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ABSTRACT
Pre-main sequence (PMS) stars of mass & 0.35M� transition from hosting fully convective
interiors to configurations with a radiative core and outer convective envelope during their
gravitational contraction. This stellar structure change influences the external magnetic field
topology and, as we demonstrate herein, affects the coronal X-ray emission as a stellar analog
of the solar tachocline develops. We have combined archival X-ray, spectroscopic, and photo-
metric data for ∼1000 PMS stars from five of the best studied star forming regions; the ONC,
NGC 2264, IC 348, NGC 2362, and NGC 6530. Using a modern, PMS calibrated, spectral
type-to-effective temperature and intrinsic colour scale, we deredden the photometry using
colours appropriate for each spectral type, and determine the stellar mass, age, and internal
structure consistently for the entire sample. We find that PMS stars on Henyey tracks have,
on average, lower fractional X-ray luminosities (LX/L∗) than those on Hayashi tracks, where
this effect is driven by changes in LX. X-ray emission decays faster with age for higher mass
PMS stars. There is a strong correlation between L∗ and LX for Hayashi track stars but no
correlation for Henyey track stars. There is no correlation between LX and radiative core mass
or radius. However, the longer stars have spent with radiative cores, the less X-ray luminous
they become. The decay of coronal X-ray emission from young early K to late G-type PMS
stars, the progenitors of main sequence A-type stars, is consistent with the dearth of X-ray
detections of the latter.

Key words: stars: magnetic fields – stars: pre-main sequence – stars: coronae – stars: interiors
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1 INTRODUCTION

X-ray emission from low-mass (.3 M�) pre-main sequence (PMS)
stars is dominantly coronal in origin (e.g. Stassun et al. 2006).
Compared to the contemporary Sun, they have coronae that
are an order of magnitude hotter on average, ∼30MK com-
pared to ∼2MK, and are ∼10-105 times more X-ray luminous
(Preibisch et al. 2005). How the coronae of stars attain such high
temperatures is the subject of debate. It may be caused by the dis-
sipation of magnetohydrodynamic waves (Narain & Ulmschneider
1996), a result of numerous, unresolved, nanoflares (Parker 1988),
or a combination of both (Klimchuk & Bradshaw 2014).

PMS star X-ray light curves consist of a characteristic (often
called “quiescent” although it is variable) level of X-ray emission
(e.g. Wolk et al. 2005), superposed on which are larger, more ener-
getic flares. Flares are the result of particle acceleration along mag-
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netic loops following the energy release from reconnection events.
In turn, reconnection arises from the twisting and tangling of coro-
nal magnetic field lines induced by the photospheric footpoint mo-
tions driven by stellar surface transport effects (e.g. surface differ-
ential rotation, meridional flow and supergranular diffusion).

Flares in the X-ray light curves of PMS stars follow similar
temporal behaviour to those observed on the Sun, with an almost
linear rise phase followed by a slower exponential decay, but can
be far more energetic (Wolk et al. 2005; Favata et al. 2005). The
most energetic flare detected from a PMS star would be classified
as∼X40,000 if it were to take place on the Sun (A. Aarnio, private
communication). The largest flares detected from PMS stars were
once thought to be driven by the star-disc interaction, where mag-
netic field lines connecting stars to their inner disc were twisted due
to the differential rotation rate between the footpoint of the loop
at the disc and that on the stellar surface (Montmerle et al. 2000;
Favata et al. 2005). However, it was subsequently established by
examining excess infra-red emission, a result of the reprocessing of
the stellar photons from dusty circumstellar discs, that the largest
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and most violent X-ray flares also occur on PMS stars whose discs
had dispersed (Getman et al. 2008; Aarnio, Stassun & Matt 2010).

PMS star X-ray luminosity LX varies from star to star and is
known to correlate with stellar mass and bolometric luminosity L∗
(e.g. Flaccomio, Micela & Sciortino 2003b; Preibisch et al. 2005;
Telleschi et al. 2007). LX can also vary over short timescales of
∼hours- to-days (due to flares), and over longer ∼Myr timescales
with Preibisch & Feigelson (2005) reporting a weak decrease in
LX with increasing age, at least in stellar mass stratified subsam-
ples. In contrast to main sequence dwarfs, however, the stellar ro-
tation rate does not appear to play a significant role in PMS star
X-ray emission. PMS stars do not follow the well-known main se-
quence rotation-activity relation, whereby log(LX/L∗) increases
with rotation rate until it saturates at log(LX/L∗) ≈ −3 (e.g.
Wright et al. 2011). Instead, almost all PMS stars show saturated
X-ray emission, but with orders of magnitude more scatter in
log(LX/L∗) than what is found for stars in main sequence clus-
ters (Preibisch et al. 2005). This scatter has been shown to reduce
to main sequence levels by a cluster age of∼30 Myr, and has been
speculatively related, although in a currently unknown way, to the
stellar internal structure transition from fully to partially convective
as PMS stars evolve across the Hertzsprung-Russell (H-R) diagram
(Alexander & Preibisch 2012).

After emerging from their natal dust clouds, PMS stars are
located in the upper right of the [log(L∗/L�) vs log Teff ] H-R dia-
gram on the birth line (Stahler 1983). They initially host fully con-
vective interiors. By the virial theorem, as the star contracts half of
the gravitational energy heats the stellar interior while the other half
is radiated away. While the stellar interior is fully convective the
contraction is homologous, such that the mass fraction m(r)/M∗
contained within radius r inside the star is the same as the radius
fraction r/R∗ at all times (Bodenheimer 2011), and all interior
mass shells are losing heat. This global loss of heat across all mass
shells results in an internal luminosity profile that increases from
the centre of the star to the surface (Palla & Stahler 1993). During
this time, the stellar radius decreases with age approximately as
R∗ ∝ t−1/3 (Lamm et al. 2005; Batygin & Adams 2013).

As PMS contraction progresses, the opacity (which is an in-
verse function of temperature) drops and the central regions of
the star become stable against convection. A radiative core begins
to grow, at least for stars of mass &0.35 M� (Chabrier & Baraffe
1997), with lower mass stars retaining their fully convective interi-
ors for the entirety of their PMS, and main sequence, evolution. The
lowest mass stars considered in this work (0.1 M�, see section 3)
will remain fully convective for their main sequence lifetime of tril-
lions of years (e.g. Laughlin, Bodenheimer & Adams 1997). When
a radiative core develops, the base of the convective zone is heated,
and a maximum in the internal luminosity profile is generated (the
internal luminosity increases from the centre of the star to a maxi-
mum, then drops towards the stellar surface; Palla & Stahler 1993;
Iben 2013). Mass shells interior to this maximum lose heat while
those at larger radii up to the stellar surface gain heat. This internal
luminosity maximum radiatively diffuses towards the stellar sur-
face over time (Maeder 2009), which eventually leads to a rise in
the surface luminosity and the star moving from its Hayashi track
(where L∗ is decreasing with age) to its Henyey track (where L∗ is
increasing with age) in the H-R diagram. During radiative core de-
velopment, where heat is absorbed by the convective envelope, the
stellar contraction becomes non-homologous, with the central re-
gions continuing to contract while the outer layers initially expand
(Palla & Stahler 1993). Eventually the PMS star becomes more
centrally condensed, with the radiative core containing a greater

Figure 1. (upper) The fraction of the stellar mass contained within the ra-
diative core (solid lines) and its radius relative to the stellar radius (dotted
lines) as a function of age for PMS stars of mass 0.5 (green), 1 (black), 1.5
(red), and 2M� (blue) from the models of Siess et al. (2000) [solar metal-
licity with convective overshooting]. The points on the curves mark the ap-
proximate age of the beginning of the Henyey track for stars of mass (left-
to-right): 2, 1.5, and 1M�), estimated from the second term on the right-
hand-side of equation (7). A 0.5M� star never evolves onto a Henyey track.
Partially convective PMS stars become more centrally condensed once the
radiative core has grown to occupy a sufficient proportion of the stellar inte-
rior, with the core containing a greater fraction of the stellar mass while oc-
cupying a smaller fraction of the stellar radius (Mcore/M∗ > Rcore/R∗).
(lower) The contraction of the stellar radius. Colours match the upper panel.
The slight slowing of the contraction at< 1Myr of a 0.5M� star is caused
by deuterium burning and occurs at earlier ages for the higher mass stars.
The expansion of the stellar radius is clear during the Henyey track evo-
lution of the 2 and 1.5M� stars. A 2 (1.5)M� star reaches the zero-age
main-sequence at approximately 7.2 (13.5)Myr.

fraction of the stellar mass while occupying a smaller fraction of
the stellar radius (i.e. m(Rcore)/M∗ ≡ Mcore/M∗ > Rcore/R∗).
The behaviour described above is illustrated in Figure 1 for stars
of mass 0.5, 1, 1.5, and 2 M�, constructed from the models of
Siess, Dufour & Forestini (2000).

The stellar structure transition from fully convective to
partially convective interiors has been found to influence the
large-scale external magnetic field topology of PMS stars (e.g.
Donati et al. 2011, 2012). Evidence is beginning to emerge for
a magnetic evolutionary scenario, whereby stars (at least those
of mass &0.5 M�) are born with simple (with dominant low
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PMS star X-ray emission with radiative core growth 3

` number mode) axisymmetric large-scale magnetic fields that
become significantly more complex, multipolar, and dominantly
non-axisymmetric once a substantial radiative core has developed
(Gregory et al. 2012, 2014).1 Although more data is required to
confirm the reported trends, they likely reflect the change in dy-
namo magnetic field generation process as PMS stars develop stel-
lar analogs of the solar tacholine, a shear layer between the radia-
tive core and convective envelope.

In this paper we examine the influence of radiative core devel-
opment on the coronal X-ray emission from PMS stars. Observa-
tionally, the best studied PMS stars reside in star forming regions
of average age of a few million years, and are therefore young
and predominantly fully convective. As such, in order to obtain a
large sample of partially convective PMS stars we consider data
from five of the best studied star forming regions, as detailed in
section 2. Rather than taking literature values for the stellar lumi-
nosities and effective temperatures, we re-calculate/reassign them
based on the observed photometry and estimate spectral types in a
consistent manner across our entire sample of ∼1000 stars. Dur-
ing this process we adopt the latest spectral type estimates (e.g.
Hillenbrand, Hoffer & Herczeg 2013) and use the latest generation
intrinsic colour/effective temperature scale as calibrated for PMS
stars (Pecaut & Mamajek 2013). Using PMS evolutionary models
to estimate their mass, age, and internal structure from their loca-
tion in the H-R diagram (section 3), we throughly examine the dif-
ference in the X-ray emission properties of fully and partially con-
vective stars in section 4. In section 5 we consider how the X-ray
emission changes as partially convective PMS stars evolve across
the H-R diagram, before concluding in section 6.

2 STELLAR PARAMETERS: SPECTRAL TYPES &
BOLOMETRIC/X-RAY LUMINOSITIES

The majority of PMS stars within young star forming regions have
fully convective interiors. Therefore, in order to examine the X-
ray properties of partially convective PMS stars, it is necessary to
consider data from more than one star forming region to increase
the sample size. We have collated published data from five of the
most extensively studied star forming regions, the Orion Nebula
Cluster (ONC), IC 348, NGC 2264, NGC 2362, and NGC 6530,
as described in the following subsections. In order to determine
whether or not a given PMS star has a fully or partially convective
interior we must position the star in the H-R diagram. This requires
an effective temperature, Teff , and a stellar luminosity, L∗. In turn,
Teff can be assigned given a stellar spectral type, while L∗ can be
calculated by dereddening observed photometry, the application of
a bolometric correction appropriate for the stellar spectral type, and
with an assumed distance modulus (usually taken to be the same for
every star in a cluster).

For each of the five star forming regions we obtained X-ray
luminosities, spectral types and observed magnitudes/colours from
published catalogs, as detailed below. Rather than taking published
values of stellar effective temperatures and luminosities, we as-
signed and calculated the values ourselves. This approach has the
major advantage that effective temperatures are assigned across all
stars in all of the star forming regions in a fully consistent manner,

1 This magnetic topology change mirrors what has been reported previ-
ously for main-sequence dwarf stars that lie on either side of the fully con-
vective divide (Morin et al. 2008; Donati et al. 2008b; Gregory et al. 2012).

Figure 2. A comparison between the modern PMS spectral type-to-effective
temperature conversion scales of Pecaut & Mamajek (2013) (solid red line,
labelled PM13) and Herczeg & Hillenbrand (2014) (long dashed green line,
from F5 and later, labelled HH14), and the dwarf star conversion scales
used in the ONC survey of Hillenbrand (1997) (short dashed black line,
labelled H97, which is a slightly modified version of the dwarf star temper-
ature scale of Cohen & Kuhi 1979) and that listed by Kenyon & Hartmann
(1995) (dotted blue line, labelled KH95). The effective temperatures of the
modern PMS scale range from ∼ 150 − 200K less than the dwarf scale
from mid-G to mid-K spectral types when compared to that of Hillenbrand
(1997), whereas the difference is largest for G-types when compared to
Kenyon & Hartmann (1995).

eliminating differences between the published catalogs and allow-
ing them to be more directly compared. The spectral type to effec-
tive temperature scale that we adopt in this paper is the recently
published PMS scale of Pecaut & Mamajek (2013). Although they
used stars of age 5 − 30 Myr to derive their spectral type to Teff

(-intrinsic colour-bolometric correction) scale, they are more ap-
propriate for younger PMS stars than the commonly adopted dwarf
star scales. Concerns have long been raised over the use of the lat-
ter for PMS stars, which (given their larger radii) have lower sur-
face gravities than dwarf stars (e.g. Hillenbrand 1997; Dahm et al.
2007). Furthermore, the Pecaut & Mamajek (2013) scale takes into
account the greater spot coverage on PMS stars compared to main
sequence dwarfs.

Figure 2 shows a comparison between the modern PMS spec-
tral type-Teff conversion scales of Pecaut & Mamajek (2013) and
Herczeg & Hillenbrand (2014), and the dwarf star scale used by
Hillenbrand (1997) in the acclaimed survey of young stars in the
ONC [which, between the considered spectral types, is a slightly
modified version of the conversion scale of Cohen & Kuhi (1979)].
Also shown is another commonly used scale, again based on dwarf
stars, published by Kenyon & Hartmann (1995). The conversion
scale of Pecaut & Mamajek (2013) is limited to spectral types F0 to
M5, while Herczeg & Hillenbrand (2014) extends from F5 to later
than M5. Stars of earlier spectral type are not of interest for this
study, as they are too massive to be T Tauri stars. The M5 cut-off
of the Pecaut & Mamajek (2013) scale is of little consequence to
this study of partially convective PMS stars, as such late type (low
mass) stars retain their fully convective interiors for the entirety of
their PMS evolution. It is immediately evident from Figure 2 that
PMS stars are cooler than dwarf stars by ∼200 K from roughly
mid-G to mid-K [for G-types] when comparing them to the dwarf
scales of Hillenbrand (1997) [Kenyon & Hartmann (1995)]. This
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correction will move them to lower masses and to younger ages in
the H-R diagram.

From the photometry and observed colours we have calcu-
lated stellar luminosities as described for each of the star form-
ing regions in the following subsections. This requires bolometric
corrections and intrinsic colours for which we also use the PMS
conversion scale of Pecaut & Mamajek (2013), thus ensuring that
our luminosities have been calculated in a uniform manner across
all the star forming regions and using a fully consistent effective
temperature/bolometric correction combination. Torres (2010) dis-
cuss the importance of this, which also requires the use of a value
for the absolute bolometric magnitude of the Sun (this enters into
the calculation of the stellar bolometric luminosity). For this, we
use Mbol,� = 4.755, as Pecaut & Mamajek (2013). This should
be used with a modern estimate of the solar effective temperature
of Teff,� = 5772 K and R� = 6.9566× 108 m - see footnote 2 of
Mamajek (2012).

In summary, for each star forming region we have selected
stars with an X-ray luminosity, LX (or an X-ray flux from which
LX can be derived given a distance), spectral type between F0 and
M5 (inclusive) from which we assign an effective temperature, and
photometric magnitudes and colours from which we have calcu-
lated bolometric luminosities. Further details for each star forming
region are given in the following subsections. We have removed
stars that are known (or suspected) binaries where the two stars
are not sufficiently resolved in the X-ray and/or optical catalogs to
derive LX and/or L∗ separately for each.

2.1 The ONC

The Orion Nebula Cluster (ONC) is one of the most extensively
studied star forming regions (Muench et al. 2008; O’Dell et al.
2008).

2.1.1 X-ray luminosities

We take X-ray luminosities from the Massive Young Star-
Forming Complex Study in Infrared and X-ray (MYStIX) project
(Feigelson et al. 2013), specifically the MYStIX Probable Complex
Members (MPCM) catalog of Broos et al. (2013). For the ONC, the
MYStIX X-ray luminosities are those from the Chandra Orion Ul-
tradeep Project (COUP; Getman et al. 2005), a deep X-ray survey
consisting of 13.2 consecutive days of observing, but adjusted to
a distance of 414 pc (Menten et al. 2007). (A distance of 450 pc
was assumed for the COUP without attribution.) With an exposure
time of 832 ks this is one of the deepest X-ray surveys of any star
forming region ever conducted.

2.1.2 Spectral types & photometry

We take spectral types from (table 2 of) Hillenbrand et al. (2013).
This is a compendium of literature values, including many re-
assignments of spectral types to stars in the ONC catalog of

Hillenbrand (1997), as well as many which are reported for the first
time.2

For stars where a range of spectral types are given in the
Hillenbrand et al. (2013) table we adopt a spectral type that is the
median of the earliest and latest reported, with exceptions as fol-
lows. i). For stars listed by Hillenbrand et al. (2013) with a spec-
tral type reference of “Ste=H. C. Stempels 2008, private commu-
nication" we take those spectral types over other literature values
as they have been assigned based on high dispersion spectra. ii).
If a source has different spectral types in Hillenbrand (1997) and
in the enhanced ONC census of Hillenbrand et al. (2013), we take
the Hillenbrand et al. (2013) value. iii). When adopting a median
spectral type for sources that have been spectral typed in multi-
ple literature sources we neglect outliers. For example, the star
with SIMBAD identifier [H97b] 193 has been spectral typed in 4
studies, Parenago (1954), Johnson (1965), Cohen & Kuhi (1979),
and Hillenbrand (1997) - as listed by Hillenbrand et al. (2013).
In three, the star is between K0 and K2, while in one it is as-
signed K6. In this case we ignore the K6 outlier and adopt K1.
iv). Spectral types taken from Luhman et al. (2000) often span
a large range of values. For such stars, if other spectral types
are available that fall within the range of those of Luhman et al.
(2000) we consider those values only. Typically, this resulted in
the adoption of a spectral type that was close to the median of
the Luhman et al. (2000) range. If the other listed spectral types
extend to later or earlier than those of Luhman et al. (2000) then
we consider the full range of values. v). Spectral types determined
solely from IR spectra often differ from those found from optical
spectra, being later, typically (e.g. Slesnick et al. 2004). As dis-
cussed by Pecaut & Mamajek (2013), the well studied classical T
Tauri star TW Hya, as one example, has been classified as M2.5
from nIR spectra (Vacca & Sandell 2011), but as K6-K8 from vari-
ous optical studies (e.g. Herbig 1978; Hoff, Henning & Pfau 1998;
Torres et al. 2006; Pecaut & Mamajek 2013). We therefore neglect
spectral types determined from IR spectra by Slesnick et al. (2004),
as listed in the Hillenbrand et al. (2013) table, unless there are
no estimates from optical spectra. Likewise, we neglect spectral
type determinations from the IR study of Weights et al. (2009) [the
latest spectral types from which “may be too late”, as noted by
Hillenbrand et al. (2013)]. vi). We neglect sources where extremely
discrepant spectral types have been reported in the literature (e.g.
[H97b] 503 which is reported by Hillenbrand et al. (2013) as F2-F7
[Hillenbrand 1997] and K0-K7 [Luhman et al. 2000], and [H97b]
809 which is assigned F5-K5 by Hillenbrand et al. (2013), etc).

We then removed stars that are listed as (or are suspected to
be) spectroscopic or close binaries, as there may be some confusion

2 The majority of spectral types of the ONC stars which we consider in
this paper (F0-M5, with LX in the MYStIX catalog (see section 2.1.1) and
V and Ic photometry) were originally determined by Hillenbrand (1997)
and Hillenbrand et al. (2013). However, for the stars considered here, the
compendium Hillenbrand et al. (2013) study includes spectral type esti-
mates from Greenstein & Struve (1946), Parenago (1954), Johnson (1965),
Penston (1973), Penston, Hunter & Oneill (1975), Cohen & Kuhi (1979),
Walker (1983), Duncan (1993), Edwards et al. (1993), Luhman et al.
(2000), Lucas et al. (2001), Slesnick, Hillenbrand & Carpenter (2004),
Wolff, Strom & Hillenbrand (2004), Daemgen, Correia & Petr-Gotzens
(2012), as well as some attributed by Hillenbrand et al. (2013) to “H. C.
Stempels 2008, private communication”, “A.E. Samuel 1993 unpublished
PhD thesis”, “K. Stassun 2005, private communication”, “Prosser & Stauf-
fer 1995, private communication”, and to “C. Hamilton 1994 unpublished
masters thesis”.
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PMS star X-ray emission with radiative core growth 5

Table 1. Adopted distances (see Appendix A).

Region Distance (pc) Reference

ONC 414 Menten et al. (2007)
NGC 2264 756 Gillen et al. (2014)

IC 348 316 Herbig (1998)
NGC 2362 1480 Moitinho et al. (2001)
NGC 6530 1250 Prisinzano et al. (2005)

in the photometry and/or X-ray luminosities for the individual
stars. These were identified by Marschall & Mathieu (1988),
Mathieu (1994), Rhode, Herbst & Mathieu (2001), Prato et al.
(2002), Fűrész et al. (2008), Cargile, Stassun & Mathieu
(2008), Daemgen et al. (2012), Morales-Calderón et al. (2012),
Correia et al. (2013), and Tobin et al. (2013) (which includes
corrected tables from Tobin et al. 2009), with some being at-
tributed to “H C. Stempels 2008, private communication” by
Hillenbrand et al. (2013).

We then assigned an effective temperature to each star based
on its spectral type using the Pecaut & Mamajek (2013) PMS con-
version scale, linearly interpolating the Teff value between spectral
subtypes where necessary.

For the ONC stars with spectral types and X-ray luminosities
we obtained (V − Ic) colours and Ic magnitudes from Hillenbrand
(1997) [who obtained the majority of the photometry directly, al-
though for a minority of the stars we consider here some mag-
nitudes/colours were taken from Herbig & Terndrup (1986) and
Prosser et al. (1994)]. We then calculated bolometric luminosities
in a similar manner to Hillenbrand (1997), described below, ex-
cept we have used the recently published PMS intrinsic colours and
bolometric corrections of Pecaut & Mamajek (2013). The Ic mag-
nitudes were de-reddened by assuming a common extinction law
for the cluster,

AIc = 0.61AV = 1.56 [(V − Ic)− (V − Ic)0] , (1)

as derived by Hillenbrand (1997) by converting that of
Rieke & Lebofsky (1985) from the Johnson I band to the Cousins
Ic band (e.g. Bessell 1979). Bolometric luminosities then follow
from,

log

(
L∗

L�

)
=

2

5
[Mbol,� − (Ic −AIc) + µ− BCIc ] , (2)

where the bolometric correction at Ic is calculated from that at V
and the intrinsic (V − Ic)0 colour, BCIc = (V − Ic)0 + BCV, as
tabulated by Pecaut & Mamajek (2013). The solar bolometric mag-
nitude is given above, and the distance modulus, µ, for the cluster
is calculated from our assumed cluster distance (see Table 1 and
Appendix A).

For some stars in the sample (V −Ic)− (V −Ic)0 < 0 which
results in a (meaningless) negative extinction. This is likely as a re-
sult of inaccuracies in the adopted intrinsic colour appropriate for
the stellar spectral type, an incorrectly assigned spectral type (re-
sulting in an incorrect assignment of the intrinsic colour for that
star), or photometric variability of the star. We follow Hillenbrand
(1997) and set AIc = AV = 0 for such stars. Their calculated lu-
minosities are therefore (likely) lower limits. 72 of the 496 stars in
our final ONC sample (see section 3),∼15%, had a negative extinc-
tion. This is an improvement over the original Hillenbrand (1997)
study where ∼27% of their sample of stars with extinction esti-
mates had AV set to zero, indicating that the updated census of the
ONC presented by Hillenbrand et al. (2013) has improved the spec-

tral typing of stars in the region. The stars with negative extinctions
in our sample have a mean spectral type of M3. At such late spec-
tral types, the variation in the intrinsic colour with effective tem-
perature (spectral type) is at its steepest (e.g. Pecaut & Mamajek
2013), such that a small shift in the spectral type assignment results
in a much bigger difference in (V −Ic)0, and therefore inAV, than
it would do at earlier spectral types. Of the 72 stars with negative
extinctions, the majority (52) would have a positive extinction with
a change in spectral type of one subtype, which is the typical er-
ror. The remaining 20 have a small range in reported spectral types,
or a spectral type estimate from a single literature source only, in-
dicating that the resulting negative extinction is not caused by our
adoption of a median spectral type. It is likely that their reported
spectral types are inaccurate.

2.2 NGC 2264

The NGC 2264 star forming region, part of the Monoceros OB1 as-
sociation, has been extensively observed at all wavelengths (Dahm
2008b).

2.2.1 X-ray luminosities

NGC 2264 has been observed several times with both Chandra and
XMM-Newton. Two separate, slightly overlapping, images were
obtained with Chandra (Obs IDs: 2540 & 2550, PIs: Sciortino
& Stauffer, ∼ 97 and ∼ 48 ks) with Ramírez et al. (2004)3 and
Flaccomio, Micela & Sciortino (2006) calculating PMS stellar X-
ray luminosities. Additional X-ray luminosities have been derived
by Dahm & Simon (2005) and Dahm et al. (2007) from XMM-
Newton observations (two pointings, both . 42 ksec, Obs IDs:
0011420101 & 0011420201, PI: Simon).

Comparison of the papers where the NGC 2264 X-ray data
are presented reveals that a variety of differing assumptions and
methods have been used by the different authors to calculate LX.
For example, Ramírez et al. (2004) assume a uniform value for
the absorbing hydrogen column density NH towards each star,
based on “the most likely value of the observed extinction towards
NGC 2264” and assuming a fixed relationship between NH and
AV (e.g. Vuong et al. 2003). NH estimates from such relationships
are highly uncertain, with a large spread apparent from AV − NH

diagrams (e.g. Feigelson et al. 2005). Flaccomio et al. (2006) note
that “NH is critical for determining LX” and proceed to calcu-
late LX from X-ray spectral fits treating NH as a free parameter
in some cases and calculating it from AV in others. Given the
different assumptions, we must be careful when combining the
X-ray catalogs. However, this task has recently been simplified
thanks to a re-analysis of the Chandra images during the MYStIX
project (Feigelson et al. 2013). We take LX values for NGC 2264
stars as listed in the MPCM (MYStIX Probable Complex Mem-
ber) young stars catalog of Broos et al. (2013), adjusting them to
our adopted distance of 756 pc [the Baxter et al. (2009) distance
of 913 pc was adopted for the MYStIX project (Feigelson et al.
2013)]. The X-ray luminosities were calculated using the XPHOT
method of Getman et al. (2010). This allows the analysis of faint X-
ray sources that cannot be handled by traditional X-ray spectral fit-
ting methods. Adoption of the MYStIX NGC 2264 X-ray luminosi-

3 The same Chandra observation was also analysed by
Sung, Bessell & Chun (2004) who identified additional X-ray sources
in the field-of-view.
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6 Scott G. Gregory et al.

Figure 3. H-R diagrams for five star forming regions that we consider. Mass tracks (solid black lines; 0.1, 0.3, 0.5, 1, 1.5, 2, 3M�) and isochrones (dotted
lines; 0.1, 1, 5, 10 & 60Myr) are from the models of Siess et al. (2000). The dashed green line is the ZAMS. The solid blue line is the fully convective limit:
stars located above and to the right of this line are fully convective (black solid symbols) and those below and to the left are partially convective with a radiative
core and outer convective envelope (red and blue open symbols). Partially convective stars represented by red symbols have evolved onto Henyey tracks (the
portion of their mass track where L∗ is increasing with age) while those represented with blue symbols are still on Hayashi tracks (the portion of their mass
track where L∗ is decreasing with age).

ties thus ensures that we are using LX values that have been calcu-
lated in a uniform manner for stars throughout the cluster. We have
therefore neglected the XMM-Newton data of Dahm et al. (2007).
Due to the wider field of view of their observations, the Dahm et al.
(2007) catalog contains 43 additional X-ray sources with spectral
types and photometry that would have made our final sample, see
section 3, but which we do not consider here.

2.2.2 Spectral types & photometry

We collated spectral types for NGC 2264 members from the
catalogs of Rebull et al. (2002), Lamm et al. (2004), Kumar et al.
(2004), Dahm & Simon (2005), Sung, Bessell & Lee (1997), and
Mariñas et al. (2013), adopting a spectral type that is the median
of the observed range. As the Mariñas et al. (2013) spectral types
have been assigned from IR spectra, we neglect their spectral types
when they are found to be later than those determined from opti-
cal spectra (for the same reason as with the ONC data, see section
2.1.2). The Lamm et al. (2004) catalog is a compendium of values
from Rebull et al. (2002) (but an updated version of their catalog
with several new spectral types being reported) and spectral types
attributed to “Young et al. (private communication)”. Some of the
Dahm & Simon (2005) spectral types were assigned from the au-
thor’s own observations, while others were taken from the catalogs

of Walker (1956), Herbig & Bell (1988), Rebull et al. (2002), and
Lamm et al. (2004).

We again assigned effective temperatures from the conver-
sions of Pecaut & Mamajek (2013), neglecting sources earlier
than F0 and later than M5. We then removed sources which
have been identified as, or are suspected, close binary stars, in
case of confusion in the assigned photometry and/or X-ray lu-
minosities. These were SIMBAD ID: Cl∗ NGC 2264 RMS 3323
(Padgett & Stapelfeldt 1994); Cl∗ NGC 2264 RMS 3470 and Cl∗
NGC 2264 RMS 3578 (Mathieu 1994; Karnath et al. 2013); Cl∗
NGC 2264 LBM 6083 (e.g. Windemuth & Herbst 2014); Cl∗ NGC
2264 RMS 2465, 3157, 3307, 3370, and 3390, which are identified
as “adaptive optics” binaries by Dahm et al. (2007); and stars listed
as single and double line spectroscopic binaries by Fűrész et al.
(2006). We have also removed Cl∗ NGC 2264 RMS 3582 which is
listed as an eclipsing binary in SIMBAD. Further investigation re-
veals that this star is listed in the International Variable Star Index
(VSX) database (as NSV 3128) having been identified as a pos-
sible eclipsing variable by Koch & Perry (1974) (the star is listed
as Penna 414 in their table). The recent study of Klagyivik et al.
(2013), where several eclipsing and other binaries in NGC 2264
were identified (see below), classified Cl∗ NGC 2264 RMS 3582
as a non-periodic variable (the system is listed as SRa01a_26062
in their work). Its binary nature is therefore questionable, but we

MNRAS 000, 1–22 (2015)

 at U
niversity of St A

ndrew
s on February 15, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


PMS star X-ray emission with radiative core growth 7

have erred on the side of caution and have removed it from our
sample. Further observations of this object are required.

Additional close binary systems, and many more exotic vari-
ables, have been identified by Klagyivik et al. (2013). From ground
based time series photometry they classified periodically vari-
able stars according to the categories of the General Catalogue
of Variable stars (Samus et al. 2009). They classified many as
YSOs (young stellar objects), as one would expect for a star form-
ing region. Neglecting stars in our final sample that were either
not classified by Klagyivik et al. (2013) or which were classified
as YSO or MISC (miscellaneous or non-periodic variables) 43
stars with different types of variable classification remain. For
example, three of the stars in our final sample are classified by
Klagyivik et al. (2013) as GDOR, γ Doradus stars. These are late A
to late F-type variable stars that undergo non-radial pulsations (e.g.
Balona, Krisciunas & Cousins 1994; Kaye et al. 1999). However,
multiple, independent, spectroscopic studies have classified these
stars (Cl∗ NGC 2264 RMS 3440, 3519, & 3840) as early to mid-M
type (e.g. Rebull et al. 2002; Lamm et al. 2004), and there is little
to suggest that they are anything but normal, low mass, PMS stars.

Thirty three other stars in our final sample have been classi-
fied by Klagyivik et al. (2013) as EA (2/33) or EB (2/33), types
of eclipsing binary, or as ELL (27/33 rotating ellipsoidal variables
- a type of non-eclipsing close binary system) or ELL/SP (2/33),
stars with light curves that could be described as ELL systems,
or with variability caused by star spots. However, a preliminary
examination of the photometry and spectra collected as part of
the CSI 2264 project (Coordinated Synoptic Investigation of NGC
2264; Cody et al. 2014) reveals no evidence of binarity in∼85% of
these stars, and only tentative evidence in the other cases (A. Cody,
private communication). Klagyivik et al. (2013) mention that their
classifications are expected to be ∼70% accurate. In a region such
as NGC 2264, where coordinated multi-wavelength photometric
and spectroscopic surveys have been conducted, and where light
curves of young stars can show complex variability patterns due
to star spots, accretion, and obscuration of stars by warped inner
disk material, their classifications based solely on the morphology
of light curves may be even less accurate. We have therefore ne-
glected the classifications of Klagyivik et al. (2013) as they clearly
require re-determination.

For stars with spectral types, we obtained Cousins Ic and
(V −Ic) photometry from Rebull et al. (2002), Lamm et al. (2004),
Dahm & Simon (2005), and Dahm et al. (2007), in that order. We
then derived extinctions AIc from AV with the latter being derived
with a common extinction law for the cluster, equation (1), using
the intrinsic (V −Ic)0 colours of Pecaut & Mamajek (2013) appro-
priate for each spectral type. Bolometric luminosities then followed
from equation (2).4

4 During their X-ray study of a portion of NGC 2264 Flaccomio et al.
(2006) derived bolometric luminosities assuming a uniform extinction law
for the cluster, but used observed and intrinsic (Rc − Ic) colours and
bolometric corrections from the dwarf star effective temperature-spectral
type conversion scale of Kenyon & Hartmann (1995), with the intermediate
gravity scale of Luhman (1999) for M stars. As Pecaut & Mamajek (2013)
do not provide intrinsic colours for PMS stars involving the Cousins Rc

band we cannot use the observed (Rc− Ic) photometry to derive luminosi-
ties, and have used (V − Ic) instead (as did Rebull et al. 2006).

2.3 IC 348

The open cluster IC 348, a region of ongoing star formation, is
part of the Perseus dark cloud complex and thought to be associ-
ated with both NGC 1333 and the Perseus OB2 association (Herbst
2008).

2.3.1 X-ray luminosities

We have taken X-ray fluxes of PMS stars from the IC 348
catalog of Stelzer et al. (2012). It was created by merging four
archival Chandra observations, namely Obs IDs 606 (PI: Preibisch,
∼52 ksec), 8584 (PI: Calvet, ∼50 ksec), and 8933 & 8944 (PI:
Wolk, ∼40 ksec for each). The data were originally published by
Preibisch & Zinnecker 2001 (see also Preibisch & Zinnecker 2002)
for 606, and by Forbrich, Osten & Wolk (2011) for 8933 & 8944.
To the best that we can determine, the data obtained for Obs ID
8584 were not published prior to the Stelzer et al. (2012) work. We
converted the X-ray fluxes to X-ray luminosities with our assumed
distance to IC 348 of 316 pc (Stelzer et al. 2012 assumed a slightly
lower value of 310 pc in their work).

2.3.2 Spectral types & photometry

We obtained spectral types of IC 348 PMS stars from Muench et al.
(2007), most of which were as cataloged by Luhman et al. (2003)
who collated literature estimates from Harris, Morgan & Roman
(1954), Luhman et al. (1998), Strom, Strom & Carrasco (1974),
Herbig (1998), and Luhman (1999), as well as assigning their own
for several stars. Their catalog also includes spectral types from
Luhman et al. (2005). Once again, we removed O, B, and A-type
stars, and stars later than M5, and assigned effective temperatures
based on the PMS conversion scale of Pecaut & Mamajek (2013).

We again removed known or suspected spectroscopic binaries
from our sample, as listed by Duchêne, Bouvier & Simon (1999),
Nordhagen et al. (2006), and Dahm (2008c).

Luhman et al. (2003) argues that the J-band provides the best
estimates of bolometric luminosities for stars in IC 348 (except for
a few binaries that are better resolved in the optical, see below). For
the majority of stars with spectral types we obtained J andH-band
magnitudes from the 2MASS All-Sky Catalog of Point Sources
(Cutri et al. 2003; Skrutskie et al. 2006). To de-redden the J-band
magnitudes we calculated the extinctionAJ from the extinction law
of Rieke & Lebofsky (1985),

AJ = 2.64 [(J −H)− (J −H)0] , (3)

where the intrinsic colour (J − H)0 appropriate for the spectral
type is taken from Pecaut & Mamajek (2013). We then calculated
luminosities using an equation analogous to equation (2), applying
spectral type dependent bolometric corrections at the 2MASS J-
band as listed in Pecaut & Mamajek (2013).

Luhman et al. (2003) identified four binary systems (8 stars)
which are better resolved at optical wavelengths than in the in-
frared. We follow Luhman et al. (2003) and derive luminosities us-
ing the Ic-band magnitudes rather than J for these stars. We ob-
tained V magnitudes and (V − Ic) colours from Herbig (1998),
which was available for four of the eight stars. We de-reddened the
Ic magnitudes using equation (1). The bolometric luminosity then
follows from equation (2) with BCIc calculated from the tabulated
Pecaut & Mamajek (2013) BCV and intrinsic (V − Ic)0 colours
appropriate for the spectral type.
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2.4 NGC 2362

The open cluster NGC 2362, occasionally referred to as the τ Canis
Majoris Cluster in reference to its most massive member the O9 star
τ CMa, is the oldest star forming region in our sample (e.g. Dahm
2008a).

2.4.1 X-ray luminosities

We have taken X-ray luminosities from the MYStIX project
MPCM young stars catalog of Broos et al. (2013). The MYStIX
project was a reanalysis of previously published Chandra data
(Obs ID: 4469, PI: Murray), NGC 2362 having been observed for
∼ 100 ks in December 2003 (Delgado et al. 2006; Damiani et al.
2006; Dahm & Hillenbrand 2007).

2.4.2 Spectral types & photometry

There are few detailed spectroscopic studies of NGC 2362, with
spectral types only available for a handful of cluster members. We
take spectral types from Dahm & Hillenbrand (2007), which in-
cludes minor updates and adds a few new spectral types to the cat-
alog of Dahm (2005). As for the other clusters, we neglect stars
earlier than F0. V -band magnitudes and (V − Ic) colours are also
taken from Dahm & Hillenbrand (2007). We then calculated stel-
lar luminosities by dereddening the observed Ic-band magnitudes,
with the application of appropriate bolometric corrections for each
spectral type [see equations (1) and (2)].

2.5 NGC 6530

NGC 6530 lies towards the Galactic centre, in the Sagittarius–
Carina arm, and is associated with the Lagoon Nebula (M8;
Tothill et al. 2008).

2.5.1 X-ray luminosities

We again take X-ray luminosities from the MPCM MYStIX cata-
log (Broos et al. 2013), with a small adjustment to account for our
adoption of a distance to NGC 6530 of 1250 pc [see Appendix
A and Table 1; 1300 pc was assumed for the MYStIX project
(Feigelson et al. 2013)]. The MYStIX project NGC 6530 data in-
cludes a re-analysis of the previously published Chandra data of the
cluster (Damiani et al. 2004; Obs ID: 977, PI: Murray, ∼ 60 ks).5

2.5.2 Spectral types & photometry

Spectral types of cluster members were collated from
Prisinzano et al. (2012), Arias, Barbá & Morrell (2007),
van den Ancker et al. (1997), and Walker (1961).6 We removed
sources of spectral type earlier than F0, as well as three stars of
luminosity class II. We again adopted median spectral types of the
literature values (see the discussion for the ONC).

We then removed known or suspected spectroscopic binaries
from our sample, as listed by Henderson & Stassun (2012) and

5 A shorter XMM-Newton exposure of NGC 6530 was previously pub-
lished by Rauw et al. (2002).
6 Spectral types were also considered from Walker (1957) and Kumar et al.
(2004) but none of these stars made our final sample.

Prisinzano et al. (2007), in case of confusion in the X-ray luminosi-
ties, spectral typing, or photometry. Non-members, as determined
by Prisinzano et al. (2007, 2012) were also removed.

We obtained V and (V − Ic) photometry from (in order of
preference) Henderson & Stassun (2012), Prisinzano et al. (2005),
and Sung, Chun & Bessell (2000), and calculated stellar luminosi-
ties using equations (1) and (2) with intrinsic colours and bolomet-
ric corrections from Pecaut & Mamajek (2013).

3 STELLAR PARAMETERS: MASS, AGE & INTERNAL
STRUCTURE

With effective temperatures and bolometric luminosities of the stars
in the five star forming regions that we consider to hand, we calcu-
lated the stellar masses and ages using the models of Siess et al.
(2000) - Z = 0.02 with convective overshooting. In such a way,
our stellar mass, M∗, and age, t, estimates are consistent across the
entire sample. The Siess et al. (2000) mass tracks have somewhat
limited stellar mass resolution, so we constructed a series of inter-
polated mass tracks and produced a code that automatically calcu-
lates M∗ and t given Teff and L∗ as an input. Our code also esti-
mates whether a star is fully convective or partially convective with
a radiative core, and if the latter, the radiative core mass and radius
relative to the total stellar mass and radius. During this process we
have not considered how errors in the assigned spectral type, or in
the calculated luminosities, translate into errors in M∗ and t. How-
ever, recently Davies, Gregory & Greaves (2014) did so, and esti-
mated such errors for stars in the ONC using a stellar sample assem-
bled in a similar manner to our own. Using their study as a guide
there is a typical error of 0.1, 0.2, 0.4, and 0.5 M� for stars of mass
0.1-0.6, 0.6-1, 1-2, and 2-3 M� respectively. For ages ≤ 2.5 Myr,
errors of ∼ 1.1 Myr are typical, rising to ∼3, ∼6.4, and ∼11 Myr
for stars of age of 2.5-5, 5-10, and 10-15 Myr. The age error in-
creases for older stars because PMS contraction proceeds on the
Kelvin-Helmholtz timescale, which scales inversely with stellar ra-
dius. Stellar contraction thus slows with age (see Figure 1), de-
creasing the separation between isochrones in the log Teff − logL∗
plane as stars evolve along their mass tracks.

We adopt the Siess et al. (2000) models in preference to oth-
ers as they cover a sufficient range of stellar mass and, crucially for
the purposes of this paper, provide stellar internal structure infor-
mation. Other, more modern, models often have a limited range
in stellar mass. For example, the publicly available mass tracks
and isochrones of Baraffe et al. (2015), which are superb for low-
mass and fully convective PMS stars, are limited to ≤1.4 M�.
The Siess et al. (2000) models are also one of the most commonly
used by the PMS star community, and the authors have provided a
convenient online interpolator for generating isochrones of desired
age. Furthermore, the Siess et al. (2000) models were used by sev-
eral large X-ray surveys (e.g. Preibisch et al. 2005; Telleschi et al.
2007), which allows for a more direct comparison with our results;
differences then being attributable to the updated spectral typing
and our use of PMS calibrated intrinsic colours and bolometric
corrections. In Appendix D we demonstrate, using the models of
Jung & Kim (2007) and Tognelli, Prada Moroni & Degl’Innocenti
(2011), that the main results of our paper, described in the following
sections, are unaffected by the choice of PMS evolutionary model.

Before estimating M∗ and t we removed 37 stars that were
to the right of the 0.1 M� mass track in the H-R diagram (12
from the ONC, 3 from NGC 2264, and 22 from IC 348). This
is the lowest available mass track in the Siess et al. (2000) mod-
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els, and therefore we could not accurately assign M∗ and t values
for such stars. In practise, this makes little difference to the work
in this paper as we are primarily interested in partially convec-
tive PMS stars, and stars of mass .0.35 M� remain fully convec-
tive for the entirety of their PMS (and subsequent main sequence)
evolution (e.g. Chabrier & Baraffe 1997). We also removed 3 stars
which were more massive than 3 M�, the upper mass limit of our
study (2 from the ONC and 1 from NGC 2264). Although these
3 stars are currently of spectral type G2, G5, and K2, they will
evolve into Herbig AeBe stars and, eventually, B-type main se-
quence stars (Siess et al. 2000). We neglected 3 stars which ap-
peared to be younger than 0.01 Myr (2 from the ONC and 1 from
IC 348) and 10 stars that were located below the ZAMS (5 from
the ONC, 2 from NGC 2264, and 3 from IC 348). It is likely that
such stars have inaccurate luminosity estimates and are positioned
incorrectly in the H-R diagram. Stelzer et al. (2012) comment that
stars which fall significantly below the ZAMS may be PMS stars
with edge-on discs observed in scattered light. Stars as young as
0.01 Myr may not yet have evolved to the birthline and should not
be optically visible (Stahler 1983). Indeed, estimates suggest that it
takes a star about 0.1 to 0.3 Myr to complete the embedded phase of
star formation (e.g. Offner & McKee 2011; Dunham & Vorobyov
2012). In practise, stars at such a young age are fully convective,
and therefore have no bearing on our study of partially convective
PMS stars.

Our final sample consists of a total of 984 PMS stars includ-
ing 466 from the ONC, 247 from NGC 2264, 159 from IC 348
(125 with X-ray luminosities and 34 with LX upper limits), 49
from NGC 2362, and 63 from NGC 6530. H-R diagrams for the
final sample of stars are shown in Figure 3, where the solid blue
line separates stars which are partially convective from those that
are fully convective.

It is clear from visual inspection of Figure 3 that NGC 6530
and the ONC are the youngest clusters, with stars of median age 1.3
and 1.7 Myr respectively, while NGC 2264, IC 348, and NGC 2362
are older with median ages of 2.2, 2.3, and 2.6 Myr - a similar or-
dering compared to other studies (e.g. Mayne & Naylor 2008). We
also note that for clusters where the spectroscopic surveys are close
to complete, such as the ONC, IC 348, and NGC 2264, the frac-
tion of partially convective stars (those to the left of the blue line
in Figure 3) is a proxy for the age of the star forming region. For
older clusters a larger fraction of stars will have become partially
convective compared to younger regions.

4 COMPARING THE X-RAY PROPERTIES OF STARS
ON CONVECTIVE AND RADIATIVE TRACKS IN THE
H-R DIAGRAM

In this section we compare the X-ray properties, logLX and
log(LX/L∗), of partially and fully convective PMS stars, and of
those on Hayashi and Henyey tracks in the H-R diagram.

We consider four groups of PMS stars: i) those which have
fully convective interiors; ii) those which have partially convec-
tive interiors consisting of a radiative core with an outer convec-
tive envelope; iii) those on Hayashi tracks in the H-R diagram; and
iv) those on Henyey tracks in the H-R diagram. It is clear from
PMS stellar evolution models (e.g. Siess et al. 2000), from Figure
3, and the discussion in section 1 that radiative core development
can occur several Myr before stars transition onto their Henyey
tracks. When the radiative core first begins to grow, the luminos-
ity of the star initially continues to decrease before the transition

into the Henyey phase where the stellar luminosity rises and the
star moves upwards and left in the logL∗ − log Teff plane. Our
group iii) (Hayashi track stars) therefore contains a mixture of both
fully convective and partially convective stars, whereas our group
iv) (Henyey track stars) contains only stars which have evolved to
the point where the physics of their internal structure is driving
them towards greater luminosities. Henyey track PMS stars have
radiative cores of size &0.5R∗ and mass &0.7M∗.

In terms of the H-R diagrams shown in Figure 3, the filled
black points are the fully convective sample, and the open red/blue
points the radiative core sample. The black and blue points together
form the Hayashi sample (all still have L∗ decreasing with age),
and the red points form the Henyey sample (which all have L∗
increasing with age).

Within our sample of 984 PMS stars, the majority, 836, are
fully convective (of which 402 are of mass ≤0.35 M� and will re-
main fully convective) while 148 have developed radiative cores.
For the ONC, 423 and 43 stars are fully convective and partially
convective respectively, with 190 and 57 for NGC 2664, 139 and
20 for IC 348 (106 and 19 with X-ray luminosities; 33 and 1 with
LX upper limits), 43 and 6 for NGC 2362, and 41 and 22 for
NGC 6530.

For our entire sample of 984 stars, 927 are on Hayashi tracks
in the H-R diagram while 57 have evolved onto Henyey tracks. For
the ONC, 459 and 7 stars are on Hayashi and Henyey tracks respec-
tively, with 221 and 26 for NGC 2664, 146 and 13 for IC 348 (113
and 12 with X-ray luminosities; 33 and 1 with LX upper limits), 48
and 1 for NGC 2362, and 53 and 10 for NGC 6530.

Tables 2 and 3 list the mean, standard deviation, median,
and median absolute deviation of log(LX/L∗) for the four stel-
lar samples, both for all five star forming regions combined and
individually [see Appendix B for a comparison of logLX and
log(L∗/L�)]. The number of stars in each category is listed as
Nstars. The stars from IC 348 with LX upper limits are not consid-
ered in Tables 2 and 3, nor in Figure 4, but are considered in the
logL∗− logLX regression fits discussed below. The sample distri-
butions are plotted graphically as box plots in Figure 4 for the re-
gions combined, and individually. The box plot widths are propor-
tional to the square root of the sample size, which highlights that the
bulk of the PMS stars have fully convective interiors. The whiskers
extend from the quartile to the quartile±1.5 times the interquartile
range7 (+ for the upper whisker, − for the lower whisker), or to
the maximum or minimum of the sample if this is smaller than the
whisker length would otherwise be, with outliers plotted for the for-
mer case. The box plots are notched with the notch height extend-
ing from the median of the sample to ±1.57 × (IQR)/

√
Nstars,

where Nstars is the sample size and IQR the interquartile range
(e.g. Chambers et al. 1983). The notches provide a simple way of
determining whether a difference in the medians between samples
is significant (roughly when the notches of the box plots being com-
pared do not overlap e.g. McGill, Tukey & Larsen 1978).

We note in passing that, on average, partially convective PMS
stars have larger L∗ and larger LX compared to fully convective
stars (likewise for stars on Henyey tracks compared to those on
Hayashi tracks, where the difference is greater8). This is exactly as

7 The interquartile range is the difference between the upper and lower
quartiles.
8 The stellar population of NGC 6530 is an exception to this trend for LX

as a result of an observational bias (the cluster has a lack of low-mass PMS
stars that have estimated spectral types available in the literature, see Ap-
pendix B).

MNRAS 000, 1–22 (2015)

 at U
niversity of St A

ndrew
s on February 15, 2016

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


10 Scott G. Gregory et al.

Table 2. A comparison between the mean, standard deviation, median, and median absolute deviation (M.A.D.) of the logarithmic fractional X-ray luminosities,
log(LX/L∗), of fully and partially convective PMS stars. The two numbers in the Nstars column are the number of fully and partially convective stars
considered in each region. The 34 stars from IC 348 with LX upper limits are not considered here.

fully convective radiative core
region Nstars mean std. dev. median M.A.D. mean std. dev. median M.A.D.

all 803; 147 -3.44 0.59 -3.36 0.45 -3.57 0.68 -3.48 0.48
ONC 423; 43 -3.56 0.66 -3.52 0.53 -3.30 0.61 -3.30 0.47

NGC 2264 190; 57 -3.20 0.39 -3.18 0.30 -3.58 0.54 -3.44 0.38
IC 348 106; 19 -3.55 0.53 -3.55 0.40 -4.00 1.01 -3.61 0.69

NGC 2362 43; 6 -3.09 0.38 -3.19 0.26 -3.31 0.27 -3.35 0.23
NGC 6530 41; 22 -3.37 0.40 -3.34 0.32 -3.76 0.67 -3.65 0.51

Table 3. As Table 2 but comparing stars which have evolved onto Henyey tracks to those still on their Hayashi tracks in the H-R diagram. As a radiative core
develops before a star moves onto its Henyey track, the Hayashi sample includes all of the fully convective stars within a given region as well as many of the
partially convective stars. There is only a single star (in our sample) on a Henyey track in NGC 2362.

Hayashi track Henyey track
region Nstars mean std. dev. median M.A.D. mean std. dev. median M.A.D.

all 894; 56 -3.43 0.58 -3.36 0.44 -3.95 0.78 -3.76 0.60
ONC 459; 7 -3.53 0.66 -3.48 0.52 -3.89 0.27 -3.98 0.18

NGC 2264 221; 26 -3.22 0.38 -3.22 0.30 -3.81 0.66 -3.68 0.51
IC 348 113; 12 -3.54 0.54 -3.54 0.40 -4.30 1.10 -3.75 0.85

NGC 2362 48; 1 -3.12 0.38 -3.22 0.26 -2.94 - -2.94 -
NGC 6530 53; 10 -3.40 0.41 -3.43 0.33 -4.06 0.79 -4.25 0.63

expected, as fully convective stars are located in the lower right of
the PMS of the H-R diagram, see Figure 3, whereas partially con-
vective stars are predominantly in the upper left. X-ray luminosity
is known to correlate with stellar luminosity (e.g. Telleschi et al.
2007 as well as Figure 5 and the discussion below) and therefore the
partially convective stars are also more X-ray luminous than those
which are fully convective. Likewise, LX is correlated with stellar
mass (e.g. Flaccomio et al. 2003b; Preibisch et al. 2005), and as the
partially convective stars are typically more massive than the fully
convective stars (evident from their H-R diagram positions alone),
it is not a surprise that we find them to be brighter in X-rays.

Of particular interest is the comparison between log(LX/L∗)
for fully convective stars and those with radiative cores (and for
stars on Hayashi and Henyey tracks), and the relationship be-
tween LX and L∗ for stars with different internal structure. Pre-
vious studies have reported that PMS stars on radiative tracks
have lower log(LX/L∗) compared to those on convective tracks
in the H-R diagram (e.g. Feigelson et al. 2003; Flaccomio et al.
2003c; Rebull et al. 2006; Currie et al. 2009; Mayne 2010). The
most quantitative study of this effect, that of Rebull et al. (2006),
report a factor of ∼10 reduction in log(LX/L∗) for partially con-
vective compared to fully convective PMS stars in the mass range
1−2 M�. The Rebull et al. (2006) sample of stars, from NGC 2264
(and from the Orion Flanking Fields (FFs) a region we do not con-
sider in this paper), contained many X-ray luminosity upper limits
which were carefully accounted for. Thanks to the improved X-ray
data analysis methods of Getman et al. (2010), see section 2.2.1,
these upper limits have been replaced by firm detections. This,
combined with our larger sample from multiple star forming re-

gions9 and updated stellar luminosity/mass/age estimates, warrants
a detailed comparison of log(LX/L∗) for PMS stars of differing
internal structure, as well as the correlation between LX and L∗.

Considering our whole sample of stars we find only a slight re-
duction in 〈log(LX/L∗)〉 for radiative core stars, of 0.13 dex, when
comparing them to fully convective stars (Figure 4, upper left, and
Table 2). The difference is larger when comparing the Henyey and
Hayashi sample (Figure 4, lower left, and Table 3) with stars on
Henyey tracks having 〈log(LX/L∗)〉 of 0.52 dex less than those
on Hayashi tracks. It is immediately apparent when we consider
the individual star forming regions why we find little difference
in 〈log(LX/L∗)〉 between fully convective stars and stars with
radiative cores when considering all five star regions combined.
The partially convective sample of stars have lower 〈log(LX/L∗)〉
compared to fully convective stars in each region except the ONC,
where the trend is the opposite way around. 〈log(LX/L∗)〉 is, how-
ever, less for Henyey track compared to Hayashi track stars in the
ONC. The ONC is one of the youngest star forming regions, and
an examination of the H-R diagrams in Figure 3 reveals that few
partially convective stars in our ONC sample have yet evolved onto
Henyey tracks (about ∼80% of the partially convective stars in the
ONC sample are still on Hayashi tracks). In the other regions the
partially convective stars have evolved further towards the ZAMS.

9 Rebull et al. (2006) consider a sample of 317 detections plus 139 LX up-
per limits from NGC 2264 (and 250 detections plus 80 upper limits from the
Orion FFs). About 28% of their sample are LX upper limits. For compari-
son, our total sample consists of 950 detections and 34 upper limits, about
3%. There are, however, important difference between our data sets, the
most important being that Rebull et al. (2006) include stars without spectral
type estimates, dereddening the photometry of such stars using “the most
likely reddening in the direction of the cluster”. Our sample size would in-
crease had we adopted a similar approach rather than selecting only stars
with spectral types.
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PMS star X-ray emission with radiative core growth 11

Figure 4. Variable width notched box plots, with outliers, for the distribution of log(LX/L∗) for stars in all five star forming combined (labelled “all”), and
independently. The box plot widths, notches, and whisker lengths are defined in the sixth paragraph of section 4. In the upper row we are comparing fully
convective (red box plots) to partially convective (white box plots) stars, and in the lower row, stars which are on Hayashi tracks (red box plots) to those on
Henyey tracks (white box plots) in the H-R diagram. The black cross denotes the mean value of a sample. For NGC 2362 there is only a single Henyey track
star in our sample, rendering a comparison between the Hayashi and Henyey samples meaningless for that region. However, we include it in the figure for
completeness.

Table 4. Linear regression fits to logLX vs logL∗ shown in Figure 5, with logLX = b+ a logL∗ (i.e. LX ∝ La
∗), calculated using the EM algorithm with

ASURV. The number in parenthesis in the Nstars column is the number of LX upper limits that contribute to the total number of stars in that category. The
upper limits are accounted for in the fits. The fifth column gives the standard deviation, and the final column lists the probability of there not being a correlation
calculated using a generalised Kendall’s τ test. There is no correlation for Henyey track stars.

Nstars b a std. dev. prob.

all stars 984 (34) 2.82±1.23 0.81±0.04 0.62 <5e-5
fully convective 836 (33) -1.06±1.49 0.93±0.04 0.61 <5e-5
radiative core 148 (1) 19.1±3.0 0.33±0.09 0.60 <5e-5
Hayashi track 927 (33) -0.65±1.32 0.92±0.04 0.60 <5e-5
Henyey track 57 (1) 25.6±8.0 0.13±0.23 0.73 0.518

Hayashi track with radiative core 91 (0) 9.91±2.82 0.61±0.08 0.44 <5e-5

This immediately indicates that there is something happening in the
evolution of log(LX/L∗) as PMS develop radiative cores, with the
decrease becoming greater as stars evolve onto Henyey tracks. If
the ONC is removed, and the other four regions are considered to-
gether, we find a reduction in 〈log(LX/L∗)〉 of 0.38 (0.64) dex
when comparing fully convective to radiative core (Hayashi to

Henyey track) stars, a larger difference than when the ONC is in-
cluded.

The mean value of log(LX/L∗) can be written as,

〈log (LX/L∗)〉 = 〈logLX〉 − 〈log (L∗/L�)〉 − logL�, (4)

where 〈logLX〉 and 〈log (L∗/L�)〉 are the mean values of logLX

and log (L∗/L�) respectively. If the mean logarithmic X-ray and
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12 Scott G. Gregory et al.

Figure 5. logLX vs logL∗ for stars in the five star forming regions combined, split into the fully convective (top left), radiative core (top right), Hayashi
(bottom left), and Henyey (bottom right) samples. Fully convective stars are shown as black symbols and partially convective stars as blue/red symbols. Black
and blue symbols combined are stars on Hayashi tracks; those shown as red symbols have evolved onto Henyey tracks. Stars with LX upper limits (all from
IC 348) are shown as downward pointing arrows.

Figure 6. Boxplots of logLX in logL∗ bins for the Hayashi sample (left; constructed from the black and blue points in Figure 5) and the Henyey sample
(middle; constructed from the red points in Figure 5). The right panel shows the mean value of logLX in each logL∗ bin (plotted with an ordinate value
equal to the midpoint of each box in the left/middle panels) with black circles/green crosses for the Hayashi/Henyey sample. Examination of the middle panel
reveals that the green cross at logL∗ ≈ 33 ergs−1, 〈logLX〉 ≈ 29 ergs−1 (left most green cross in the right-hand panel) is generated by a single star, which
invalidates a comparison between the mean value of logLX for Hayashi and Henyey track stars in that particular logL∗ bin. The relation between logLX

and logL∗ flattens at large stellar luminosities - this is driven by the evolution of LX of partially convective stars (see section 5).
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PMS star X-ray emission with radiative core growth 13

bolometric luminosities of stars on Hayashi tracks are denoted
〈logLX〉HAY and 〈logL∗〉HAY then the equivalent for stars on
Henyey tracks can be written as 〈logLX〉HEN = 〈logLX〉HAY +α
and 〈logL∗〉HEN = 〈logL∗〉HAY + β; where α, β > 0 to en-
sure that 〈logLX〉HEN > 〈logLX〉HAY and 〈logL∗〉HEN >
〈logL∗〉HAY (as required since Henyey track stars are more lumi-
nous than Hayashi track stars, on average, see Appendix B). Using
equation (4) the fractional X-ray luminosities are then related as,

〈log(LX/L∗)〉HEN = 〈log(LX/L∗)〉HAY + (α− β). (5)

Therefore, in order to explain why 〈log(LX/L∗)〉 is smaller for
Henyey track stars compared to Hayashi track stars, we require
that α < β. In other words, the increase in 〈logLX〉 for Henyey
track stars when comparing them to Hayashi track stars must be less
than the corresponding increase in 〈logL∗〉 in order to ensure that
〈log(LX/L∗)〉HEN < 〈log(LX/L∗)〉HAY. This smaller increase is
readily apparent when considering the correlation between logL∗
and logLX for the complete sample. Figure 5 plots logLX versus
logL∗ with the results of linear regression fits given in Table 4.

For the linear regression fits we used the EM (expecta-
tion maximisation) algorithm of the ASURV (Astronomy SUR-
Vival analysis) package, as described by Isobe, Feigelson & Nelson
(1986). To calculate the probabilities that correlations are present
we used generalized Kendall’s τ tests within the ASURV pack-
age. ASURV allows censored data, LX upper limits in our case,
to be properly accounted for in the analysis, alongside detections.
The EM algorithm is a parametric technique that yields the linear
regression coefficients (the gradient and the ordinate intercept) as-
suming a normal distribution for the residuals. In the absence of
censored data the EM algorithm provides an ordinary least squares
fit. In Table 4, and throughout, we present the values of the regres-
sion coefficients to two decimal places to be consistent with the lit-
erature; notice, however, that the uncertainties are sometimes large
enough that the second decimal place is not fully justified.

Examination Figure 5 and Table 4 reveals that fully and par-
tially convective stars behave differently in terms of their X-ray
emission, with the effect becoming more pronounced when com-
paring stars on Hayashi and Henyey tracks. For fully convective
PMS stars we find an almost linear relationship between the stel-
lar and X-ray luminosities, LX ∝ L0.93±0.04

∗ , as has been re-
ported by other authors (e.g. Telleschi et al. 2007). The power law
dependency is weaker for PMS stars that have developed radia-
tive cores, LX ∝ L0.33±0.09

∗ . If we consider the Hayashi sample,
which includes all of the fully convective stars as well as some
that are partially convective (those which still have L∗ reducing
with increasing age) the almost linear relationship is maintained,
LX ∝ L0.92±0.04

∗ . However, this hides the fact that the Hayashi
sample is dominated by the behaviour of the 836 fully convec-
tive stars, compared to the 91 Hayashi track partially convective
stars. If we consider only the 91 stars, the blue points in Figure 5,
we find a weaker power law dependence, LX ∝ L0.61±0.08

∗ , than
what is obtained for the fully convective stars alone. A two-sided
Kolmogorov-Smirnov test gives a probability of 1e-8 that the dis-
tribution of logLX for partially convective Hayashi track stars is
drawn from the same parent population as that for fully convec-
tive Hayashi track stars. For PMS stars on Henyey tracks we find
no correlation between logLX and logL∗, with a probability of
0.52 from a generalised Kendall’s τ test. Taken together, this is ev-
idence for an evolution in the X-ray emission from PMS stars as
they evolve across the H-R diagram and develop radiative cores.
The X-ray luminosity appears to begin to decrease once a radiative
core develops, with the effect becoming more pronounced for stars

that have evolved onto Henyey tracks and which have substantially
radiative interiors.

The difference in X-ray emission properties of Hayashi and
Henyey track stars is further illustrated in Figure 6. The figure is
constructed from the Hayashi and Henyey plots in Figure 5. The
correlation betweenLX andL∗ is clear for Hayashi track stars, with
logLX increasing uniformly with logL∗. For Henyey track stars,
as we increase in L∗, there is no corresponding increase in LX.
The mean values in each logL∗ bin are shown in the right panel of
Figure 6. As we increase in logL∗ the mean values of logLX for
Hayashi (black circles) and Henyey (green crosses) track stars are
initially well matched. The most luminous PMS stars on Hayashi
tracks are, however, more X-ray luminous than those of comparable
L∗ on Henyey tracks. The reduction in 〈log(LX/L∗)〉 for Henyey
track compared to Hayashi track PMS stars is therefore directly re-
lated to how the X-ray emission evolves with radiative core growth.
In the next section we compare X-ray luminosities with the length
of time that stars have spent with partially convective interiors.

5 X-RAY LUMINOSITY AND RADIATIVE CORE
DEVELOPMENT

5.1 The evolution of the X-ray luminosity of partially
convective PMS stars

In this section we demonstrate that for partially convective PMS
stars the stellar X-ray luminosity is anti-correlated with the length
of time that stars have spent with partially convective interiors.

For the partially convective PMS stars we can estimate how
long it has been since they developed a radiative core, tsince,

tsince ≈ t−
(

1.494

M∗/M�

)2.364

, (6)

where tsince and the stellar age t are in units of Myr, and the ex-
pression is valid for 0.35 < M∗/M� ≤ 3. The second term is an
approximation for when a star of specified mass ends the fully con-
vective phase of evolution, derived by Gregory et al. (2012) using
the same Siess et al. (2000) models as we adopt here.10

In a similar fashion, we can derive a rough estimate from the
Siess et al. (2000) models for how long it has been since a PMS star
transitioned onto the Henyey track,

tsincehen ≈ t−
(

3.04

M∗/M�

)2.42

, (7)

where both tsincehen and t are in units of Myr, and the expression
is valid for 0.63 . M∗/M� ≤ 3. Stars of mass M∗ . 0.63 M�
never transition onto Henyey tracks; they evolve directly from their
Hayashi tracks to the ZAMS.

By subtracting equation (6) from (7) we can estimate the de-
lay, in Myr, between when a star develops a radiative core until it
subsequently transitions from its Hayashi track to its Henyey track
in the H-R diagram. As shown in Figure 7, a solar mass star requires
∼12 Myr of evolution from ending the fully convective phase to
transitioning onto its Henyey tracks [a radiative core begins to grow

10 For a fully convective star with M∗ > 0.35M� equation (6) yields a
negative number, the modulus of which is the number of Myr that the star
still has to evolve before developing a radiative core. Likewise, for a star
on the Hayashi track with M∗ & 0.63M�, equation (7) yields a negative
number, the modulus of which is the number of Myr that the star still have
to evolve before transitioning onto its Henyey track.
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14 Scott G. Gregory et al.

Figure 7. The delay in Myr between stars developing a radiative core and
transitioning from their Hayashi tracks (whereL∗ decreases with increasing
age) to their Henyey tracks (where L∗ increases with increasing age) as
estimated from the Siess et al. (2000) models, using equations (6) and (7).

within a solar mass star after ∼2.6 Myr, equation (6) while it takes
∼14.7 Myr to reach the Henyey track, equation (7)]. As expected,
the delay is less/more for higher/lower mass stars.

Figure 8 plots logLX versus the time, in Myr, since the begin-
ning of radiative core development, tsince, estimated from equation
(6). Using the EM algorithm in ASURV we find that,

logLX = (−0.42± 0.09) log tsince + (30.47± 0.06), (8)

which (neglecting the errors) is the equation of the black line in
Figure 8. The standard deviation is 0.59 and the probability of
there not being a correlation from a generalized Kendall’s τ test
is < 5 × 10−5, indicating the presence of a strong correlation.
PMS stars that have spent longer with radiative cores have lower
X-ray luminosities, albeit with a large scatter in logLX values
at a given log tsince. Such scatter in logLX is inherent to all of
the reported X-ray correlations, those with stellar mass, age, and
bolometric luminosity (e.g. Preibisch et al. 2005, section 4, and
Appendix C), and here with time since radiative core develop-
ment. Magnetospheric accretion may contribute to some of this
scatter, as we will address in future work. For now, we note that
if star forming regions are considered as a whole, then accreting
PMS stars are observed to be a factor of 2-to-3 times less lumi-
nous in X-rays than the non-accretors (e.g. Stelzer & Neuhäuser
2001; Flaccomio, Micela & Sciortino 2003a; Preibisch et al. 2005;
Telleschi et al. 2007). We thus expect the differences between
the accreting and non-accreting stars to give rise to a scatter of
∼0.4 dex in logLX (see Preibisch & Feigelson 2005). This is far
less than the observed scatter of ∼2.5 dex apparent from Figure 8.
Accretion alone cannot explain the observed scatter in logLX.

If we only consider the Hayashi track partially convective
stars, the blue points in Figure 8 we find,

logLX = (−0.39± 0.10) log tsince + (30.44± 0.06), (9)

with a standard deviation of 0.51 and with the probability of there
not being a correlation of 1 × 10−4. This is almost identical to
that found when considering all of the partially convective stars
[equation (8]. Considering only Henyey track stars, the red points
in Figure 8 gives,

logLX = (−1.10± 0.36) log tsince + (31.05± 0.30), (10)

Figure 8. The X-ray luminosity of partially convective PMS stars as a func-
tion of the number of Myr since radiative core development, tsince, calcu-
lated using equation (6). Blue/red circles represent stars on Hayashi/Henyey
tracks in the H-R diagram. The linear regression fit (solid line), calculated
using the EM algorithm within ASURV, indicates that LX ∝ t

−2/5
since , while

the probability of there not being a correlation determined from a gener-
alised Kendall’s τ test is P (0) < 5 × 10−5, indicating the presence of a
strong correlation. The longer a PMS star has spent with a radiative core,
the weaker its X-ray luminosity.

with a standard deviation of 0.68 and with the probability of there
not being a correlation of 9 × 10−3. Tentatively, this perhaps in-
dicates that the drop in stellar X-ray emission quickens once stars
have evolved onto Henyey tracks in the H-R diagram. However, the
probability of there being a correlation is marginal for this subsam-
ple. A power law decay of the form LX ∝ tasince (a < 0) may not
sufficiently approximate the true behaviour of a star’s X-ray emis-
sion with time since radiative core development for the entirety of
its subsequent PMS evolution.

Is the strong correlation LX ∝ t
−2/5
since , equation (8), a conse-

quence of the correlations between LX and stellar mass M∗, and
between LX and age t (see Appendix C)? We do not believe that
it is, although tsince does depend on both quantities, see equation
(6). Imagine that we had a sample of approximately coeval PMS
stars. As we consider progressively more massive stars in the sam-
ple there would come a point where the stars transitioned from fully
convective to partially convective objects. As the sample is nearly
coeval, the more massive the star, the longer it would have spent
with a radiative core; and as LX is positively correlated with M∗,
we would also expect them to be more X-ray luminous, on aver-
age, than the lower mass stars in the sample. Thus we would expect
stars which have spent longer with radiative cores to have larger
LX, and therefore there would be a positive correlation between
LX and tsince. We observe the opposite, see Fig. 8.

Although X-ray luminosities are positively correlated with
stellar mass, many of the partially convective stars, and in par-
ticular those on Henyey tracks, fall below the main body of the
LX −M∗ correlation (see Appendix C1 and Fig. C1). Are these
stars the ones that are the cause of the LX − tsince correlation? To
test this, we removed the partially convective stars that fall on or be-
low the dashed line in Fig. C1, which has the same gradient as the
linear regression fit to the entire sample (see Table C1). Although
this cut is arbitrary, the results below are the same if we choose a
slightly different gradient and intercept. With the stars removed the
LX − tsince correlation is maintained but with a weaker decay: ex-
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PMS star X-ray emission with radiative core growth 15

Figure 9. The X-ray luminosity versus the ratio of the radiative core mass
to the stellar mass (upper) and the ratio of radiative core radius to the stellar
radius (lower). Points are coloured as in Figure 8. There is no correlation
between LX and Mcore/M∗, nor between LX and Rcore/R∗.

ponent−0.27±0.08 and a probability of 0.0004 [see equation (8)].
The decrease in LX with time since radiative core development is
therefore apparent even for the stars within the main body of the
LX −M∗ correlation.

Our sample is also not coeval. A significant age spread does
exist in all of the star forming regions, evident from the H-R dia-
gram shown in Fig. 3. Also noticeable, by eye from the H-R dia-
grams, is that the earlier spectral type stars (those of large Teff ) ap-
pear to be older, on average, than those of later spectral types. This
has been noted before. Hillenbrand, Bauermeister & White (2008)
argue that PMS evolutionary models under predict the age of low
mass stars with, for example, G-type stars being ∼2-5 times older
than K-types (Herczeg & Hillenbrand 2015). If we focus only on
the partially convective PMS stars that form the correlation in Fig.
8 there is less of an age difference. We separated this subsample
into early and late spectral types and found the biggest age differ-
ence when using a spectral type cut of earlier than K0 and K0 &
later, but of only ≈0.9 Myr.

To examine if this had any bearing on the correlation, we in-
creased the age of the KM-type stars in Fig. 8 by a constant such
that their mean age matched the mean age of the FG-type stars. This
shifted 18 stars from Hayashi to Henyey tracks. The LX − tsince

correlation was maintained although with a steeper decay than that
from equation (8) with an exponent of −0.68 ± 0.14 and a prob-

ability of <5e-5. However, increasing the age of KM-types stars
results in additional stars becoming partially convective. Account-
ing for this adds 29 stars to the partially convective sample and
results in slower decay with an exponent of −0.27 ± 0.08 and a
probability of 0.0001. For completeness, we also tried decreasing
the age of the FG-type stars such that their mean age matched the
mean age of the partially convective KM-type stars even though
this is the opposite of what the work of Hillenbrand et al. (2008)
suggests, where it is the late types that have under predicted ages.
This resulted in a smaller sample of 120 partially convective stars,
with 28 moving to portions of their mass tracks where they have
fully convective interiors. Again the LX − tsince correlation was
maintained with an exponent of −0.26± 0.10 and a probability of
0.0023. We can therefore conclude that any age difference between
early and late spectral type stars inherent in our adopted PMS evo-
lutionary model has no bearing on the basic result. We also note
that our results are unaffected by the choice of PMS evolutionary
model (see Appendix D). On average, the longer a PMS star has
spent with a partially convective interior the less X-ray luminous it
becomes.

5.2 X-ray luminosity as a function of core mass and radius

As shown in Figure 9, we find no simple correlation between LX

and radiative core mass, nor between LX and radiative core radius.
This lack of a clear relationship between radiative core size and
LX, with ∼2 dex variation in logLX at any given core mass or
radius, likely contributes to the scatter in the other correlations e.g.
between LX and time since core development. We do find a strong
correlation (P (0) < 5 × 10−5) between LX and radiative core
density, ρcore = 3Mcore/(4πR

3
core), with, logLX = (30.28 ±

0.05)+(−0.36±0.09) log ρcore. However, this is a consequence of
the correlation between LX and L∗ (see section 4), as ρcore scales
inversely with L∗ (Siess et al. 2000).

6 DISCUSSION & CONCLUSIONS

We have presented a thorough examination of the differences in,
and the evolution of, the coronal X-ray emission properties of fully
and partially convective PMS stars. We considered the most up-to-
date spectral types, X-ray luminosities, and photometry from the
literature for PMS stars in five of the best studied star forming re-
gions: the ONC, IC 348, NGC 2264, NGC 2362, and NGC 6530.
The spectral type of each star was estimated from spectra and
not by comparing de-reddened colours to (spectral type depen-
dent) intrinsic colours. After de-reddening the observed colours, we
used the most modern PMS stars intrinsic colour/bolometric cor-
rection/effective temperature scale of Pecaut & Mamajek (2013) to
position stars in the H-R diagram and the models of Siess et al.
(2000) to estimate stellar mass, age, and internal structure for our
sample of close to 1000 stars.

We find a (slightly) sub-linear relationship between stellar
luminosity and X-ray luminosity for fully convective PMS stars
LX ∝ L0.93±0.04

∗ . The exponent is reduced to 0.61±0.08 for stars
that have developed radiative cores but which are still on their
Hayashi tracks in the H-R diagram (where L∗ is decreasing with
age), with a two-sided Kolmogorov-Smirnov test revealing that
they are drawn from a different population than the fully convective
stars (see section 4). Considering all partially convective PMS stars
including those on Henyey tracks (L∗ increasing with age), which
have mostly radiative interiors, the exponent is further reduced to
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0.33±0.09. There is no correlation between LX and L∗ for PMS
stars on Henyey tracks in the H-R diagram (see Figures 5 and 6).
We note that there are only 148 stars in the radiative core sample
compared with 836 fully convective stars, and only 57 Henyey track
stars compared to 927 Hayashi track stars. This is as expected since
our PMS clusters are young and there will always be a greater pro-
portion of low-mass compared to high-mass stars. In future work,
adding data for older PMS clusters, where more stars will have de-
veloped radiative cores, and a greater fraction will have completed
the Hayashi-to-Henyey track transition, will help to increase the
sample size.

The evolution of LX − L∗ correlation is clearly driven by
the stellar structure transition from fully convective to partially
convective with an inner radiative core and outer convective en-
velop. By comparing the mean value of logLX in bins of increas-
ing logL∗ we demonstrated that the LX − L∗ correlation flattens
at large stellar luminosities. This is because, on average, partially
convective PMS stars are less X-ray luminous than fully convec-
tive ones at the same L∗. PMS stars with radiative cores have lower
fractional X-ray luminosities, log(LX/L∗), on average, than their
fully convective counterparts. This effect is greater when compar-
ing Henyey track to Hayashi track stars, with 〈log(LX/L∗)〉HAY−
〈log(LX/L∗)〉HEN ≈ 0.52 dex when considering our entire sam-
ple of X-ray detections.

The drop off in X-ray luminosity for partially convective PMS
stars is encapsulated in the correlations between LX and age, t.
Preibisch & Feigelson (2005) studied the age evolution of PMS
star X-ray emission, reporting a weak decrease of approximately
LX ∝ t−1/3 when dividing their stars into mass stratified sub-
samples. We find the same correlation but only for mass bins
that are dominated by fully convective PMS stars. As a side note,
LX ∝ t−1/3 is slower than we would expect from simple theoret-
ical considerations. There is an approximately linear relationship
between LX and L∗ for fully convective PMS stars which contract
roughly asR∗ ∝ t−1/3 (e.g. Lamm et al. 2005; Davies et al. 2014).
As such we would expect LX ∝ L∗ ∝ R2

∗T
4
eff ∝ t−2/3, as Teff

is approximately constant during this phase. This theoretical result
represents a faster decrease than is observed.

With our larger sample of stars we have firmly established that
LX decays more rapidly with age for higher mass bins which con-
tain mostly partially convective PMS stars. For example, LX ∝
t−0.53±0.10 for 1-1.5 M� stars, with the exponent dropping to
−0.86 ± 0.19 and then to −1.19 ± 0.35 for 1.5-2 and 2-3 M�
stars. Across these three mass bins the fraction of partially convec-
tive stars in our sample is 59%, 88% and 100%, further emphasising
that LX decays once convective zones start to vanish within stellar
interiors.

This quickening of the decay in LX with age for higher mass
bins is driven by the LX decay once stars have developed radiative
cores. We find that, on average, the longer PMS stars have spent
with radiative cores the less X-ray luminous that they become with
LX ∝ t−2/5

since . The correlation is robust, with the probability of there
not being a correlation from a generalised Kendall’s τ test of <5e-
5. The basic result thatLX decays with time since radiative core de-
velopment is not influenced by any age differences between early
and late spectral type stars that are inherent to PMS evolutionary
models (e.g. Hillenbrand et al. 2008). There is, however, no direct
link between the fraction of the stellar mass contained with the ra-
diative core and the X-ray luminosity, nor between the core radius
relative to the stellar radius and LX (equivalently between convec-
tive zone depth and LX).

The decay of LX with time since radiative core develop-

ment can be linked to the observed increase in the complexity
of the magnetic topology of PMS stars as they evolve across
the H-R diagram (Gregory et al. 2012, 2014). Zeeman-Doppler
imaging studies of accreting PMS stars (e.g. Donati et al. 2008a;
Hussain et al. 2009; Donati et al. 2011, 2012) have revealed those
which are fully convective, at least those above ∼0.5 M�, and
those with small radiative cores host large-scale magnetic fields that
are dominantly axisymmetric, with kilo-Gauss octupole or dipole
components slightly tilted with respect to the stellar rotation axis
(Gregory & Donati 2011), with the octupole becoming more dom-
inant relative to the dipole with age (Gregory et al. 2014). In con-
trast, PMS stars with large radiative cores host complex, multipo-
lar, and dominantly non-axisymmetric large-scale magnetic fields.
LX is approximately the product of a radiative loss function Λ(TX)
and the volume emission measure, LX ≈ Λ(TX)EM (e.g. Güdel
2009), where Λ(TX) is a piecewise function of the coronal temper-
ature TX (e.g. Aschwanden, Stern & Güdel 2008). If we approxi-
mate the emission measure as EM ≈ n2V , where n is the number
density of the coronal plasma and V the emitting volume, then the
X-ray luminosity LX ∝ V . An increase in the magnetic field com-
plexity as PMS stars evolve from fully convective objects, to host-
ing substantial radiative cores will result in a decrease of the avail-
able coronal emitting volume, and therefore a decrease in LX. For
example, the magnetic field of a PMS star with a strong dipole com-
ponent would be able to contain coronal plasma out to a large radius
from the stellar surface. A PMS star with a magnetic field domi-
nated by high order and non-axisymmetric components, where the
field strength would decay faster with height above the star, would
have a more compact corona, a smaller emitting volume, and there-
fore a lower X-ray luminosity. These qualitative ideas will be de-
veloped further in a companion paper, where semi-analytic models
of the evolution of the coronal X-ray emission from PMS stars with
multipolar magnetic fields will be presented.

The change in magnetic field topology as PMS evolve may
affect other X-ray signatures as well. For example, compact, mul-
tipolar coronae would be more likely to produce rotationally mod-
ulated X-ray light curves compared to more extended coronae (e.g.
Gregory et al. 2006; Hussain et al. 2009; Johnstone et al. 2014).
We also speculate that the flaring properties of Hayashi and Henyey
track PMS stars may differ, although a detailed comparison of flares
in X-ray light curves as a function of the stellar internal structure
has not yet been undertaken.

Finally, we end by noting that the partially convective mid-K
to F-type PMS stars in our sample will evolve to mid-G to A-type
stars once they arrive on the main sequence. A-type main sequence
stars, in particular, lack outer convective envelopes. Only∼10-15%
of them are detected in X-rays, with this emission thought to come
from later spectral type binary companions (Schröder & Schmitt
2007). Our work in this paper has shown that we can already ob-
serve the decay of X-ray emission during the first few Myr of the
PMS evolution of stars that will become A-type main sequence
stars, as their radiative zones are beginning to grow. Additionally,
the disappearance of highly luminous X-ray coronae as PMS stars
become largely, and fully, radiative, may be linked to the low (∼5-
10%) detection rate of significant surface magnetic fields in Her-
big AeBe stars (Alecian et al. 2013). Newly initiated surveys of
PMS stars of mass 1.5 − 3 M� will help to further complete our
understanding of the evolution of stellar magnetism, and of coro-
nal X-ray emission, with the change in stellar internal structure
(Hussain & Alecian 2014).
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APPENDIX A: DISTANCE ESTIMATES

Extensive discussion of literature estimates of the distance to the
five star forming regions that we consider can be found in the papers
of the Handbook of Star Forming Regions, ONC (Muench et al.
2008), NGC 2264 (Dahm 2008b), IC 348 (Herbst 2008), NGC 2362
(Dahm 2008a), and NGC 6530 (Tothill et al. 2008). We therefore
limit any detailed discussion below to distance estimates published
subsequently. Our adopted distances are listed in Table 1.

A1 Orion Nebula Cluster (ONC)

Historically, the distance to the ONC was subject to large
uncertainty, but modern estimates have converged on ∼
400 pc (e.g. Jeffries 2007; Kraus et al. 2007; Hirota et al. 2007;
Sandstrom et al. 2007; Menten et al. 2007; Mayne & Naylor 2008;
Kim et al. 2008). We assume d = 414 pc, the value obtained from
trigonometric parallax measurements made using the Very Long
Baseline Array (Menten et al. 2007). This corresponds to a distance
modulus of µ = 8.085.

A2 NGC 2264

The distance to NGC 2264 remains somewhat uncertain, with
modern estimates ranging from ∼400 pc (Dzib et al. 2014) to
913 ± 110 ± 40 pc (systematic and sampling errors respectively;
Baxter et al. 2009). The former was derived from a re-analysis of
Hipparcos satellite parallax measurements; future, higher preces-
sion parallax observations to-be-made by the Gaia satellite will
test the robustness of such a small cluster distance, ∼400 pc be-
ing a factor of two below almost all other estimates (see below).
The latter was estimated by calculating sin i for cluster members,
where i is the stellar inclination, using knowledge of the stellar
rotation period, measured projected rotational velocities (v∗ sin i),
and the stellar radius for an assumed cluster distance (R∗ de-
pends on the stellar luminosity and therefore the cluster distance),
sin i = Protv∗ sin i/(2πR∗). By then modelling the sin i distri-
bution obtained assuming that the stellar inclinations are randomly
oriented, Baxter et al. (2009) varied the cluster distance until the
best match with the observed distribution was obtained.

Most distance estimates fall in the range∼700-780 pc (759±
87 pc, Sung et al. 1997 with Park et al. 2000 finding the same value
but with a smaller error; 711 < 748 < 802 pc, Mayne & Naylor
2008; 705 pc, Naylor 2009; 750 pc, Cvetkovic, Vince & Ninkovic
2009; 815 ± 95 pc, Sung & Bessell 2010; 777 ± 12 pc, Turner
2012; 756 ± 96 pc, Gillen et al. 2014; and 738 + 57 − 50 pc,
Kamezaki et al. 2014). As the value derived by Gillen et al. (2014)
was obtained from an analysis of CoRoT satellite photometry of an

eclipsing binary system, and is therefore arguably the most accu-
rate, we use their value of 756 pc in this paper (µ = 9.393).

A3 IC 348

In additional to the Handbook of Star Forming Regions paper of
Herbst (2008), an extensive comparison of distances estimates to
IC 348 can be found in Herbig (1998), who settled on 316 pc, the
value we adopt here (µ = 7.498).

A4 NGC 2362

Historically, there was more than a kilo-parsec variation in de-
rived distances to NGC 2362 (see Dahm 2005, 2008a), but mod-
ern estimates have settled on∼1.4-1.5 kpc (Balona & Laney 1996;
Moitinho et al. 2001; Mayne & Naylor 2008; Kharchenko et al.
2013). Many of the early type stars lie on the ZAMS, allowing
the cluster distance to be derived by fitting the ZAMS in colour-
magnitude diagrams. We adopt a distance of 1480 pc, the value
derived by Moitinho et al. (2001) by fitting the B-star sequence in
the V vs U −B plane (µ = 10.851).

A5 NGC 6530

Extensive discussion of the distance to NGC 6530 can be found
in both Tothill et al. (2008) and Prisinzano et al. (2005). Litera-
ture estimates range from ∼1.3-2 kpc, with most studies deriv-
ing either ∼1.3 kpc (e.g. Prisinzano et al. 2005; Arias et al. 2006;
Mayne & Naylor 2008; Kharchenko et al. 2013) or ∼1.8 kpc (e.g.
van den Ancker et al. 1997; Sung et al. 2000). As the more recent
estimates agree on the former, we adopt 1250 pc, the value derived
by Prisinzano et al. (2005), corresponding to a distance modulus of
µ = 10.485.

APPENDIX B: A COMPARISON OF logLX AND
log(L∗/L�) FOR FULLY AND PARTIALLY CONVECTIVE
PMS STARS

Box plots of logLX and log(L∗/L�) for the entire sample and
all regions combined, are shown in Figs. A1 & A2 respectively.
For brevity we present only the box plots and not full breakdowns
analogous to Tables 2 & 3. Partially convective stars are, on aver-
age, more luminous than fully convective stars; likewise for Henyey
compared to Hayashi track stars. There is a single exception -
Hayashi track stars in NGC 6530 are more X-ray luminous on av-
erage than Henyey track stars (see Fig. A1 lower left panel). This
is a result of an observational bias: the incompleteness of spectro-
scopic surveys of that region. In this work we have selected only
PMS stars where spectral type have been assigned from spectra
(and not stars with an estimated spectral type from a comparison
of dereddened photometry with spectral type-dependent intrinsic
colours). There are very few late-type stars with assigned spec-
tral types in NGC 6530 (see Tothill et al. 2008). In our sample,
there are only 14 M-type stars and, of these, one is classified as
M1 and the rest are earlier M-types. The lack of low-mass stars in
the region with spectral type assignments is evident from the H-
R diagram for NGC 6530, Fig. 3, where there are no stars with
M∗ . 0.45 M�. These low-mass stars, which would all be on
Hayashi tracks, are weaker X-ray emitters than higher mass PMS
stars, see Fig. C1. Thus, had they been spectral typed and there-
fore included in our sample, we would expect to have found that
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Figure A1. As Figure 4 but for logLX.

Figure A2. As Figure 4 but for log(L∗/L�).
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Figure C1. logLX vs logM∗ for all stars in the five star forming regions.
Fully convective stars are shown as black symbols and partially convec-
tive stars as blue/red symbols. Black and blue symbols combined are stars
on Hayashi tracks; those shown as red symbols have evolved onto Henyey
tracks. Stars withLX upper limits (all from IC 348) are shown as downward
pointing arrows. The dotted line is defined in section 5.1.

〈logLX〉HEN > 〈logLX〉HAY for NGC 6530, as with the other
four star forming regions that we consider.

APPENDIX C: ADDITIONAL CORRELATIONS

For PMS stars, correlations between X-ray luminosity and stel-
lar mass, and between X-ray luminosity and stellar age, are well
known (e.g. Preibisch & Feigelson 2005; Preibisch et al. 2005). In
light of (i) the substantial updates to spectral type catalogs; (ii) the
improved mass and age estimates derived from PMS star calibrated
effective temperature and intrinsic colours that we present in this
work; (iii) the large sample size of PMS stars from five star forming
regions that we consider; and (iv) our division of the sample into
fully/partially convective stars and Hayashi/Henyey track stars, in
this Appendix we briefly re-examine the known correlations be-
tween LX and stellar mass/age.

C1 LX versus M∗

The correlation between LX and M∗ is plotted in Fig. C1, with lin-
ear regression fits from the expectation maximisation algorithm of
ASURV presented in Table C1. Probabilities for there not being a
correlation from generalized Kendall’s τ tests are also listed, which
take account of the logLX upper limits. Considering the entire
sample we find LX ∝ M1.45±0.06

∗ , although as with the LX − L∗
correlation (section 4) this hides the differing behaviour with the
change in stellar internal structure. Fully convective stars show a
steeper increase in LX with M∗ with an exponent of 1.84±0.08.
Partially convective stars show a weaker increase with an exponent
of 1.32±0.28, albeit with a large error. The correlation is marginal
at best for Henyey track stars. It is clear visually from Fig. C1 that
PMS stars with radiative cores are less luminous in X-rays than
fully convective stars in the same mass range, with LX having de-
cayed substantially for several Henyey track stars.

For a more direct comparison to the literature, we also list
in Table C1 the correlation found for 0.1 ≤ M∗/M� ≤ 2,
and for ONC stars in the same mass range. The latter offers the

most direct comparison with the COUP, the most comprehensive
X-ray survey of a young star forming region. Preibisch et al. (2005)
find that LX ∝ M1.44±0.10

∗ with stellar masses estimated from
the Siess et al. (2000) models. With the same models we find a
larger exponent of 1.61±0.10, although this is consistent with the
Preibisch et al. (2005) result within the error.

C2 LX versus t

Preibisch & Feigelson (2005) report a decay in X-ray luminosity
with age in mass stratified samples of PMS stars in the ONC.
Dividing the sample into mass bins negates any relationship po-
tentially introduced by the PMS lifetime being a strong function
of stellar mass. Linear regression fits to logLX vs log(age) for
our sample are given in Table C2. The first four mass bins (0.1-
0.2, 0.2-0.4, 0.4-1.0, and 1.0-2.0 M�) are chosen to allow a direct
comparison between our results and those of Preibisch & Feigelson
(2005). As our sample extends to 3 M�, results are also given for
2.0-3.0 M�. The anti-correlations are similar to those reported by
Preibisch & Feigelson (2005), namely a decay of X-ray luminosity
with age roughly of the form LX ∝ t−1/3, although here, with our
larger sample of stars the probability of (anti-)correlations being
present from a generalised Kendall’s τ test are greater. It is also
notable that in the 1.0-2.0 M� mass bin the decay is steeper: here
LX ∝ t−0.55±0.09, P(0)<5e-5, compared to LX ∝ t−0.50±0.21,
P(0)=0.053 in Preibisch & Feigelson (2005) with a smaller sam-
ple. The decay is steeper still if the mass range is extended up to
3 M�, LX ∝ t−0.61±0.09.

As our sample includes almost 1000 PMS stars, we have fur-
ther divided stars into mass bins of 0.5-1.0, 1.0-1.5, 1.5-2.0, and
2.0-3.0 M�.11 Plots of logLX vs log t shown in Fig. C2. As is ap-
parent from Table C2, the exponent steadily decreases from about
-1/3, to -1/2, to -9/10, to -6/5 across these four mass bins. There is a
faster decay in X-ray luminosity with age for stars of higher mass.
The last two columns of Table C2 are the fraction of partially con-
vective stars frad.core, and the fraction of Henyey track stars fHen,
in each mass bin e.g. fHen = 0 (=1) would indicate that all stars in
that mass bin are on Hayashi (Henyey) tracks. This faster decay in
LX with age is driven by the greater proportion of partially convec-
tive stars in the higher mass bins; and is related to the decay in LX

as stars develop substantial radiative cores (section 4) and our find-
ing that the longer a star has spent with a radiative core the weaker
its X-ray emission becomes (section 5).

APPENDIX D: A COMPARISON OF THE
CORRELATIONS USING DIFFERENT STELLAR
EVOLUTION MODELS

In this Appendix we demonstrate that our results are independent
of the adopted PMS mass tracks and isochrones. Starting with our
final sample of 984 PMS stars (including the 34 LX upper limits),
see section 3, we recalculated the stellar masses, ages, and radiative
core masses, using the PMS evolutionary models of Jung & Kim
(2007). Co-author Y.-C. Kim kindly supplied us with more detailed
grids than published as well as stellar internal structure informa-
tion. All 984 stars fell within the grid of Jung & Kim (2007). We
repeated the process using the models of Tognelli et al. (2011), for

11 2.5-3.0M� is not considered as there are only 5 stars in this mass range.
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Table C1. As Table 4 but for linear regression fits to logLX vs log(M∗/M�) shown in Figure C1, with logLX = d+ c log(M∗/M�) [i.e. LX ∝Mc
∗ ].

Nstars d c std. dev. prob.

all stars 984 (34) 30.34±0.03 1.45±0.06 0.60 <5e-5
fully convective 836 (33) 30.55±0.04 1.84±0.08 0.59 <5e-5
radiative core 148 (1) 30.11±0.06 1.32±0.28 0.59 <5e-5
Hayashi track 927 (33) 30.44±0.03 1.64±0.07 0.58 <5e-5
Henyey track 57 (1) 29.72±0.24 2.12±0.98 0.71 0.041

Hayashi track with radiative core 91 (0) 30.20±0.05 1.69±0.26 0.45 <5e-5
all stars (0.1 ≤M∗/M� ≤ 2) 963 (34) 30.35±0.03 1.47±0.06 0.60 <5e-5
ONC (0.1 ≤M∗/M� ≤ 2) 455 (0) 30.38±0.05 1.61±0.10 0.62 <5e-5

Figure C2. The decay of X-ray luminosity with stellar age for the indicated mass bins. Black points are fully convective PMS stars and open points partially
convective PMS stars. Blue/black points are stars on Hayashi tracks, red points are stars on Henyey tracks. The linear regression fits from the EM algorithm in
ASURV are shown in Table C2.

which E. Tognelli generously sent us radiative core masses. How-
ever, 0.2 M� is the lowest available mass track of the Tognelli et al.
(2011) models and 1 Myr the youngest isochrone (the mass tracks
themselves do extend to younger ages), so only 759 stars, including
13 LX upper limits, could be used. The other 225 stars were either
of too low mass, too young, or both, to be considered.

The different models yield different mass and age estimates
for individual stars [see Tognelli et al. (2011) for a detailed compar-
ison of several PMS evolutionary models]. Some PMS stars have
fully convective interiors in one model and a partially convective
interior in another. Likewise, some are on a Hayashi track in one
model and on a Henyey track in another. These are stars which
lie close to the fully convective limit in the H-R diagram (repre-
sented by the solid blue line in Figure 3), or close to the point of
transition from the Hayashi to the Henyey track. Despite the in-
herent differences between the models, a detailed examination of

Table D1 reveals that our results remain the same regardless of the
model choice. Fully convective stars have lower, mean, fractional
X-ray luminosities than partially convective PMS stars, with the
difference being larger when comparing Hayashi to Henyey track
stars and when the ONC is excluded (see section 4). There is an
almost linear correlation between LX and L∗ for fully convective
and Hayashi track stars, with the exponent of the correlation reduc-
ing if we consider partially convective stars. There is no correlation
between LX and L∗ for Henyey track stars (see section 4). This
is likely driven by the decay of LX with time since radiative core
development (see section 5).

The correlation between LX and age, t, does initially appear
to be model dependent. For example, in the highest mass bin, 2-
3 M�, there is no correlation when using the Jung & Kim (2007)
or Tognelli et al. (2011) models. There are only 15 and 16 stars in
this mass range in the two models, respectively, compared to 24
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Table C2. Linear regression fits to logLX vs log(age) [i.e. LX ∝ ta] for
stars in different stellar mass bins. Nstars is the number of stars in each
mass bin with the number in parenthesis the number of LX upper limits
that contribute to Nstars in that bin. frad.core and fHen are the fraction of
stars in a given mass bin that are partially convective and on Henyey tracks
respectively.

M∗/M� a prob. Nstars frad.core fHen

0.1-0.2 -0.30±0.09 9e-4 142 (20) 0.00 0.00
0.2-0.4 -0.29±0.08 1e-4 330 (12) 0.01 0.00
0.4-1.0 -0.29±0.07 <5e-5 376 (1) 0.07 0.00
1.0-2.0 -0.55±0.09 <5e-5 139 (1) 0.71 0.32
1.0-3.0 -0.61±0.09 <5e-5 160 (1) 0.75 0.35

0.5-1.0 -0.28±0.08 <5e-5 257 (1) 0.10 0.00
1.0-1.5 -0.53±0.10 <5e-5 81 (1) 0.59 0.19
1.5-2.0 -0.86±0.19 <5e-5 60 (0) 0.88 0.53
2.0-3.0 -1.19±0.35 0.0059 24 (0) 1.00 0.50

stars when using the Siess et al. (2000) models. We suspect that
strong correlations would be recovered for all models if a greater
sample size could be used. The different models yield different
mass estimates for individual stars. If we consider alternative mass
bins to those listed in Table D1 strong correlations are still recov-
ered. As one example, for mass bins of 0.5-0.7, 0.7-1.0, 1.0-1.5,
and 1.5-3.0 M� the exponents of the LX versus t correlation using
the models of Tognelli et al. (2011) are -0.47±0.10, -0.63±0.09,
-0.77±0.16, and -1.00±0.22 respectively, with P (0)<5e-5 for the
lowest three mass bins and 1e-4 for the highest mass bin. Our con-
clusion that the decrease in LX with age steepens for higher mass
bins (see Appendix C2), which contain a greater proportion of par-
tially convective stars compared to lower mass bins, remains valid
regardless of the chosen PMS evolutionary model.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Table D1. A comparison of our main results using three different PMS evolutionary models.

Siess et al. (2000) Jung & Kim (2007) Tognelli et al. (2011)

Nstars total 984 (34) 984 (34) 759 (13)
fully convective 836 (33) 884 (33) 620 (12)
radiative core 148 (1) 100 (1) 139 (1)
Hayashi track 927 (33) 949 (33) 720 (12)
Henyey track 57 (1) 35 (1) 39 (1)

Hayashi track with radiative core 91 (0) 65 (0) 100 (0)

〈log(LX/L∗)〉 fully convective all regions -3.44 -3.43 -3.35
radiative core all regions -3.57 -3.72 -3.56
Hayashi track all regions -3.43 -3.44 -3.35
Henyey track all regions -3.95 -4.10 -4.14

fully convective ONC excluded -3.30 -3.31 -3.27
radiative core ONC excluded -3.68 -3.79 -3.71
Hayashi track ONC excluded -3.32 -3.33 -3.30
Henyey track ONC excluded -3.96 -4.12 -4.16

a, P(0) a, P(0) a, P(0)
LX ∝ La

∗ all stars 0.81±0.04, <5e-5 0.84±0.04, <5e-5 0.67±0.04, <5e-5
fully convective 0.93±0.04, <5e-5 0.97±0.04, <5e-5 0.89±0.05, <5e-5
radiative core 0.33±0.09, <5e-5 0.28±0.13, 0.0022 0.34±0.08, <5e-5
Hayashi track 0.92±0.04, <5e-5 0.94±0.04, <5e-5 0.83±0.04, <5e-5
Henyey track 0.13±0.23, 0.518 -0.11±0.27, 0.5894 0.11±0.27, 0.8750

Hayashi track with radiative core 0.61±0.08, <5e-5 0.67±0.15, <5e-5 0.60±0.08, <5e-5

LX ∝ tasince radiative core -0.42±0.09, <5e-5 -0.45±0.11, 1e-4 -0.40±0.09, <5e-5
Hayashi track with radiative core -0.39±0.10, 1e-4 -0.45±0.13, 0.0012 -0.39±0.08, <5e-5

Henyey track -1.10±0.36, 0.009 -1.34±0.53, 0.0045 -1.02±0.55, 0.0136

LX ∝ ta 0.5-1.0M� -0.28±0.08, <5e-5 -0.40±0.06, <5e-5 -0.51±0.07, <5e-5
1.0-1.5M� -0.53±0.10, <5e-5 -0.76±0.11, <5e-5 -0.77±0.16, <5e-5
1.5-2.0M� -0.86±0.19, <5e-5 -0.78±0.25, 7e-4 -1.09±0.26, 1e-4
2.0-3.0M� -1.19±0.35, 0.0059 -0.91±0.31, 0.0833 -0.77±0.45, 0.4177
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