

2012), stabilized by two disulphide bonds per CCP module, formed between four 

conserved cysteine residues present in each CCP (between Cys I and Cys III, and 

between Cys II and Cys IV) (Barlow et al, 1991). Figure 3.5 shows the solution NMR 

structure of one CCP module (CCP 16), with the internal disulphides shown as sticks.   

 

 

 

 

 

 

 

 

Figure 3.5: NMR derived three- dimensional cartoon representation of CCP 16 of fH in solution. 

The amino acid sequence of CCP 16 is shown, with the four invariant cysteine residues highlighted. In the 

structure the four invariant cysteine residues are represented as sticks, in the same colours as highlighted 

in the protein sequence. The structure was visualized using PyMOL (PDB_ID: 1HCC). 

 

   Presently, fH has not been crystallised in its entirety, this being accredited to its 

relatively large size, its ability to readily self-associate, forming dimers and higher order 

oligomers, the extent of glycosylation throughout the intact protein, and the potential 

flexibility introduced via the inter-domain linkers between neighbouring CCPs 

(Rodriguez et al, 2014).  

   Efforts have been made to obtain some degree of information on the entire fH 

structure, including solution scattering, analytical centrifugation and transmission 

electron microscopy (DiScipio, 1992) (Perkins et al, 1991) (Okemefuna et al, 2009) 

which point to an overall flexible structure that is, nonetheless, more compact, and 

predicted to be approximately half as long than would be the case if the protein existed 

in a fully extended conformation (Aslam & Perkins, 2001) (Makou et al, 2010). The 

Cys I Cys III 
Cys II Cys IV 
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bent-back structure of fH is shown schematically in Figure 3.6, and the binding sites for 

C3b highlighted. 

 

 

 

 

 

 

 

 

Figure 3.6: Schematic representation of a ‘bent back’ fH, showing distinct interaction sites for C3b. 

(N’ terminal CCPS 1-4, responsible for cofactor and decay acceleration activities shown in pink. C’ 

terminal CCPs 19-20, responsible for cell surface regulation shown in green). In this conformation the N 

and C’ termini of fH are in close proximity. 

 

   Full length fH possesses interaction sites for C3b allowing for control of C3b 

deposition, with distinct function attributed to N’ terminal CCPs 1-4 and C’ terminal 

CCPs 19-20. 

 Structural and functional analyses have shown that domains 1-4 assert their function 

via down-regulation of the feedback loop of activation, by accelerating the decay of the 

C3 convertase (Gigli et al, 1979) (Mullick et al, 2005) as well as acting as a cofactor for 

the fI mediated cleavage of C3b to its inactivated form, iC3b (Gordon et al, 1995). 

Furthermore fH1-4 accelerates the decay of the fluid phase convertase C3bBb, limiting 

the conversion of C3b from C3 (Bhattacharjee et al, 2010).  

    Sugar molecules, such as glycosaminoglycans (GAGs)and sialic acids, provide a 

diverse and complex mechanism by which the complement system can not only identify 

bacteria and other pathogens, but also identify host cell surfaces that require protection 

(Langford-Smith et al, 2015). The function of host discrimination, assigned to the C' 

terminal CCPs 19 and 20 is made possible due to the specific binding of this region to 

the C3d portion of C3b, and to poly-anionic surfaces, such as GAGs (Clark et al, 2013) 

and sialic acids (Kajander et al, 2011) (Blaum et al, 2014).  

   FH engages most effectively with C3b or C3bBb convertases, when bound to surfaces 

carrying such poly-anion markers (Ferreira et al, 2013). A High level of poly-anionic 

markers on self surfaces results in a high level of bound fH in the vicinity, and low 

levels on pathogenic surfaces, which lack these distinct markers. It is this characteristic 
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which allows discrimination by the innate immune system and activation of a relevant 

immune response (Morgan et al, 2011).   

   The importance of fH in maintaining a well-balanced immune response is reflected in 

the increasing number of diseases found to have strong association with mutations and 

polymorphisms in the gene encoding fH (Wu et al, 2009).  

   Irregular complement activation has association with a number of inflammatory 

conditions and autoimmune diseases (De Córdoba & De Jorge, 2008). Tight regulation 

of the complement response at a cellular level and in the fluid phase is of critical 

importance in providing selectivity against foreign bodies, and preventing complement 

mediated tissue damage. This is  reflected in the number of medical conditions, such as 

age related macular degeneration (AMD) and atypical haemolytic uremic syndrome 

(aHUS), which occur as a result of abnormal or incomplete complement activation or 

consumption (Pechtl et al, 2011). Therapeutic targeting of fH is considered of vital 

importance for the treatment of such conditions, associated with loss of complement 

control (Wu et al, 2009).  

 

3.1.6 The fH-C3b Interaction 

 

   The fH1-4 interaction with C3b has been well characterised, and the crystal structure, 

shown in Figure 3.7A solved (Wu et al, 2009), however, the interaction of C3b with 

fH19-20 is not as well defined, despite a small cluster of disease associated mutations 

being present in these modules, together with a polyanion-binding site that is necessary 

for self-surface recognition by fH (Morgan et al, 2011).  

   Work by Morgan et al, has shown that a complex formed between the C3d segment of 

C3b (TED) and fH19-20 emulates the interaction between fH19-20 and C3b in its 

entirety. Crystallisation of the fH19-20:TED complex resulted in three distinct 

structures within the crystal. In Figure 3.7 (BI, BII & BIII) the three potential 

conformations are shown. 
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Figure 3.7: Crystal Structures of fH bound to C3b, shown as cartoons, with accompanying 

schematics. (Crystal structures visualised using PyMOL). (A) Complement C3b (blue) bound to fH1-4 

(purple). (Wu et al, 2009) (PDB_ID: 2WII). (BI, BII, BIII) Three conformations of the TED of 

complement C3b (cyan), bound to fH19-20 (green). (Morgan et al, 2011) (PDB_ID: 3OXU). (CI, CII, 

CIII) Schematic representations of structure (A) superimposed onto each of the three fH19-20:TED 

complexes (BI, BII, BIII). 

 

   Superposition of each of the three potential fH19-20:TED structures onto the crystal 

structure of the fH1-4-C3b complex, suggests that orientation BIII corresponds to the 

physiologically crucial interface between the C’ terminal CCPs 19-20 of fH and C3b. 

This is shown in Figure 3.8.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.8: Superposition of the X-Ray Crystal structure of fH1-4 bound to C3b, with fH19-20 

bound to the TED of C3b. Visualised using PyMOL and adapted from Morgan et al, 2011. 
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   In such a position, fH does not experience any steric clashes when this interface is 

extrapolated onto the corresponding TED of C3b, nor does it impede or sterically hinder 

the functionally crucial TED interface, via which C3b is deposited on cellular surfaces. 

The alternative complexes are not possible, as these complexes would involve 

substantial steric clashes between the fH 1-4 and fH19-20 binding sites on C3b.  

   Superposition of the ternary complex places fH19-20 immediately adjacent to CCP 4 

of fH1-4, with both fragments occupying distinct regions on C3b, consistent with 

simultaneous binding, leaving CCP 20 exposed and well positioned to interact with 

poly-anionic surface markers in its role in cellular discrimination. In the modelled 

ternary complex of fH1-4:fH19-20:C3b, the C’ terminus of CCP 4 and the N’ terminus 

of CCP 19 lay in close proximity, on the same side of C3b – but most importantly they 

do not clash. This conformation is consistent with a 1:1 complex of C3b:fH, in which 

intervening CCPs form a compact bent-back structure, or with a 1:2 fH:C3b complex, 

whereby fH extends and bridges between two C3b molecules.  

   The mid-region of fH, on average, contains longer amino acid linkers between CCPs 

(Schmidt et al, 2010) and so it is proposed that it is this region, in particular between 

CCPs 12 and 13 (Schmidt et al , 2010) that acts as a flexible connection between the 

two ends of the protein, introducing a bend in the middle of the single chain 

polypeptide, and allowing it to bend back on itself. Although this hypothesis is 

desirable, it offers incomplete experimental evidence on the architecture of fH, 

particularly in the context of C3b. The above superposition of both N’ and C’ termini of 

fH with C3b can be coupled with other structural data obtained on more CCPs of fH 

using SAXS modelling, NMR spectroscopy and X-Ray Crystallography (PDB_ID: 

2WII (Wu et al, 2009), 3OXU (Morgan et al, 2011), 3SW0 (Morgan et al, 2012), 1HFH 

(Barlow et al, 1993), 2UWN (Prosser et al, 2007), 4B2R, 4B2S (Makou et al, 2012), 

2KMS (Schmidt et al, 2010). Figure 3.9 illustrates a potential model for the fH:C3b 

structure, using the structures of already defined fH fragments. 
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Figure 3.9: Model for the interaction of full length fH with C3b. The model is based on structures of 

individual CCPs, multiple CCPs, and multiple CCPs bound to C3b, as determined by X-Ray 

Crystallography and NMR Spectroscopy. In the model complex, the structures of fH CCP5, fH CCPs 6-8, 

fH CCPs 10-13 and fH CCPs 15-16 were solved by NMR Spectroscopy. The structure of fH CCPs 18-20 

was solved by X-Ray Crystallography, as is the ternary fH1-4:fH19-20:C3b. 

 

   Combining this structural data, it is proposed that fH binds C3b in a 1:1 ratio, bending 

back on itself, so that the N’ terminus is perfectly placed to carry out its cofactor and 

decay acceleration activities, whilst the C’ terminus is primed for recognition of the 

TED of C3b, and poly-anionic carbohydrates. It is these functions which stop the 

unwarranted amplification of complement activity, whilst ensuring self surfaces can be 

distinguished from bacterial. Determining whether or not the isolated domains of fH can 

simultaneously bind C3b will help shed some light onto this complex problem, and 

perhaps provide further insight into the mechanisms of fH, and consequently C3b. 

3.1.7 Aims of this work 

   To prove the hypothesis that at a given moment in time, fH can adopt a ‘bent-back’ 

structure with both N’ and C’ termini engaged simultaneously with a single molecule of 

C3b, this must be investigated at a structural level. Adopting higher resolution structural 

techniques, such as X-ray crystallography or NMR spectroscopy, would be the preferred 

strategy for probing such interactions, however, the nature of this complex is outwith 

the limits of these particular techniques.  

fH1-4:C3b:fH19-20 
ternary complex  

(proposed following 
superposition of individual 

X-Ray structures 
PDB_ID: 2WII, 3OXU 
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   Therefore EPR spectroscopy can be employed to measure nm distances to investigate 

this large bio-macromolecular complex, as the flexibility, as well as size of the 

interacting proteins, is not limited by this technique. 

   This work is done in collaboration with Professor Paul N. Barlow, University of 

Edinburgh. Using FRET, Barlow’s group  (Pechtl et al, 2010) positioned fH1-4 bound 

to C3b with CCP module 1 furthest from, and CCP4 closest to the TE domain, placing 

subsequent fH modules nearest any other surface to which C3b is bound. This data 

validates that of the proposed fH1-4/C3b crystal structure (Wu et al, 2009).     

   Consequently, it is the aim of this study to use EPR in a similar manner, using both 

regions of fH, (1-4 and 19-20) which bind C3b to address the problem which other 

structural methods cannot answer. Those fH fragments which bind C3b, namely fH1-4 

and fH19-20 will be expressed recombinantly using the P. pastoris expression system, 

following cysteine substitution mutagenesis to incorporate cysteine residues at sites of 

interest for EPR studies. Two different fH19-20 mutants, G1107C and R1210C, will be 

used for this study, alongside the fH1-4 K247C mutant. The R1210C mutant was 

provided as purified protein by Dr Andy Herbert, University of Edinburgh, which was 

then spin-labelled, whilst the fH19-20 G1107C fragment was cloned and expressed 

specifically for this work. 

   C3b cannot be made recombinantly, and so will be purified directly from human 

plasma, before the eponymous TED is utilized as a spin labelling site.  

 

 

 

 

 

 

 

 

 

Figure 3.10: Schematic representation of fH bound to Complement C3 – as shown in Figure 3.9. 

Potential spin labelling sites are represented as orange circles. Of the 20 fH CCPs, the fragments 

highlighted in red and green represent the fH1-4 and fH19-20 fragments, respectively. C3b is shown in 

blue, with the TED domain coloured light blue. In this conformation, one molecule of fH is bound to one 

molecule of C3b at any given point in time, and using SDSL, EPR will be implemented to prove this 

hypothesis. 
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   Figure 3.10 shows a schematic representation of the fH:C3b interaction, with spin 

labelling sites indicated. These aims will prove particularly challenging due to the large 

nature of the complex, and the presence of cysteine residues throughout the fH 

fragments. 

 

3.2   Simulation of the DEER Experiment for the fH:C3b Complex 

Using MMM 
 

   Using MMM, the DEER time traces and distance distributions were obtained between 

each of sites for SDSL on fH, and the TE of C3b (Figure 3.11). All give distances that 

should be measurable by DEER, although distances to the fH19-20 R1210C may be on 

the long side for precise measurements, but therefore act as a good gauge of the 

correctness of the model. 
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Figure 3.11: MMM Simulations of the DEER Time Traces (I) and Distance Distributions (II) for 

fH/C3b complexes. (A) fH1-4 K247C to the Cys988 of C3b, (B) fH1-4 K247C to fH19-20 G1107C (C) 

fH1-4 K247C to fH19-20 R1210C, (D) fH19-20 G1107C to the Cys988 of C3b (E) fH19-20 R1210C to 

the Cys988 of C3b. 
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3.3 Generation of Spin-Labelled fH1-4 K247C Fragment for EPR 

Studies, Using the P. pastoris Expression System 

   The first step in forming the complex was the generation of a fragment of fH 

containing just CCPs 1-4, however following cloning and expression tests this 

construct, which shall be known as fH1-4 K247C(A) showed no expression. 

3.3.1 Mutagenesis 

 

   Following SDM (2.1.1) to incorporate a C’ terminal cysteine into the fH1-4 K247C 

construct for SDSL purposes, the mutated fH DNA fragment was ligated into the 

pPICZαB vector, before the plasmid was transformed into P. pastoris for protein 

expression. Figure 3.12 shows the sequence chromatogram of the cysteine mutation, 

which can be compared to the wt sequence shown in Appendix A2.  

 

 

 

 

 

 

 
 

 

Figure 3.12: Sequencing Chromatogram confirming the presence of a cysteine residue in the fH1-4 

construct – K247C. 
 

3.3.2 Small Scale Test Expression of fH K247C 

 

   Following successful transformation of the K247C fragment into P. pastoris, multiple 

colonies were screened in small-scale expression volumes (initial volume 100mL) in 

order to identify the most highly expressing clone. At the transformation stage, cells 

were plated onto increasing concentrations of Zeocin
TM

, as those which successfully 

grow on higher concentrations during selection contain a higher copy number of 

plasmid, and are therefore most likely to give better yield. Two clones A and B, from a 

500µg/mL Zeocin
TM

 plate underwent expression tests using two different induction 

media, namely BMM and BMMY, in order to ascertain which gives better protein 

expression. After harvesting, the cell pellet was discarded and the supernatant, which 
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contained the secreted protein, filtered (0.22μm) and the pH adjusted to 7.5. 

Concentrated supernatants were analysed by SDS-PAGE, as shown in Figure 3.13. 

 

 

 

 

 

 

 

 
 

 

Figure 3.13: SDS-PAGE Analysis of small scale test expression of the fH1-4 K247C mutant. Sample 

lanes 1-4 and 5-8 show expression of clones A & B respectively, induced in both BMM and BMMY 

media. 

 

   The fH1-4 K247C should run at approximately 30kDa following SDS-PAGE analysis, 

and in sample lanes 3 and 4, and 7 and 8 there is indication of a band (circled) 

corresponding to this expected molecular weight. As stated prior, the samples were run 

in both their reduced and non-reduced forms, and, as so, there should be a notable 

difference between the observed molecular weights of these samples. When reduced, 

the fH1-4 K247C runs at a slightly higher molecular weight, due to a reduction of the 

internal disulphide bonds in fH, forcing it to migrate more slowly through the gel. It can 

therefore be assumed that any bands corresponding to the expected molecular weight 

are most likely yeast proteins found in the concentrated, un-purified supernatants, as the 

expected banding pattern is not observed.  

 

3.3.3 The need for an Affinity Tag 

 

   fH1-4 is susceptible to proteolysis and degradation over time. Problems with its 

stability mean its expression and purification in high yield proves problematic 

(Hocking, 2008). Codon optimisation of the fH gene allows for optimal expression 

using the P. pastoris expression system, however, further methods must be employed to 

optimise expression and yield.  

   Previous work carried out by Dr. David Kavanagh, University of Edinburgh, found 

that inclusion of a C’ terminal hexa-histidine affinity tag as well as an N’ terminal c-
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Myc-epitope (EQKLISEEDL) onto a non-codon-optimised fH1-4 fragment helped 

stabilise the construct, with evidence of reduced proteolytic degradation, as well as the 

additional advantage of ease of purification using IMAC, thus minimising sample 

handling (Pechtl et al, 2011).  

 

3.3.4 Mutagenesis – Incorporation of a C’ Hexa-Histidine Tag onto fH1-4 K247C 
 

   A C’ terminal histidine tag was incorporated onto the fH1-4 K247C construct using 

SDM (Figure 3.14) in hopes of increasing yields and facilitating easier purification.  

   From this point onwards, fH1-4 K247C refers to the K247C mutant with the C’ 

terminal hexa-histidine tag. Following successful transformation into P. pastoris, as 

before, small scale expression tests were carried out in order to identity the clones, if 

any, which gave best expression. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Confirmation of the presence of a hexa-Histidine tag onto fH1-4 K247C. (A) shows 

sequencing chromatogram for the wt fH1-4 protein, whilst (B) shows the sequencing chromatogram for 

the modified fH1-4 K247C mutant, with the inclusion of the affinity tag. 

 

3.3.5 Small Scale Test Expression of fH1-4 K247C 

 

   Small scale test expressions were used to establish which clones expressed best, using 

three colonies from each of the three selection plates (200, 300 and 500µg/mL 

Zeocin
TM

). From the test expressions of fH K247C, before the addition of the hexa-

histidine tag, although there was no expression of fH, SDS-PAGE analysis shows that 

endogenous P. pastoris proteins showed better expression levels.  
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   Consequently, the enriched media BMGY was used, with BMMY used for induction, 

in order to optimise protein expression and improve yield. After harvesting, the cell 

pellet was discarded and the supernatant, which contained the secreted protein, was 

filtered (0.22 μm) and the pH adjusted to 7.5. SDS-PAGE analysis (Figure 3.15) was 

carried out on the un-concentrated supernatants. 

   From SDS-PAGE analysis, it is clear that the incorporation of a hexa-histidine tag 

onto the C’ terminus of the fH1-4 K247C construct is sufficient to induce expression of 

the fragment.  

 

 

Figure 3.15: SDS-PAGE Analysis of fH1-4 K247C Expression Tests. (A) supernatants from the 

expression of three different fH1-4 K247C clones, selected on 200µg/mL Zeocin
TM

, run both non-reduced 

and reduced (B) supernatants from the expression of three different fH1-4 K247C clones, selected on 300 

and 500µg/mL Zeocin
TM

. 

 

3.3.6 Large Scale Expression of fH1-4 K247C 

 

   As described in 2.4.3, the fH1-4 K247C fragment was expressed on a larger scale of 8 

x 500mL (initial culture volume). Following culturing, cells were harvested, and a pool 

was made of all filtered supernatants and SDS-PAGE analysis carried out, as shown in 

Figure 3.16A.  To confirm that the expression bands visualised by SDS-PAGE analysis 

were indeed fH1-4 K247C, western blotting was carried out as described in 2.7.2 using 

a primary polyclonal antibody, specific for the detection of purified human fH. Results 

are shown in Figure 3.16B. 
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Figure 3.16: SDS-PAGE and Western Blotting Analysis of Expression from a single fH1-4 K247C 

clone. (A) SDS-PAGE analysis of the pooled supernatants. (B) Western blotting analysis of the pooled 

supernatants, probed with a polyclonal antibody specific for the detection of purified human fH. 

 

From both SDS-PAGE analysis and western blotting, it was confirmed that that 

believed to be fH1-4 K247C is so. 

 

3.3.7 Purification of fH1-4 K247C 

 

3.3.7.1 IMAC 

   IMAC was used as a first catchment step in the purification of fH1-4 K247C due to 

the incorporation of the hexa-histidine tag. The application of the protein to, and elution 

from the Ni-NTA Superflow Cartridge was performed using peristaltic pump. 

Purification was monitored by SDS-PAGE analysis of the flow-through (FT) from the 

column, the wash fraction, and elution fractions (E1-8), as shown in Figure 3.17.  

 

 

 

 

 

 

 

 

 

 

Figure 3.17: SDS-PAGE Analysis of the Elution of fH1-4 K247C from the Ni-NTA Superflow 

IMAC Cartridge. A sample was taken of the material that flowed through the column. A washing step 

was carried out before the protein was eluted in eight 1mL fractions (E1-E8).  
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3.3.7.2 Anion Exchange Chromatography (AEC)   Tricorn
TM

 Mono Q 4.6/100 PE 

 

   A common step in the purification of proteins which have been expressed under acidic 

conditions, such as those expressed in P. pastoris, is cation exchange chromatography 

(CEC). Usually, CEC is performed at least one pH unit below the isoelectric point (pI) 

of the protein of interest. The pI of fH1-4 K247C is ~ 5.2, meaning CEC would need to 

be performed at ~ pH4, which nears the limit of the resin (Sepharose is stable in the pH 

range 4-9, Turkova et al, 1978). AEC was carried out instead, at a pH of 9. Figure 3.18 

shows the FPLC elution profile for the elution of fH1-4 K247C from the Mono Q 

column and the corresponding SDS-PAGE analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.18: Anion Exchange chromatography of fH1-4 K247C. (A) Elution profile of fH1-4 K247C 

from the MonoQ column and (B) resulting SDS-PAGE analysis of fractions run within the circled peak. 
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3.3.7.3 Size Exclusion Chromatography  

   From the SDS-PAGE analysis of the elution from the Mono Q, there appears to be 

some dimer in several of the non-reduced fractions, therefore the pooled fractions were 

treated with a final concentration of 250µM TCEP, before SEC was performed as a final 

step. Shown in Figure 3.19 is one SEC run from the pooled fractions, with resulting 

SDS-PAGE analysis 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.19: Size Exclusion Chromatography of the fH1-4 K247C Fragment. (A) Elution profile of 

the fH1-4 K247C construct and (B) resulting SDS-PAGE analysis of relevant fractions. 

 

3.4   Generation of a Spin-Labelled fH19-20 Fragment for EPR Studies 

Using the P. pastoris Expression System 

 
3.4.1 Mutagenesis 

 

   Following SDM to incorporate an N’ terminal cysteine into the fH19-20 construct for 

SDSL purposes, the mutated fH DNA fragment was ligated into the pPICZαB vector, 

before the plasmid was transformed into P. pastoris for protein expression. Figure 3.20 
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shows the sequence chromatogram of the cysteine mutation, alongside that of the wt 

construct.  

 

 

 

 

 

 

 

 

Figure 3.20: Confirmation of the presence of a cysteine residue in the fH19-20 construct, G1107C. 
 

 

3.4.2 Small Scale Test Expression of fH19-20 G1107C 

 

   Nine different clones were selected which grew successfully on a range of different 

antibiotic concentrations, and screened in small-scale expression volumes in order to 

identify the most highly expressing clone. After harvesting, the cell pellet was discarded 

and the supernatant, which contained the secreted protein, was filtered (0.22μm) and the 

pH adjusted to 7.5. Concentrated supernatants were analysed by SDS-PAGE, as shown 

in Figure 3.21. 

 

 

Figure 3.21: SDS-PAGE Analysis of fH19-20 G1107C Expression Tests. (A) supernatants from the 

expression of three different fH19-20 G1107C clones, selected on 200µg/mL Zeocin
TM

 (B) supernatants 

from the expression of three different fH19-20 G1107C clones, selected on 300µg/mL Zeocin
TM

 (C) 

supernatants from the expression of three different fH19-20 G1107C clones, selected on 500µg/mL 

Zeocin
TM

.  
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   Unlike the fH1-4 construct, there is no need for the addition of tags to fH19-20 for 

stability. However, in Figure 3.21B, it is clear that of the three clones which were 

selected with 300µg/mL Zeocin
TM

, only two actually showed any level of protein 

expression. This result reinforces the necessity of screening multiple clones for 

expression, before large scale expressions/fermentations were performed. Of those 

clones which expressed, the levels of expression seemed consistent across all selection 

conditions. Protein expression appears consistent across all antibiotic concentrations.    

Those clones which express following selection with higher antibiotic concentrations 

generally produce more protein (Invitrogen EasySelect Manual), therefore clones 7, 8 

and 9 would appear to be the best candidates for large scale expressions. Due to the high 

molecular weight protein that appears following expression from clone 7, this clone was 

rejected. This protein is likely endogenous yeast proteins. Clones 8 and 9 were used to 

make glycerol stocks, which were subsequently used for large scale expressions. 

 

3.4.3 Fermentation of fH19-20 G1107C 

 

   As the fH19-20 G1107C construct shows good levels of expression on a small scale, it 

was decided to perform a 10L fermentation, to yield enough protein for all experiments 

required for this body of work.  

 

 

 

 

 

 

 

 

 

Figure 3.22: Example Fermentation Log from the Bioflo4500 Vessel. Throughout the fermentation 

process the agitation (red), pH (green), temperature (black)  and percentage dissolved oxygen are 

displayed on the vessel, indicating when glycerol and MeOH feeds should be carried out. 
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   During the course of the fermentation procedure, the agitation rates, levels of 

dissolved oxygen, temperature, and pH were monitored. Shown in Figure 3.22, is an 

example of the Fermentation Log obtained from the BioFlo4500 fermentation vessel. 

   Upon addition of the cells (A) to the fermentation vessel, a spike in agitation occurred. 

The yeast have begun consumption of the initial glycerol available to them, and the 

spike in agitation occurs as a result of maintaining oxygen levels in the vessel at 40%. 

Once all of the available glycerol was consumed, additional glycerol feeds were 

performed (B) in order to bulk cell mass.  

   At this point the temperature in the vessel was reduced from 30
o
C to 15

o
C before 

MeOH induction, which acts to decrease proteolysis. MeOH was then added (C) and a 

spike in agitation confirms consumption of the MeOH by the P. pastoris. Additional 

MeOH feeds followed (D) over a 72 hr period, before cells were harvested (E) by 

centrifugation.  

 

3.4.4 Purification of fH19-20 G1107C Following Fermentation 

 

3.4.4.1 SP-Sepharose FastFlow
TM

 CEC Resin 

 

    Following harvesting of cells, the crude supernatant was diluted by a factor of 10, in 

order to reduce the conductivity of the supernatant. The addition of PTM1 salts during 

the fermentation process increases the conductivity, and so diluting the supernatant 

accordingly, promotes binding of the target protein to ion exchange chromatography 

(IEC) resins, which are used throughout the purification process.  EDTA and PMSF 

were added to the diluted supernatant to a final concentration of 1mM and 0.5mM 

respectively, in order to reduce protease activity, and the pH of the supernatant was 

adjusted to ~ pH5.5.  

   The supernatant (~80 L) was flowed over a XK 26/20 column, packed with 50mL of 

SP-Sepharose Fastflow
TM

 resin, pre-equilibrated in non-salt buffer, using a peristaltic 

pump and maximum flowrate. Following application of the diluted supernatant to the 

column, the protein is eluted using a linear 1M NaCl gradient. Figure 3.23 shows the 

resulting elution profile and corresponding SDS-PAGE analysis of relevant fractions. 
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Figure 3.23: Cation Exchange Chromatography of fH19-20 G1107C from 10 Litre Fermentation. 

(A) Elution profile and (B) resulting SDS-PAGE analysis. Alternating fractions were run under the large 

peak, indicated by the red arrow in (A), with fractions run in both their reduced and non-reduced form. 

 

   Following SDS-PAGE analysis, those fractions which were found to contain fH19-20 

G1107C were pooled. It was estimated that ~3g of the recombinant protein had been 

expressed.  

 

3.4.5 Selection of an Appropriate Reducing Agent 

 

   In order to spin label the cysteine residue incorporated into fH19-20 G1107C, the 

protein must be in its monomeric form, and the cysteine residue free and accessible. 

Typically, following the final purification step, recombinant proteins are treated with a 

reducing agent, usually Dithiothreitol (DTT) in order to reduce any cystine which may 

form as a result of cysteine oxidation in the fermentation vessel, as well as reduce any 
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intra and intermolecular disulphide bonds formed between cysteine residues of proteins. 

Figure 3.24 shows the reversible oxidation of cysteine to cystine. 

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.24: Reversible Oxidation of Cysteine to Cystine, visualised using Chemdraw ®. 

 

   The SP-Sepharose resin is a low resolution cation exchanger, and simply acts as a first 

catchment step in the purification of the fH19-20 G1107C from the crude supernatant. 

Immediately following the initial catchment step, the fH19-20 G1107C was treated with 

a final concentration of 5mM DTT, however DTT at this concentration was not 

sufficient to efficiently reduce the dimeric protein to an entirely monomeric species. A 

second sample was treated with 10mM DTT, which successfully reduced the dimeric 

fH19-20 to an entirely monomeric species, and following further purification using 

higher resolution CEC, the fH19-20 G1107C appeared clean under SDS-PAGE analysis 

(not shown). 

   Following unsuccessful attempts to spin label the purified proteins, it was proposed 

that at such high concentrations of DTT, the intermolecular disulphide bonds of the fH 

fragment had been compromised, resulting in a potential mis-folding of the protein. 

   Consequently, the stability fH19-20 G1107C in the presence of various concentrations 

of DTT, and in the presence of alternative reducing agents was tested. DTT is the most 
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commonly used thiol reductant (Netto & Stadtman, 1996),  forming two products from 

one reactant, with the DTT being converted to a stable and cyclic disulphide through an 

intramolecular reaction (Getz et al, 1999), as shown in Figure 3.25. 

 

 

 

 

 

 

 

 

 

 

Figure 3.25:  Mechanism for the reduction of a disulphide with DTT, visualised using Chemdraw®. 

 

   However, trialkylphosphines are also powerful reductants, selective in the reduction 

of disulphides (Cline et al, 2004). Tris (2-carboxyethyl) phosphine (TCEP) is one such 

reductant, which is able to reduce disulphides, driven by the formation of a strong 

phosphorus-oxygen bond, as shown in Figure 3.26. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.26: Mechanism for the reduction of a disulphide bond with TCEP, visualised using 

Chemdraw ®. 
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   To assess which reducing agent was optimal for keeping the fH19-20 G1107C 

monomeric without disruption to the internal disulphide bonds, the purified protein was 

treated with varying concentrations of TCEP and DTT. The proteins were then analysed 

by SDS-PAGE to ensure complete reduction, before the amount of free thiol in each 

sample was quantified by the Ellman’s reagent, DTNB. Results are presented in Figure 

3.27 and Table 3.1. 

 

 

 

 

 

 

 

 

 

 

Figure 3.27:  SDS-PAGE Analysis of the reduction of fH19-20 G1107C with varying concentrations 

of DTT and TCEP. 

 

Table 3.1:  Concentration of free cysteine in the fH19-20 G1107C samples following reduction, as 

determined by the Ellman's assay (DTNB). 

 

 

 

 

* Initial protein concentration - 45µM 

 

   The initial concentration of the fH19-20 G1107C sample was calculated to be 

approximately 45µM (as tested by the Bradford Assay, as described in 2.7.4) and 

confirmed by checking the absorbance at 280nm. In the fH19-20 construct, there should 

be only one free cysteine residue, as the remainder should be engaged in the 

intermolecular disulphide bonds found in the CCP residues.  

   Following reduction, the amount of free thiol (cysteine) in each sample can be 

quantified when the sample is reacted with DTNB. Previously it was found that a final 

Reducing Agent (final conc.) Conc. Free Cysteine* 

DTT (5mM) Significantly exceeds 45µM 

TCEP (500µM) 54µM 

TCEP (375µM) 48µM 

TCEP (250µM) 43µM 

TCEP (125µM) 27µM 
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concentration of 1mM DTT was not sufficient to efficiently reduce the fH and keep it in 

its monomeric form. With this is mind, the ability of higher concentrations of DTT as 

well as varying concentrations of an alternative reducing agent were assessed in their 

ability to efficiently reduce fH. Upon reduction of the fH19-20 with a final 

concentration of 5mM DTT and a final concentration of over 250µM TCEP, the amount 

of free thiol in each sample significantly exceeded the protein concentration (45µM).     

This suggests that at these concentrations the reducing agent is present in high enough 

concentrations to disrupt and initiate the reduction of the internal disulphide bonds of 

the fH19-20, and potentially explains the problems with spin-labelling experienced. 

   There are a number of advantages in using TCEP as an alternative to DTT. Besides 

being odourless compared to DTT, TCEP has been shown to be more stable than DTT 

over a wider pH range (pH1.5-8.5), with increased stability at higher pH (7.5), and more 

efficient reduction at pH values below pH8 (Getz et al, 1999). A final TCEP 

concentration of 250µM was used for the reduction of any fH constructs due to 

disruption of the internal disulphide bonds as well as reduced stability at higher 

reducing concentrations. 

   Following quantification of free cysteine levels, it was concluded that purifying the fH 

fragments in the presence of such high levels of DTT is detrimental to the protein fold. 

Consequently, the fH fragment was prepared again, only large scale flask expression 

was performed instead of fermentation. The fH19-20 fragment expresses well, and 

therefore flask expression should provide enough material, whilst reducing the levels 

observed in the fermentation process. This should facilitate a quicker purification 

process, with less sample handling, and consequently less sample degradation. 

 

3.4.6 Purification of fH19-20 G1107C Following Large Scale Flask Expression 

 

   In order to overcome the problems encountered during the fermentation process, large 

scale flask expression was carried out (8 x 500mL initial culture volume) for the fH19-

20 G1107C construct. 
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3.4.6.1 SP-Sepharose FastFlow
TM

 CEC Resin 

 

   The first purification step was carried out as for the fermentation. The elution 

chromatogram and resulting SDS-PAGE analysis of relevant fractions (as indicated by 

the red arrow) are shown in Figure 3.28. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.28: Cation Exchange Chromatography of fH19-20 G1107C from Large Scale Flask 

Expression (SP Sepharose). (A) Elution profile and (B) resulting SDS-PAGE analysis. Alternating 

fractions were run under the large peak, indicated by the red arrow in (A), with fractions run in both their 

reduced and non-reduced form. 

 

3.4.6.2 Resource 15S
TM 
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   Following the initial catchment step, the fH19-20 was subsequently purified by 

multiple rounds of higher resolution cation exchange chromatography, using the 

Resource 15 S column. The protein was eluted using a linear NaCl gradient up to 1M 
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NaCl. From previous purification steps, it was found that fH19-20 elutes at ~230mM 

NaCl, and so the fractions in the first major peak were analysed by SDS-PAGE. The 

elution chromatogram from one of the runs is shown alongside the resulting SDS page 

analysis in Figure 3.29. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.29: Cation Exchange Chromatography of fH19-20 G1107C from Large Scale Flask 

Expression (Source 15 S). (A) Elution profile and (B) resulting SDS-PAGE analysis of alternating 

fractions run under the second major peak (C) SDS-PAGE analysis of the central fraction from the first 

major peak. 
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fractions from the second major did not appear to have any clipped protein present, and 

so these were the fractions which were pooled for subsequent purification steps. 

 

3.4.6.3 Size Exclusion Chromatography  

   From the SDS-PAGE analysis of the elution from the Resource 15S, there appears to 

be a little dimer in the non-reduced fractions, therefore the pooled fractions were treated 

with a final concentration of 250µM TCEP, before SEC was performed as a final 

purification step. Shown in Figure 3.30 is one run from the pooled fractions, with 

resulting SDS-PAGE analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.30: Size Exclusion Chromatography of the fH19-20 G1107C Fragment. (A) Elution profile 

of the fH19-20 G1107C construct and (B) resulting SDS-PAGE analysis of relevant fractions. 
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MTSSL, as described in 2.9.1. The excess spin label was removed, and r.t CW EPR 

spectra of the labelled fH samples collected. The CW EPR spectra are shown in Figure 

3.31. 

    

 

 

 

 

 

 

 

 

 

 

 
Figure 3.31: X-band CW EPR of fH1-4 K247C and fH19-20 G1107C constructs. Spectra taken at r.t 

(non-saturating conditions), using a Bruker EMX X-band EPR spectrometer, using a rectangular low 

sensitivity cavity. 

 

   The solution EPR results are important for two reasons: the degree of spin labelling 

can be determined and the rigidity of the label bound to the protein can be assessed. 

Solutions (40μL) of 4-hydroxy-TEMPO were used as calibration standards, and the spin 

labelling efficiency was deemed to be between 90 and 95% for the fH1-4 and fH19-20 

samples respectively. Labelling efficiency can be approximated by quantifying the 

absolute number of spins in the sample through double integration of the CW-EPR 

spectrum, and comparing this value to the concentration  

   The spin-labelled fH fragments were frozen in 50% glycerol in PBS, and kept at -

20
o
C, however, upon thawing of fH fragments the CW EPR spectra for both fragments 

had changed considerably. Figure 3.32 shows the CW EPR spectra taken for the fH1-4 

fragment following freeze-thaw.   

   It is evident that the spectrum obtained is not the characteristic three –line spectrum of 

a typical nitroxide radical. The same was observed for the fH19-20 G1107C mutant. It 

is proposed that upon freezing, due to the extensive disulphide bonds present in the 
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fragments, there has been a potential reshuffling of the disulphide bonds, forcing the 

incorporated spin labels from the residues used for incorporation.   

 

 

 

 

 

 

 

Figure 3.32: X-Band CW EPR Spectrum of the fH1-4 K247C construct following freezing. Spectrum 

taken at r.t under non-saturating conditions, using the AffirmoEx benchtop spectrometer, by 

ActiveSpectrum. 

   Typically, a five-line spectrum like the one shown above is indicative of biradical.  In 

this instance that equates to the label which has been removed ‘talking’ to any label 

which remains bound to the protein of interest. At this stage, both fragments were 

extensively washed, in order to remove any now unbound label, however the bi-radical 

effect, although improved, was impossible to completely remove. 

   Going ahead with fH fragments in which labelling efficiencies could now not be 

determined, and the state of the label unsure was not possible, and so unfortunately, at 

this stage attempts were abandoned to salvage the labelled fragments, and they were 

both expressed again. 

   Halfway through this project, the lab was relocated, and so expression from the 

original glycerol stocks was tested to ensure expression was as it had been. 

Unfortunately these had not survived in transit, and so for each fragment, the entire 

transformation/test expression and large scale expression steps had to be repeated, and 

the proteins purified, assayed and finally spin labelled. These steps were repeated 

exactly as before, using large-scale flask expressions (8x500mL starting volume). 

Figure 3.33 shows the SDS-PAGE analysis and CW EPR of the new spin-labelled fH 

fragments.  
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   The fH19-20 R1210C (purified by Dr Andy Herbert, University of Edinburgh, 

Scotland, UK) mutant was treated with a final concentration of 250µM TCEP, and spin 

labelled. The CW EPR spectrum and SDS-PAGE analysis of this mutant is shown 

alongside the SDS-PAGE analysis of the new fH1-4 K247C and fH19-20 G1107C 

fragments, as well as their CW EPR spectra in Figure 3.33. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.33: CW EPR spectra and SDS-PAGE analysis of fH1-4K247C (A&D), fH19-20 G1107C 

(B&E) and fH19-20 R1210C (C&F). CW EPR spectra were taken at r.t under non saturating conditions 

using the AffirmoEx benchtop spectrometer, by ActiveSpectrum, whilst SDS-PAGE analysis shows 

samples run in both their educed and non-reduced forms. 

 

Final yields from the final fH preps used for EPR experiments are shown in Table 3.2. 

Table 3.2: FH fragments yields following expression in P. pastoris, and purification 

 

 

 

 

 

 

fH Fragment Expression Volume Final Yield 

   

fH1-4 K247C 8 x 500mL (starting volume) ~1.7mg 

fH19-20 G1107C 8 x 500mL (starting volume) ~6mg 

fH19-20 R1210C 8 x 500mL (starting volume) ~3.4mg 
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3.6 Generation of Spin-Labelled C3b, Following Isolation and 

Purification of C3  

   Unlike the fH fragments which can be made recombinantly, C3b cannot be made 

using recombinant methods and so there is need for a different strategy for purification. 

C3b for the EPR study was derived from complement component C3, which was first 

isolated and purified from human plasma. In native C3, the highly reactive TE is 

shielded from reacting nucleophiles, however, upon activation to C3b, the TE domain 

becomes exposed, and can be exploited for SDSL of complement C3b. 

3.6.1 Small Scale Isolation of C3/C3b 

3.6.1.1 Q-Sepharose FastFlow
TM

 AEC Resin 

   Complement component C3 is one of the most abundant plasma proteins, and, as so, 

was purified from human plasma, following methods adapted from (Dodds, 1993). 

Following precipitation of the plasma fraction with PEG3350, the supernatant containing 

C3 and C4 was loaded onto a XK 26/20 column packed with 10mL of pre-equilibrated 

QSFF resin following centrifugation. The protein was eluted at a flow rate of 2mL/min 

using a linear 1M NaCl gradient.  

   C3 was eluted from the column approximately halfway through the NaCl gradient at 

~300mM NaCl, as indicated on the chromatogram. Its elution is directly preceded by 

the elution of the copper containing plasma protein ceruloplasmin, which appears blue 

in colour.  Under reducing conditions, the two chains of C3 (a 70 and 110 kDa chain) 

run separately under SDS-PAGE analysis, and so can be distinguished from the three-

chain C4 structure on the reducing gel, which elutes immediately after C3. 

    Care was taken to pool those fractions containing just C3, whilst avoiding 

contaminants such as C4 and ceruloplasmin. Avoiding these proteins resulted in a 

substantial loss of the original quantities, however, ceruloplasmin and C4 are abundant 

plasma proteins which prove difficult to eliminate in subsequent purification steps. The 

resulting elution chromatogram is shown alongside SDS-PAGE analysis of relevant 

elution fractions in Figure 3.34. 
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Figure 3.34: Anion Exchange Chromatography of Plasma C3 following PEG3350 Precipitation. (A) 

Elution Chromatogram and (B) resulting SDS-PAGE analysis of the separation of complement 

components from human plasma. Every fourth fraction eluted between 210mM and 500mM NaCl was 

run in their reduced form.  

3.6.1.2 Anion Exchange Chromatography (AEC) - Tricorn
TM

 Mono Q 4.6/100 PE          

   The pooled C3 fractions were diluted with a half volume of ddH2O to lower the ionic 

strength and facilitate binding to the MonoQ column for subsequent purification steps. 

The mono Q column was equilibrated in 90% equilibration buffer and 10% elution 

buffer, and the pooled C3 fractions loaded in several batches, and eluted within a 20mL 

linear NaCl gradient to a final concentration of 500mM NaCl, at a flow rate of 1ml/min. 

Figure 3.35 shows the elution profile obtained for one of these runs, and SDS-PAGE 

analysis of the relevant fractions. 

   Similarly to the initial catchment step, the C3 protein elutes at ~300mM NaCl. The 

fractions indicated by the red arrow in Figure 3.35 were analysed by SDS-PAGE, with 

both the alpha and beta chains of C3 visible. All C3 containing fractions from the 

multiple Mono Q purifications were pooled and dialysed into non-NaCl buffer. The 

concentration of C3 was approximated using UV absorbance at 280nm and a molar 

extinction coefficient of 180,000M
-1

cm
-1

 of C3. 
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Figure 3.35: Anion Exchange Chromatography (Mono Q) of pooled C3 Fractions Following the 

QSFF Catchment Step. (A) Elution profile from multiple pooled fractions of C3 and (B) resulting SDS-

PAGE analysis. C3 eluted form the Mono Q column at ~300mM NaCl. The fractions indicated in the 

major peak were all run in their reduced form. 

3.6.2 Conversion of C3 to C3b Using Limited Trypsin Digestion 

    In nature, conversion of C3 to C3b arises via cleavage of C3 by the C3bBb 

convertase, yielding anaphylatoxin C3a and main fragment C3b. Production of C3bBb 

in the body requires the presence of C3b first, due to the cyclic nature of the 

complement cascade, and so use of the actual convertase is not possible.  

    CVFBb, a structural mimic of the C3bBb convertase (Fritzinger et al, 2009) can be 

used as an alternative for the conversion of C3 to C3b, however, due to species 

protection, CVF cannot be imported into the U.K. Therefore, to successfully convert C3 

to the activated C3b and release the cysteine residue in the TE for spin labelling 

purposes, C3 must undergo a limited trypsin proteolysis at 37
o
C to release the C3a 

fragment, leaving activated C3b.  
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   Purified C3 at a concentration of 1mg/mL was treated with a 1% trypsin solution 

(w/w, enzyme/protein) for 2min at 37
o
C in PBS, to simulate physiological pH.     

Immediately after incubation, 5% (w/w inhibitor/enzyme) soybean trypsin inhibitor was 

added to halt the reaction.  

   Following trypsin proteolysis and trypsin inhibition, the sample was immediately 

transferred to ice, followed by treatment with a 10 x molar excess of MTSSL or a final 

concentration of iodoacetamide. The labelled C3b is then diluted at a ratio of 1:1 with 

the non-salt buffer, and eluted over 30 column volumes with a linear salt gradient of 

100-300mM NaCl from the same pre-equilibrated Mono Q column. The Mono Q AEC 

purification step acts to purify the C3b from unconverted C3, as well as removing any 

excess MTSSL/iodoacetamide. The fractions containing C3b in its pure form were 

pooled and dialysed against PBS, before being stored at -80
o
C. The purity of C3b was 

verified using SDS-PAGE, as shown in Figure 3.36. 

 

 

 

 

 

 

 

 

 

 

Figure 3.36: Anion Exchange Chromatography (Mono Q) of Digested Plasma Purified C3, 

converted to C3b. (A) Elution profile of C3b and (B) resulting SDS-PAGE analysis of fractions which 

fall under the major peak to the left, and the circled central peak. 
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3.6.3 Small Scale Isolation of C3/C3b – Troubleshooting 

   Due to the unspecific nature of trypsin proteolysis, final yields of C3b were drastically 

reduced. The theoretical yield from 10mL of human plasma is between 8 and 12 mg of 

C3, however, upon conversion to the activated C3b, the yield of C3b is approximately 

1% of the starting material. The process was scaled up, from a starting material of 20mL 

of blood (giving 10 mL plasma) to 100mL of blood (50mL of plasma). The purification 

process was carried out in the same way as detailed above, however, a Resource 15 Q 

(20mL) anion exchange column was used as an intermediate purification step between 

the QSFF and Mono Q purification steps. 

   Resource 15 Q resin is another strong anion exchanger, with higher resolution than the 

initial QSFF step. It was hoped that further cleaning before the final highest resolution 

Mono Q purification step would increase purification efficiency and reduce sample 

handling; however it was impossible to isolate C3b in its pure form following digest of 

the purified C3. The scaled up procedure was repeated, with slight modification to 

protocol, with slight modification to flow rates and pH, as well as the inclusion of a 

CEC step in between in hopes of eliminating contaminants before conversion to C3b. 

The resulting SDS-PAGE analyses are shown in Figure 3.37. 

 

Figure 3.37: SDS-PAGE analysis of C3 Purification Troubleshooting. (A) Inclusion of a Resource Q 

purification step following the initial QSFF catchment step (B) Inclusion of a CEC (Resource S) 

purification step following MonoQ purification of the C3 pool (C) A reduction in flow rate from 

1mL/min to 0.25mL/min during elution from the Mono Q (D) change in pH from 6.6 to 6. 
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   Following purification of C3, it is evident that although care has been taken to avoid 

those fractions containing the protein ceruloplasmin, C3 co-purifies alongside it, as 

confirmed by in-gel digest of the relevant band and mass spectrometry of the impurity 

using MALDI MS and MSMS at the University of St Andrews, as shown in Figure 

3.38. Following conversion from C3 to C3b, this is not eliminated 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.38: Peptide Fingerprinting of the C3 α and β chains, as well as ceruloplasmin, following in-

gel digest.  
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   Following slight modification of the purification procedures, as shown in the SDS-

PAGE analysis in Figure 3.37, the ceruloplasmin impurity could not be separated from 

C3b. A small degree of impurity may not prove problematic when using the C3b 

samples for DEER, however, the ceruloplasmin is present in large quantities. 

Ceruloplasmin is a cysteine rich protein, which means specific labelling of just the 

cysteine in the exposed TE of C3b would prove impossible. Furthermore, ceruloplasmin 

has an EPR signal from some of its copper centres (Cannistraro et al, 1990) which could 

interfere with proposed DEER experiments. Figure 3.39 shows the XRC structure of 

ceruloplasmin. 

 

 

 

 

 

Figure 3.39: Structure of Plasma Protein Ceruloplasmin showing the copper centres (orange 

spheres). (PDB_ID: 4ENZ,(Samygina et al, 2013)). 

   The protein ceruloplasmin has a theoretical pI of 5.44, and C3b 5.66, which highlights 

the difficulty in separating them using I.E.C., as based on their theoretical pIs, they 

should elute simultaneously from an anion exchange column at similar places along the 

NaCl concentration gradient. Following extensive troubleshooting it was decided new 

methods must be adopted to address these recurring issues.
 
 

3.7 Generation of Spin-Labelled C3(N), an Alternative to C3b, 

Following Isolation and Purification of C3  

   Although conversion of C3 to C3b drastically reduces the overall yield of C3b when 

using limited trypsin digest, isolation and purification of component C3 from human 

plasma gives a yield of between 85-92%. Methods were established which eliminate the 

need for proteolytic digest of C3 to C3b, and instead exploit the high yields of C3. The 

TE of C3, although buried, is accessible to small nucleophiles. With this in mind, C3 
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isolated and purified from 50mL of human plasma was treated with a small nucleophile, 

namely methylamine, activating the TE in C3, without eliminating the C3a portion.  

   C3(N) has C3b like properties, and the problem with unspecific digest of C3 

eliminated. The C3 was isolated from human plasma exactly as described above, by the 

QSFF anion exchange catchment step, followed by a higher resolution Mono Q anion 

exchange chromatography step of the pooled C3 fractions from QSFF. Figure 3.40 

shows the elution profile for one batch of pooled C3 fractions from QSFF after they had 

undergone the Mono Q purification step, as well as resulting SDS-PAGE analysis.  

 

 

 

 

 

 

 

 

 

 

Figure 3.40: Anion Exchange Chromatography of C3 pool, following QSFF, and before treatment 

with the nucleophile methylamine. (A) Elution profile from the Mono Q Anion exchanger, and (B) 

resulting SDS-PAGE analysis of alternating fractions, eluted between 40 and 80mL, all run in their 

reduced form. 

   Purified C3 was treated with a final concentration of 200mM methylamine (pH7.5), at 

37
o
C for 3hr. The reaction mixture was incubated in the presence of either 

iodoacetamide (20mM final concentration) or with a 10x molar excess of MTSSL spin 
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label, depending on whether the protein was required in its labelled or unlabelled form. 

Treatment with the methylamine allows cleavage of the internal thiol ester of C3, 

releasing a free thiol group for spin labelling purposes or alternatively allows for 

blocking of the cysteine residue with iodoacetamide.  

   Following the 3 hr incubation period, the C3 pool was then purified in a similar 

fashion as described for C3b activated using trypsin proteolysis. Following purification 

on Mono Q, purity of the C3(N), was determined by SDS-PAGE analysis, as shown in 

Figure 3.41, and proteins concentrated to ~1mg/mL before being stored at -80
o
C. 

 

 

Figure 3.41: Anion Exchange Chromatography of Methylamine treated purified C3 and its 

conversion to C3(N). (A) Elution profile from the Mono Q Anion exchanger of the MTSSL labelled 

C3(N) and (B) Elution profile from the Mono Q Anion exchanger of the iodoacetamide treated C3(N) (C) 

Resulting SDS-PAGE analysis of both the labelled and unlabelled C3(N). 

 

   From the SDS-PAGE analysis of the labelled and unlabelled C3(N), it is evident that 

the ceruloplasmin impurity has been eliminated, as just C3(N) in both its reduced and 

non-reduced forms is detectable. Table 3.3 summarises approximate yields of C3, and 

the absolute yields of C3b and C3(N) following the standard purifications detailed 

above, as well as those carried out with slight modification to protocol. 
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Table 3.3:  Summary of C3/C3b/C3(N) Yields following Isolation and purification From Plasma 

    

 

 

 

 

 

 

 

 

* 

Theoretical Yield of C3 = ~1mg/mL of fresh human plasma 

 

   From each individual C3 prep, the approximate yield of C3 following its purification 

from human plasma has been, on average, over 80%, based on theoretical yields. 

However, upon cleavage of C3 to C3b using limited trypsin digest the final yield of C3b 

is dramatically reduced, on average, to less than 0.1mg of C3b/10mL plasma.       

   Consequently, using C3(N) as an alternative, which is functional as C3b with the 

addition of the un-cleaved C3a segment, increases yield from 0.1mg/10mL of plasma to 

~5mg/10mL of plasma, a 50 fold increase. This, coupled with the ability to remove 

impurities in the purification process highlight the benefits of using C3(N) as an 

alternative to C3b, in both its labelled and unlabelled forms. 

 

3.8 Spin labelling of C3b and C3(N) 
 

   For the C3b sample, following activation from C3 by limited trypsin digest, and for 

C3(N), the samples were labelled, and excess spin label removed. The r.t CW EPR 

spectra of the labelled C3b and C3(N) samples were collected, as shown in Figure 3.42. 

 

 

 

 

Volume 

of 

Plasma 

(mL) 

Purification 

Procedure 

C3 

Yield 

(mg) 

C3 

Yield 

(%)
*
 

C3b Yield 

following 

digest  

C3(N) yield 

following 

methylamine 

treatment of  

C3 (mg) 

10 Standard 9 90 0.1 n/a 

50 Standard 38 76 0.7 n/a 

50 + Resource Q 42 84 1.1 n/a 

50 + Resource S 33 66 0.4 n/a 

50 Reduced Flow 41 82 0.9 n/a 

50 Reduced pH 43 83 0.5 n/a 

50 Standard 46 92 n/a 25 
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Figure 3.42:  X-band CW EPR of spin-labelled (A) C3b and (B) C3(N). Spectra taken at r.t (non-

saturating conditions), using a Bruker EMX X-band EPR spectrometer, using the high sensitive SHQE 

resonator. 

 

   From the CW EPR spectra, the labelling efficiencies of the C3b and C3(N) were 

determined to be between 85 and 90% respectively. There is a great deal of noise in the 

C3b CW spectrum due to the low concentration of the sample. Sample concentration 

could not be increased, as for the C3b prep, very little C3b was produced, due to 

unspecific cleavage of the purified C3 by trypsin. The C3(N) has a much better signal to 

noise, showing a nice broad spectrum, indicative of slow tumbling of the large C3(N) 

protein. There is indication of some free spin label in this sample.  

 

3.9 Functional Characterisation – fH mediated cleavage of C3b and 

C3(N) by fI 

   As described in 2.10.1, a fluid phase cofactor assay can be carried out to visualise the 

fI mediated cleavage of complement component C3b to inactivated C3b (iC3b), for 

which fH is a cofactor. For the C3b and C3(N) proteins isolated and purified from 

plasma, their cleavage by fI can be monitored, to assess whether both the labelled and 

non-labelled forms give the banding pattern expected upon conversion to iC3b.  

   In the positive control reactions, C3b generated from plasma purified C3 was 

incubated with full length plasma purified fI and fH (all Complement Technology Inc, 

Texas, USA). The negative control contained no fH.  

   The C3b and C3(N) made in this body of work were assayed in both their spin-

labelled and unlabelled forms. The ability of the fH1-4 K247C fragment, in both its 
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spin-labelled and unlabelled forms, to act as a cofactor in the cleavage of C3b to iC3b 

was also assessed. The two disulphide linked chains of C3b can be visualised using 

SDS-PAGE. Upon cleavage to iC3b by fI, the 110kDa alpha chain of C3b is cleaved 

into two smaller chains (67 & 40kDa). Reduction of the alpha chain can be visualised as 

well as the formation of the two smaller alpha chain fragments. All assays are shown in 

Figure 3.43. 

 

 

 

 

 

 

 

Figure 3.43:  Fluid-Phase Cofactor Assay. This assay monitors the cleavage of C3b and C3(N) to iC3b 

by fI in the presence of fH. The assay also assesses the ability of fH1-4 to act as a cofactor in the cleavage 

of C3b to its inactive form. In all controls, full length native plasma purified proteins (Comptech) are 

used. FH is omitted from the negative control, whilst the positive control includes fH,fI, and C3b. (A) 

Shows both positive and negative CompTech controls, with the cleavage of C3(N) (labelled and 

unlabelled) and C3b (labelled) by fI being monitored, in the presence of fH (fI and fH both CompTech). 

(B) and (C) Show both positive and negative CompTech controls, whilst monitoring the ability of fH1-4 

(unlabelled and labelled, respectively) to act as a cofactor for the cleavage of C3b to iC3b. (C3b, and fI 

both Comptech). 

 

   From SDS-PAGE analysis of the cofactor assays, it is clear that C3b and C3(N) 

display the same banding pattern as shown in the positive control, showing that in the 

presence of fI and fH, C3b and C3(N) are cleaved to the inactive iC3b. This suggests 

that the C3b and C3(N) made for these experiments bind fH and fI in the same manner 

as native plasma C3b. Similarly, the fH1-4 K247C, in both its labelled and unlabelled 

form is sufficient to act as a cofactor for the cleavage of plasma C3 to iC3b, however it 

is clear that the fH fragment is not as functionally active as the full length fH purified 

from plasma.  

 

3.10  The fH1-4. C3(N). fH19-20 Complex – An EPR Study 

   Following confirmation of spin-labelling of the fH fragments, the complex was ready 

to be formed for DEER measurements. In order to prepare samples, the binding 

dissociation constants (Kds) were carefully considered. The Kd of the fH1-4-C3b 
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interaction is ~ 10µM (Schmidt et al, 2008) (Wu et al, 2009) whilst the Kd of the fH19-

20-C3b interaction is 1.4µM (Kajander et al, 2011). At the end of the preparations there 

was 55µl of 87µM fH1-4 K247C, 120µl of 777µM fH19-20 G1107C (which was 

observed to be slightly pink), 90µl of 548µM fH19-20 R1210C, 30µl of 50µM C3(N) 

iodo and 81µl of 55µM of C3(N)-SL.  

   Both C3(N) samples had been concentrated from frozen stocks and all proteins were 

washed into deuterated PBS. DEER samples were made with 40µl protein solutions or 

buffer and 20µl deuterated glycerol. Sample compositions are summarised in Table 3.4. 

 

Table 3.4: Compositions of Samples analysed by DEER 
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Figure 3.44: Raw data from the EPR experiments taken for the spin labelled fH fragments in 

complex with either labelled or unlabelled C3(N). Sample compositions shown in Table 3.4. 

   Following assessment of the cofactor ability of the fH1-4 fragment in both its labelled 

and unlabelled forms, with C3b and C3N, it is clear that the fH1-4 fragment is binding, 

as evidenced by the banding patterns following SDS-PAGE analysis. 

   In the EPR experiments, there is some indication of interactions of the individual fH 

fragments when mixed with C3(N), however this interaction is also observed with the 

labelled fH fragments without C3(N) being present (Figures 3.44 C & E). On their own, 

there should be no dipolar signal, and so this could perhaps be an indication of protein 

aggregation, or a multiple labelling effect. 

   When considering complex formation, the final concentration of each protein in the 

sample was determined based on Kds obtained from surface plasmon resonance (SPR) 

of the intact fH:C3b complex.  

   Work carried out by Barlow (Pechtl et al, 2011) used FRET as an orthogonal 

technique to validate the already proposed crystal structure of the fH1-4 complex. As 

discussed prior, EPR and FRET are similar techniques used to extract long range 

distances between probes introduced specifically in samples of interest. Final 

concentrations of fH1-4 and C3b for the FRET study were 33µM and 400nm or 400nm 

and 33µM, respectively. FRET is more sensitive to concentration than EPR, however in 

this study the concentrations of fH used exceeds that used in our work. Taking this into 

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1.05

0.00 2.00 4.00 6.00

fH19-20 G1107C.fH1-4 K247C. 
(C3(N) IODO) 5µs 

A
m

p
litu

d
e 

Time (µs) 

I 

 

 

 



Chapter 3: The C3b:fH Complex – An EPR Study 

141 
 

consideration, as well as the excess of C3(N) used, this could somewhat explain the lack 

of complex formation, as well as the aggregation observed. 

 

3.11 Outlook and Future Work 

   The application of EPR, where cysteine residues must be incorporated and specifically 

modified, to a system which is protein rich proved far more complex than was first 

anticipated. Although the cysteine residues in the fH fragments are orchestrated in 

disulphide bonds, protein aggregation, as well as problems with reducing agents, and 

spin labelling would suggest that other avenues for the SDSL of fH be explored. 

Chapter 5 of this thesis looks at the development of new spin labels and spin labelling 

techniques.  

  The complement system is tightly orchestrated so as to effectively eliminate 

pathogens, whilst limiting damage to the host. This thesis has explored the interactions 

of C3b (or C3(N)) with complement fH, a key regulator of the AP of complement 

activation. However, C3b also associates with other complement proteins, e.g. the 

Decay Accelerating Factor (DAF). DAF recognises C3b, allowing association of DAF 

with cell associated C3b, thus preventing the formation of the C3 convertase C3bBb. 

Preventing convertase formation has an important regulatory role in preventing MAC 

assembly. Our group has experience with the expression and purification of DAF for 

spin labelling studies (Lovett et al, 2013), and so the interaction of DAF with C3b 

(C3(N)) could be further explored, to give further insight into its interactions and 

regulatory role. 

    The highly reactive TE motif of complement C3b is a rare post-translational 

modification. As stated previously the relatively short lifespan of the TE bond as it 

becomes exposed upon conversion from C3 makes this thiol specific labelling site 

difficult to exploit. However, protection of the TE in C3 is not absolute, and so we have 

shown that treatment with small nucleophiles facilitates the manipulation of the TE for 

spin labelling purposes.  

   Access of the TE via chemical modification by nucleophiles is limited to the size of 

the attacking nucleophile. The MTSSL spin label is relatively small, and able to 

efficiently label the TE upon freeing of the cysteine residue with methylamine. This 

highlights the potential for studying TE proteins in vivo following chemical 
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modification with thiol specific probes. TE proteins have major roles in immunity and 

in host defence, and consequently, advancing our understanding of their interactions in 

vivo could pave the way for the development of and application of novel 

immunotherapies and in vaccine design (Cole et al., 2009). 

   Furthermore, TE domains have found to be particularly prevalent in Gram positive 

bacteria, proving essential for binding to host cells, highlighting their role in 

pathogenesis. 

   This opens the avenue of chemical modification of Gram positive bacteria to study 

their interactions on the cell surface (Walden et al, 2015) as well as highlighting the 

attraction of targeting TEs with small molecules with the potential to inhibit infection. 
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Chapter 4:   Probing the Interaction of the Cardiac 

Myosin Regulatory Light Chain with Myosin Binding 

Protein C (cMyBP-C) Using EPR Spectroscopy 

 

AIMS: This body of work uses EPR spectroscopy to probe the interactions of the 

Regulatory Light Chain (RLC) of human cardiac myosin, with the cardiac specific 

domain, C0, of the regulatory protein cMyBP-C. There are two potential models for the 

C0-RLC interaction, which potentially influence the relative orientation of the S1 

myosin heads. The cardiac specific cMyBP-C domain C0 will be expressed in E. coli. 

The RLC construct will be expressed alongside the MiniHMM (myosin fragment) 

construct. Mutations in the RLC will then be introduced at sites of interest for EPR 

studies. If the proposed mechanism stands true, and C0 alters the positions of the S1 

myosin heads, there should be a notable difference in distance measurements with and 

without C0, as confirmed, or otherwise by EPR spectroscopy.  

 

4.1 Muscle Contraction - The ‘Dance’ of Actin and Myosin, and 

regulation in the sarcomere 

  

  The heart is a muscular organ in humans and other vertebrates, which undergoes 

calcium dependent contraction in order to pump blood through the blood vessels of the 

circulatory system, providing the body with the oxygen and nutrients essential for 

survival. The vertebrate heart is principally made of connective tissue and cardiac 

muscle which belongs to the category of striated muscle, so called due to the striated 

pattern formed by a series of basic muscle units called sarcomeres (Ford, 2000)    

   The main protein components of striated muscle are myosin and actin, originally 

discovered by Kuhne (1859) and Straub (1942) respectively (Szent-Györgyi, 2004), 

which localise to different positions within the sarcomere, into thick myosin and thin 

actin filaments (Hanson & Huxley, 1953), as illustrated in Figure 4.1.  Muscle 

contraction occurs as a result of an interaction between actin and myosin, together with 

many accessory sarcomeric proteins. 
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Figure 4.1: Schematic Representation of Actin and Myosin Positioned in the Sarcomere. Repetition 

of the basic unit of muscle – the sarcomere – results in the distinctive pattern associated with striated 

muscle. The thin filament (composed of the actin monomer and other regulatory proteins) is shown in 

light blue, whilst the thick myosin filament is shown in dark blue. Figure adapted from Krans et al, 2010. 

 

   The main protein components of striated muscle are myosin and actin, originally 

discovered by Kuhne (1859) and Straub (1942) respectively (Szent-Györgyi, 2004), 

which localise to different positions within the sarcomere, into thick myosin and thin 

actin filaments (Hanson & Huxley, 1953). Muscle contraction occurs as a result of an 

interaction between actin and myosin, together with many accessory sarcomeric 

proteins.  

   The contraction and relaxation of this striated muscle is the function of a complex 

macromolecular machine, in which force is generated by filamentous actin and thicker 

myosin filaments sliding past one another towards the centre of the A-band (Luther & 

Squire, 2014) (Figure 4.1) in an Adenosine Tri-Phosphate (ATP) dependent manner 

(Gruen & Gautel, 1999), thus shortening the length of the sarcomere.  

   Actin and myosin interact in a cyclic series, linked to the hydrolysis of ATP (Hanson 

& Huxley, 1954). Hydrolysis of ATP generates ADP and a free phosphate (Pi) (Geeves 

& Holmes, 2000). This de-phosphorylation reaction releases energy, which is then 

harnessed to drive further chemical reactions, which in this case would be the 

interaction of actin and myosin, and ultimately actomyosin contraction (Root, 2002). 
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4.1.1 Cardiac Myosin Structure 

   Myosin exists in the sarcomere as a hexameric structure, composed of two heavy 

chains and two pairs of light chains, the Essential Light Chain (ELC) and Regulatory 

Light Chain (RLC). Myosin can be further divided into light ‐ mero ‐ myosin (LMM) 

and heavy mero – myosin (HMM) (Figure 4.2A), the latter of which can be further 

divided into the globular N’ terminal S1 head group containing the myosin motor 

domain and light chains, whilst the C’ terminal tails (S2) take on a coiled coil structure, 

holding the head groups in place (Figure 4.2B) (Al-khayat, 2013). The light chains bind 

the heavy chains in the ‘neck’ region, the interface between the S1 heads and the S2 tail 

(Ratti et al, 2011). 

 

 

 

 

 

 

 

 

 

  

Figure 4.2: Schematic Representation of the Thick Myosin Filament Structure. (A) Shows how 

myosin can be further divided into both heavy and light mero-myosin (HMM & LMM). (B) The heavy 

chains, composed of the S1 heads and S2 coiled coil, are shown alongside the Essential and Regulatory 

Light Chains. Figures adapted from (Sadayappan et al, 2009). 

   

   The globular S1 head of the myosin molecule, also known as the myosin cross ‐ 

bridge, is the molecular motor that hydrolyzes the ATP necessary for muscle 

contraction. The formation of these cross ‐ bridges in striated muscle (Huxley, 1957) is 

regulated by Ca
2+

 (Figure 4.3). 
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Figure 4.3: Schematic Representation of the Actin-Myosin Interaction in Striated Muscle. (A) ATP 

binding to the myosin head results in a conformation that cannot bind actin. (B) Hydrolysis of ATP to 

ADP and Pi by the globular S1 heads release energy which is then harnessed to initiate the cross bridge, 

linking the thin and thick filaments. (C)(D) The cross bridge pulls the actin filament (the ‘power stroke’), 

releasing Pi and ADP from myosin. The myosin heads then bind the actin filament and the power stoke is 

released.  

 

   Binding of ATP in a cleft at the back of the myosin head region causes a conformation 

of myosin that is unable to bind actin. As the ATP is hydrolysed, the head swings back, 

approximately 5nm, to a ‘cocked’ position, and ADP and Pi remain bound. The next 

stages of the cycle are the force generating steps when the Pi is released from myosin. 

The head group is free to bind myosin and the ‘power stroke’ is released. At this stage, 

the myosin heads are bound to actin in the rigor state (tightly bound). The mechanism of 

actin-myosin binding allows the ‘cross-bridge’ formation between the globular myosin 

head groups and the adjacent actin filaments (Baker & Voth, 2013). This event, which is 

part of a cycle driven by the hydrolysis of 1 ATP molecule, is known as the ‘Power 

Stroke’ (Holmes & Geeves, 2000). The release of ADP releases myosin from the actin 

filaments. Further hydrolysis of another ATP molecule results in further actin-myosin 

binding, thus repeating the cycle.  

   The combined effect of this myriad of power strokes causes muscle contraction, and 

the motion can be described as myosin ‘walking along’ the actin filaments (Root, 2002). 

Although actin and myosin alone can generate force via contraction, they cannot 

reproduce all of the properties of the contractile system of striated muscle, and so 

regulatory proteins, such as the RLC control the calcium dependent transitions between 
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resting and force generation, by blocking actin-myosin interactions in the absence of 

calcium (Morita et al, 1985). 

 

4.1.2   The Light Chain Domains – ELC & RLC 

    The molecular mechanism, whereby actin and myosin are regulated in cardiac muscle 

contraction is still not fully understood. The light chain domain of myosin, often 

referred to as the ‘lever arm’ or ‘neck’ region, consists of both ELC and RLC, wrapped 

round the heavy chain through a series of hydrophobic and polar interactions (Ho & 

Chisholm, 1997) providing stability to the lever arm.  

   The function of the ELC has not as yet been defined, however, a cluster of mutations 

within the RLC found to have strong association with heart conditions such as Familial 

Hypertrophic Cardiomyopathy, linked to high risks of cardiac failure and sudden 

cardiac death (Longhi et al., 2011), suggest that the RLC perhaps has more purpose than 

a regulatory role. Selective removal of the RLC causes a change in the structure of the 

cardiac myosin, leading to myosin disorder and weakens binding to other regulatory 

proteins (Pant et al, 2009) (Garrigos et al, 1992). Such links with disease, as well as the 

impact of complete removal, suggest RLC actively engages in muscle contraction at 

both a structural and functional level. 

4.1.3 Myosin Binding Protein-C (cMyBP-C) 

   In addition to the principal components of the sarcomere; the thick and thin filaments, 

the sarcomere also contains several accessory proteins that are essential for assembly, 

maintenance of structural integrity, and regulation of contractile activity. One such 

regulatory protein identified in recent years is the multi-domain myosin binding protein-

C (cMyBP-C), which is involved in both sarcomere formation and in contraction 

regulation.  

  cMyBP-C was first detected as an impurity in skeletal muscle myosin preparations, co-

purifying with myosin, suggesting a role in myosin-binding (Craig et al, 2014). There 

are three different isoforms of cMyBP-C associated with adult muscle, namely the fast 

skeletal, slow skeletal and cardiac isoforms, with unique genes encoding each isoform. 

Cardiac MyBP-C (cMyBP-C) is a137kDa multi-domain protein of the immunoglobulin 

superfamily of proteins, associated with the thick filament, and contributing 1-2% of the 
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myofibriallar mass (Winegrad, 1999). The protein is localised to the cross-bridge 

containing C-zones of striated muscle sarcomeres (Oakley et al, 2004) (Figure 4.4). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Schematic representation of cMyBP-C positioning in the C zone of the sarcomere, in 

relation to the thick and thin filaments. As before, the thin filament (composed of the actin monomer 

and other regulatory proteins) is shown in light blue, the thick myosin filament is shown in dark blue, and 

cMyBP-C in green. Figure adapted from (Oakley et al, 2004). 

 

   The role of cMyBP-C in the sarcomere is complex and not as yet fully understood, 

however, it has been proposed that as well as playing a structural role, cMyBP-C may 

have a possible role in force regulation (Witt et al, 2001). Of the three isoforms 

occurring in nature, the cardiac isoform presents some unique features.  

   The cardiac isoform is exclusively expressed in the heart of mammals and is 

composed of eleven domains, eight of which are immunoglobulin I – like (IgI), and the 

remaining three fibronectin type III-like domains. Consisting of 11 modules labelled C0 

to C10, from the N’ to the C’ terminus, the cardiac isoform differs from the skeletal 

isoforms with three additional characteristics: an additional IgI domain, namely C0, 

three additional phosphorylation sites between domain C1 and C2 at the N’ terminus, 

and an additional 30 amino acids within the C5 domain (Howarth et al, 2012) (Idowu et 

al, 2003) (Figure 4.5). 
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Figure 4.5: Schematic representation of cMyBP-C showing features unique to the cardiac isoform, 

including the 3D NMR Structure of domain C0. (A) Immunoglobulin I type and Fibronectin Type III 

domains are shown as circles and squares respectively. The additional phosphorylation sites in the C1-C2 

linker are represented as stars and the additional thirty amino acids in domain C5 are highlighted. (B) 3D 

NMR structure of domain C0 of  cMyBP-C. (PDB_ID: 2K1M, (Ratti et al., 2011)). This structure 

conforms to the IgI fold typical of the majority of cMyBP-C IgI domains. 

 

   cMyBP-C contributes to thick filament structure via interactions at the C’ terminus 

(domains C7-C10) with the LMM section of the myosin rod, and also has a role in 

contraction regulation due to interactions at its N’ terminus with the S2 region of 

myosin, close to the myosin motor (Ababou et al, 2007). cMyBP-C was initially 

suggested to simply act as a tether, holding the myosin heads close to the neck region of 

the myosin molecule via its N’ terminus (Harris et al, 2004), and subsequently 

preventing cross-bridge formation and actomyosin contraction (Ababou et al, 2008) 

(Figure 4.6).  

   It is suggested that binding of the N’ terminal portion of cMyBP-C to myosin in the 

region of the S1 heads holds the myosin heads back, reducing their ability for actin 

interaction and force generation. This returns to normal upon phosphorylation of 

cMyBP-C, which results in the release of the head groups (Figure 4.6A). 

Phosphorylation occurs at three sites in cMyBP-C (between domains C1 and C2) 

(Figure 4.5). This 100-residue region, the cMyBP-C motif, is highly conserved between 

all isoforms of cMyBP-C and between species (Kunst et al, 2000).  
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Figure 4.6: Cartoon depicting the current understanding of cMyBP-C Function. (A) Effect of 

phosphorylation of the N’ terminal myosin binding site. cMyBP-C is dislodged, releasing the S2 coiled 

coil and promoting cross-bridge formation and ultimately muscle contraction, via interaction of the S1 

cross-bridge with the thin filament. (B) A possible interpretation of the observation that cMyBP-C 

constructs too short to act as a tether can influence muscle contraction. In this interpretation, the N’-

terminus directly affects the orientation of the myosin head group, indicated by the arrows. (C) 

Alternative interpretation whereby the cross-bridge formation occurs as a direct result of the N’ terminal 

domains on cMyBP-C interacting with the thin actin filaments. Figure adapted from Ratti et al, 2011. 

   It is suggested that binding of the N’ terminal portion of cMyBP-C to myosin in the 

region of the S1 heads holds the myosin heads back, reducing their ability for actin 

interaction and force generation. This returns to normal upon phosphorylation of 

cMyBP-C, which results in the release of the head groups (Figure 4.6A). 

Phosphorylation occurs at three sites in cMyBP-C (between domains C1 and C2) 

(Figure 4.5). This 100-residue region, the cMyBP-C motif, is highly conserved between 

all isoforms of cMyBP-C and between species (Kunst et al, 2000).  

   It is suggested that the function of cMyBP-C extends beyond that of a mere tether, as 

cMyBP-C fragments which are too short to exhibit this tethering role can still influence 

muscle contraction (Figure 4.6B). Knockout mouse studies with altered cMyBP-C show 

that domains C0-C2 are sufficient for cross-bridge formation, showing cMyBP-C 

fragments too short to perform the tether role could still bridge the gap between the S1 

heads and the thin filaments (Harris et al, 2002). 

    Furthermore, using knock-in mouse models (Witt et al, 2001) carrying a gene for 

shortened cMyBP-C without the cardiac specific C0 domain, all animals with the 

deletion were still viable with no significant ultrastructural changes to the heart, or 
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impaired lifespan. The mutant cMyBP-C was still phosphorylated, however, there 

appeared to be a decrease in the levels of force generated, suggesting the additional 

domain in the cardiac isoform could be an evolutionary change, introduced by nature to 

aid in force regulation at the cross-bridge level (Witt et al, 2001).  

   The presence of the extra C0 domain as well as the phosphorylatable linker between 

domains C1 and C2 suggest this may be vital for effective regulation of cardiac muscle 

contraction at the cross bridge level, and how extensions of these finding could suggest 

a mechanism whereby N’ terminal mutations in the cMyBP-C could cause Familial 

Hypertrophic Cardiomyopathy. 

 

4.1.4 The RLC-C0 interaction 

 

   It is clear from the above that the C0 domain is crucial for cMyBP-C participation in 

muscle contraction regulation, and that this is perhaps by more direct means than simply 

acting as a mere tether (Granzier & Campbell, 2006). An interaction between the 

cardiac isoform of cMyBP-C and the RLC has been proposed as early as 1985 

(Margossian, 1985) and most likely occurs via the cardiac specific C0 domain.  

   NMR, ITC, and in vivo immuno-fluorescent localisation of C0 (Ratti et al, 2011) 

places the N’ terminus of cMyBP-C right on top of the S1-S2 hinge interface, and 

therefore in the immediate vicinity of the light chains. In this position, cMyBP-C is 

ideally situated to directly interact with the hinge region, potentially influencing the 

position of the S1 heads, an interaction which is attributed to the cardiac specific 

domain C0. The ability to manipulate the S1-S2 junction would give cMyBP-C the 

potential to directly adjust the position of the S1 heads and therefore subtly influence 

muscle contraction.  

   Confirmation of an interaction between C0 and RLC drives this study, which aims to 

use EPR spectroscopy to further characterise this interaction, and its contribution to 

muscle contraction. 

 

4.1.5 Aims of this work 

   There are two potential models for C0-RLC interaction, suggesting that C0 could bind 

both RLCs on one myosin molecule simultaneously (Figure 4.7A), and in this position 

could influence the relative orientation of the S1 heads. Wedging C0 between the RLCs 
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could push the S1 heads apart, or pull them together. Otherwise it is proposed that C0 

binds only one RLC leading to an asymmetry of the S1 heads (Figure 4.7B). It is most 

likely that the former is the case, reinforced by data accumulated from both structural 

and binding studies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: Model for the arrangement of the N’ terminus of cMyBP-C around the myosin S1-S2 

junction and the light chains. cMyBP-C domains C1 and C2 bind to the S2 chain very close to the 

S1/S2 junction, whereas C0 binds to the RLC. Illustrated here are the two proposed mechanisms whereby 

domain C0 can interact with the RLCs. In (A), C0 could be placed between the RLC, and in such a 

position could change the position of the S1 heads by pulling them closer together, or by pushing them 

further apart. Alternatively in (B), domain C0 could interact with only one RLC, leading to an asymmetry 

of the S1 heads. 

 

   It is the aim of this project to first express and purify cMyBP-C domain C0 in E. coli. 

The RLC construct will be expressed alongside the MiniHMM (myosin fragment) 

construct. Mutations in the RLC will then be introduced at sites of interest for EPR 

studies. 

   EPR measurements will then be made, with and without C0. If the proposed 

mechanism stands true, and C0 alters the positions of the S1 heads by bringing them 
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closer together, or by pushing them apart, there should be a notable difference in 

distance measurements with and without C0, as confirmed, or otherwise by EPR 

spectroscopy. No matter which model is preferred following EPR, we hope to learn 

more about the positioning of the RLC in myosin, in relation to regulatory proteins such 

as cMyBP-C, with these preliminary results opening avenues for further research. 

 

4.2 Small Scale Test Expressions of cMyBP-C C0 and RLC/MiniHMM 

   Before expression of the recombinant proteins was carried out on a large scale, 

expression was first tested on a small scale (100mL). Figure 4.8 shows the resulting 

SDS-PAGE analysis of samples taken from the crude cultures before and after induction 

for the cMyBP-C C0 domain and the RLC/MiniHMM Complex.  

 

 

 

 

 

 

 

 

 

 

Figure 4.8: SDS-PAGE Analysis Following Small-Scale Test Expression (100mL) of the C0 and 

RLC/MiniHMM Constructs. Sample lanes 1 and 2 are samples taken from the crude cultures before 

induction. Sample lanes 3 and 4 are samples taken from the crude RLC/MiniHMM cultures, run both 

reduced and non-reduced, respectively. Sample lanes 5 and 6 are samples taken from the crude C0 

culture, run both reduced and non-reduced, respectively. 

 

   Following small scale test expression, expression of the C0 domain of cMyBP-C is 

clear, however, it appears that the RLC/MiniHMM complex is not expressing in the 

soluble fraction. cMyBP-C domain C0 was then expressed and purified on a larger scale 

before problems with the RLC/MiniHMM were addressed. 
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4.3 Expression and Purification of cMyBP-C Domain C0 

   NMR and binding studies have confirmed an interaction between the cardiac specific 

C0 domain of cMyBP-C and the cardiac RLC of myosin. The cardiac specific domain 

C0 was expressed and purified using an E. coli expression system, as described in 2.3.2. 

The C0 construct contains a C’ terminal hexa-histidine tag, and therefore IMAC can be 

used as the first catchment step. Figure 4.9 shows the elution chromatogram following 

IMAC and corresponding SDS-PAGE analysis, following purification of the construct. 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.9: Elution profile and corresponding SDS-PAGE analysis for the cMyBP-C Domain C0 

Following IMAC. Every third fraction from 10-40 beneath the circled peak was analysed.  

   Following determination of purity by SDS-PAGE analysis, fractions 10 - 40 were 

pooled and concentrated before being dialysed overnight at 4
o
C into non-imidazole 

buffer. The final yield was determined as ~20mg from 1Litre of culture.  The protein 

was diluted with a half volume of glycerol before being stored at -20
o
C. A sample was 

submitted for Mass Spectrometry to the SIRCAMS facility, University of Edinburgh. 
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Figure 4.10: Mass Spectrum of cMyBP-C, domain C0, performed at SIRCAMS, using FT–ICR 

mass spectrometry. 

MS was performed in order to obtain an intact and accurate mass for the cMyBP-C 

domain C0. The mass obtained (13,519.2 Da) was as predicted using the ExPASy 

Molecular weight calculator (13,520.05 Da). 

 

4.4 Optimisation of Expression of the WT RLC/MiniHMM Complex 

   In order to characterise the interaction of the RLC with C0, the RLC was co-expressed 

with a myosin fragment – ‘MiniHMM’ containing residues 806-963 (806-835 = RLC 

binding site) of the S2 coiled coil. Co-expression of the RLC with the MiniHMM 

ensures proper folding of the RLC, and provides stability to the binding site, promoting 

formation of the complex (Ratti et al, 2011) shown in Figure 4.11. 

 

 

 

 

 

 

 

  

 

 

 

Figure 4.11: Schematic Representations of the Myosin Heavy and Light chains (A), zoomed in 

showing the MiniHMM Fragment, with bound RLC (B). 
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   Expression of the WT RLC/MiniHMM complex was optimised on a small scale, 

before cysteine mutagenesis was carried out, and mutants expressed. Previous work 

using the RLC/MiniHMM complex has shown that the protein expression is partly 

insoluble, and expression levels irregular (Mark Pfuhl, personal communication), and so 

optimisation of expression should facilitate an easier transfer of protocols to cysteine 

mutants. Following adjustments to induction time, temperature and IPTG concentrations 

the majority of the protein was expressed in the insoluble fraction. 

 

4.4.1 Modification of the MiniHMM Construct  

   The original MiniHMM construct contains two cysteine residues. Shown in Figure 

4.12 is the structure of the coiled coil, highlighting cysteine positioning. 

 

 

 

  

 

 

 

Figure 4.12: Crystal structure of human cardiac beta-myosin II S2∆ (PDB_ID: 2FXM, Blankenfeldt 

et al, 2006). 

   From Figure 4.12, it is clear that the cysteine residues are in such close proximity, that 

it is likely that they form disulphide bonds. This was confirmed using mutagenesis 

studies, however the presence of disulphide bonds in the S2∆, led to an instability, and 

precipitation of the protein at temperatures above 25
o
C (Mark Pfuhl, personal 

communication). 

   Typically, coiled coil structures are based on the hydrophobic interactions of two 

helices, rather than an interaction based on disulphide bond formation. To optimise 

packing, the two helices wrap around one another, hence the coiled coil structure, which 

are often based on a sequence motif known as the leucine zipper, as illustrated in Figure 

4.13. 
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Figure 4.13: Schematic representation of the Leucine Zipper motif. 

 

   The leucine residues form a hydrophobic core, stabilising the coiled coil structure, 

holding it in place. Therefore substituting the cysteine residues for leucine residues, as 

shown in Figure 4.14, promotes the leucine zipper formation, by eliminating the 

potential to form disulphide bonds, whilst improving stability.   

 

 

 

 

 

 

 

Figure 4.14: Sequence of the original MiniHMM construct aligned with the modified MiniHMM.  

In the new construct the Cys residues at positions 117 (905) and 160 (947) are substituted for Leu 

residues. 

 

   From this point the RLC/MiniHMM complex refers to the RLC bound to this 

modified cysteine-free MiniHMM complex. 

 

4.5 Large Scale Expression of wt RLC/MiniHMM  

   In order to avoid the RLC/MiniHMM complex being expressed in the insoluble 

fraction, both the expression and cell lysis conditions were altered from standard 

protocol (Growth at 37
o
C, induction at 37

o
C; 5hr with 1mM IPTG, lysis by sonication) 
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to the methods outlined in Chapter 2 which were developed and optimised on a visit to 

Dr Lena Rostkova from Dr Mark Pfuhl’s group at King’s College London.  

   In cooling induction temperatures and reducing the final concentration of IPTG used 

for induction, this encourages a reduced rate of expression, which promotes expression 

of more soluble protein (Graslund, 2008), whilst lysis using repeated freeze thaw 

techniques ensures all cells are fully lysed, and the protein not exposed to high 

temperatures unnecessarily during the sonciation procedure. 

 

4.5.1 IMAC of wt RLC/MiniHMM 

   The MiniHMM construct contains an N’ terminal hexa-histidine tag, and therefore 

IMAC can be used as the first catchment step. The histidine tag can then be removed 

using TEV protease, as described in 2.3.1, 2.5.2, and 2.5.2.1.  

   Figure 4.15 shows the resulting SDS-PAGE analysis from large scale expression of 

the WT RLC/MiniHMM complex following modification to protocols and expression 

using IMAC. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:15 SDS-PAGE Analysis Following Large Scale Expression and Purification of WT 

RLC/MiniHMM Using IMAC. (A) Samples taken throughout the purification process. 1. Crude cell-

free extract before IMAC. 2. Flow-though from IMAC. 3. Wash. 4. Wash 5. Elution Fraction. 6. Elution 

Fraction. (B) 1. Flow-through from IMAC following TEV (cleaved protein) 2. 500mM imidazole wash. 

   Following purification of the wt RLC/MiniHMM complex, the protein has been 

solubilised, and final yields were ~5mg/1L of culture. It is evident that modification to 
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both the expression and lysis protocols promotes expression of a soluble 

RLC/MiniHMM complex, as the MiniHMM can be seen running at ~15kDa, and the 

RLC at ~20kDa, as indicated by the box. Although TEV protease was used for cleavage 

of the hexa-histidine tag, (Figure 4.15B), the cleavage reaction was not complete, as 

there appears to be some uncleaved material in elution fraction 2 (Figure 4.15B), as 

assessed by SDS-PAGE. 

 

4.5.2 Size Exclusion Chromatography of wt RLC/MiniHMM 

   Following the cleavage reaction, the wt RLC/MiniHMM was further purified using 

SEC.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.16: SEC elution profile (A) and SDS-PAGE analysis (B) for wt RLC/MiniHMM 

 

10 

15 

20 

25 

37 

 50 

MW                                                                                            
kDa                                                                                              Fractions run indicated by purple line on 4.16A (B3 - C10) 

0

5

10

15

20

25

30

35

40

45

0 20 40 60 80 100 120 140 160 180
Volume / mL 

0.00         20.00         40.00         60.00         80.00        100.00         120.00         140.00         160.00         180.00   

Superdex75HR C4C118_UV    Superdex75HR C4C118_Conc    Superdex75HR C4C118_Fractions 

A1A2A3A4A5A6A7A8A9A10A11A12B12B11B10B9B8B7B6B5B4B3B2B1C1C2C3C4C5C6C7C8C9C10C11C12D12D11D10D9D8D7D6D5D4D3D2D1E1E2E3E4E5E6E7E8E9E10E11E12F12F11F10F9F8F7F6F5F4F3F2F1 

U
V

 A
b
s
o
rb

a
n
c
e
 /
 m

A
U

 

A 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                     B 



Chapter 4: Myosin RLC and cMyBP-C: An EPR Study  

 

160 
 

   Figure 4.16 shows the SDS-PAGE analysis and elution profile for the wt 

RLC/MiniHMM construct. The protein was treated with a final concentration of 10mM 

DTT before SEC was performed, to mimic the treatment for cysteine mutants, and allow 

comparison. From the SDS-PAGE analysis, the wt RLC/MiniHMM complex has eluted 

from the SEC column in the first major peak, whilst the DTT elutes in the second. The 

protein does not elute in the centre of the main peak, but instead towards the shoulder 

(fractions C7-C10).   

   Following purification of the wt RLC/MiniHMM complex, the protein has been 

solubilised, and final yields were ~5mg/1L of culture. It is evident that modification to 

both the expression and lysis protocols promotes expression of a soluble 

RLC/MiniHMM complex, as the MiniHMM can be seen running at ~15kDa, and the 

RLC at ~20kDa, as indicated by the box. Although TEV protease was used for cleavage 

of the hexa-histidine tag, the cleavage reaction was not complete.  

 

4.6 Generation of Cysteine Mutants of the myosin RLC for SDSL 

Purposes 

   Mutations have been made in the chicken isoform of the myosin RLC for the purposes 

of fluorescence studies (Hopkins et al, 1998) and exchanged into muscle fibres to check 

the effect of the mutation on force. Consequently, the mutations from the chicken 

isoform could be transferred onto the human isoform due to significant sequence 

homology, and SDM performed to generate the cysteine mutants.  

 

 

 

 

 

Figure 4.17: Sequence alignment of the Chicken RLC with the Human RLC. Mutations chosen in the 

human protein were selected based on functional cysteine mutants in the chicken isoform. Mutations are 

highlighted underneath the residue. 
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A                                           B                                                    C                             

                                                   

      

                                     

Figure 4.17 shows the sequence of the chicken RLC aligned with the human RLC. The 

residues selected in the chicken sequence have been successfully mutated to cysteine 

residues, and so the corresponding residues in the human sequence (K30, E88, E97, 

D117, and T125) were selected for SDSL purposes. Mutations were selected in both N’ 

and C’ terminal regions to optimise potential for observing changes in distance 

measurements with and without C0. 

 

4.7 MMM Simulation of the DEER Experiment for RLC/MiniHMM 

Cysteine Mutants 

 

   As stated above, cardiac myosin is composed of 4 chains, two heavy and two light. 

The two light chains, the RLC and ELC, bind the heavy S2 coiled coil chain, in the 

vicinity of the heavy S1 head group, as sown in Figure 4.18.  

 

 

 

 

 

 

 

 

 

 

 

Figure 4.18: Structures illustrating the positioning of the RLC in the S2 junction, in the vicinity of 

the S1 heads. (A) Schematic representation and (B) Surface representation of the S1 heads (cyan), with 

the RLC (pink) and ELC (purple) bound to the S2 junction (Modelled using chicken proteins, from which 

our mutations are based) (C) RLC (pink) bound to part of the S2 (purple) with cysteine mutations 

represented as cyan spheres. (B and C visualised using PDB_ID:1M8Q, Chen et al, 2002). 

 

   Figure 4.18 shows the structure of the chicken proteins, from which our mutations 

have been based. Using MMM, the DEER time traces and distance distributions were 

modelled between pairs of RLC bound to the MiniHMM complex, in the off state, i.e. 

without C0 (Figure 4.19). All show distances that should be measurable by DEER. 

From Figure 4.18C, and from models generated by Dr Mark Pfuhl based on the 
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sequence of the human cardiac RLC, we hypothesise that if the C0 wedges between the 

RLC proteins and moves them apart, the K30C distance should provide the 

measurement that is both easiest to measure with DEER and will change upon C0 

binding. 
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Figure 4.19: MMM Simulations of the DEER Time Traces (I) and Distance Distributions (II) shown 

alongside PyMOL cartoons illustrating the site for cysteine mutagenesis. These calculations were 

performed on the chicken structure (PDB_ID:1M8Q, Chen et al, 2002) (A) K30C (B) E88C (C) E97C 

(D) D117C (E) T125C. 
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4.8 Generation of Cysteine Mutants of the myosin RLC for SDSL 

Purposes 

   Mutations have been made in the chicken isoform of the myosin RLC for the purposes 

of fluorescence studies (Hopkins et al, 1998) and exchanged into muscle fibres to check 

the effect of the mutation on force. Consequently, the mutations from the chicken 

isoform could be transferred onto the human isoform due to significant sequence 

homology, and SDM performed to generate the cysteine mutants 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.20: Sequencing chromatograms, comparing the wt sequence to the sequence following 

SDM, showing successful substitution for cysteine in all cases. (A) K30C (B) E88C (C) E97C (D) 

D117C and (E) T125C. 
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Figure 4.20 shows sequencing chromatograms for the five of the single cysteine mutants 

chosen for this study, compared to the wt. 

4.9 Large Scale Expression and Purification of cardiac Myosin RLC 

Cysteine Mutants 

   Utilising the histidine tag on the MiniHMM fragment, each of the cysteine mutants 

were expressed using the modified expression and lysis protocols, before being purified 

using IMAC, with manual elution using a peristaltic pump. Figure 4.21 shows the SDS-

PAGE analysis from the purification of each of the four cysteine mutants. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.21 SDS-PAGE analysis following purification of each of the Cysteine RLC/MiniHMM 

Mutants following IMAC. (A) purification of K30C (B) purification of E88C (C) purification of E97C 

(D) purification of D117C and (E) purification of T125C. 
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   As for the wt RLC/MiniHMM complex, complete cleavage of the hexa-histidine tag 

was not achieved for the cysteine mutants. Following passage of the 500mM elution 

fraction over the Ni-NTA column (post –TEV cleavage), the RLC/MiniHMM complex 

did not bind to the column, indicative of cleaved histag. The column was washed with 

buffer containing 500mM imidazole which serves to remove bound cleaved histag and 

the TEV protease. Figure 4.22 shows the SDS-PAGE analysis of elution from the Ni-

NTA column for the E88C mutant following cleavage of the Histag by TEV protease. 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.22: SDS-PAGE analysis of the E88C RLC/MiniHMM Mutant, showing purification using 

IMAC and elution from the Ni-NTA following Histag Cleavage. 

 

   Following the cleavage reaction the sample was flowed over the Ni-NTA cartridge. 

The cleaved protein now contains no histidine tag and so does not bind (sample lane 8). 

Following washing with a final concentration of 500mM imidazole there appears to be 

some RLC/MiniHMM complex in this fraction. This is indicative of an incomplete 

cleavage reaction, as some complex remains bound to the column via the histidine tag. 

At this stage, only the cleaved fraction was used for subsequent experiments for each 

mutant. 

   Expression levels varied considerably between mutants. Illustrated in Table 4.1 are 

final yields obtained for the wt protein, compared to the single cysteine mutants. 
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Table 4.1: Final Yields of RLC/MiniHMM Mutants per Litre of Cell Culture 

 

 

 

 

 

 

   It is clear looking at Table 4.1 that the final yields for all cysteine mutants vary 

considerable from the wt. For each mutant, typically 4L of E. coli culture was grown, 

and even when scaled up to 12L there was little effect on final yields. Of the five 

mutants selected, only the K30C and E88C mutants showed expression levels that 

would yield enough protein for future experiments.  

   Expression was repeated numerous times for the remaining mutants, however 

expression and purity at this stage could not be improved. K30C and E88C were taken 

on since they would give a good preliminary idea of whether the inter-RLC distance 

changes upon C0 binding. 

 

4.9.1 Further Purification of K30C RLC/MiniHMM 

   Although Table 4.1 gives the final yield of the K30C mutant, this is not a true 

representation of the final yield, as the yield was calculated based on A280, and it is clear 

from the SDS-PAGE analysis in Figure 4.21A, that there are a lot of contaminating 

proteins that will be contributing towards the A280 value given. Figure 4.23 shows the 

SDS-PAGE analysis of the K30C mutant, following cleavage of the histidine tag. 

 

 

 

 

 

 

 

 

Figure 4.23: SDS-PAGE analysis of the TEV-treated K30C mutant following passage over the 

IMAC column. 
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   Following the cleavage reaction, the mutant is still contaminated, and like the wt 

protein, the K30C underwent SEC in hopes of eliminating the contaminants. The elution 

profile and SDS-PAGE analysis for the K30C mutant following SEC is shown in Figure 

4.24. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.24: Elution profile for the K30C RLC/MiniHMM mutant following SEC and resulting 

SDS-PAGE analysis. 

 

   Looking at the elution profile for the K30C mutant, it elutes in the same place as the 

wt protein, with a slight shoulder to the left of the first peak. Following SDS-PAGE 

analysis, some of this shoulder is separated from the main peak, however not all 

contaminants are removed. The RLC/MiniHMM complex is shown in the circled 

fractions. Unlike the wt RLC/MiniHMM, SEC has not improved the purity of this 

mutant, and so at this stage, the E88C mutant was the only one selected for DEER 
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measurements, as this gave reasonable protein yield with which to work, as well as 

appearing clean following SDS-PAGE analysis (Figure 4.21). Optimisation of one 

mutant, with high purity, good spin labelling efficiencies and overall good yield would 

ensure that one could be confident that any changes observed during the DEER 

experiments were true. 

  

4.10 Spin labelling of the E88C RLC/MiniHMM Mutant 

   Following cleavage of the hexa-histidine tag, the E88C mutant was treated with a final 

concentration of 10mM DTT, and free cysteine levels quantified using the Ellman’s 

reagent DTNB. From SDS-PAGE analysis (Figure 4.21) it is clear that the sample is not 

entirely homogenous in regards to purity, and so Ellman’s testing can only give a rough 

estimate as to the quantification of free cysteine in each sample.  

   DTT was eliminated by extensive dialysis, and mutants spin-labelled with MTSSL 

(10x molar excess, relative to free cysteine concentration). Excess spin label was 

removed using Vivaspin® centrifugal concentrators, before a CW EPR spectrum was 

recorded which showed some level of free spin label contaminant, shown in Figure 

4.25. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.25: CW EPR spectrum for the E88C mutant. Taken at r.t under non-saturating conditions, 

using the AffirmoEx benchtop spectrometer, by ActiveSpectrum. 
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4.11 DEER Measurements of E88C RLC/MiniHMM, With and 

Without cMyBP-C domain C0. 
 

   Before DEER measurements were taken, the sample was dialysed into the deuterated 

form of the buffer used throughout (minus imidazole). When studying the binding 

interaction of C0 with the RLC using ITC (Ratti et al, 2011), an excess of C0 over 

MiniHMM of ~ 1.5-2 confirms an interaction (dissociation constant of 3.2 ± 1.7μm). 

Consequently, concentrated C0 (1mM) was added to the E88C mutant in a 6 times 

excess, to ensure an interaction, in a final volume of 50µL, before the addition of a 

further 50µL of deuterated glycerol.  

   The data we measured did not highlight a large change upon C0 addition but also was 

very non-specific with respect to any particularly distance. The modulation depth is low 

for nitroxide-nitroxide DEER, which is likely a result of low spin-labelling efficiencies 

of the E88C mutant. It was estimated that labelling efficiency was in the range of 25% 

by protein concentration, when compared to standard nitroxide solution (TEMPO). 

Further, long after the sample was disposed of we found a fault with the video amplifier 

which was leading to distorted data. This has cast more doubt on the results since we 

don’t know whether slight changes are true or if we masked larger changes.         

   At this stage we decided that a new sample would have to be made, and measurements 

taken again. 

  At this time Mark Pfuhl also found that the MiniHMM complex can form dimers and 

that these could potentially block the interaction site for C0. An increase in NaCl 

destabilises this dimer, although may also abrogate C0 binding. Our plan therefore was 

to repeat E88C DEER measurement in high and low salt conditions.  

 

4.12 DEER Measurements of E88C in High and Low NaCl 

Following IMAC, the wash and elution fractions were pooled and concentrated using 

Vivaspin® centrifugal concentrators. The free cysteine levels were quantified using the 

Ellman’s reagent, before the E88C mutant was spin-labelled. Figure 4.26A shows the 

final SDS-PAGE analysis of the new E88C sample following elution from IMAC. The 

sample was treated with a final concentration of 10mM DTT, and dialysis used to 

remove this. Based on absorbance at 280nm, the protein concentration was determined 

to be approximately 50 µM. The quantity of free cysteine was determined to be 
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approximately 73 µM by Ellman’s testing. It should be noted at this point that the E88C 

mutant is not entirely pure (~60%), and so quantification of free cysteine also accounts 

for any free cysteine in contaminating proteins. The E88C was spin labelled and a CW 

EPR spectrum was taken, as shown in Figure 4.26B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 4.26: (A) SDS-PAGE analysis and (B) CW EPR spectrum for the E88C mutant. of the 

elution of the new E88C sample following IMAC. The elution from the IMAC column was performed 

manually using a syringe, and the wash and elution fractions pooled. The CW EPR spectrum was taken at 

r.t under non-saturating conditions, using the AffirmoEx benchtop spectrometer, by ActiveSpectrum. 
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region of 40-50%. Following purification of the RLC mutants, the proteins were stored 

in the same buffer used throughout the purification process, as detailed in Appendix A7 

(minus imidazole). However, in retrospect, for future preparations, it may be 

worthwhile considering spin-labelling the RLC/MiniHMM constructs in the presence of 

high NaCl, as dimer formation of the MiniHMM could be affecting labelling 

efficiencies. 

   Samples were prepared washing E88C and E88C/C0 samples into either 50mM 
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40% deuterated glycerol was added. Protein concentrations are 54µM (E88C) and 

171µM for C0.  

   Following communication with collaborators, it was suggested that the MiniHMM 

complex has the potential to form dimers, which could explain why there is no 

indication of complex formation. This dimerization of the MiniHMM construct could be 

inhibiting the binding site for C0. Measurements were therefore taken in both low and 

high salt conditions (Figure 4.27). 
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Figure 4.27: Raw DEER data obtained from the RLC E88C mutant. (A) Compares E88C mutant in 

both high and low salt (B) Compares E88C mutant with and without C0 (both measured in high salt) (C) 

Compares two different E88C mutants prepared under the same conditions. 

When looking at the raw EPR data, it seems that there is no difference observed in both 

high and low salt for the E88C mutant. When looking at the mutant with and without 

C0, again no change is observed in the data collected. 

   This suggests that in the presence of C0, there is no change in the position of the RLC, 

however, when comparing the data obtained here, to that obtained in previous 

experiments for the E88C mutant, there is a difference. Although both protein 

preparations followed the same protocol, and were of similar concentrations and levels 

of purity, the EPR is not reproducible. This brings into question the state of the proteins 

under study 

   During cell lysis, cells  were treated with Triton detergent to promote lysis and 

increase solubility, however it is possible that the use of detergents in the preparation 

are potentially affecting the fold of the protein, which could explain low spin-labelling 

efficiencies, even in the presence of a high concentration of free cysteine (as determined 

by the Ellman’s Assay).  

   Furthermore, the inclusion of detergents is possibly solubilising endogenous E coli 

proteins, which are being brought through with the protein of interest, and approve 

difficult to eliminate with subsequent purification steps. Labelling should therefore be 

done in the presence of high and low salt, rather than transferring to high/low salt before 

the EPR experiment is run. If no signal is observed in this instance than a potential 

protein misfold as a result of that discussed above, should be considered. 
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4.13 Outlook and Future Work 

   Unfortunately, from the data obtained thus far for the RLC/MiniHMM/C0 interaction, 

no solid conclusions can be drawn. From the outset, this particular project appeared 

relatively straightforward, in that the constructs had been expressed before and the 

interaction between RLC and C0 confirmed. 

   E88C, E97C, D117C and T125C were chosen based on mutations previously made 

with the chicken RLC protein, with which there is a high degree of sequence homology, 

and corresponding mutants in chicken appear fully functional in force analysis when 

reconstituted into muscle fibres. This may not be true for the same mutants in the 

human protein. The K30C mutant was made following modelling from our 

collaborators which indicated more flexibility in the N’ terminus of the human 

MiniHMM complex, with the RLC folded more towards the S2 junction, and therefore 

we hoped that the K30C mutant would help differentiate between the chicken complex 

and the human. Unfortunately it is difficult to predict how different mutants will behave 

before they are expressed, and so using models from other species is far from ideal, but 

otherwise would be done blindly.  

   Significant problems also arose from solubility issues, in that even the wt protein was 

not initially expressed in its soluble form. It was only after extensive optimisation and 

significant changes to the protocols, that expression of the wt protein could be 

visualised by SDS-PAGE. Frequently mutant expression levels are less than for wt but 

we saw a significant loss, and more problematic was our finding that the 

RLC/miniHMM complex could not be purified adequately for most mutations. In fact, 

while we repeated expression multiple times (not discussed here in detail) we only ever 

had adequate protein from the E88C mutant. 

   Our first DEER experiments with E88C did not show promising results but later we 

found that there was a fault which may have distorted our measurements and therefore 

these results needed to be abandoned. We did however find from these DEER 

experiments and the CW EPR scans that the labelling efficiency was quite low. We 

planned to repeat the experiment and additionally use both high and low salt conditions 

in case the MiniHMM dimerises at higher concentrations in low salt and this abrogates 

the C0 binding. However, different spectrometer problems have led to a delay in 

measuring these samples.  
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   The C0 expressed beautifully and in high yield, and so there is a possibility of 

introducing a cysteine residue to C0. This would lead to triangulation which, if the 

distributions are somewhat broad, can cause inaccuracies in analysing DEER data for 

distances. However, if the label on the C0 had an EPR spectrum that does not fully 

overlap with the nitroxide, then selective DEER measurements should be possible. This 

is the basis of orthogonal spin labelling using e.g. Gd
3+

 labels (Garbuio et al, 2013). 

   Thoughts on how one could explore the interaction further: Preliminary work done by 

our collaborators, has shown that upon phosphorylation of the RLC, the MiniHMM 

dissociates (Figure 4.28)  from a heterotetramer composed of 2RLCs (red) and 2 heavy 

chains which form a coiled coil (blue), to 2 heterodimers composed of 1 heavy chain 

and 1 RLC. This is a result of dissociation of the S2 coiled coil. 

 

 

 

 

 

Figure 4.28 Schematic representation of the effect phosphorylation of the RLC has on the 

RLC/MiniHMM complex. 

 

   The MiniHMM construct used in this body of work, contains only 25% (Figure 

4.29A) of the entire myosin S2 coiled coil (Figure 4.29B), and therefore dissociation of 

the entire coil in vivo is highly unlikely. It is proposed that upon phosphorylation of the 

RLC, the N’ terminal portion of the S2 coil, in the immediate proximity to the RLC 

dissociates.  

   The spin-labelled RLC mutants (spin-labelling sites represented as yellow triangles) 

could then be phosphorylated, and EPR used to monitor the effect of phosphorylation of 

the RLC, on the myosin fragment (Figure 4.29C).  

   The MiniHMM fragment would be lengthened, so it remains a tetramer upon 

phosphorylation. Spin labels could also then be placed along the coil itself, to measure 

by EPR the dissociation that occurs as a result of phosphorylation of the RLC, and 

assess how far the coiled coil opens. The same can be done in the presence of C0, and 

longer cMyBP-C constructs (Figure 4.29D). 

 

              

MiniHMM                                               
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Figure: 4.29 Schematic representations of the RLC/MiniHMM complex, showing how SDSL could 

be used to monitor dissociation of the S2 coiled coil upon phosphorylation of the RLC, both in the 

absence and presence of C0. 

   

   Further elucidation of the Myosin/cMyBP-C interaction is essential in understanding 

the regulation of cardiac muscle contraction in health and disease. Although less vital in 

triggering contraction in cardiac muscle, phosphorylation of the RLC is vital for the 

control and power development and for precise mechanical operation of cardiac muscle.     

   Despite its value and significance in muscle contraction, as far as the human cardiac 

isoform is concerned there are few functional data, and no structural information 

regarding its function. If the problems with yield can be addressed, and better data 

obtained using EPR for more N’ terminal mutants , this could provide for the first time a 

detailed insight into the Myosin/cMyBP-C interaction, and the effects of 

phosphorylation on heart muscle contraction.  

   These experiments could then be extended into mutations associated with disease, 

providing further understanding of the origin of cardiomyopathies, with the ultimate 

goal of advancement in medical treatments for conditions associated with mutations in 

these genes. 
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Chapter 5: Development of New Strategies for the Site-

Directed Spin–Labelling of Cysteine Rich Proteins 

AIMS: This body of work aims to develop a range of new methods for the site-directed 

spin-labelling of cysteine rich proteins. The ability of E. coli to read through the amber 

stop codon will be exploited for the incorporation of unnatural amino acids for spin-

labelling purposes, and novel spin labels, specific for labelling cysteine pairs will be 

tested in several model systems. Furthermore, native paramagnetic centres in 

recombinant proteins will be explored as potential labelling sites.  

 

5.1 The Limits of SDSL by Cysteine Substitution Mutagenesis  

Traditional methods of SDSL involving cysteine substitution mutagenesis are effective 

but what happens when this is not feasible? As discussed in detail in 1.4.2 the site 

specificity of EPR spectroscopy is typically introduced via the incorporation of spin 

labels into proteins of interest, via the thiol group of cysteine residues, due to its high 

reactivity at physiological pH. Cysteine residues are rarely present as free thiols in 

extracellular proteins, and are usually found in disulphide bonds, if at all. For this 

reason a great number of extracellular proteins have been engineered at specific sites of 

interest to incorporate cysteine residues for SDSL.  

   However, a huge caveat to using EPR to obtain distance measurements in biological 

systems is that the technique is at its most accurate in the simplest of cases; when 

looking at the interaction between a pair of radicals. When considering the application 

of EPR to the study of intracellular proteins, which are typically cysteine rich, the issue 

of specificity is raised. In order to specifically study the interaction between any two 

naturally occurring cysteine residues within a cysteine rich protein, any additional 

cysteine residues would need to be selectively removed, which could prove detrimental 

to both protein fold and function.  

   Structure underpins function, even at the simplest level, and so the field of structural 

biology is constantly evolving, with EPR spectroscopy expanding into in vivo studies, in 

order to elucidate how protein-protein interactions manifest in the natural environment 

of the cell. These principles and problems extend to all sorts of techniques that require 

specific labelling of isolated proteins or proteins within a living organism. The 

development of new labelling techniques for the specific labelling of cysteine rich 
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proteins, as well as the development of new spin labels which can withstand the 

reducing environment of the cell, is paramount for the study of proteins which are 

otherwise out with the realms of this technique, and for the study of protein-protein 

interactions in vivo. 

 

5.2 Site Directed Site Labelling via Reassignment of the Amber Stop 

Codon 

   Over fifty years ago, the revolutionary work of Nirenberg and Matthaei,1961 initiated 

the cracking of the genetic code, by discovering that the amino acid (AA) phenylalanine 

was specifically incorporated into proteins in response to the codon UUU. This 

pioneering work paved the way in uncovering the rules that govern the translation of an 

organism’s genetic lexicon for the ribosomal biosynthesis of proteins, with each of the 

64 codons assigned to the 20 proteinogenic AAs, and the three termination signals. 

   With few exceptions, all living organisms are confined to the use of only twenty 

canonical AAs for protein biosynthesis. It is therefore somewhat remarkable that 

polypeptide synthesis from these 20 AAs is sufficient for performing all complex 

processes of life. It is clear that many proteins require more chemical complexity to 

function, as illustrated by the frequent use of post translational modification, and the 

dependence of many enzymes on cofactors (Young & Schultz, 2010). Therefore, the 

addition of new AAs to the genetic code, with novel chemical, biological and physical 

properties, could further expand the range of functions available to proteins, and provide 

powerful means for probing protein structure, function, and dynamics, both in vitro and 

in vivo (Loscha et al, 2012). 

 

5.2.1   Translation of mRNA into a Polypeptide at the Ribosome 

   Translation is the process by which genetic information in the form of messenger 

RNA (mRNA) is converted into a sequence of corresponding AAs following ribosomal 

processing, forming a peptide chain, which is later folded into an active protein . This is 

illustrated in Figure 5.1. 
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Figure 5.1: Schematic representation of mRNA processing at the ribosome, and resulting 

polypeptide synthesis. 

The process of protein translation from mRNA occurs via four distinct steps.  

INITIATION: In the first instance the ribosome and accessory proteins assemble on 

the target mRNA strand. The initiator tRNA binds via complementary base pairing, 

following recognition of the start codon AUG (Met) on the mRNA strand. 

ELONGATION: In response to the relevant anti-codon on the tRNA, specific AAs are 

delivered to the tRNA molecule by a tRNA synthetase, specific for that AA.                                                                                                                    

TRANSLOCATION: The ribosome then moves in a 5’ to 3’ direction, to the next 

mRNA codon, continuing the process, and creating an extended AA chain.           

TERMINATION: Upon recognition of a stop codon on the polypeptide strand, the 

ribosome releases the protein. 

   Although the process of cellular translation at the ribosome functions to produce 

proteins composed entirely of the twenty canonical amino acids, it also represents the 

ultimate paradigm for the encoded synthesis of proteins containing additional amino 

acids, with novel function, with the potential to the evolve into the synthesis of 

completely unnatural polymers.  
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5.2.2   Incorporation of Unnatural Amino Acids (UAAs) into Recombinant 

Proteins 

 

   Although recent advances in synthetic and semi-synthetic methods have proven useful 

for the incorporation of UAAs into proteins (as discussed in 1.5.1), they are generally 

limited by low yields and are technically challenging in the production of proteins of 

large molecular weight. The use of cellular biosynthetic machinery to introduce novel 

AAs abrogates issues relating to scalability and protein size, whilst simplifying the 

study of modified proteins in living cells (Young & Schultz, 2010). This body of work 

looks at exploiting the ability for E. coli cells to read through the amber stop codon. 

   In order to expand the genetic repertoire beyond that of the 20 canonical AAs, a codon 

unique for the incorporation of a novel (or unnatural) AA must be assigned. The twenty 

AAs are encoded by 61 degenerate triplet codons, leaving the remaining three codons 

(TAG, amber; TAA, ochre; TGA, opal) to serve as translational termination signals. 

Using the redundancy of what is essentially a blank codon, together with the ribosomal 

machinery of the cell, many UAAs have been site-specifically incorporated into proteins 

in response to the amber stop codon in E. coli (Chin et al, 2002a), yeasts 

Saccharomyces cerevisiae (Hancock et al, 2010) and Pichia pastoris (Young et al, 

2009), mammalian cell cultures (Gautier et al, 2010), and most recently a full animal 

model (Greiss & Chin, 2011). 

 

5.3   Project Aims 

   Inspired by the pioneering work of Peter Schultz and Jason Chin, this thesis aims to 

exploit the ability of E. coli to read-through the amber stop codon, TAG, for the specific 

incorporation of UAAs with novel functional groups. Specifically; sperm whale 

myoglobin will be expressed and purified with the UAA propargyl lysine (pK) (Lysine 

modified with alkyne function group) incorporated at multiple sites.  

   Myoglobin is where the science of protein structure really began, with John Kendrew 

laying the foundation for an era of biological understanding in solving the first protein 

structure - sperm whale myoglobin – by X-Ray analysis (Kendrew et al, 1958). The 

XRC structure is shown in Figure 5.2.  
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Figure 5.2: X-Ray Crystal Structure of Sperm Whale Myoglobin.  The heme group of the myoglobin 

is represented as yellow sticks, and the blue spheres represent potential spin labelling sites, via both 

cysteine substitution mutagenesis, and pK incorporation. (Visualised using PyMOL & PDB_ID: 1MBN, 

H.C. Watson, 1969). 

Consequently, myoglobin is very well characterised, with well-defined structure and 

function, and therefore a good model system for this work.  

   The UAA pK links an alkyne functional group to a lysine residue via a carbamate 

bond forming an aliphatic alkyne, as shown in Figure 5.3. The flexibility of the 

carbamate linkage facilitates more efficient incorporation of the pK into cells (Nguyen 

et al, 2009), and, unlike aromatic azides previously reported in the literature, is photo-

stable, and consequently easier to handle. Copper-catalysed azide-alkyne cycloaddition 

(or ‘click’) reactions (Kolb et al, 2001) will then be performed to conjugate the pK 

containing protein to azide spin labels, in a manner that is comparable and orthogonal to 

cysteine labelling (Nguyen et al, 2009).            
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Figure 5.3: Chemical Structures of (A) Lysine and (B) the UAA propargyl Lysine (pK), visualised 

using ChemDraw ®. The structure of pK shows a Lysine residue modified by the addition of an alkyne 

functional group (circled). 

   EPR will be performed to assess whether this method of spin labelling is a surrogate 

for traditional methods, using cysteine substitution mutagenesis. The pK will be 

incorporated using the pyrrolysyl tRNA synthetase /tRNACUA(Pyl) pair from 

Methanosarcina barkeri, which is orthogonal in E. coli, ensuring no cross talk between 

endogenous sets. A lack of cross-reactivity should ensure that pK, is incorporated with 

high fidelity, only in response to the non-sense codon TAG (Young et al, 2010). 

    Even in the wake of recent improvements in protein synthesis techniques, it is 

challenging to predict the facility  in incorporating a specific UAA in vitro, at a given 

site, prior to performing the experiment  (Short et al, 1999). To date, phenylalanine 

derivatives bearing alkynyl (Deiters & Schultz, 2005), azido (Chin et al, 2002b) and 

keto (Fleissner et al, 2009) groups that are bio orthogonal in their chemical reactivity 

have been incorporated into recombinant proteins in response to the amber stop codon.  

   Generally, the efficiency of incorporation of an UAA can be predicted to some extent, 

based on the chemical nature and structure of that being incorporated, with hydrophobic 

AAs being incorporated with high efficiency, and dipolar AAs proving troublesome 

(Short et al, 1999). However, the incorporation of aromatic UAAs into proteins where 

aliphatic AAs are naturally found may cause the protein to become misfolded, or result 

in an entire loss of protein function (Nguyen et al, 2009). Consequently, there is great 

need for the incorporation of aliphatic AAs, that contain bio-orthogonal chemical 

A                                              B 
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handles, which can subsequently be used for the specific labelling of recombinant 

proteins.  

   UAAs are incorporated with low efficiencies in comparison to natural AAs, possibly 

due to competition between the tRNA and endogenous cellular release factors, which 

function to recognise stop codons and terminate translation  (Loscha et al, 2012). A 

significant decrease in incorporation efficiency, as well as truncated proteins being 

expressed may influence the target protein, or prove deleterious to the host. 

Furthermore, yields drop precipitously with the addition of even a second stop codon 

(Johnson et al, 2011).  

   Consequently, the site of interest, the cell line required for expression, as well as the 

effect on incorporation efficiency as multiple stop codons are introduced, must all be 

considered in order to optimise expression of the target protein. Proving the latter can be 

overcome, and DEER results show that SDSL via genetic code expansion is a viable 

alternative to cysteine substitution mutagenesis, there is potential to extend these 

methodologies into cysteine rich proteins, which otherwise are out-with the realms of 

the technique. 

 

5.4 Generation of Single (SC4 &S C118) and Double Cysteine 

(S4CS118C (or C4C118)) Myoglobin Mutants 

 

   The plasmids pBk-Pyls and pMyo4-TAG-PylT used throughout this work were kindly 

supplied by Prof. Jason Chin. The pBk-Pyls plasmid contains the pyrrolysyl tRNA 

synthetase / tRNACUA(Pyl) pair whilst the pMyo4-TAG-PylT contains the gene for 

recombinant myoglobin expression. 

5.4.1 Mutagenesis 

   Before myoglobin could be expressed with the UAA, pK, it was first expressed as the 

single cysteine mutants S4C and S118C and the double cysteine mutant S4CS118C, 

with the native serine residues at position 4 and 118 mutated to cysteine residues. Figure 

5.4 shows the sequence chromatogram of the cysteine substitution mutagenesis, which 

can be compared to the wt. To generate the double mutant, the confirmed C4 mutant 

was used as template DNA. 
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Figure 5.4: Confirmation of mutagenesis of S4C and S118C in sperm whale myoglobin.  

 

 

5.4.2 Expression and Purification of the S4CS118C Myoglobin Mutant 

 

   Following transformation of the template DNA into DH10β E. coli cells, large scale 

flask expression was carried out, and the proteins purified by IMAC and SEC as 

described in 2.3.4 & 2.5.3. For each of the myoglobin mutants (Cys and pK mutants), 

due to the presence of a C’ terminal hexa-histidine tag, IMAC can be used for the initial 

catchment step. The SDS-PAGE analysis from all stages of purification, as well as the 

elution profile following the final purification step are shown in Figure 5.5. 

 

 

 

 

 

 

 

 

 

 

Figure 5.5: Expression and purification of the Sperm Whale Myoglobin, S4CS118C mutant. (A) 

SDS-PAGE analysis of the first catchment step; manual elution following IMAC. (B) SDS-PAGE 

analysis from small scale expression (10mL), testing reducing conditions. (C) Elution from the S75 SEC 

column, and resulting SDS-PAGE analysis.    
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   Following the initial catchment step, using IMAC, from the S4CS118C elution 

fractions, it is clear (Figure 5.5A) that although the majority of the myoglobin 

S4CS118C mutant is present as a monomeric species, there is a significant amount of 

dimer present. Typically, myoglobin does not contain any free thiols, and so it can be 

assumed that the dimerization is a result of disulphide bond formation between the 

introduced cysteine residues.  

   Therefore, the C4C118 mutant was treated with 1mM and 10mM DTT in order to 

reduce the disulphide bonds, and free the newly incorporated cysteine residues for spin 

labelling purposes. From the SDS-PAGE analysis in (Figure 5.5B), treatment with 1mM 

DTT is enough to reduce the disulphide bonds, although a little dimer remains, 

therefore, following IMAC, the pooled elution fractions were treated with a final 

concentration of 10mM DTT, before undergoing SEC.  

 

5.4.3 Expression and Purification of the Single Cysteine Mutants S4C and S118C  

 

   Following transformation of the template DNA into DH10β E. coli cells, large scale 

flask expression was carried out, and the proteins purified by IMAC as described in 

2.3.4 & 2.5.3. Figures 5.6 and 5.7 show the SDS-PAGE analysis for all stages of 

purification, as well as the elution profile following the final purification step, for both 

the S4C and S118C mutants, respectively. 
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Figure 5.6: SDS-PAGE analysis following purification of the S4C Mutant following IMAC (A), 

shown alongside the elution profile (B) and resulting SDS-PAGE analysis following SEC (post-DTT 

treatment) (C). 
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Figure 5.7: SDS-PAGE analysis following purification of the S118C Mutant following IMAC (A), 

shown alongside the elution profile (B) and resulting SDS-PAGE analysis following SEC (post-DTT 

treatment) (C). 

5.4.4 Spin Labelling of Cysteine Myoglobin Mutants 

   Ideally, following treatment with DTT, an Ellman’s assay would be performed as 

described in 2.8.2 in order to quantify the amount of free cysteine before spin labelling, 

however, due to the characteristic red colour of myoglobin, it is impossible to monitor 

the release of the NTB component at 412nm, and so it must be assumed that any 

cysteine/cystine is reduced by the addition of 10mM DTT. 
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   Immediately following SEC, relevant fractions were pooled and treated with a 10x 

molar excess of MTSSL. The excess MTSSL was removed using extensive dialysis of 

the samples into PBS. The CW EPR spectrum of the double mutant, S4CS118C, is 

shown in Figure 5.8. The degree of spin labelling is close to 100%. 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.8: X-band CW EPR of myoglobin S4CS118C SL. Taken on the AffirmoEx at r.t. in aqueous 

buffer. 

 

5.5 Expression and Purification of Sperm Whale Myoglobin Mutants 

with the UAA, pK. 

 

5.5.1   Mutagenesis 

   For incorporation of the pK UAA into myoglobin, the serine residues at position 4 and 

118 were changed to the amber stop codon, TAG. Figure 5.9 shows the sequence 

chromatogram of the mutagenesis, compared to wt. 

 

 

 

 

 

 

 

Figure 5.9: Confirmation of mutagenesis of S4pK and S118pK in sperm whale myoglobin. 
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5.5.2 Small-Scale Expression of Myoglobin pK Single Mutants 

   Following transformation of the template DNA (S4pK and S118pK) into DH10β E. 

coli cells, alongside the plasmid containing the pyrrolysyl tRNA synthetase 

/tRNACUA(Pyl) pair, the single pK mutants were expressed on a 10mL scale, with the 

media supplemented with a final concentration of 2mM pK.  

   The pK used for the small scale test expressions was provided as the TFA salt, by Dr 

Alison Hulme, University of Edinburgh, Scotland, UK. It is suggested that 

supplementing the media with the UAA from inoculation yields higher expression 

levels, and reduces leaky expression, however, supplementing the media with the UAA 

pK at different points in the growth stage, (start, OD600 0.2, OD600 0.6, OD600 1.0) shows 

that when the UAA acid is added to the growth media has no effect on final yield.  

   Supplementing the growth media with the UAA significantly reduces the growth rate 

of the E. coli cells, when compared to expression of wt myoglobin, or cysteine mutants. 

Adding pK later in the expression proves more economical, as if cells do not reach their 

exponential growth phase, the pK, which must be synthesised, is not added 

unnecessarily. Figure 5.10 shows the SDS-PAGE analysis of the small scale expression 

tests of both the S4pK and S118pK single mutants.  

 

 

 

 

 

 

 

Figure 5.10: SDS-PAGE Analysis of Small Scale Test Expressions OF the single pK mutants (A) 

S4pK and (B) S118pK. For each mutant two different clones were tested for myoglobin expression. All 

clones were tested with and without the UAA pK in the growth media, as well as a sample taken before 

induction. 

   In both Figures 5.10A and B, before induction with L-arabinose (final concentration 

0.2%) there is no indication of protein expression in cultures containing pK. In those 
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clones which were grown in the absence of pK, there is no protein expression post-

induction. When looking at the clones expressed in the presence of pK, for both single 

mutants, as highlighted by the circled bands, there is a definite over-expression of 

protein, which appears at the expected MW of myoglobin. At this stage, both mutants 

must be expressed on a larger scale, and the over-expressed protein further 

characterised, to determine whether it is myoglobin containing the UAA, pK. 

5.5.3 Large Scale Expression and Purification of Myoglobin Single pK Mutants  

   Small scale expression of both single pK myoglobin mutants suggest that pK is being 

incorporated in response to the amber stop codon and so expression must be scaled up, 

so the proteins can be purified and further characterised. Figure 5.11 shows the SDS-

PAGE analysis from large scale expression (1 litre) of each of the single pK mutants, as 

well as Western Blotting Analysis, of samples probed with an antibody that specifically 

detects a C’ terminal histidine tag. 

 

 

 

 

 

 

Figure 5.11: SDS-PAGE analysis from large scale expression of the single mutants. (A) S4pK and 

(B) S118pK, and corresponding (C) western blotting analysis, of samples probes with an antibody 

specific for the detection of a C’ terminal hexa-histidine tag. 

   From the SDS-PAGE analysis of the S4pK mutant (A), the circled area represents 

elution fractions containing protein corresponding to the MW of myoglobin. Similarly 

in the SDS-PAGE analysis of the S118pK mutant, the elution fractions thought to 

contain myoglobin are circled. Following western blotting analysis of both mutants with 

an antibody conjugated to HRP, and specific for the detection of C’ terminal histidine 

tags, the bands circled in (C) indicate that a C’ terminal histidine tag has been detected. 

The bands on the western blot suggest that the E. coli cells have read through the stop 
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codon for both mutants, as the histidine tag follows the myoglobin gene. However, 

looking at the SDS-PAGE analysis from the S118pK mutant, there is indication of a 

lower molecular weight band. It can be assumed that the circled bands appearing at 

~18kDa in (A) and (B) are pK containing myoglobin. The lower molecular weight band 

in (B) was excised from the SDS-PAGE gel, and sent for tryptic digest mass 

spectrometry (MS). MS confirmed that the circled lower molecular weight band in (B) 

had 52% identity to myoglobin, with no peptides identified beyond pK. This suggests at 

the 118 position, there is early termination of protein synthesis due to latent reading of 

the amber stop codon.  

5.5.4 Expression of the double mutant S4pKS118pK 

   Small scale expression tests were carried out for several clones of the myoglobin 

containing pK at both positions 4 and 118, however, following SDS-PAGE analysis 

there appeared to be no expression of the recombinant protein. This is not particularly 

surprising due to the reduced yields of single mutants when compared to wt, coupled 

with the drop off in expression that results from an increase in stop codons. 

    Following successful transformation of the template DNA, as well as the plasmids 

encoding the pyrrolysyl tRNA synthetase /tRNACUA(Pyl) pair, 2L of LB was 

supplemented with a final concentration of 3mM pK.  The double mutant was purified 

using IMAC, utilising the histidine tag at the C’ terminal of the myoglobin gene in the 

first catchment step, and fractions analysed by SDS-PAGE. Figure 5.12 shows the SDS-

PAGE analysis for the double pK mutant. For the cysteine mutants, at this point SEC 

would be performed to further purify the myoglobin, however, due to the small sample 

volumes, this was avoided. From the SDS-PAGE analysis, purity was estimated to be 

approximately ~60%, and final yields calculated based on absorbance of the soret band 

(409nm), rather than at 280nm.  

   For large-scale expression of the double mutant, the sodium salt of pK was used, 

rather than the TFA salt to aid solubility of the UAA in water. (Synthesised by Dr. 

Bouchra Hajjaj, University of St Andrews, Scotland, UK). From the SDS-PAGE 

analysis, the fractions in the circled region were pooled, ready for spin labelling via 

‘click’ chemistry of the azide spin label to the pK containing myoglobin. 
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Figure 5.12: SDS-PAGE analysis from large scale expression of double pK mutant S4pKS118pK. 

                 Table 5.1   Protein Yields for Myoglobin Mutants Per Litre of Cell Culture 

 

 

 

 

 

5.6 Coupling of a Peptide Containing pK to an Azide Spin Label Using 

‘Click’ Chemistry 

The reported work described in 5.1.3 and 5.1.4 was undertaken by a PDRA in our lab, 

Dr Bouchra Hajjaj. 

   Before the pK containing protein was conjugated to an azide spin label using ‘click’ 

chemistry, the reaction was tested with a small peptide containing pK, flanked either 

side by alanine residues.  

   The synthesized pK peptide, 1 (see Figure 5.13) (6.3mg, 5mM final concentration) 

and the spin label 21
 (3.0mg, 5mM final concentration) were solubilized in freshly 

degassed water (3.1mL).  A r.t CW EPR spectrum and HPLC analysis were taken of this 

solution to ensure the radical was stable before the addition of the ascorbic acid, which 

can reduce the nitroxide. The reaction mechanism is shown in Figure 5.13. 

                                                           
1
 Azide spin label was synthesized by Marius Haugland  - University of Oxford 
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   A 10mM solution of Copper (II) sulphate, TBTA in 55% (v) DMSO (61.4µM; 0.2mM) 

was then added followed by ascorbic acid (0.1mg; final concentration 0.2mM). The 

reaction mixture was stirred at r.t under Argon, before an HPLC of the crude mixture 

performed, after 30min and 1h30min. The HPLC traces are shown in Figure 5.14.  

   HPLC analyses show that the coupling reaction is complete after 30min at r.t. A r.t 

CW EPR was recorded for the uncoupled reagents and the coupled product after 2h 

reaction time at r.t, and formation of the desired product, 3. 

 

 

 

 

 

Figure 5.13: Reaction Mechanism for the copper catalyzed azide-alkyne cycloaddition of the pK 

containing peptide to spin label.  

 

 

 

 

 

 

 

 

 

 

Figure 5.14: HPLC (Shimadzu) of the reaction mixture at t=0, 30, 90min using Phenomenex C18 

column 150*4.60mM. (A) the pK peptide and azide spin label before coupling (B) after coupling 

(30min) and (C) after coupling (1h30min). A shift in retention time was recorded from 30min for the 

uncoupled reagents to 20 min for the coupled product.  

+ 
Cu, TBTA,                                

Ascorbic acid 

  1                                             2                                       3 

t=1h30 

t=0 min 

t=30 min 

A 

 
 
 
 
B 

 
 
 
 
C 

Uncoupled reagents 

Coupled product 



Chapter 5: Development of New Methods for SDSL  

 

194 
 

5.7 Coupling of pK containing myoglobin to an azide spin label 

5.7.1 From Peptide to Protein - Optimisation of Coupling 

   Although coupling of the peptide to the azide spin label proves successful, the 

conditions must be optimised, as the coupling reaction must be performed in aqueous 

buffers, in conditions which would not result in denaturation of the protein. The initial 

coupling reaction was performed using 5mM peptide and 5mM label, as highlighted in 

Test 1 (Table 5.2).  

   Obtaining final yields in the milli-molar range for recombinant proteins expressed 

with unnatural amino acids is unheard of and so the coupling reaction must be adjusted 

accordingly. Shown in Table 5.2 are a variety of coupling conditions tested for the 

coupling of the peptide to the azide spin label, which subsequently could be transferred 

to coupling of the protein, which will likely be in the micro-molar concentration range. 

 

Table 5.2 Test Coupling Conditions of the Peptide to the Spin Label 

 

Of all of the conditions tested, it was found that only test 5, using a final concentration 

of 34µM peptide, 5mM label, 0.2mM CuTBTA and 0.2mM ascorbic acid resulted in a 

successful coupling reaction, whilst maintaining the nitroxide radical. 

These conditions were then used for the coupling of the proteins to the azide spin label. 

 

Test Peptide Label Cu TBTA Ascorbic acid Water 50mM 

Hepes, 

125NaCl, 

pH7.0 

time 

1 5mM 5mM 0.2mM 0.2mM - Yes 1h 

2 34µM 34µM 1.4µM 1.4µM Yes Yes 1h & 

overnight 

3 34µM 34µM 0.2mM 0.2mM Yes Yes 1h 

4 34µM 68µM 11µM 11µM Yes Yes 1h & 

overnight 

5 34µM 5mM 0.2mM 0.2mM yes Yes 1h 
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5.7.2 Spin Labelling of S4pK Using Copper Catalysed ‘Click’ chemistry 

 The buffer used throughout the purification process of the myoglobin pK mutants was 

50mM Hepes, 125mM NaCl, pH7.0 (see appendix A9), and so the conditions which 

were optimized for the peptide, at a final concentration of 34µM, were transferred onto 

the S4pK myoglobin at the same concentration. Shown in Figure 5.15 is the r.t CW EPR 

spectrum taken, of the single pK mutant S4pK. 

 

 

 

 

 

 

 

 

Figure 5.15: X-band CW EPR of the S4pK myoglobin Mutant. Spectrum taken under non-saturating 

conditions.  

The CW spectrum was taken in an aqueous buffer/ glycerol mixture which should 

increase correlation time, giving a broader EPR spectrum, however, when looking at the 

EPR line-shape it is very narrow, and indicative of a mobile, but not free, spin label.  

   Although the label is mobile, the CW EPR spectrum indicates that the pK containing 

myoglobin is spin labelled. The UV-Vis absorption spectrum was recorded for the pK 

myoglobin following the labelling reaction, confirming the protein to be oxy-

myoglobin. The double pK myoglobin mutant was then spin labelled in the same 

manner as the single mutant. 

 

5.7.3 Spin Labelling of S4pKS118pK Using Copper Catalysed ‘Click’ chemistry 

   The purified S4pKS118pK was labelled under the same conditions as for the singly 

labelled pK myoglobin. There was no need to adjust the concentrations of label or the 
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other reagents, as these were already present in excess, when compared to protein 

concentration. Figure 5.16 shows the r.t CW EPR spectrum of the doubly labelled pK 

mutant. 

 

 

 

 

 

 

 

Figure 5.16: X-band CW EPR of the S4pKS118pK myoglobin Mutant. Spectrum taken under non-

saturating conditions.  

   Although CW EPR will give some information as to whether or not the protein is 

labelled, mass spectrometry was used to confirm if one or both of the pK amino acids 

were labelled, before the DEER experiments could be performed. 

5.8 Confirmation of Spin Labelling of the S4pKS118pK mutant using 

Mass Spectrometry 

   A sample of the double pK myoglobin mutant was taken before labelling and after, 

and mass spectrometry (LCT LC-MS) carried out to estimate the accurate mass of both 

the labelled and unlabelled samples. Figure 5.17 shows the LCT LC-MS analyses of 

both samples, processed over a narrow mass range to 0.1 Da (Performed at the 

University of St Andrews). For the unlabelled the expected mass is 18601Da, measured 

18602.4Da and for the labelled the expected mass is 18991, measured 18992.5Da. This 

high degree of correlation seemed to confirm successful incorporation of two pK UAAs 

and their labelling. 
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Figure 5.17:  LCT LC Mass Spectrometry analysis of the double pK myoglobin mutant 

S4pKS118pK. (A) analysis of the unlabeled sampled and (B), analysis of the doubly spin labelled 

sample. 

5.9 DEER Experiments 

  DEER was performed at Q-band for both the doubly labelled cysteine myoglobin 

mutant and the doubly labelled pK mutant. The results of the DEER and the MMM 

modelling for the MTS label are shown in Figure 5.18 which also shows the final SDS-

PAGE analysis of the double pK labelled mutant. 

   Looking at the distance distributions obtained for the S4CS118C mutant (MTSSL 

labelled), these overlap well with the distributions simulated using MMM. However, the 
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S4pKS118pK result is much broader and shows a shorter distance. This is not entirely 

unexpected given the much longer amino acid side chain the label is attached to and the 

much larger degree of flexibility the label has at room temperature according to the CW 

EPR. This conformational freedom is likely to have been frozen in and results in a 

distribution of distances. More of a concern is the smaller modulation depth of the 

DEER time trace which brings the labelling efficiency of the click reaction into question 

since modulation depth is related to the number of pairs of interacting labels. 

A                     B                                            C 

 

 

 

  

 

Figure 5.18: Comparisons of the Background Corrected EPR Time-Traces and Distance 

Distributions, of the S4CS118C and S4pKS118pK doubly spin-labelled mutants, shown alongside 

MMM simulation. (A) sample of the doubly labelled S4pKS118pK mutant analysed by SDS-PAGE 

following coupling to the azide spin label. (B) DEER time traces for the doubly labelled cysteine and pK 

mutants, overlaid with the MMM simulation. (C) DEER distance distributions for the doubly labelled 

cysteine and pK mutants, overlaid with the MMM simulation. 

   Although Mass Spectrometry analyses of both the labelled and unlabelled samples 

suggest thorough labelling of the sample, it is implied that although the labels 

themselves have been successfully conjugated to the pK UAAs within the myoglobin, it 

is possible that the nitroxide itself is not intact. It may have been reduced to the 

hydroxylamine during the click reaction and this would only make a difference of 2Da. 

We compared the CW EPR spectrum to standards and estimate that only 60% of the 

radical is intact.  

   At this stage, further large scale expression was carried out for the double pK mutant, 

and the experiment repeated, only a desalting column was used for the removal of 

excess ascorbic acid/copper with the hope that this more efficient removal would reduce 

the chances of reduction. Expression this time of the double pK mutant was high, 
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resulting in a final yield of ~1.8mg from 1L of culture. (Yield comparable to that 

suggested by Nguyen et al, 2009 for a single UAA mutant). 

   The click reaction was then performed on the new S4pKS118pK sample, however 

CW EPR and MS suggest this was unsuccessful, and so was repeated. MS again 

indicates that this has not been successful, whilst the CW EPR implies otherwise, and so 

the sample was prepared for DEER, as there was not enough sample to repeat the click 

reaction. 

   The final concentration of the sample was determined to be ~100µM, in 50mM 

Hepes, 125mM NaCl pH7, in 50% deuterated glycerol. Following the DEER 

experiment, unlike the original sample, there was no signal observed. This contradicts 

that observed from the CW EPR, and so it is possible that the label is unspecifically 

binding to the protein, and is not conjugated via the ‘click’ mechanism.  

 

5.10 Outlook and Future Work 

   Contrary to what is stated in the literature (Loscha et al, 2012) (Johnson et al, 2011), 

we have successfully managed to incorporate two UAAs, namely the UAA, pK, into 

recombinant sperm whale myoglobin in response to the amber stop codon, giving final 

yields in the hundred micro-molar range, without the need for modified cell lines. 

   A doubly spin-labelled mutant has given EPR distance distributions comparable not 

only to a doubly spin-labelled cysteine mutant, but also to simulated distance 

distributions obtained from the published X-Ray Crystal structure. This demonstrates 

the potential for SDSL using genetic code expansion as an alternative to cysteine 

substitution mutagenesis for the purpose of DEER spectroscopy.  

   Improving final yields, incorporation efficiencies, conformational freedom of 

incorporated spin labels and the labels themselves would prove advantageous in 

improving data quality. The incorporation of the UAA, pK, into recombinant sperm 

whale myoglobin has proven to be a favourable model system, and proof of principle, 

that EPR can be performed between two spin-labelled UAAs. With slight adjustments to 

the protocols described above, the system can be optimized, to facilitate transfer from a 

model system, to a protein system where EPR would be used for structural 

characterization. 
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   Assignment of the amber stop codon to the UAA, pK, is ambiguous, as it 

simultaneously codes for the incorporation of the UAA, as well as the termination of 

protein synthesis. This is due to a direct competition between the exogenous tRNACUA 

and the endogenous release factors.  

   Eukaryotic cells typically express two release factors, RF1 and RF2, with the RF1 

terminating protein synthesis in response to the codons UAA and UAG, and RF2 

terminating at UAA and UGA. Johnson et al, 2011have developed the E. coli cell-line, 

JX33, with the gene encoding RF1 knocked out, which allows for more efficient 

incorporation of UAAs at multiple sites, with up to ten unnatural amino acids 

incorporated into a single recombinant protein, with little effect on protein yield. By 

limiting termination of the stop codon UAA to RF2 only, RF1 is completely reassigned 

to the amber stop codon.  

   It is proposed that sperm whale myoglobin could be expressed using this modified cell 

line or similar, to optimise expression and incorporation efficiency. It should be noted 

however, that switching to the specialized cell line has no guarantee of increased yields, 

as the efficiency of UAG as a sense codon depends on multiple factors.  

   The orthogonal synthetases and tRNAs, although effective, have been artificially 

mutated for the incorporation of UAAs, unlike endogenous sets that have been 

evolutionarily tuned for optimal decoding. Furthermore, local protein structure, as well 

as mRNA context can possibly affect incorporation efficiency, despite expression using 

the modified cell line (Loscha et al, 2012). Mottagui-Tabar & Isaksson (1997) found 

that the presence of a lysine residue, three positions N’ terminal to the stop codon, 

resulted in increased read-through. With this is mind, positons for UAA incorporation 

could be changed to reflect this observation, as well as adopting the modified JX33 cell-

line, or equivalent. In doing so expression and incorporation of a given UAA can be 

further optimised. 

   The UAA being incorporated is another variable which should be considered. As 

stated prior, the incorporation of aliphatic amino acids is something which should be 

further explored. The modified lysine residue in this study is efficiently incorporated, 

however, from CW EPR spectra taken at r.t for the singly spin labelled pK4 mutant, 

there is a high degree of flexibility introduced by the extended lysine residue. With this 

in mind, one could take inspiration from the bis-legged Rx spin label (Fleissner et al, 
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2011), in synthesising a bis-legged spin label, with azide and MTS functional groups, 

for spin labelling of pK, anchored by labelling of the MTS functional group to a nearby 

cysteine residue. This could potentially produce a more rigid spin label, with less 

flexibility and conformational freedom than that demonstrated for the spin-labelled 

S4pK mutant.  

   By considering different spin labels, with various functional groups, as well as the 

structure of the amino acid being incorporated, and the cell line being used for 

expression, a ‘Tool-Box’ approach can be developed for the incorporation of different 

spin labels and UAAs into recombinant proteins. 

   Optimisation of current coupling conditions, as well as testing new labels and UAAs 

in the myoglobin model system will facilitate a smoother transition from the test system 

to systems which we would like to study, but would prove difficult by EPR. 

   As stated above, there are many cysteine rich proteins which can be recombinantly 

expressed using E. coli expression systems, and so perhaps application of such methods 

to the study of these proteins, using modified cell lines, could open up a new avenue for 

the study of cysteine rich proteins, using EPR spectroscopy. 

   Furthermore, such methods using orthogonal pyrrolysyl tRNA synthetase 

/tRNACUA(Pyl) pairs are transferable to more complex expression systems, such as Pichia 

pastoris. As described in Chapter 3, when looking at the interactions of complement 

proteins fH and C3b, expression of the recombinant fH fragments proved challenging.           

   The presence of intermolecular disulphide bonds, making the proteins cysteine rich, 

significantly increased protein aggregation, and complicated the purification procedures.    

Keeping the protein in its reduced form for labelling purposes whilst ensuring the 

integrity of the disulphide bonds, and consequently protein fold, proved particularly 

challenging. Consequently, there is the potential for the incorporation of UAAs, into 

recombinant fH, using the Pichia pastoris system, which is well known for yielding 

large amounts of recombinant proteins from fermentation (often in gram quantities) 

(Macauley-Patrick et al, 2005). 

  By considering all variables mentioned above, the concept of SDSL opens up many 

avenues for exploring long range structure in biological systems which were otherwise 

out with the limits of the technique. Not only is this an exciting prospect for the EPR 

field, but for structural biology as a whole.  
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5.11 A New Generation of Spin Label 

  We are currently developing new strategies using several model protein systems for 

the incorporation of novel nitroxide spin labels for the SDSL of cysteine rich proteins. 

The new labels are specific for addition to only vicinal cysteine pairs, allowing specific 

labelling in the presence of single cysteine residues. This work is inspired by Huang et 

al, 2011 and their work on fluorescence labelling with As
III

 binding and  Smith et al, 

2010 and their work on bromo-malemides and disulphide bridging.  

   Figure 5.19 shows the chemical structure of three spin labels (synthesised by Dr. 

Bouchra Hajjaj, University of St Andrews), BMSL, POMSL and SLAsH, designed for 

the specific labelling of cysteine pairs, in the presence of single cysteines. 

   

 

 

 

Figure 5.19: Chemical Structures of novel nitroxide spin labels (A) BMSL, (B) POMSL, and (C) 

SLAsH. (visualised using ChemDraw
TM

). 

 

5.11.1 Expression and Purification of the 14-3-3 ϛ  and Vps75 Proteins 

The recombinant proteins Vps75 and 14-3-3ϛ have been expressed with vicinal cysteine 

residues as test systems. 

   14-3-3ϛ  is a dimer with each monomer containing a pair of i, i+1 (Q150C E151C) 

vicinal cysteine residues joined in a disulfide bond, whilst the Vps75 construct has 

vicinal cysteine residues incorporated at i, i+3 (L16C A19C) and i, i+4 (L16C K20C).  

   Figure 5.20 shows the XRC structure of 14-3-3ϛ, with the cysteine residues shown as 

spheres, alongside the XRC structure of Vps75 (i to i+3). 

           A                                                   B                                   C 
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Figure 5.20: XRC Structures of the (A) 14-3-3ϛ  (PDB_ID 2BTP  (Yang et al, 2006)) and (B) Vps75 

(PDB_ID 2ZD7 (Park et al, 2008)). Mutants, with vicinal cysteines shown as spheres.   

Figure 5.21 and 5.22 show the elution profiles and SDS-PAGE analysis of the model 

proteins following purification.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.21: Elution profile (A) and SDS-PAGE (B) analysis of 14-3-3ϛ following the final 

purification step (SEC). 
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Figure 5.22: Elution profile (A) and SDS-PAGE (B) analysis of Vps75 following the final 

purification step (SEC). 

 

5.11.2 Spin Labelling of 14-3-3ϛ  

The 14-3-3ϛ Q150C E151C mutant was labelled with MTSSL, SLAsH and BMSL 

labels. Figure 5.23 shows the CW EPR spectra obtained. The SLAsH labelling was very 

poor and addition of it to the protein caused precipitation. Other methods for adding it 

will be investigated in the future or methods for making it more water soluble. Tests 

using varying levels of spin label together with Ellman’s and mass spectrometry 

indicated that the BMSL cannot bridge these cysteines. Preliminary tests with the Vps75 

(L16C A19C mutant) indicate that BMSL or POMSL can bridge the cysteines. Ongoing 

work will be to find conditions where the maleimide attached to one cysteine is 

selectively removed in the presence of the succinimide bridged pair of cysteines.  
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Figure 5.23: CW EPR of labelled 14-3-3 ϛ with (A) MTSSL, (B) SLAsH and (C) BMSL. Spectra 

taken at rt under non-saturating conditions. 

 

5.12   Obtaining Nanometre Scale Distances Between the Ferric Heme 

of Sperm Whale Myoglobin and Nitroxide Spin Labels Using DEER 

 

   Many proteins contain naturally occurring paramagnetic metal centres or intrinsic 

organic radicals, however, in spite of this, the number of systems with intrinsic 

paramagnetism studied using DEER is limited. By taking advantage of these intrinsic 

EPR active sites, there is potential to study proteins and complexes thereof, which 

otherwise cannot be studied using traditional methods of EPR spectroscopy, such as in 

the study of cysteine rich proteins. However, the sensitivity of pulsed EPR 

measurements on broad-line metal centres is often restricted by the available excitation 

bandwidth, and to metal centres which exhibit moderate g-anisotropy and fast 

relaxation, e.g. Cu
II
 (Narr et al, 2002, Yang et al, 2007). 

   For this reason, the field is so far restricted to the use of nitroxide spin labels, as these 

typically have only a small effect on the spectral line shape in DEER (Amsterdam et al, 

2003). Many proteins contain ferric heme groups, in which the Fe
III

 is paramagnetic, 

however, mainly due to large g-anisotropy and the fast electronic relaxation associated 

with low spin heme centres (even at low temperatures), obtaining high quality 

measurements, comparable to published crystal structures is difficult. There are two 

examples in the literature of measurements between a low spin ferric heme and a 

nitroxide. Schiemann (Abdullin et al, 2014) showed a very nice measurement using the 
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DEER experiment and another pulsed EPR set-up called RIDME (which takes 

advantage of the very different relaxation times of the centres). However, the P450 

system is not as broad and is easier to manipulate into low spin than typical heme 

centres. Van Doorslaer (Ezhevskaya et al, 2013) measured a neuroglobin heme to 

nitroxide distance at X and Q-bands but the broadband and fast relaxing nature of the 

iron meant that the results had a poor signal to noise and an upper limit of 3nm 

distances seemed to be imposed. 

 
5.12.1 Aims of this work 

 

   High field EPR is becoming an increasingly useful tool for the exploration of spin-

labelled proteins, due to lifting of the degeneracy of the g-tensor at higher fields. The 

use of DEER at W band in the study of nitroxide-nitroxide distance measurements 

provides concentration sensitivity gains in the range of 20-30 times on commercial X-

band spectrometers, however, similar gains may not be achieved with ferric heme 

proteins, as the large g anisotropy in such systems will lead to a significant broadening 

of the linewidth, meaning few spins may be detected. By applying a set of non-standard 

pulses during the DEER experiment at W band, such imperfections can be compensated 

for, provide broadband excitation whilst compensating for substantial applied field 

inhomogeneities.  

   This work looks at incorporating cysteine residues into recombinant sperm whale 

myoglobin, generating the single mutants S4C, S118C, and the double mutant 

S4CS118C. In each case, the intrinsic ferric heme (Fe
III

) will be coordinated to 

imidazole, to induce low spin state, S=½, in the iron. Using broadband composite pulses 

applied to the single cysteine mutants, it should be possible to extract long range 

distance measurements between the ferric heme and the nitroxide spin label. With the 

double mutant, the nitroxide-nitroxide interaction can be independently determined 

from the nitroxide-heme interaction by appropriate spectral selection, highlighting the 

possibility for triangulation for studies involving protein-protein docking. 
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5.13 Expression and Purification of Low Spin (s= ½) Myoglobin 

Mutants 

   In order to yield low spin iron, the buffers used throughout were slightly different to 

those used in Appendix A9. Unless stated below, the purification was performed in the 

same manner, with washes and elution performed in the same volumes stated in 2.5.3. 

   Immediately following cell lysis, DTT was added to the non-cell extract at a final 

concentration of 50mM, before this was diluted to allow passage over the IMAC 

column. The protein was eluted from the column in 50mM Hepes, 125mM NaCl and 

0.5M imidazole, pH 7.0. This was treated with 10mM DTT and further purified using 

SEC with a HiLoad 16/600 Superdex S-75 column (GEHealthcare) into 50mM Hepes, 

125mM NaCl, pH 7.0. An SDS-PAGE gel with coomassie staining was used to confirm 

the purity of the monomeric species. A greater than 5 times excess of MTS spin label 

(Toronto Research Chemicals) was then added and the protein left at room temperature 

for 1 h. The protein was transferred into 50mM HEPES, 125mM NaCl, 200mM 

imidazole, pH 7.0 buffer in deuterium oxide, before 50% deuterated glycerol was added. 

   The presence of DTT throughout the purification process ensures that the myoglobin 

is maintained in its oxy-form. In a non-living system, oxymyoglobin (Fe
II
) is slowly 

converted to metmyoglobin (Fe
III

), and so the presence of a strong reducing agent 

prevents the formation of a mixed species. Full conversion of oxymyoglobin to 

metmyoglobin was monitored by the UV absorption spectra, by monitoring the position 

of the soret band and peaks in the 500-650 nm region, whilst the imidazole ligand 

coordinates to the heme, inducing a low spin state of the iron (S= ½) (Gurd et al, 1967). 

 

5.14 DEER Experiments 

   HiPER is a high power home-built W-band spectrometer which is capable of reducing 

nitroxide-nitroxide DEER measurement times from 24h to as little as 20min 

(Cruickshank et al, 2009). The use of composite pulses, or wideband optimal control 

sequences, is particularly attractive when applied to high field EPR, as sensitivity is 

often constrained by a limited excitation bandwidth and B1 inhomogeneity. A composite 

pulse emulates the effect of traditional pulses, but includes an inbuilt compensatory 

mechanism rendering it less sensitive to common experimental imperfections (Levitt, 

2011).  
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   All measurements were carried out by Miss. Claire Motion, University of St Andrews, 

using the home-built HIPER 94 GHz (W band) high power pulsed electron spin 

resonance spectrometer. The samples were tested using the standard 4 pulse DEER 

experiment and with broadband composite pulses used when measuring between the 

ferric heme and a nitroxide spin label, and standard pulses for the doubly labelled 

cysteine mutant. 

5.14.1 Nitroxide-Nitroxide DEER Measurements (S4CS118C) at W-Band 

   The ability to extract distances from a system that shows both nitroxide-nitroxide 

interactions as well as nitroxide-heme interactions shows the potential for triangulation 

and protein docking using EPR spectroscopy. Figure 5.24 shows the DEER time traces 

and distance distributions obtained using 4-pulse DEER for the double cysteine mutant 

at 50K. These are shown alongside time traces and distributions simulated using MMM. 

They show good agreement. 

 

 

 

 

 

 

 

 

 

 

Figure 5.24: DEER time traces and associated distance distributions for the S4CS118C doubly 

labelled Met-myoglobin mutant, shown alongside MMM simulation. (A) Structure of sperm whale 

myoglobin (PDB_ID: 1mBN), with cysteine residues represented as blue spheres. (B) MMM modelled 

DEER time trace and (C) Distance distributions for the S4CS118C mutant; (D) Background corrected 

DEER time trace (following DeerAnalysis) for the S4CS118C mutant measured on HiPER and (E) 

Distance distributions from DeerAnalysis for the S4CS118C mutant.  
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5.14.2 Nitroxide-Heme (Fe
III

) DEER Measurements at W-Band 

   The DEER between the single cysteine mutant spin labels and the ferric heme was 

taken using composite pulses to compensate for the increased inhomogeneity introduced 

by the metal centre at high frequency.  

  For these experiments it is highly advantageous to probe on the Fe
III

, and pump on the 

nitroxide. In doing so, Fe
 III

- nitroxide DEER measurements are experimentally viable, 

despite the spectral width of the Fe
III

 signal being 10x greater at W-band than at X-band, 

and 200x greater than the nitroxide spectral width at W band (Cruickshank et al, 2009). 

Figure 5.25 and 5.26 shows DEER time traces and distance distributions obtaining 

using composite pulse DEER (based on the 4-pulse sequence) for the S4C and S118C 

nitroxides, to the ferric heme, respectively. Measurements were taken at 6K. These are 

shown alongside time traces and distributions simulated using MMM 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.25: DEER time traces and associated distance distributions for the S4C singly labelled 

Met-myoglobin mutant to the ferric heme, shown alongside MMM simulation. (A) Structure of 

sperm whale myoglobin (PDB_ID: 1mBN), with cysteine residue represented as blue spheres. (B) DEER 

time trace and (C) Distance distributions for the S4C mutant, simulated using MMM. (D) Background 

corrected DEER time trace (following DeerAnalysis) for the S4C mutant. (E) Distance distributions from 

DeerAnalysis for the S4C mutant.  
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Figure 5.26: DEER time traces and associated distance distributions for the S118C singly labelled 

Met-myoglobin mutant to the ferric heme, shown alongside MMM simulation. (A) Structure of 

sperm whale myoglobin (PDB_ID: 1mBN), with cysteine residue represented as blue spheres. (B) DEER 

time trace and (C) Distance distributions for the S4C mutant, simulated using MMM. (D)Background 

corrected DEER time trace (following DeerAnalysis) for the S4C mutant. (E) Distance distributions from 

DeerAnalysis for the S4C mutant.  

   Looking at the experimental data for each of the singly labelled single cysteine 

mutants measured to the ferric heme centre of the met-myoglobin, and comparing this 

to simulation, the distance distributions obtained are in good agreement. The results 

reported here are very exciting since they open up the possibility of measuring many 

otherwise unmeasurable systems. Measurements are underway for the S4C S118C 

doubly labelled mutant with ferric heme to investigate whether triangulation can be 

directly applied in this system. Preliminary results are promising. 
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5.15 Beyond MTSSL - Outlook and Future Work 

  The diversity of protein function is made possible because almost half of all enzymes 

require the incorporation of cofactors, such as metal atoms, to function (Finkelstein, 

2009), whilst metal binding sites on proteins are responsible for catalyzing some of the 

most physiologically relevant reactions (Yeung et al, 2009).  This development opens up 

the potential to study a full range of metalloproteins, or proteins with native accessible 

paramagnetic centres, that otherwise would be out with the remit of DEER.  

   The MTSSL spin label is effective for the study of many biologically relevant systems 

using EPR spectroscopy however, it is not without limitation. EPR is a highly specific 

technique which can be used to explore long range structure in systems which cannot be 

explored by other high resolution structural techniques. However, the main caveat of 

EPR is that it works best in its simple form, when looking at the interactions of two 

radicals.  

   This is simple enough when specifically introducing cysteine residues into proteins 

which do not have any or have few native cysteine residues. The problem of specificity 

arises when studying proteins which have many free cysteine residues, which, in order 

to maintain structural integrity, cannot be exchanged. In such instances, the 

development of new methods of spin-labelling and new labels themselves can only 

progress the field of SDSL, and open avenues of structural exploration that otherwise 

would not be possible. 

   The inspiration behind investigating new labelling strategies was the protein Nitric 

Oxide Synthase (NOS) (Structure and Mechanisms reviewed by (Daff, 2010). NOS is 

found in the human body in several different isoforms and is a major signalling 

molecule, and is consequently tightly regulated. It exists as a 160kDa homodimer which 

binds Calmodulin to exert its function. Until 2014 the structure of the homodimer was 

not known (Campbell et al, 2014) and while many aspects of the system were suitable 

for investigation by EPR distance measurements the presence of 30 free cysteine 

residues made site-directed spin labelling impossible.  
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   Consequently it was proposed that NOS structure was explored by utilising its binding 

partner calmodulin (CaM) for SDSL. Figure 5.27 is a schematic representation of the 

NOS domains, with calcium bound. 

 

 

 

 

 

 

 

 

Figure 5.27: Schematic representation of the NOS homodimer with NOS CaM bound. 

By spin-labelling the calmodulin, one could use EPR to extract a range of distances 

between mutants on each monomer, which could give further insight into the entire 

heterodimer. This, however, does little to shed insight into structural changes that occur 

as a result of activity. Ideally one would like to explore NOS structure when CaM is 

bound, however, the cysteine residues prove problematic. 

   NOS contains within its domains up to four paramagnetic centres, a FMN, FAD, heme 

and proteins (Rakowsky et al, 1998). Measuring distances from these to spin labels 

would be valuable for determining structure. Following the work done in 5.3, it was 

possible to measure accurately distances between spin labelled cysteine residues and the 

ferric heme of sperm whale myoglobin, using high field EPR, and composite pulses. 

Consequently, the same methodologies could be employed, to measure distances 

between the native paramagnetic centres of NOS (heme and flavin radicals), and local 

affects in NOS structure by the addition of CaM. 
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Appendices 

Appendix A: Stock Solutions, Buffers, and Media Compositions 

A1: Stock Solutions 

10x YNB: 34g YNB, 100g (NH4)2SO4, adjusted to 1000mL with ddH2O, filter sterilised 

500x B: 20mg biotin adjusted to 100mL with ddH2O, filter sterilised 

10x M: 5mL MeOH, 95mL ddH2O, filter sterilised 

10x GY: 100mL glycerol, 900mL ddH2O, autoclave for 20min 

10x D: 200g D-glucose, adjusted to 1000mL with ddH2O, autoclave 20min 

0.5m EDTA: 76.06g EDTA, pH8.2, adjusted to 500mL with ddH2O 

1M K2HPO4: 87.09g K2HPO4, adjusted to 500mL with ddH2O 

1M KH2PO4: 136.09g KH2PO4, adjusted to 500mL with ddH2O 

1M Potassium Phospahte Buffer: 132mL of 1MK2HPO4, 868mL of KH2PO4, pH6.0 

4M NaCl: 233.76g NaCl, adjusted to 1000mL with ddH2O 

1M DTT: 0.154g DTT, adjusted to 1000µL with ddH2O 

1M TCEP: 0.286g TCEP, adjusted to 1000µL with ddH20  

Coomassie Stain: 1.00g Coomassie R250, 100mL glacial acetic acid, 400mL MeOH, 

adjusted to 1000mL with ddH2O 

Coomassie Destain Solution: 200mL MeOH, 100mL glacial acetic acid, adjusted to 

1000mL with ddH2O 

 

A2: Buffers 

10x PBS: 80g NaCl, 2.0g KCl, 14.4g Na2HPO4, 2.4g KH2PO4, adjusted to 1000mL 

with ddH2O (pH7.4) 

10X TBE: 108g Trizma® base, 55g boric acid, 7.5g EDTA, disodium salt, adjust to 

1000ml with ddH2O 
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A3: fH1-4 Preparations 

The gene for full length fH was purchased from GeneArt, and fH fragments cloned into 

the pPICZαB vector (both provided by Prof Paul N. Barlow, University of Edinburgh, 

Scotland, UK). 

IMAC – Ni-NTA Superflow Cartridge 5mL 

Equilibration Buffer: 20mM Potassium Phosphate, 0.5M NaCl, pH7.0                            

Wash Buffer: 20mM Potassium Phosphate, 0.5M NaCl, 20mM Imidazole, pH7.0  

Elution Buffer: 20mM Potassium Phosphate, 0.5M NaCl, 500mM Imidazole, pH7.0 

Anion Exchange Chromatography – Tricorn
TM

 Mono Q 4.6/100 PE 

Equilibration Buffer: 20mM Sodium Carbonate, 1mM EDTA, pH9.0                         

Elution Buffer: 20mM Sodium Carbonate, 1mM EDTA, 1M NaCl, pH9.0 

SEC: HiLoad
TM

 16/600 Superdex
TM

 S-75  

Equilibration/Elution Buffer: 1X PBS, pH7.4 

 

A4: fH19-20 Preparations 

The gene for full length fH was purchased from GeneArt, and fH fragments cloned into 

the pPICZαB vector (both provided by Prof Paul N. Barlow, University of Edinburgh, 

Scotland, UK). 

Cation Exchange Chromatography - SP-Sepharose FastFlow
TM

 Resin 

Equilibration/Wash Buffer: 20mM Potassium Phosphate, pH6.6 

Elution Buffer: 20mM Potassium Phosphate, 1M NaCl, pH6.6 

Cation Exchange Chromatography – Resource 15S
TM 

Equilibration/Wash Buffer: 20mM Potassium Phosphate, pH6.6 

Elution Buffer: 20mM Potassium Phosphate, 1M NaCl, pH6.6 

SEC: HiLoad
TM

 16/600 Superdex
TM

 S-75  

Equilibration/Elution Buffer: 1X PBS, pH7.4 
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A5: C3 Preparations 

Anion Exchange Chromatography - Q-Sepharose FastFlow
TM 

Resin 

Equilibration/Wash Buffer: 90% 20mM Tris, 50mM εACA, 5mM EDTA, 0.2mM 

PMSF, 10% Elution Buffer 

Elution Buffer: 20mM Tris, 50mM εACA, 5mM EDTA, 0.2mM PMSF, 1M NaCl 

Anion Exchange Chromatography – Tricorn
TM

 Mono Q 4.6/100 PE 

Equilibration/Wash Buffer: 95% 20mM Tris, 50mM εACA, 5mM EDTA, 0.2mM 

PMSF, 5% Elution Buffer 

Elution Buffer: 20mM Tris, 50mM εACA, 5mM EDTA, 0.2mM PMSF, 1M NaCl 

 

A6: C3b/C3(N) Preparations 

Anion Exchange Chromatography – Tricorn
TM

 Mono Q 4.6/100 PE 

Equilibration/Wash Buffer: 20mM Tris, 50mM εACA, 5mM EDTA, 0.2mM PMSF 

Elution Buffer: 20mM Tris, 50mM εACA, 5mM EDTA, 0.2mM PMSF, 1M NaCl 

SEC: HiLoad
TM

 16/600 Superdex
TM

 S-75  

Equilibration/Elution Buffer: 1X PBS, pH7.4 

 

A7: MiniHMM/RLC and cMyBP-C Domain C0 Preparations 

The plasmids for expression of the MiniHMM fragment, cardiac RLC and cMyBP-C 

Domain C0 were provided by Dr Mark Pfuhl, Kings College, London, UK. 

IMAC – Ni-NTA Superflow Cartridge 5mL 

Lysis Buffer: 25mM Hepes, 125mM NaCl, 10% Glycerol, 1mM PMSF, 2 

SigmaFAST
TM

 Protease Inhibitor Cocktail Tablets, EDTA-Free (per 100mL of Lysis 

Buffer),pH6.8                                                                                                           

Equilibration Buffer: 25mM Hepes, 125mM NaCl, 20mM Imidazole, 10% Glycerol, 

pH6.8                                                                                                                            

Wash Buffer: 25mM Hepes, 125mM NaCl, 40mM Imidazole, 10% Glycerol, pH6.8       

Elution Buffer: 25mM Hepes, 125mM NaCl, 500mM Imidazole, 10% Glycerol, pH6.8 
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SEC: HiLoad
TM

 16/600 Superdex
TM

 S-75  

Equilibration/Elution Buffer: 25mM Hepes, 125mM NaCl, 10% Glycerol, pH6.8 

 

A8: 6xhis TEV Protease Preparations 

   A glycerol stock containing Rosetta
TM

 2(DE3) cells successfully transformed with the 

recombinant 6xHIS TEV protease was kindly donated by Dr Huanting Liu and Prof. 

James H. Naismith, University of St Andrews, Scotland, UK.  

Lysis Buffer: 1xPBS, 0.3M NaCl, 10mM Imidazole, 1mM PMSF, 1mM Benzamidine, 

pH7.4 

Equilibration/Wash Buffer: 1xPBS, 0.3M NaCl, 30mM Imidazole, 1mM PMSF, 

1mM Benzamidine, pH7.4 

Elution Buffer: 1xPBS, 0.3M NaCl, 250mM Imidazole, 1mM PMSF, 1mM 

Benzamidine, pH7.4 

Dialysis Buffer 1: 50mM Tris-HCl, 0.3M NaCl, 1mM PMSF, pH7.4 

Dialysis Buffer 2: 50mM Tris-HCl, 0.3M NaCl, 50% Glycerol, pH7.4 

 

A9: Myoglobin Preparations 

   The plasmids pBk-Pyls and pMyo4-TAG-PylT used throughout this work were kindly 

supplied by Prof. Jason Chin. The pBk-Pyls plasmid contains the pyrrolysyl tRNA 

synthetase / tRNACUA(Pyl) pair whilst the pMyo4-TAG-PylT contains the gene for 

recombinant myoglobin expression. 

IMAC – Ni-NTA Superflow Cartridge 5mL 

Lysis Buffer: 50mM Hepes, 125mM NaCl, 10mM Imidazole, 1mM PMSF, 2 

SigmaFAST
TM

 Protease Inhibitor Cocktail Tablets, EDTA-Free (per 100mL Lysis 

Buffer), pH7.0   

 

Equilibration/Wash Buffer: 50mM Hepes, 125mM NaCl, 25mM Imidazole, pH7.0                                      

 

Elution Buffer: 50mM Hepes, 125mM NaCl, 500mM Imidazole, pH7.0 
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SEC: HiLoad
TM

 16/600 Superdex
TM

 S-75  

Equilibration/Elution Buffer: 50mM Hepes, 125mM NaCl, pH7.0 

 

A10: 14-3-3 ϛ Preparations 

Agar plates from the successful transformation of the recombinant 14-3-3 ϛ  proteins 

into Rosetta
TM

 2(DE3) were kindly provided by Dr David Norman, University of 

Dundee, Scotland, UK. From these glycerol stocks were made for subsequent 

expression. 

IMAC: Ni-NTA Superflow Cartridge 5mL 

Lysis Buffer: 50mM Tris-HCl, 100mM NaCl, 1mM PMSF, 2 SigmaFAST
TM

 Protease 

Inhibitor Cocktail Tablets, EDTA-Free (per 100mL of Lysis Buffer), pH7.5                                                                                                        

Equilibration/Wash Buffer: 50mM Tris-HCl, 100mM NaCl, 20mM Imidazole, pH7.5 

Elution Buffer: 50mM Tris-HCl, 100mM NaCl, 500mM Imidazole, pH7.5 

SEC: HiLoad
TM

 16/600 Superdex
TM

 S-75 

Equilibration/Elution Buffer: 50mM Tris-HCl, 100mM NaCl, pH7.5 

 

A11: Vps75 Preparations 

Agar plates from the successful transformation of the recombinant Vps75 proteins into 

Rosetta
TM

 2(DE3) were kindly provided by Dr David Norman, University of Dundee, 

Scotland, UK. From these glycerol stocks were made for subsequent expression. 

IMAC: Ni-NTA Superflow Cartridge 5mL 

Lysis Buffer: 20mM Tris, 500mM NaCl, 1mM PMSF, 2 SigmaFAST
TM

 Protease 

Inhibitor Cocktail Tablets, EDTA-Free (per 100mL of Lysis Buffer), pH7.5 

Equilibration Buffer: 20mM Tris, 500mM NaCl, pH7.5 

Wash Buffer: 20mM Tris, 500mM NaCl, 5mM Imidazole, pH7.5 

Elution Buffer: 20mM Tris, 500mM NaCl, 400mM Imidazole, pH7.5 

SEC: HiLoad
TM

 16/600 Superdex
TM

 S-75 

Equilibration/Elution Buffer: 20mM Tris, 500mM NaCl, pH7.5 
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A12: Media 

LB Broth: 10g Bacto-tryptone, 5g Yeast Extract, 10g NaCl, adjusted to 1000mL with 

ddH2O, pH7.5 

LB Agar: 10g Bacto-tryptone, 5g Yeast Extract, 10g NaCl, 15g agar, adjusted to 

1000mL with ddH2O, pH7.5 

LSLB Broth: 10g Bacto-tryptone, 5g Yeast Extract, 5g NaCl, adjusted to 1000mL with 

ddH2O, pH7.5 

LSLB Agar: 10g Bacto-tryptone, 5g Yeast Extract, 5g NaCl, 15g agar, adjusted to 

1000mL with ddH2O, pH7.5 

BMG Media: Autoclave 700mL ddH2O, cool to r.t before the addition of 100mL 1M 

potassium phosphate buffer, pH6.0, 100mL 10X YNB, 2mL 500X B and 100mL of 10X 

GY. 

BMGY Media: As BMG, but supplemented with 10g Yeast Extract and 20g Bacto-

peptone before autoclaving (20min). 

BMM Media: Autoclave 700mL ddH2O, cool to r.t before the addition of 100mL 1M 

potassium phosphate buffer, pH6.0, 100mL 10X YNB, 2mL 500X B and 100mL of 10X 

M. 

BMMY Media: As BMM, but supplemented with 10g Yeast Extract and 20g Bacto-

peptone before autoclaving (20min). 

YPD Broth: Dissolve 10g Yeast Extract and 20g of Bacto-peptone in 900mL ddH2O. 

Autoclave for 20 min before the addition of 100mL 10X D. 

YPD Agar: As YPD Broth, but supplemented with 20g of agar before autoclaving 

(20min). 

YPDS Broth: Dissolve 10g Yeast Extract, 20g of Bacto-peptone and 182.2g sorbitol in 

900mL ddH2O. Autoclave for 20 min before the addition of 100mL 10X D. 

YPDS Agar: As YPDS Broth, but supplemented with 20g of agar before autoclaving 

(20min). 
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A13: Primers  

Amplification of fH1-4 from full length fH gene  

 

FOR: 5’ gaggattgtaacgagttgccaccaag 3’ 

 

REV: 5’ cttctcttcacaggatggcaatggtc 3’ 

 

 

K247C FOR: 5’ catgatctgcaggagaggattgtaacgagttgccaccaag 3’ 

 

K247C REV: 5’ taataatctagactactaacactcttcacaggatggcaatggtc 3’ 

 

K247CHistag FOR: 5’ catgatctgcaggagaggattgtaacgagttgccaccaag 3’ 

 

K247CHistag REV: 5’ taataatctagactactaatgatgatgatgatgatgacactcttcacaggatggcaatggtc 

3’ 

 

 

Amplification of fH1920 from full length fH gene  

 

FOR: 5’ ggggtccactggtaagtgtggtccacctcc 3’ 

REV: 5’ cccctctcttagcacaagttgggtactcc 3’ 

 

RLC Mutagenesis Primers 

K30C FOR: 5’ ccaggaattttgtgaggccttcactatcatgg 3’ 

K30C REV: 5’ ccatgatagtgaaggcctcacaaaattcctgg 3’ 

E88C FOR: 5’ cctcacaatgtttgggtgtaaacttaagggagcgg 3’ 

E88C REV: 5’ ccgctcccttaagtttacacccaaacattgtgagg 3’ 

E97C FOR: 5’ gcggaccctgaggaatgtattctcaacgcattc 3’ 

E97C REV: 5’ gaatgcgttgagaatacattcctcagggtccgt 3’ 

D117C FOR: 5’ ggggtgctgaaggcttgttacgttcgggaaatgc 3’ 

D117C REV: 5’ gcatttcccgaacgtaacaagccttcagcacccc 3’ 

T125C FOR: 5’ cgggaaatgctgacctgtcaggcggagagg 3’ 

T125C REV: 5’ cctctccgcctgacaggtcagcatttcccg 3’ 
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Sperm Whale Myoglobin Mutagenesis Primers 

S118C FOR: 5’ catgttctgcattgtagacatccagg 3’ 

S118C REV: 5’ cctggatgtctacaatgcagaacatg 3’ 

S4C FOR: 5’ accatggttctgtgtgaaggtgaatgg 

S4C REV: 5’ ccattcaccttcacacagaaccatggt 3’ 

TAG4S FOR: 5’ accatggttctgtctgaaggtgaatgg 

TAG4S REV: 5’ ccattcaccttcagacagaaccatggt 3’ 

S118TAG FOR: 5’ catgttctgcattagagacatccaggt 

S118TAG REV: 5’acctggatgtctctaatgcagaacatg 3’ 
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Appendix B: Protein Sequences (Wild Type) 

B1: Full Length fH, Codon Optimised for Expression in Pichia pastoris 

        10         20         30         40         50         60 

MRLLAKIICL MLWAICVAED CNELPPRRNT EILTGSWSDQ TYPEGTQAIY KCRPGYRSLG  

        70         80         90        100        110        120  

NVIMVCRKGE WVALNPLRKC QKRPCGHPGD TPFGTFTLTG GNVFEYGVKA VYTCNEGYQL 

       130        140        150        160        170        180  

LGEINYRECD TDGWTNDIPI CEVVKCLPVT APENGKIVSS AMEPDREYHF GQAVRFVCNS 

       190        200        210        220        230        240  

GYKIEGDEEM HCSDDGFWSK EKPKCVEISC KSPDVINGSP ISQKIIYKEN ERFQYKCNMG 

       250        260        270        280        290        300  

YEYSERGDAV CTESGWRPLP SCEEKSCDNP YIPNGDYSPL RIKHRTGDEI TYQCRNGFYP 

       310        320        330        340        350        360  

ATRGNTAKCT STGWIPAPRC TLKPCDYPDI KHGGLYHENM RRPYFPVAVG KYYSYYCDEH 

       370        380        390        400        410        420 

FETPSGSYWD HIHCTQDGWS PAVPCLRKCY FPYLENGYNQ NYGRKFVQGK SIDVACHPGY 

       430        440        450        460        470        480 

ALPKAQTTVT CMENGWSPTP RCIRVKTCSK SSIDIENGFI SESQYTYALK EKAKYQCKLG 

       490        500        510        520        530        540  

YVTADGETSG SITCGKDGWS AQPTCIKSCD IPVFMNARTK NDFTWFKLND TLDYECHDGY  

       550        560        570        580        590        600  

ESNTGSTTGS IVCGYNGWSD LPICYERECE LPKIDVHLVP DRKKDQYKVG EVLKFSCKPG  

       610        620        630        640        650        660  

FTIVGPNSVQ CYHFGLSPDL PICKEQVQSC GPPPELLNGN VKEKTKEEYG HSEVVEYYCN  

       670        680        690        700        710        720  

PRFLMKGPNK IQCVDGEWTT LPVCIVEEST CGDIPELEHG WAQLSSPPYY YGDSVEFNCS  

       730        740        750        760        770        780  

ESFTMIGHRS ITCIHGVWTQ LPQCVAIDKL KKCKSSNLII LEEHLKNKKE FDHNSNIRYR  

       790        800        810        820        830        840  

CRGKEGWIHT VCINGRWDPE VNCSMAQIQL CPPPPQIPNS HNMTTTLNYR DGEKVSVLCQ  

       850        860        870        880        890        900  

ENYLIQEGEE ITCKDGRWQS IPLCVEKIPC SQPPQIEHGT INSSRSSQES YAHGTKLSYT  

       910        920        930        940        950        960  

CEGGFRISEE NETTCYMGKW SSPPQCEGLP CKSPPEISHG VVAHMSDSYQ YGEEVTYKCF  

       970        980        990       1000       1010       1020  

EGFGIDGPAI AKCLGEKWSH PPSCIKTDCL SLPSFENAIP MGEKKDVYKA GEQVTYTCAT  

      1030       1040       1050       1060       1070       1080  

YYKMDGASNV TCINSRWTGR PTCRDTSCVN PPTVQNAYIV SRQMSKYPSG ERVRYQCRSP  

      1090       1100       1110       1120       1130       1140  

YEMFGDEEVM CLNGNWTEPP QCKDSTGKCG PPPPIDNGDI TSFPLSVYAP ASSVEYQCQN  

      1150       1160       1170       1180       1190       1200  

LYQLEGNKRI TCRNGQWSEP PKCLHPCVIS REIMENYNIA LRWTAKQKLY SRTGESVEFV  

      1210       1220       1230  

CKRGYRLSSR SHTLRTTCWD GKLEYPTCAK R  

 

 

Molecular weight: 13,9096.3 (actual molecular weight ~155kDa due to glycosylation) 

Theoretical pI: 6.2 

Extinction Coefficient (A280): 247,300 
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B2: fH 1-4 Fragment, Codon Optimised for Expression in Pichia pastoris 

        10         20         30         40         50 

MRLLAKIICL MLWAICVAED CNELPPRRNT EILTGSWSDQ TYPEGTQAIY  

        60         70         80         90        100 

KCRPGYRSLG NVIMVCRKGE WVALNPLRKC QKRPCGHPGD TPFGTFTLTG  

       110        120        130        140        150 

GNVFEYGVKA VYTCNEGYQL LGEINYRECD TDGWTNDIPI CEVVKCLPVT  

       160        170        180        190        200 

APENGKIVSS AMEPDREYHF GQAVRFVCNS GYKIEGDEEM HCSDDGFWSK  

       210        220        230        240        250 

EKPKCVEISC KSPDVINGSP ISQKIIYKEN ERFQYKCNMG YEYSERGDAV  

       260         

CTESGWRPLP SCEEK 

 

 

Molecular weight: 29,972.1 

Theoretical pI: 5.32 

Extinction Coefficient (A280): 52,370  
 

 

B3: fH19-20 Fragment, Codon Optimised for Expression in Pichia pastoris 

      1110       1120       1130       1140       1150 

GKCG PPPPIDNGDI TSFPLSVYAP ASSVEYQCQN LYQLEGNKRI  

      1160       1170       1180       1190       1200 

TCRNGQWSEP PKCLHPCVIS REIMENYNIA LRWTAKQKLY SRTGESVEFV  

      1210       1220       1230  

CKRGYRLSSR SHTLRTTCWD GKLEYPTCAK R    

 

 

Molecular weight: 14,277.2 

Theoretical pI: 9.08 

Extinction Coefficient (A280): 26,930 

 

B4: Complement C3 

   10         20         30         40         50         60  

SPMYSIITPN ILRLESEETM VLEAHDAQGD VPVTVTVHDF PGKKLVLSSE KTVLTPATNH  

 

        70         80         90        100        110        120  

MGNVTFTIPA NREFKSEKGR NKFVTVQATF GTQVVEKVVL VSLQSGYLFI QTDKTIYTPG  

 

       130        140        150        160        170        180  

STVLYRIFTV NHKLLPVGRT VMVNIENPEG IPVKQDSLSS QNQLGVLPLS WDIPELVNMG  

 

       190        200        210        220        230        240  

QWKIRAYYEN SPQQVFSTEF EVKEYVLPSF EVIVEPTEKF YYIYNEKGLE VTITARFLYG  

 

       250        260        270        280        290        300  

KKVEGTAFVI FGIQDGEQRI SLPESLKRIP IEDGSGEVVL SRKVLLDGVQ NPRAEDLVGK  

 

       310        320        330        340        350        360  

SLYVSATVIL HSGSDMVQAE RSGIPIVTSP YQIHFTKTPK YFKPGMPFDL MVFVTNPDGS  
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       370        380        390        400        410        420  

PAYRVPVAVQ GEDTVQSLTQ GDGVAKLSIN THPSQKPLSI TVRTKKQELS EAEQATRTMQ  

 

       430        440        450        460        470        480  

ALPYSTVGNS NNYLHLSVLR TELRPGETLN VNFLLRMDRA HEAKIRYYTY LIMNKGRLLK  

 

       490        500        510        520        530        540  

AGRQVREPGQ DLVVLPLSIT TDFIPSFRLV AYYTLIGASG QREVVADSVW VDVKDSCVGS  

 

       550        560        570        580        590        600  

LVVKSGQSED RQPVPGQQMT LKIEGDHGAR VVLVAVDKGV FVLNKKNKLT QSKIWDVVEK  

 

       610        620        630        640        650        660  

ADIGCTPGSG KDYAGVFSDA GLTFTSSSGQ QTAQRAELQC PQPAASVQLT EKRMDKVGKY  

 

       670        680        690        700        710        720  

PKELRKCCED GMRENPMRFS CQRRTRFISL GEACKKVFLD CCNYITELRR QHARASHLGL  

 

       730        740        750        760        770        780  

ARSNLDEDII AEENIVSRSE FPESWLWNVE DLKEPPKNGI STKLMNIFLK DSITTWEILA  

 

       790        800        810        820        830        840  

VSMSDKKGIC VADPFEVTVM QDFFIDLRLP YSVVRNEQVE IRAVLYNYRQ NQELKVRVEL  

 

       850        860        870        880        890        900  

LHNPAFCSLA TTKRRHQQTV TIPPKSSLSV PYVIVPLKTG LQEVEVKAAV YHHFISDGVR  

 

       910        920        930        940        950        960  

KSLKVVPEGI RMNKTVAVRT LDPERLGREG VQKEDIPPAD LSDQVPDTES ETRILLQGTP  

 

       970        980        990       1000       1010       1020  

VAQMTEDAVD AERLKHLIVT PSGCGEQNMI GMTPTVIAVH YLDETEQWEK FGLEKRQGAL  

 

      1030       1040       1050       1060       1070       1080  

ELIKKGYTQQ LAFRQPSSAF AAFVKRAPST WLTAYVVKVF SLAVNLIAID SQVLCGAVKW  

 

      1090       1100       1110       1120       1130       1140  

LILEKQKPDG VFQEDAPVIH QEMIGGLRNN NEKDMALTAF VLISLQEAKD ICEEQVNSLP  

 

      1150       1160       1170       1180       1190       1200  

GSITKAGDFL EANYMNLQRS YTVAIAGYAL AQMGRLKGPL LNKFLTTAKD KNRWEDPGKQ  

 

      1210       1220       1230       1240       1250       1260  

LYNVEATSYA LLALLQLKDF DFVPPVVRWL NEQRYYGGGY GSTQATFMVF QALAQYQKDA  

 

      1270       1280       1290       1300       1310       1320  

PDHQELNLDV SLQLPSRSSK ITHRIHWESA SLLRSEETKE NEGFTVTAEG KGQGTLSVVT  

 

      1330       1340       1350       1360       1370       1380  

MYHAKAKDQL TCNKFDLKVT IKPAPETEKR PQDAKNTMIL EICTRYRGDQ DATMSILDIS  

 

      1390       1400       1410       1420       1430       1440  

MMTGFAPDTD DLKQLANGVD RYISKYELDK AFSDRNTLII YLDKVSHSED DCLAFKVHQY  

 

      1450       1460       1470       1480       1490       1500  

FNVELIQPGA VKVYAYYNLE ESCTRFYHPE KEDGKLNKLC RDELCRCAEE NCFIQKSDDK  

 

      1510       1520       1530       1540       1550       1560  
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VTLEERLDKA CEPGVDYVYK TRLVKVQLSN DFDEYIMAIE QTIKSGSDEV QVGQQRTFIS  

 

      1570       1580       1590       1600       1610       1620  

PIKCREALKL EEKKHYLMWG LSSDFWGEKP NLSYIIGKDT WVEHWPEEDE CQDEENQKQC  

 

      1630  

QDLGAFTESM VVFGCPN  

 

Molecular weight: 184,326.5 

Theoretical pI: 5.85 

Extinction Coefficient (A280): 180,550 

 

B5: Complement C3b 

10         20         30         40         50         60  

SPMYSIITPN ILRLESEETM VLEAHDAQGD VPVTVTVHDF PGKKLVLSSE KTVLTPATNH  

 

        70         80         90        100        110        120  

MGNVTFTIPA NREFKSEKGR NKFVTVQATF GTQVVEKVVL VSLQSGYLFI QTDKTIYTPG  

 

       130        140        150        160        170        180  

STVLYRIFTV NHKLLPVGRT VMVNIENPEG IPVKQDSLSS QNQLGVLPLS WDIPELVNMG  

 

       190        200        210        220        230        240  

QWKIRAYYEN SPQQVFSTEF EVKEYVLPSF EVIVEPTEKF YYIYNEKGLE VTITARFLYG  

 

       250        260        270        280        290        300  

KKVEGTAFVI FGIQDGEQRI SLPESLKRIP IEDGSGEVVL SRKVLLDGVQ NPRAEDLVGK  

 

       310        320        330        340        350        360  

SLYVSATVIL HSGSDMVQAE RSGIPIVTSP YQIHFTKTPK YFKPGMPFDL MVFVTNPDGS  

 

       370        380        390        400        410        420  

PAYRVPVAVQ GEDTVQSLTQ GDGVAKLSIN THPSQKPLSI TVRTKKQELS EAEQATRTMQ  

 

       430        440        450        460        470        480  

ALPYSTVGNS NNYLHLSVLR TELRPGETLN VNFLLRMDRA HEAKIRYYTY LIMNKGRLLK  

 

       490        500        510        520        530        540  

AGRQVREPGQ DLVVLPLSIT TDFIPSFRLV AYYTLIGASG QREVVADSVW VDVKDSCVGS  

 

       550        560        570        580        590        600  

LVVKSGQSED RQPVPGQQMT LKIEGDHGAR VVLVAVDKGV FVLNKKNKLT QSKIWDVVEK  

 

       610        620        630        640        650        660  

ADIGCTPGSG KDYAGVFSDA GLTFTSSSGQ QTAQRAELQC PQPAARRRRS NLDEDIIAEE  

 

       670        680        690        700        710        720  

NIVSRSEFPE SWLWNVEDLK EPPKNGISTK LMNIFLKDSI TTWEILAVSM SDKKGICVAD  

 

       730        740        750        760        770        780  

PFEVTVMQDF FIDLRLPYSV VRNEQVEIRA VLYNYRQNQE LKVRVELLHN PAFCSLATTK  

 

       790        800        810        820        830        840  

RRHQQTVTIP PKSSLSVPYV IVPLKTGLQE VEVKAAVYHH FISDGVRKSL KVVPEGIRMN  
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       850        860        870        880        890        900  

KTVAVRTLDP ERLGREGVQK EDIPPADLSD QVPDTESETR ILLQGTPVAQ MTEDAVDAER  

 

       910        920        930        940        950        960  

LKHLIVTPSG CGEQNMIGMT PTVIAVHYLD ETEQWEKFGL EKRQGALELI KKGYTQQLAF  

 

       970        980        990       1000       1010       1020  

RQPSSAFAAF VKRAPSTWLT AYVVKVFSLA VNLIAIDSQV LCGAVKWLIL EKQKPDGVFQ  

 

      1030       1040       1050       1060       1070       1080  

EDAPVIHQEM IGGLRNNNEK DMALTAFVLI SLQEAKDICE EQVNSLPGSI TKAGDFLEAN  

 

      1090       1100       1110       1120       1130       1140  

YMNLQRSYTV AIAGYALAQM GRLKGPLLNK FLTTAKDKNR WEDPGKQLYN VEATSYALLA  

 

      1150       1160       1170       1180       1190       1200  

LLQLKDFDFV PPVVRWLNEQ RYYGGGYGST QATFMVFQAL AQYQKDAPDH QELNLDVSLQ  

 

      1210       1220       1230       1240       1250       1260  

LPSRSSKITH RIHWESASLL RSEETKENEG FTVTAEGKGQ GTLSVVTMYH AKAKDQLTCN  

 

      1270       1280       1290       1300       1310       1320  

KFDLKVTIKP APETEKRPQD AKNTMILEIC TRYRGDQDAT MSILDISMMT GFAPDTDDLK  

 

      1330       1340       1350       1360       1370       1380  

QLANGVDRYI SKYELDKAFS DRNTLIIYLD KVSHSEDDCL AFKVHQYFNV ELIQPGAVKV  

 

      1390       1400       1410       1420       1430       1440  

YAYYNLEESC TRFYHPEKED GKLNKLCRDE LCRCAEENCF IQKSDDKVTL EERLDKACEP  

 

      1450       1460       1470       1480       1490       1500  

GVDYVYKTRL VKVQLSNDFD EYIMAIEQTI KSGSDEVQVG QQRTFISPIK CREALKLEEK  

 

      1510       1520       1530       1540       1550       1560  

KHYLMWGLSS DFWGEKPNLS YIIGKDTWVE HWPEEDECQD EENQKQCQDL GAFTESMVVF  

 

 

GCPN  

 

 

Molecular weight: 176,774.7 

Theoretical pI: 5.64 

Extinction Coefficient (A280): 176,700 

 

B6: 14-3-3 ϛ 

        10         20         30         40         50         60  

MGSSHHHHHH SSGLVPRGSH MDKNELVQKA KLAEQAERYD DMAAAMKSVT EQGAELSNEE  

        70         80         90        100        110        120  

RNLLSVAYKN VVGARRSSWR VVSSIEQKTE GAEKKQQMAR EYREKIETEL RDIANDVLSL  

       130        140        150        160        170        180  

LEKFLIPNAS QAESKVFYLK MKGDYYRYLA EVAAGDDKKG IVDQSQQAYC CAFEISKKEM  

       190        200        210        220        230        240  

QPTHPIRLGL ALNFSVFYYE ILNSPEKAAS LAKTAFDEAI AELDTLSEES YKDSTLIMQL  

       250  

LRDNLTLWTS  
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Molecular weight: 28,300.9 

Theoretical pI: 5.81 

Extinction Coefficient (A280): 27,390 
 

 

B7: Vps75 

        10         20         30         40         50         60  

MSYYHHHHHH DYDIPTTENL YFQGAMADIG SMMSDQENEN EHAKAFLGLA KAEEEVDAIE  

        70         80         90        100        110        120  

REVELYRLNK MKPVYEKRDA YIDEIAEFWK IVLSQHVSFA NYIRASDFKY IDTIDKIKVE  

       130        140        150        160        170        180  

WLALESEMYD TRDFSITFHF HGIEGDFKEQ QVTKVFQIKK GKDDQEDGIL TSEPVPIEWP  

       190        200        210        220        230        240  

QSYDSINPDL IKDKRSPEGK KKYRQGMKTI FGWFRWTGLK PGKEFPHGDS LASLFSEEIY  

       250        260        270  

PFAVKYYAEA QRDLEDEEGE SGLSADGDSE G  

 

 

Molecular weight: 31581.0 

Theoretical pI: 4.82 

Extinction Coefficient (A280): 49,850 
 

 

B8: Myoglobin 

       10         20         30         40         50         60  

MVLSEGEWQL VLHVWAKVEA DVAGHGQDIL IRLFKSHPET LEKFDRFKHL KTEAEMKASE  

        70         80         90        100        110        120  

DLKKHGVTVL TALGAILKKK GHHEAELKPL AQSHATKHKI PIKYLEFISE AIIHVLHSRH  

       130        140        150        160  

PGDFGADAQG AMNKALELFR KDIAAKYKEL GYQGGSGHHH HHH  

 

Molecular weight: 18355.1 

Theoretical pI: 8.70 

Extinction Coefficient (A280): 15,470 (A409): 125,000 

 

B9: Myosin Regulatory Light Chain 

        10         20         30         40         50         60  

MAPKKAKKRA GGANSNVFSM FEQTQIQEFK EAFTIMDQNR DGFIDKNDLR DTFAALGRVN  

        70         80         90        100        110        120  

VKNEEIDEMI KEAPGPINFT VFLTMFGEKL KGADPEETIL NAFKVFDPEG KGVLKADYVR  

       130        140        150        160  

EMLTTQAERF SKEEVDQMFA AFPPDVTGNL DYKNLVHIIT GEEKD  

 

Molecular weight: 18,652.1 

Theoretical pI: 4.82 

Extinction Coefficient (A280):  This protein does not contain any Trp residues.  
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As the RLC makes a complex with MiniHMM this is taken into consideration when 

calculating the Extinction Coefficient. 

 

 

B10: MiniHMM 

        10         20         30         40         50         60  

MHHHHHHSTE NLYFQGSSER RDSLLVIQWN IRAFMGVKNW PWMKLYFKIK PLLKSAEREK  

        70         80         90        100        110        120  

EMASMKEEFT RLKEALEKSE ARRELEEKMV SLLQEKNDLQ LQVQAEQDNL ADAEERCDQL  

       130        140        150        160        170  

IKNKIQLEAK VKEMNERLED EEEMNAELTA KKRKLEDECS ELKRDIDDLE LTLAK 

 

 

Molecular weight: 20,939.8 

Theoretical pI: 5.41 
Extinction Coefficient (A280): 19,480 
 

For the RLC/MiniHMM complex, which are co-expressed, the Extinction Coefficient 

(A280) used is 20,970. This is for half of the complex (one heavy chain + one rMLC). 

Molecular weight without of Histag is 37785.1. 

 

B11: cMyBP-C Domain C0 

        10         20         30         40         50         60  

MHHHHHHSSG VDLGTENLYF QSMPEPGKKP VSAFSKKPRS VEVAAGSPAV FEAETERAGV  

        70         80         90        100        110        120  

KVRWQRGGSD ISASNKYGLA TEGTRHTLTV REVGPADQGS YAVIAGSSKV KFDLKVIEGS  

 

TREEF 

 

Molecular weight: 13,520.0 

Theoretical pI: 8.07 

Extinction Coefficient (A280): 9,970 
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Appendix C: Making Chemically Competent Cells 

For the preparation of Top 10, BL21, BL21 (*) and DH10β E. coli cells 

 

Table B.1 Media and Buffers for Cell Preparation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An aliquot of each cell line (purchased from Invitrogen Technologies) was used to 

streak some working material onto SOB agar and cells were grown at r.t to obtain single 

colonies. A single colony was used to inoculate 2ml of SOB-medium and the culture 

shaken overnight at r.t. To 250 mL of fresh SOB-medium, 1mL of the overnight culture 

was added and cells grown until an OD600 of 0.3 was reached. 

Media/Buffer Composition 

SOB 1.25g yeast extract 

 5g tryptone 

 150mg NaCl 

 50mg KCl 

 60mg MgSO4 

 ad 250mL ddH2O 

 Adjust pH 7.5 with 1 M NaOH 

For agar add 15 g agar per 1000mL 

SOC As above supplemented with 20mM glucose 

CCMB80 Buffer 10 ml 1M KOAc pH 7.0 

 80 mM CaCl2.2H2O 

 20 mM MnCl2.4H2O 

 10 mM MgCl2.6H2O 

 100 mL sterile glycerol 

 adjusted to 1000mL with ddH2O 

 and adjust pH 6.4 with 0.1 M HCl 

 Sterile filter – store 4
o
C 
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Cells were spun at 3000g at 4
o
C for 10 min to pellet cells. Cells were resuspended in 80 

mL of ice cold CCMB80 Buffer and incubated on ice for 20 min. Cells were spun again 

and resuspended in 10 ml of ice-cold CCMB80 Buffer. The OD600 of 50µL of the 

resuspended cells mixed with 200µL of SOC was taken, and all cells diluted to yield a 

final OD600 with this test of between 1.0 and 1.5. Cells were incubated on ice for 20 min 

and aliquoted into 50µL volumes and stored at -80
o
C. 

Efficiency of cells was tested by transforming cells with 1µL of standard pUC19 control 

plasmid (Life Technologies). 
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Appendix D: Protein Sequence Analysis by Mass Spectrometry 

Sample Preparation for Trypsin Digest 

Using standard methods, the protein sample being tested was run on SDS-PAGE in high 

enough quantity to produce a clean sharp band and the gel stained with GelCode Blue 

(Pierce ) for 1hr and de-stained in ddH2O for a further hour. Any tryptic mapping was 

done for the C3b protein sample which is shown as 2 separate bands on SDS PAGE.     

   Each band was excised separately and tightly avoiding excess acrylamide. Bands were 

incubated separately in 300µL of 200mM NH4HCO3 (ABC) in 50% Acetonitrile 

(ACN) at r.t for 30 min. This step was repeated twice, changing solutions in between to 

remove excess SDS. Gel pieces were the incubated in 300µL of 20mM DTT, 200mM 

ABC, 50% ACN at 32
o
C for 1hr to reduce disulphides in the protein.  

   Three washes each with 300µL of 200mM ABC.50% CAN were carried out and 

100µL of 50mM iodoacetamide , 200mM ABC.50%ACN added and left at r.t in the 

dark for 20 min. The gel pieces were then washed in 500µL of 20mM ABC.50%ACN 

three times and bands cut into pieces of approximately 2mm x 1mm in size. Gel pieces 

were spun at 13,000rpm for 2min and gel pieces covered in ACN, turning gel pieces 

white. ACN was decanted gel pieces allowed to dry.  

   To a vial of Promega mass spectrometry grade trypsin, 50µL of 50mM ABC was 

added, and gel pieces swollen in a mix of 58µL 50mM ABC and 2µL Trypsin at 4
o
C. 

After visible swelling of the gel pieces, the tubes were sealed with Nesco-film
TM

 and 

incubated at 32
o
C for 24hr. Samples were then sonicated using a sonicating water bath 

and given to the SIRCAMS facility to run. (University of Edinburgh). 
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Appendix E: Forms in Support of Ethics Application PA10837 

E1: Participant Information Sheet 

 

Participant Information  

Sheet 

 

Project Title  

Isolation and purification of complement protein C3b from human blood/plasma 

What is the study about?  

 

We invite you to participate in a research project where we extract human blood for the 

purpose of purifying proteins of interest (namely complement protein C3b) for use in 

structural analysis. 
 

This study is being conducted as part of my PhD Thesis in the School of Physics & Astronomy. 

 

Do I have to take Part? 

 

This information sheet has been written to help you decide if you would like to take part.   It is 

up to you and you alone whether or not to take part.   If you do decide to take part you will be 

free to withdraw at any time without providing a reason.    

 

What would I be required to do? 

 

You will be invited to the medical school at the North Haugh where a trained individual will 

extract ~20ml of blood from you. This will be done in sterile conditions, similar to those used 

when extracting blood for medical purposes or for donation.  

 

Will my participation be Anonymous and Confidential? 
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Your participation will be entirely anonymous, as it will not be possible to identify any 

participants from their samples as all samples will be pooled, before purifying the desired 

proteins from the pool. Any data generated as a result will be used in PhD thesis and potential 

future publications but again I stress that your sample will not be identifiable in publication, or 

to the researcher working on the project. 

 

Storage and Destruction of Data Collected 

 

No ‘data’ as such is generated from the project. There will be basic assays carried out in order 

to assess the quality of protein purified and to determine whether we need to adjust our 

purification protocols. Any methods used in doing so will be published in future publication as 

well as included in the final PhD thesis. Again though, no information on any specific 

participant will be stored, as the desired end product is purified from a pooled blood sample 

from multiple participants. 

 

What will happen to the results of the research study? 

 

The results will be finalised by 2015 and written up as part of my PhD Thesis. 

 

 

 

 

 

Are there any potential risks to taking part? 

 

There are no potential risks in taking part, though the subject may experience brief discomfort 

during the blood extraction due to the use of needles. There are no risks involved with the 

procedure as all participants have blood taken from a trained individual. The technique is done 

in sterile conditions with new sharps used for each participant, and used sharps disposed of 

immediately and safely. Used sharps are then incinerated departmentally. 
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Questions 
 

You will have the opportunity to ask any questions in relation to this project before completing 

a Consent Form. 

 

Consent and Approval 

 

 

This research proposal has been scrutinised and been granted Ethical Approval through the 

University ethical approval process. 

 

 

What should I do if I have concerns about this study? 

 

A full outline of the procedures governed by the University Teaching and Research Ethical 

Committee is available at http://www.st-andrews.ac.uk/utrec/Guidelines/complaints/ 

 

Contact Details  
 

Researcher:  Stacey Bell  

Contact Details:         sb258@st-andrews.ac.uk 

Supervisor:  Graham Smith 

Contact Details:         GMS@st-andrews.ac.uk            01334 462669 

 

 

 

 

 

 

mailto:GMS@st-andrews.ac.uk
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E2: Supervisor  Statement in Support of Ethics Application PA10837 

(gms@st-andrews.ac.uk – Graham Smith)                                  

Project : Isolation and Purification of Complement Protein C3b from human 

blood/plasma.                                       

Researcher : Stacey Bell (sb258@st-andrews.ac.uk)                                                                                                       

School of Physics and Astronomy 

 

Having reviewed all aspects of this project and the associated risks involved, I can 

approve this application. Potential risks have been identified, and how these will be 

addressed is covered extensively throughout the submitted application. This particular 

protein cannot be made using recombinant methods, and so must be purified directly 

from source, which in this instance is human blood/plasma. This coupled with our 

interest in studying the human protein, means that there is no alternative other than 

purification from blood extracted from human participants.  

Submitted with this application is the relevant documentation outlining the nature of 

the procedure to the participants, alongside relevant consent form. The participants 

are under no obligation to proceed, and are assured they can withdraw at any time. 

Blood is being taken by a trained individual from willing and informed donors, with 

volumes of blood not exceeding levels which could detrimentally affect the wellbeing 

of the participant. For these reasons I see no reason why this application should not be 

granted ethical approval. 

 

 

mailto:gms@st-andrews.ac.uk
mailto:sb258@st-andrews.ac.uk
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E3: Participant Consent Form 

 

Participant Consent Form 

Anonymous Data 

 

 
Project Title  
Isolation and Purification of Complement Protein C3b from human blood/plasma. 

 

Researcher(s) Name(s)  
Stacey Bell (sb258@st-andrews.ac.uk) 

Supervisors Names 
Janet E Lovett 

(janet.lovett@ed.ac.uk) 

Graham Smith (gms@st-

andrews.ac.uk) 

 

The University of St Andrews attaches high priority to the ethical conduct of research.  We 

therefore ask you to consider the following points before signing this form. Your signature 

confirms that you are happy to participate in the study. 

 
What is Anonymous Data? 

 
The term ‘Anonymous Data’ refers to data collected by a researcher that has no identifier 
markers so that even the researcher cannot identify any participant.  Consent is still 
required by the researcher, however no link between the participant’s signed consent and 
the data collected can be made. 
 
Consent 
 

The purpose of this form is to ensure that you are willing to take part in this study and to let 

you understand what it entails.   Signing this form does not commit you to anything you do 

not wish to do. 

 
Material gathered during this research will be anonymous, so it is impossible to trace back 
to you. Blood will be taken from multiple participants and pooled together, and so it is 
impossible to identify any one participant from the pooled samples. After the desired protein 
has been isolated by multiple purification methods, it is necessary to assess the success of 
these purification protocols using basic lab techniques. Any data gathered from these 

mailto:janet.lovett@ed.ac.uk
mailto:gms@st-andrews.ac.uk
mailto:gms@st-andrews.ac.uk
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techniques will definitely be used outlining our methods in PhD theses, as well as potential 
usage in future publication. It is important to state however, that at no time is any one 
individual’s sample identifiable from any other. 
 

I have read and understood the information sheet.   

I have been given the opportunity to ask questions about the study.   

I have had my questions answered satisfactorily.   

I understand that I can withdraw from the study without having to give an explanation.   

I understand that my data once processed will be anonymous and that only the 

researcher(s) (and supervisors) will have access to the raw data which will be kept 

confidentially. 

  

I agree to my data (in line with conditions outlined above) being kept by the researcher and 

being archived and used for further research projects / by other bona fide researchers.   

  

I have been made fully aware of the potential risks associated with this research and am 

satisfied with the information provided. 

  

I agree to take part in the study   

   

 

 

Participation in this research is completely voluntary and your consent is required before 

you can participate in this research.   

 

 

 

 

 

Name in Block 

Capitals 

 

Signature 
 

Date 
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Appendix F: Record of Personal Development  

CONFERENCES ATTENDED  

- Annual Meeting of the St Andrews Centre of Magnetic Resonance (2012, 2013, 2014, 2015). 

-Annual International Meeting of the ESR Spectroscopy Group of the Royal Society of 

Chemistry (Warwick 2012, Dundee 2014, Southampton 2015).  

- IXth EF-EPR 2014 conference (Marseille 2014). 

 

PRESENTATIONS  
- Annual Meeting of the St Andrews Centre of Magnetic Resonance (2014, 2015 – poster 

presentations).  

- Annual International Meeting of the ESR Spectroscopy Group of the Royal Society of 

Chemistry (Warwick 2012, Dundee 2014, Southampton 2015 – poster presentations).  

- IXth EF-EPR 2014 conference (Marseille 2014 – poster presentation).  

- University of Edinburgh, Departmental Talk – Using EPR Spectroscopy as a tool to study the 

protein – protein interactions in large biomacromolecular complexes (2011, 2012).  

- University of St Andrews, Departmental Talk – Using EPR Spectroscopy as a tool to study the 

protein - protein interaction in large biomacromolecular complexes (2015). 

 - University of Edinburgh, School of Chemistry (organic section) conference, Firbush Outdoor 

Retreat Centre, (2013). 

 

PRIZES AWARDED  
- Annual Meeting of the St Andrews Centre of Magnetic Resonance, 2014 poster prize.  

 
‘Site-Directed Spin-Labelling : Cysteine Substitution Mutagenesis V.S. Genetic Code Expansion’ 

PUBLIC ENGAGEMENT & OUTREACH  

- Volunteer at the Edinburgh International Science Festival for two consecutive years, 

representing the University of Edinburgh, The Royal Society of Chemistry, and the BBC.  

- Volunteer for the Solar Sparks, which involved visiting schools in Fife, teaching children from 

4-11 about sustainability and renewable energy. 

 

SCIENCE WRITING & COMMUNICATION  

- Contributions to the University of St Andrews ‘Sci@StAnd’ science publication. 

 

TEACHING & MENTORING  

- During my PhD, I have been fortunate to be employed by the University of Edinburgh as a 

part-time demonstrator to undergraduate students in both the schools of Biology and Chemistry.  

- I have been responsible for the supervision and mentoring of three final year undergraduate 

students, each for a period of 4 months, in a research project on which their dissertations are 

based, and which contributes significantly to their final degree.  

- I have also been the mentor to a visiting scholar at the University of St Andrews, from ETH in 

Zurich for a period of 6 months, introducing him to the field of molecular biology.  
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