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Abstract: Zircon U-Pb and Lu-Hf isotopic data along with whole-rock elemental and 

Sr-Nd isotopic analytical results for the Xin’anzhai and Tongtiange granitic plutons in 

the Ailaoshan suture zone record the transition from subduction to collision associated 

with the accretion of Indochina to Yangtze Blocks. The Xin’anzhai monzogranite 

yields zircon U-Pb age of 251.6 ± 2.0 Ma and εHf(t) values of -6.2 ~ -9.8. The 

Tongtiange leucogranite gives zircon U-Pb age of 247.5 ± 2.2 Ma and εHf(t) values 

ranging from -3.1 to -11.1. The Tongtiange leucogranites have lower MgO, Na2O, 

CaO, FeOt and TiO2 contents but higher A/CNK values than those of the Xin’anzhai 

monzogranites. The εNd(t) values for Xin’anzhai and Tongtiange plutons are in the 

range of -8.5 to -8.8 and -10.6 to -11.4, respectively, similar to those of the Ailaoshan 

metamorphic basement. The Tongtiange leucogranites are the product of dehydration 

melting of mica-rich metasedimentary rocks whereas the primary source of the 

Xin’anzhai monzogranites is probably Proterozoic gneiss with an addition of 35-45 % 

Proterozoic amphibolite. Our geochronological results, together with other published 

data, indicate the presence of Permo-Triassic magmatism associated with the 

Indosinian Orogeny along the Ailaoshan suture zone. This zone links with the 

Jinshajiang suture toward the northwest and the Song Ma-Hainan suture to the 

southeast. It is herein proposed that latest Permian convergent margin magmatism 

represented by the Xin’anzhai granitoid pluton (~252 Ma) terminated through the 

accretion of the Simao-Indochina to the South China Blocks, which marks the 

commencement of the Indosinian Orogeny resulting in the generation of the ~247 Ma 

Tongtiange S-type leucogranite. 

Keywords: Paleotethyan evolution; Ailaoshan zone; Indosinian; Leucogranite; 

Syncollision
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1. Introduction 

Suture zones are major crustal discontinuities that record a history of ocean 

closure and continental collision (e.g., Dewey, 1977). They are marked by a 

succession of disrupted oceanic sedimentary and igneous rocks, often including 

slivers of ophiolite. They separate blocks of contrasting history and are zones of 

lithospheric weakness often resulting in a long and complex history of reactivation. 

Southeast Asia is cut by a series of suture zones that separate Gondwana-derived 

terranes at which record the transfer across the Tethys Ocean and accretion onto Asia 

during the late Paleozoic and Mesozoic (e.g., Cater et al., 2001; Metcalfe, 2002, 2006, 

2011, 2013). 

The Ailaoshan suture zone, the focus of this paper, separates the Yangtze Block 

of the South China Craton to the north from the Simao-Indochina Block to the south 

(Fig. 1a, Metcalfe, 2011, 2013). It is commonly accepted to link with the Jinshajiang 

suture toward the northwest and the Song Ma-Hainan suture to the southwest along 

strike extension. The zone incorporates a succession of Proterozoic and Paleozoic 

rocks, derived at least in part from the enclosing blocks, along with late Paleozoic to 

early Mesozoic ultramafic to silicic igneous rocks and associated sedimentary units 

(e.g., Zhong, 2000). Late Middle Triassic and younger rock-units (<240 Ma) 

unconformably overly the pre-Triassic packages both the bounding blocks and suture 

zone (e.g., Yunnan BGMR, 1990; Lepvrier et al., 2008). Cenozoic deformation 

associated with the India-Asia collision reactivated the Ailaoshan suture zone (e.g., 

Cao et al., 2012; Tang et al., 2013b) that is delineated by a series of faults, e.g., Red 
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River, Ailaoshan, Jiujia-Anding, Lixiangjiang and Tengtiaohe faults (Fig. 1b). 

Previous works along the suture zone have focused on the ophiolitic assemblages 

(Xu and Castillo, 2004; Jian et al., 2009a, 2009b) and the Cenozoic deformation 

(Tapponnier et al., 1990; Cao et al., 2012; Tang et al., 2013b). In this paper we focus 

on the granitic rocks previously thought to be Proterozoic origin, which to date have 

received little attention (Yunnan BGMR, 1990) although work along the Jinshajiang 

and Song Ma-Hainan suture has established the presence of Permo-Triassic granites 

(e.g., Li et al., 2006; Zhu et al., 2011; Liu et al., 2012; Zi et al., 2012a, 2012b, 2012c, 

2013). We present the geochronology and geochemistry of the granites along the 

Ailaoshan segment and then integrate these with available data along the entire 

Jinshajiang-Ailaoshan-Song Ma-Hainan suture zone to document the collisional 

history of the Simao-Indochina and Yangtze Blocks within a closure framework of the 

Tethyan Ocean. 

2. Geological setting 

The Jinshajiang-Ailaoshan-Song Ma-Hainan suture zone can be traced ~2900 km 

from Tibet to Hainan Island and is up to 100 km wide (Fig. 1a, Jian et al., 2009a; 

Metcalfe, 2011, 2013; Zhu et al., 2013; Zi et al., 2013). It is made up of four segments 

involving Jinshajiang, Ailaoshan, Song Ma and Hainan that record the effects of 

Cenozoic reactivation and further easterly extend into the South China Sea. It forms the 

western or southwestern boundary of the South China Craton, with the nature of the 

adjoining block varying along strike. The Ailaoshan segment separates the Yangtze 

Block of the South China Craton from the Simao-Indochina Block. The Yangtze Block 
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consists of Archean to Paleoproterozoic crystalline basement and Neoproterozoic to 

lower Paleozoic and upper Paleozoic marine assemblages (Gao et al., 1999; Cawood et 

al., 2013; Wang et al., 2013). The Simao Block consists of Mesoproterozoic 

metamorphic basement assemblage along with unconformity bound packages of lower 

Paleozoic metasedimentary rocks and middle Devonian conglomerates (Feng et al., 

2000; Zhong, 2000). They are overlain in turn by a late Paleozoic sedimentary package 

containing late Devonian radiolarian bedded chert and Carboniferous to Permian 

shallow-marine limestone and sandstone (Yunnan BGMR, 1990; Metcalfe, 2002). 

The Ailaoshan suture zone comprises structurally juxtaposed successions of 

variably metamorphosed Proterozoic and younger rock assemblages. The succession 

between the Red-River and Ailaoshan-Tengtiaohe faults, as shown in Fig. 1b, is 

dominated by a high-grade assemblage of paragneiss, granitic gneiss, 

hornblende-schist, marble and amphibolite with ages ranging from ~820 Ma to ~25 

Ma (Lin et al., 2012; Qi et al., 2012; Liu et al., in press). In contrast, the region 

between the Ailaoshan and Lixianjiang faults (Fig. 1) contains greenschist-facies 

Paleozoic and Mesozoic strata, including ophiolitic fragments, greywacke, schist, 

chert and exotic limestone and associated volcanic rocks (Shen et al., 1998; Zhong, 

2000). The ophiolitic fragments yielded the Devonian and Carboniferous ages 

(383-339 Ma, e.g., Jian et al., 2009b; Lai et al., in press). The main volcanic 

sequences in the shear zone are characterized by a Permian (287-265 Ma) 

basalt-andesite-dacite association that shows the geochemical affinity to arc 

magmatism in a supra-subduction setting (Fan et al., 2010). 
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A series of elongate granitic intrusions also occur within the Ailaoshan suture 

zone, especially in the region bounded by the Ailaoshan and Lixianjiang faults (Fig. 

1b). They intrude Silurian to Permian strata (Yunnan BGMR, 1990) and both of these 

bodies, the Xin’anzhai and Tongtiange plutons, constitute the focus of this study. The 

Xin’anzhai pluton covers an area of ~450 km
2
 and is unconformably overlain by the 

upper Triassic Gaoshanzhai Formation (Yunnan BGMR, 1990). It is a medium 

grained biotite monzogranite containing 30-40 % plagioclase, 25-35 % alkali feldspar, 

25-30 % quartz and 3-7 % biotite, along with the accessory magnetite, zircon and 

apatite. The Tongtiange pluton within the central part of the Ailaoshan suture zone is 

strongly elongated and shows a parallel extension to the Ailaoshan fault (Fig. 1b). 

This pluton is a medium grained leucogranite containing 30-35 % plagioclase, 

40-45 % alkali feldspar, 20-35 % quartz, 3-5 % biotite, 1-2 % muscovite and minor 

amounts of magnetite, zircon and apatite. Locations of samples for zircon 

geochronology and whole rock isotopic measurements are given in Table 1. 

3. Analytical methods 

Zircon mineral separates were prepared by conventional heavy liquid and 

magnetic techniques. Grains were mounted in epoxy, polished and coated with gold 

and then photographed in transmitted and reflected light. Their internal texture was 

examined using cathodoluminescence (CL) imaging at the Institute of Geology and 

Geophysics (IGG), Chinese Academy of Sciences (CAS), Beijing. 

Zircon U-Pb ages and elements for samples HH-43A, HH-45A and ML-34G 

were analyzed using a Laser ICP-MS at the IGG CAS and those for sample ML-34A 
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at the State Key Laboratory of Continental Dynamics, Northwest University. The 

zircon standards CN92-2, 91500 and GJ were used to calibrate the U-Th-Pb ratios. 

The standard silicate glass NIST 610 was used to optimize the machine. The spot size 

for data collection was 30 µm. The errors for individual U-Pb analyses are presented 

with 1σ error and uncertainties in grouped ages are quoted at 95 % level (2σ). The age 

calculations and plots were made using Isoplot (version 3.0) (Ludwig, 2001). Further 

detailed descriptions of the instrumentation and analytical procedure for the 

LA-ICP-MS zircon U-Pb and trace element technique are similar to those described 

by Yuan et al. (2004). Zircon Hf isotopic analysis was carried out using a Geolas-193 

laser-ablation microprobe, attached to a Neptune multi-collector ICP-MS at the IGG 

CAS. All of the settings yielded a signal intensity of ~10 Vat 
180

Hf for the standard 

zircon 91500 with a recommended 
176

Hf/
177

Hf ratio of 0.282293 ± 28 (Wu et al., 

2006). Data were normalized to 
176

Hf/
177

Hf=0.7325, using exponential correction for 

mass bias. The mean βYb value was applied for the isobaric interference correction of 

176
Yb on 

176
Hf in the same spot. The ratio of 

176
Yb/

172
Yb (0.5887) was also applied for 

the Yb correction. 

Whole rock samples for geochemistry were crushed to 200-mesh using an agate 

mill for elemental and Sr-Nd isotopic analyses. The major oxides were analyzed by a 

wavelength X-ray fluorescence spectrometry at the State Key Laboratory of Isotope 

Geochemistry, Guangzhou Institute of Geochemistry (GIG), Chinese Academy of 

Sciences (CAS). Trace element analyses were performed at the GIG CAS by a 

Perkin-Elmer Sciex ELAN 6000 ICP-MS. Detailed sample preparation and analytical 
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procedure followed Li et al. (2002). Sr, Nd isotopic analyses were carried out at the 

GIG CAS on a Neptune Plus (Thermo Fisher Scientific, MA, USA) multi-collection 

mass spectrometry equipped with nine Faraday cup collectors and eight ion counters. 

Details analytical methods are presented by Yang et al. (2006). Normalizing factors 

used to correct the mass fractionation of Sr and Nd during the measurements were 

86
Sr/

88
Sr = 0.1194 and 

146
Nd/

144
Nd = 0.7219 (Yang et al., 2005, 2007). 

4. Zircon U-Pb and Lu-Hf systematics 

Four representative samples, two biotite monzogranites from the Xin’anzhai 

pluton (HH-43A and HH-45B) and two leucogranites from the Tongtiange pluton 

(ML-34A and ML-34G) were collected for zircon isotopic analysis (Supplementary 

Data Table 1). Zircon grains for in-situ U-Pb and Lu-Hf isotopic analyses were mostly 

euhedral, transparent to colorless, and stubby to elongate in shape with the lengths of 

100-200 μm and widths of 40-90 μm (Figs. 2a and b). Backscatter electron (BSE) and 

CL images of all grains display well-preserved euhedral growth zones, with 

unperturbed oscillatory zoning, typical of igneous zircon (e.g., Hanchar and Miller, 

1993). 

4.1. Zircon U-Pb geochronology 

Zircon U-Pb dating results are listed in the Supplementary Data Table 1 and 

presented on concordia plots in Figs. 2c-f. U and Th concentrations for all analyzed 

grains range from 87 to 1225 ppm and 508 to 5528 ppm, respectively, with Th/U 

ratios of 0.10 to 0.69, consistent with an igneous origin. The 
206

Pb/
238

U weighted 

mean ages were used to determine crystallization ages. 
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Xin’anzhai pluton: The majority of analyzed 22 grains from sample HH-43A 

have 
206

Pb/
238

U apparent ages ranging from 259.0 ± 6.6 Ma to 246.2 ± 6.8 Ma and 

form a coherent group with a weighted mean age of 251.9 ± 1.4 Ma (MSWD = 0.84, 

Fig. 2c). Spots HH-43A-6, -10 and -20 give 
206

Pb/
238

U apparent ages of 825.7 ± 20.5 

Ma, 634.8 ± 16.5 Ma and 496.9 ± 12.7 Ma, respectively, representative of inherited 

grains. For sample HH-45B, twenty-two of 25 analyses yield 
206

Pb/
238

U apparent ages 

between 258.3 ± 6.9 Ma and 246.8 ± 7.8 Ma and give a weighted mean age of 251.2 ± 

1.4 Ma (MSWD = 0.90, Fig. 2e). Three analyses on 3 spots yield 
206

Pb/
238

U ages of 

454.1 ± 11.6 Ma (HH-45B-11), 746.4 ± 18.9 Ma (HH-45B-13) and 384.7 ± 10.0 Ma 

(HH-45B-17), interpreted as the result of inheritance. Combining the 44 zircon 

analyses of the two samples, it is given for a 
206

Pb/
238

U mean age of 251.6 ± 2.0 Ma 

(MSWD = 0.21), which is taken as the crystallization age of the Xin’anzhai pluton. 

Tongtiange pluton: For sample ML-34A, 22 analyses form a coherent group 

yielding a 
206

Pb/
238

U weighted mean age of 247.3 ± 3.1 Ma (MSWD = 0.20, Fig. 2d). 

Six grains give Proterozoic (1297-799 Ma) and Cambrian (537-501 Ma) ages that are 

interpreted as representative of the inherited material. Fourteen of 23 grains from 

ML-34G form a cluster with the weighted mean age of 247.7 ± 3.0 Ma (MSWD = 

0.37, Fig. 2f), representing the crystallization age of the Tongtiange pluton. Another 

seven grains give older 
206

Pb/
238

U apparent ages ranging from 838 Ma to 412 Ma, 

inferred to represent inherited material. The 36 zircon analyses for the two samples 

give a weighted mean 
206

Pb/
238

U age of 247.5 ± 2.2 Ma (MSWD=0.26), which is 

taken as the crystallization age of the Tongtiange pluton. 
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4.2. Zircon in-situ Lu-Hf isotopes 

Zircon Lu-Hf isotopic results for the dated samples are listed in Supplementary 

Data Table 1 and shown on Fig. 3. Initial Hf isotopic ratios are recalculated to the 

crystallization ages, using the 
176

Lu-
176

Hf decay constant reported by Soderlund et al. 

(2004). 
176

Lu/
177

Hf ratios of most zircons are less than 0.003 (Supplementary Data 

Table 1), indicating a low radiogenic growth of 
176

Hf. Two-stage model ages (TDM2) 

are calculated for the source rock of magma by assuming a mean 
176

Lu/
177

Hf value of 

0.015 for the average continental crust (Griffin et al., 2002).  

Xin’anzhai pluton: Three inherited zircons from HH-43A have εHf(t) values 

+4.3, -4.8 and -9.3. Twenty-two grains used to constrain the crystallization age of the 

pluton exhibit uniform Hf isotopic ratios, with εHf(t) values ranging from -9.8 to -6.2. 

The corresponding TDM2 ages are in the range of 1.90-1.67 Ga. For HH-45B, the 

twenty-two grains with the crystallization age show εHf(t) values ranging from -11.1 

to -3.1 and TDM2 ages from 2.0 Ga to 1.47 Ga. The other three inherited zircons from 

this sample show εHf(t) values -8.5, -6.7 and +2.3, respectively. 

Tongtiange pluton: Grains with early Triassic crystallization ages from the 

pluton have negative εHf(t) values ranging from -16.6 to -3.2 for sample ML-34A and 

-11.9 to -3.4 for ML-34G and the corresponding TDM2 ages are in the range of 

2.32-1.48 Ga and 2.03-1.49 Ga, respectively. 

5. Whole-rock geochemical results 

The whole-rock major oxides and trace elemental data for the analyzed samples 

are listed in Table 2. Samples from the Xin’anzhai pluton exhibit low SiO2, high MgO, 
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Na2O and CaO contents (Fig. 4) and are weakly peraluminous, with A/CNK [molar 

Al2O3/(CaO+Na2O+K2O)] ranging from 1.03 to 1.12. CIPW-normative calculations 

show 27-30 vol. % quartz, 21-29 vol. % orthoclase, 25-28 vol. % albite, 6-14 vol. % 

anorthite and 0.9-2.0 vol. % corundum. These signatures suggest a transition from 

S-type to I-type granite (Chappell, 1999). On Harker variation diagrams, SiO2 

correlates negatively with Al2O3, MgO, CaO, FeOt and TiO2 (Figs. 4c-f and h) and a 

similar correlation is also shown by Sr, Ba, Eu, Zr and La (Figs. 5a-d and f). 

Samples from the Tongtiange pluton have a modal composition containing 43-56 

vol. % quartz, 20-34 vol. % orthoclase, 9-18 vol. % albite, and 0-0.5 vol. % anorthite. 

They display high A/CNK values ranging from 1.29 to 1.87 (Fig. 4a). In comparisons 

with those of the Xin’anzhai pluton, the Tongtiange samples exhibit lower FeOt, Na2O, 

TiO2 and P2O5 but higher K2O contents (Fig. 4). Corundum content is more than 1.0 

vol. %. These features are consistent with S-type granites (Clemens, 2003). On Harker 

variation diagrams, most major element oxides and trace elements do not display any 

significant correlations with SiO2 (Figs. 4 and 5). 

Samples from the Xin’anzhai and Tongtiange plutons show similar chondrite- 

normalized REE patterns (Fig. 6a) in spite of the distinct total REE contents, with 

LREE enrichment and moderate LREE/HREE fractionation. The Xin’anzhai 

monzogranites have total REE contents of 124-211 ppm with (La/Yb)n=5.90-12.73, 

(Gd/Yb)n=1.49-1.95 and Eu/Eu*=0.47-0.63. The Tongtiange leucogranites have lower 

total REE contents (45-112 ppm) and more significant negative Eu anomalies (Eu/Eu* 

=0.16-0.45). Their (La/Yb)n ratios range from 2.96 to 10.27 and (Gd/Yb)n from 0.90 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

to 1.89. On the multi-elemental primitive mantle-normalized spider diagram (Fig. 6b), 

these samples are characterized by strong depletions in Ba, Nb-Ta, Sr and Ti and 

enrichment in Th and U.  

The initial isotopic ratios of the analyzed samples were recalculated to their 

crystallization age of 250 Ma. The Xin’anzhai monzogranites are characterized by 

initial 
87

Sr/
86

Sr ratios of 0.71493 to 0.71603 and εNd(t) values of -8.5 to -8.8 (Fig. 7). 

The Tongtiange granites have high 
87

Rb/
86

Sr ratios (14.25 to 29.43) and the 

Rb-error-induced uncertainties in initial Sr isotopic errors are significant (Jahn et al., 

2000). The Tongtiange granites, relative to the Xin’anzhai monzogranites, display 

more enriched Nd isotopic compositions with εNd(t) values of -10.6 to -11.4 (Fig. 7b). 

6. Discussion 

6.1. Petrogenesis 

The Tongtiange and Xin’anzhai plutons show contrasting geochemical 

signatures, indicative of distinct magma evolution or petrogenesis. Samples from the 

Tongtiange pluton display random variations of major element oxides and trace 

elements (Figs. 4a-f and 5), indicating that crystal fractionation played an 

insignificant role during magma evolution. Pronouncedly negative Ba, Eu and Sr and 

positive Rb anomalies suggest the presence of residual plagioclase and K-feldspar in 

the source region (Figs. 6a-b; Rapp et al., 2003). The strongly negative correlation 

between Rb/Sr and Ba (Fig. 9) is consistent with dehydration melting of 

mica-bearing metasedimentary rocks with alkali feldspar as a residual phase (Harris 

and Inger, 1992; Zhang et al., 2004), resembling to that of the High Himalayan 
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leucogranites (Zhang et al., 2004; Streule et al., 2010). The Tongtiange samples are 

strongly peraluminous granites, suggesting an origination of (1) aluminous-rich 

meta-sedimentary rocks, (2) amphibolites under H2O-rich conditions (Ellis and 

Thompson, 1986), or (3) fractionation of aluminous-poor magma (Zen, 1986). 

However, the products from either case (2) or (3) are usually characterized by Na- 

and Sr-enrichment (Ellis and Thompson, 1986; Zen, 1986), which contrasts to the 

results from the Tongtiange S-type granites (Figs. 4g and 5a). These S-type granites 

have the highest SiO2 and lowest FeOt, CaO, MgO and TiO2 contents among the 

reported igneous rocks along the Ailaoshan shear zone, indicating that they are 

unlikely to be derived by mixing between mantle-derived mafic and crust-derived 

felsic magmas. Thus, it is most likely that these granites originated from a 

meta-sedimentary source. This is further supported by the following observations. (1) 

The Tongtiange samples fall into the fields of partial melt of metapelites and 

metagrewackes (Figs. 8a-f). (2) They show lower Ce/Pb and Nb/U ratios than upper 

continental crust (Figs. 8g-h). (3) The samples have significant negative Sr and Ti 

anomalies, and negative εNd(t) values (-11.4 to -10.6), and are geochemically similar 

to mid-Tertiary granites in the South Colorado Minerla Belt that are interpreted as 

the anatexic product of the metasedimentary source (Anthony, 2005). (4) The 

presence of the Proterozoic inherited zircons and the Proterozoic zircon Hf model 

ages (TDM2 = 2.32-1.48 Ga), similar to the Ailaoshan Proterozoic gneisses with Nd 

model ages of 1.84-1.65 Ga, indicate the potential source for the Tongtiange S-type 

granites. In summary, the Tongtiangge granites are product of the dehydration 
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melting of mica-rich meta-sedimentary rocks. 

The linear trends of major oxides and trace elements for the Xin’anzhai granitic 

samples (Figs. 4 and 5) suggest that crystal fractionation played an important role in 

magma evolution. The decreases of Al2O3, CaO, FeOt and MgO with increasing SiO2 

illustrate the importance of fractional crystallization of plagioclase, K-feldspar and 

biotite. The distinctly negative Sr, Ba and Eu anomalies (Fig. 6) and the decreases of 

Sr, Ba and Eu with increasing SiO2 (Figs. 5a-c) are consistent with the removal of 

plagioclase and K-feldspar during magma evolution. Fractionation of Ti-Fe oxides is 

indicated by strongly negative Ti anomalies (Fig. 6a) and the decreases of TiO2 and 

FeOt (Figs. 4g and 4h) with increasing SiO2. The Xin’anzhai granites are mildly 

peraluminous with a narrow range of A/CNK from 1.03 to 1.12 and have higher Na 

and Sr contents in comparison with the Tongtiange S-type granites (Figs. 4a, 4g and 

5a). The Xin’anzhai granites exhibit low Rb/Sr and Al2O3/TiO2 ratios but high Sr/Ba 

and CaO/Na2O ratios, indicating a mixed source of meta-sedimentary with 

meta-igneous rocks (Figs. 8a and c; e.g., Chappell and White, 1992; Jung et al., 2003). 

Other evidence for a two-component mixing origin for the Xin’anzhai granites include: 

(1) MgO + FeO + TiO2 decrease with increasing SiO2 (Fig. 4b); (2) the Xin’anzhai 

samples fall in the overlapping field of partial melts of greywackes and amphibolites 

(Figs. 8b-f); and (3) mafic enclaves in the pluton (Yunnan BGMR, 1990) may be 

representative of the mafic end-member component. Experimental studies have 

demonstrated that partial melting of basaltic rocks can produce intermediate to silicic 

melts leaving a granulite residue at 8-12 kbar or an eclogite residue at 12-32 kbar 
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(Rapp and Watson, 1995; Chen and Arakawa, 2005). A number of factors suggest that 

the formation age of the mafic source was considerably older than the timing of 

granite emplacement. These factors include that: (1) the Xin’anzhai granites have 

lower Ce/Pb and Nb/U ratios than the upper continental crust (Figs. 8g-h); (2) zircon 

εHf(t) isotopic compositions are characterized by the negative values (-11.1 to -3.1) 

and Proterozoic (2.0-1.5 Ga) Hf model ages. Consequently, the formation of the 

Xin’anzhai granite is attributed to melting of an ancient source consisting of 

interlayered meta-basaltic and meta-sedimentary rocks. Such a lithologic assemblage 

can be commonly observed within the Ailaoshan shear zone (Yunnan BGMR, 1990). 

Mixing calculations show that the primary source of the Xin’anzhai granites is 

probably constituted by the addition of 35-45 % Proterozoic amphibolites with 

Proterozoic pelitic gneisses (Fig. 7a). 

Experimental data has demonstrated that biotite, muscovite and feldspar in 

paragneiss will breakdown when the temperature is higher than 800-850℃ 

(Thompson and Connolly, 1995), but dehydration melting of amphibolites requires 

much higher temperatures (>1000℃, Rapp and Watson, 1995). Numerical modeling 

by Ellis and Thompson (1986) and Wang et al. (2007) reveals that widespread 

anatexis occur at mid- or lower crustal levels when the crust is tectonically thickened 

1.5 to 2 times. Furthermore, a 50 % increase of heat production in the tectonically 

thickened crust could raise the temperature at its base by 150-200°C. Indosinian 

pelitic granulite in the Ailaoshan suture zone showed the peak metamorphic 

temperature of 850-919°C (Qi et al., 2012). Thus, the thermal budget provided by 
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radioactive decay and crustal thickening would be sufficient to achieve the 

high-grade metamorphic conditions and to induce partial melting of the 

Neoproterozoic gneisses at middle or lower crustal depths. However, such conditions 

are insufficient to trigger the partial melting of the Neoproterozoic amphibolites at 

lower crust levels without additional heat input from the mantle processes.  

6.2. Record of Indosinian Orogenesis along the Ailaoshan zone and environs 

The concept of the Indosinian Orogeny was originally established on the basis of 

the unconformity between Upper Triassic red-beds and deformed Middle Triassic and 

older metamorphic rocks in northern Vietnam (e.g. Deprat, 1914; Lepvrier et al., 

2008). Early Indosinian age data have, until recently, been relatively limited in the 

vicinity of the Ailaoshan suture zone with the exception of the Lvchun rhyolite (247.3 

± 1.8 Ma) of the Gaoshanzhai Formation (Liu et al., 2011), which constitutes part of 

the post-unconformity Indosinian cover succession. Our data show that the Xin’anzhai 

pluton has a zircon U-Pb age of 251.6 ± 2.0 Ma and that the Tongtiange pluton is 

dated at 247.5 ± 2.2 Ma. These ages are consistent with field relations that the plutons 

intrude Silurian strata and that the Xin'anzhai pluton is unconformably overlain by the 

Gaoshangzhai Formation (YunnanBGMR, 1990).  

A compilation of age-data shows that early Indosinian magmatic activity is 

widespread in the vicinity of the Jinshajiang, Song Ma and Hainan zones (Fig. 10). In 

general, the igneous rocks with the crystallization age of >247 Ma are mainly 

composed of diorite, granodiorite and monogranite and exhibit similar geochemical 

signatures to the Xin’anzhai granites. These bodies include the Baimaxueshan pluton 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT

(254-248 Ma) along the Jinshajiang suture zone (Zi et al., 2012a), the Muong Lay 

(248 Ma) and Phia Bioc (245-248 Ma) plutons of the Song Ma zone (Liu et al., 2012; 

Roger et al., 2012), and the Xinqing, Nankun, Beida and Ledong plutons on Hainan 

island, which give zircon U-Pb ages in the range ~257-253 Ma (Zhang et al. 2012; 

Wen, 2013). In contrast younger igneous activities (<247 Ma) along the suture zones, 

e.g., high-Si rhyolites in the Renzhixueshan (247 Ma, Wang et al., 2011), Pantiange 

(247-246 Ma, Zi et al., 2012c) and Gaoshanzhai (247 Ma, Liu et al., 2011) Formations 

and the Pingzhang granite (244 Ma, Lai et al., in press), geochemically resemble the 

high silica, peraluminous Tongtiange granites. Late Indosinian granitoid plutons were 

also found along these zones. For example in the Hainan and Song Ma zone, the Dien 

Bien granodiorite and monzonite, the Panyang and Xinlong syenogranites were dated 

at 229-202 Ma and ~234 Ma, respectively (Liu et al., 2012; Tang et al., 2013a; Wen, 

2013). The Ludian, Jiaren, Gongka and Yangla granodiorite and monzogranite plutons 

in the Jinshajiang zone yield U-Pb ages of 234-214 Ma with their main rocks types of 

granodiorites and monzogranites (Gao et al., 2010; Zhu et al., 2011; Zi et al., 2013). 

The rhyolite and rhyodacite in the upper units of the Cuiyibi Formation were dated at 

242-239 Ma (Zi et al., 2012c). Furthermore, the extrusive components of this 

magmatic activity are unconformable on older deformed units and thus tightly 

constrain the tectonothermal activity to the Early Triassic at ~247 Ma (Fig. 10).  

Data of the metamorphic rocks from either within the suture zone or the 

adjoining Yangtze and Simao-Indochina Blocks also suggest orogenesis occurring 

during earliest Triassic period. The syn-kinematic hornblende, biotite and muscovite 
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along a series of northwest to west-northwest trending dextral strike-slip and 

transpression shear zones in the vicinity of Ailaoshan, Hainan and North Vietnam 

yield 
40

Ar/
39

Ar plateau ages ranging from 250 to 240 Ma (Fig. 10, e.g., Lepvrier et al., 

1997; Lepvrier et al., 2004; Zhang et al., 2011). Metamorphic zircons in high-grade 

rocks in northern Vietnam give the ages of 250-245 Ma (e.g., Carter et al., 2001; Nam 

et al., 2001; Roger et al., 2007). A monazite U-Pb age of 243 ± 4 Ma is given by an 

eclogite in the Song Ma zone (Nakano et al., 2010), suggesting a significant crustal 

thickening during the Triassic. Similarly, it is discovered for the high-pressure pelitic 

granulite along the Ailaoshan suture zone being correlated with the high-grade 

metamorphic rocks along Song Ma zone (Qi et al., 2012).  

6.3. Tectonic implication 

Figure 11 presents a compilation of Paleozoic to early Mesozoic age data for 

igneous rock units entrained along the Jinshajiang-Ailaoshan-Song Ma-Hainan suture 

zone. In combination with the geological and geochemical data for the nature of the 

rock associations, three phases of igneous activity can be recognized: 1) an early 

phase at ~390-305 Ma, which is marked by ophiolitic rock units that have been 

considered to indicate a back-arc basin or ocean setting (e.g., Wang et al., 2000; 

Zhong, 2000; Jian et al., 2009b; Lai et al. in press); 2) mafic to felsic magmatism 

extending from 305 to 248 Ma that have formed in a supra-subduction zone (e.g., 

Peng et al., 2008; Jian et al., 2009b; Fan et al., 2010; Liu et al., 2011; Li et al., 2012; 

Liu et al., 2012; Zi et al., 2012a, 2012b); and 3) post-247 Ma high-silica peraluminous 

igneous rocks that mark the onset of the Indosinian Orogeny (Liu et al., 2011; Wang 
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et al., 2011; Zi et al., 2012c, 2013).  

Ages of the end Carboniferous to earliest Mesozoic supra-subduction zone 

activity (305-248 Ma) can be internally divided into three pulses at approximately 

~305-280 Ma, 270-265 Ma and 255-248 Ma (Fig. 11). The third pulse includes the 

Xin’anzhai pluton. The petrographical and geochemical characteristics of the pluton 

are similar to the Baimaxueshan I-type pluton that constitutes part of the 

volcano-plutonic arc created by westward-directed subduction (e.g., Zi et al., 2012a). 

In addition, the 249 Ma Maoheshan basalts in the Ailaoshan suture zone are 

considered to be derived from a mantle wedge source in an arc setting (Liu et al., 

2011). Thus, the Xin’anzhai pluton is considered to be a latest Permian expression of 

arc magmatism in SW Yunnan. Furthermore, the underplating of asthenospheric 

mantle associated with the supra-subduction zone setting provides a likely heat source 

for the melting of the Neoproterozoic amphibolites and interlayered meta-sedimentary 

rocks to generate the magma of the Xin’anzhai pluton. 

Our data show that the Tongtiange leucogranite formed at ~247 Ma, slightly 

younger than that of the Xin’anzhai granite. The pluton is geochemically similar to 

the time-equivalent high-Si rhyolite of the Gaoshanzhai, Renzhixueshan and 

Pantiange Formations that are interpreted as the product of syncollisional melting 

during assembly of the Yangtze and Simao-Indochina blocks (e.g., Liu et al., 2011; 

Wang et al., 2011; Zi et al., 2012c). Indosinian pelitic granulites in the Ailaoshan 

suture zone reveal the temperature of peak metamorphism up to 850-919°C (Qi et al., 

2012). Such temperature corresponds to the breakdown temperature of biotite, 
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muscovite and feldspar in gneiss (Thompson and Connolly, 1995). Such conditions of 

the temperature in the syncollisional setting in response to the assembly of the 

Yangtze and Simao-Indochina blocks could result into the dehydration melting of 

mica-rich meta-sedimentary source to produce the Tongtiange leucogranite magma. 

In summary, convergent margin magmatism was preserved along the Jinshajiang- 

Ailaoshan-Song Ma-Hainan suture zone and terminated at around 247 Ma, which is 

represented in the study area by the 252 Ma Xin’anzhai pluton. Termination of 

convergent plate activity was immediately followed by regional compressive 

deformation and high-grade metamorphism. The compression regime marks the 

commencement of the Indosinian Orogeny associated with assembly of the Yangtze 

and Simao-Indochina blocks and resulted in the generation of the ~247 Ma 

Tongtiange S-type leucogranite. 
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Figure captions 

Fig. 1 (a) Tectonic outline of Southeast Asia (after Wang et al., 2010). The Jinshajiang Suture, 

Ailaoshan Suture, Song Ma Suture and Hainan Suture are considered to be contiguous and mark 

the boundaries between the Simao-Indochina Block and the South China Craton. (b) Geological 

map showing the stratigraphic and igneous components of the Ailaoshan area (after Yunnan 

BGMR, 1990). 

Fig. 2 (a-b) Cathodoluminescence (CL) images of representative zircon grains. Red circles on CL 

images mark analytical site on each grain and number in circle denotes spots number. (c-f) 

LA-ICP-MS zircon U-Pb concordia diagrams for the Xin’anzhai monzogranites (c and e) and 

Tongtiange leucogranites (d and f). 

Fig. 3 Zircon εHf(t) versus the emplacement ages of the Xin’anzhai and Tongtiange plutons in the 

Ailaoshan suture zone. The evolutionary line of depleted mantle is drawn after Zi et al. (2012a). 

The lines of crustal extraction are calculated by assuming the 
176

Lu/
177

Hf ratio of 0.015 for the 

average continental crust after Griffin et al. (2002). 

Fig. 4 (a) A/CNK versus A/NK; (b) SiO2 versus MgO+FeOt+TiO2; (c-j) Harker diagrams for for 

the Xin’anzhai monzogranites and Tongtiange leucogranites in the Ailaoshan suture zone. 

Symbols are the same as in Fig. 3. 

Fig. 5 SiO2 versus Sr (a), Ba (b), Eu (c), Zr (d), Nb (e) and La (f) for the Xin’anzhai 

monzogranites and Tongtiange leucogranites in the Ailaoshan suture zone. Symbols are the same 

as in Fig. 3. 

Fig. 6 (a) Chondrite normalized REE patterns and (b) primitive mantle normalized incompatible 

elemental spidergrams for the Xin’anzhai monzogranites and Tongtiange leucogranites in the 
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Ailaoshan suture zone. Normalized values for primitive mantle and chondrite are from Sun and 

McDonough (1989).  

Fig. 7 (a) 
87

Sr/
86

Sr(t) versus εNd (t) for the Xin’anzhai pluton in the Ailaoshan suture zone. The 

number marked on the mixing curves notes mass fractions (%) of the mafic component in the 

mixed source. Sr (ppm), Nd (ppm),
 87

Sr/
86

Sr(i) and εNd(t) for the end-members used in mixing 

calculation are 229.4, 23.6, 0.708581 and -0.27 for the Proterozoic amphibolite (authors' 

unpublished data), 141.9, 33.2, 0.723649 and -13.17 for Proterozoic gneiss (authors' unpublished 

data) and 350.0, 13.0, 0.704988 and 4.50 for the volcanic arc basalts (Fan et al., 2010), 

respectively. (b) Zr/Hf versus εNd (t) for the Xin’anzhai monzogranites and Tongtiange 

leucogranites in the Ailaoshan suture zone. t=250 Ma. Symbols are the same as in Fig. 4. 

Fig.8 (a) Rb/Ba versus Rb/Sr; (b) CaO/(MgO+FeOt+TiO2) versus CaO+MgO+FeOt+TiO2; (c) 

CaO/Na2O versus Al2O3/TiO2; (d) Al2O3/(FeOt+MgO+TiO2) versus Al2O3+FeOt+MgO+TiO2; (e) 

molar Al2O3/(MgO+FeOt) versus molar CaO/(MgO+FeOt); (f) (Na2O+K2O)/(FeOt+MgO+TiO2) 

versus Na2O+K2O+FeOt+MgO+TiO2. (g) Ce/Pb versus Ce (ppm); (h) Nb/U versus Nb (ppm). 

Fields in (a-f) are from Patiňo-Douce and Harris (1998), Sylvester (1998) and Patiňo-Douce 

(1999). Data for MORB and OIB are taken from Sun and McDonough (1989). Data for Upper 

Continental Crust (UCC) and Bulk Continental Crust (BCC) are from Taylor and McLennan (1985) 

and Rudnick and Fountain (1995), respectively. Symbols are the same as in Fig. 4. 

Fig. 9 Rb/Sr versus Ba for the Xin’anzhai and Tongtiange plutons in the Ailaoshan suture zone. 

Data for the Cambrian gneiss of the Northern Himalaya, North Himalayan granites and Himalayan 

leuogranites are from Inger and Harris (1993) and Zhang et al. (2004). The trends for dehydration 

muscovite and biotite melting and plagioclase fractional crystallization are from Inger and Harris 
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(1993), Zhang et al. (2004) and Streule et al. (2010). Symbols are the same as in Fig. 4. 

Fig. 10 Compilation of age data associated with Tethyan ocean closure and Indosinian collision 

along the Jinshajiang-Ailaoshan-Song Ma-Hainan suture zone. The numerical and stage time 

scales are those of Gradstein et al. (2004). The timing of the late-Triassic unconformity is after Zi 

et al. (2013). Numbers on data points refer to the following sources: 1 Carter et al. (2001), 2 

Lepvrier et al. (2004), 3 Lepvrier et al. (1997), 4 Zi et al. (2012a), 5 Liu et al. (2012), 6 Wen 

(2013), 7 Xie et al. (2006), 8 this study, 9 Liu et al. (2010), 10 Zi et al. (2012c), 11 Wang et al. 

(2011), 12 Zi et al. (2012c), 13 Searle et al. (2010), 14 Lin et al. (2012), 15 Nakano et al. (2010), 

16 Zhang et al. (2011), 17 Zhu et al. (2011), 18 Jian et al. (2003), 19 Zi et al. (2013), 20 Gao et al. 

(2010), 21 Yang et al. (2013), 22 Tang et al. (2013a), 23 Nakano et al. (2008), 24 Liu et al. (in 

press), 25 Lai et al. (in press). 

Fig. 11 Temporal distribution of magmatic activities in SW Yunnan and relations with major 

tectonic events during late Paleozoic and early Mesozoic. Numbers on data points refer to the 

following sources: 1 Jian et al. (2009b), 2 Zhong (2000), 3 Wang et al. (2000), 4 Fan et al. (2010), 

5 Zi et al. (2012b), 6 Li et al. (2012), 7 Liu et al. (2012), 8 Liu et al. (2011), 9 Zi et al. (2012a), 

10 Zi et al. (2012c), 11 Wang et al. (2011), 12 Liu et al. (in press), 13 Peng et al. (2008), 14 Zi et 

al. (2013), 15 this study, 16 Lai et al. (in press).
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Table captions 

Table 1 Summary of lithology, zircon U-Pb age and Hf-Nd isotopes of the representative samples 

from Xin’anzhai and Tongtiange plutons. 

Table 2 Major oxide (wt %), trace (ppm) element and Sr-Nd isotopic composition for the 

Tongtiange and Xin’anzhai granites in the Ailaoshan suture zone 
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Table 1 Summary of lithology, zircon U-Pb age and Hf-Nd isotopes of the representative samples 

from Xin’anzhai and Tongtiange plutons. 

Sample Pluton Rock type Location Age (Ma) ɛHf(t) ɛNd(t) SiO2 (wt %) A/CNK 

HH-43A 

Xin’anzhai Monzogranite 
N 22°42′28.6″ 

E102°53′59.5″ 

251.9 ± 1.4 -9.8 ~ -6.2 -8.8  68.80  1.05  

HH-43C    66.57  1.03  

HH-43D   -8.5  68.04  1.03  

HH-43E    69.27  1.04  

HH-43F    68.43  1.05  

HH-45A 

Xin’anzhai Monzogranite 
N 22°45′36.8″ 

E102°43′52.4″ 

251.2 ± 1.4 -11.1 ~ -3.1 -8.5  70.02  1.10  

HH-45B    69.92  1.09  

HH-45D   -8.8  69.98  1.12  

HH-45E    69.99  1.06  

ML-34A 

Tongtiange Leucogranite 
N 23°56′36.4″ 

E101°30′03.4″ 

247.3 ± 3.1 -16.6 ~ -3.2 -10.8  75.48  1.48  

ML-34B    79.55  1.55  

ML-34C    76.76  1.87  

ML-34D   -10.6  76.61  1.38  

ML-34E    76.99  1.32  

ML-34F    75.95  1.40  

ML-34G 

Tongtiange Leucogranite 
N 23°56′24.0″ 

E101°29′56.2″ 

247.7 ± 3.0 -11.9 ~ -3.4 -11.4  77.75  1.36  

ML-34H    76.92  1.51  

ML-34I    76.19  1.29  
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Table 2 Major oxide (wt. %), trace (ppm) element and Sr-Nd isotopic composition for the Tongtiange and Xin’anzhai granites in the Ailaoshan suture zone 

Sample 
Xin’anzhai granite Tongtiange granite 

HH -43A HH -43C HH -43D HH -43E HH -43F HH -45A HH -45B HH -45D HH -45E ML -34A ML -34B ML -34C ML -34D ML -34E ML -34F ML -34G ML -34H ML -34I 

SiO2 68.80 66.57 68.04 69.27 68.43 70.02 69.92 69.98 69.99 75.48 79.55 76.76 76.61 76.99 75.95 77.75 76.92 76.19 

TiO2 0.53 0.54 0.51 0.51 0.56 0.41 0.36 0.39 0.44 0.26 0.26 0.63 0.21 0.17 0.24 0.13 0.11 0.21 

Al2O3 15.15 16.40 15.56 15.02 15.11 15.09 14.82 15.01 14.89 12.88 10.64 11.65 12.27 12.53 13.05 11.82 12.69 12.26 

FeOt 3.39 3.51 3.27 3.23 3.65 2.65 2.35 2.68 2.87 2.15 1.91 2.72 1.73 1.16 1.62 1.49 1.31 1.54 

MnO 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03 0.01 0.00 0.01 0.01 0.01 0.01 0.01 0.01 

MgO 1.40 1.44 1.37 1.36 1.52 1.10 1.05 1.18 1.17 0.41 0.39 0.69 0.38 0.33 0.41 0.26 0.33 0.34 

CaO 2.81 3.06 2.82 2.81 2.91 2.06 1.43 1.80 2.50 0.17 0.14 0.09 0.10 0.26 0.23 0.12 0.11 0.09 

Na2O 3.05 3.39 3.17 3.09 3.15 3.21 3.48 3.11 3.39 1.59 1.07 1.46 1.90 2.11 1.99 1.70 1.40 1.95 

K2O 4.02 4.39 4.34 3.98 3.69 4.34 4.91 4.68 3.59 5.34 4.47 3.37 5.19 5.13 5.19 5.25 5.45 5.68 

P2O5 0.15 0.15 0.15 0.14 0.16 0.16 0.15 0.16 0.15 0.13 0.11 0.12 0.07 0.12 0.13 0.11 0.11 0.09 

L.O.I 0.75 0.62 0.80 0.64 0.87 1.01 1.60 1.05 1.07 1.48 1.23 2.08 1.12 1.17 1.17 1.26 1.48 1.23 

Total 100.08 100.11 100.09 100.09 100.09 100.10 100.12 100.10 100.12 99.93 99.78 99.58 99.59 99.98 99.98 99.90 99.94 99.58 

A/CNK 1.05 1.03 1.03 1.04 1.05 1.10 1.09 1.12 1.06 1.48 1.55 1.87 1.38 1.32 1.40 1.36 1.51 1.29 

Sc 8.08 8.42 7.38 7.58 8.81 8.14 7.56 8.15 8.89 4.53 3.13 8.20 4.67 4.39 5.52 2.98 3.85 3.87 

V 45.2 47.2 42.7 44.2 50.9 35.0 30.7 33.4 38.1 13.6 12.9 39.5 13.7 12.4 14.1 5.5 4.2 12.7 

Cr 113 8.52 18.3 24.8 28.9 7.49 1.58 9.79 7.39 9.30 13.9 27.0 10.9 11.8 8.43 2.63 6.88 10.1 

Co 8.65 7.50 7.51 6.91 8.37 5.92 5.03 5.04 6.11 1.83 1.87 1.58 1.62 0.99 1.76 0.89 1.03 0.93 

Ni 82.24 5.44 10.88 8.76 11.37 4.51 3.43 4.10 7.54 5.54 7.51 11.12 8.95 5.62 4.52  5.21 5.36 

Ga 17.3 18.2 16.7 16.2 17.8 16.3 15.8 16.3 16.8 15.9 15.0 13.6 13.6 15.2 16.6 13.5 13.1 13.2 

Rb 183 191 174 171 169 199 228 212 181 381 352 169 245 352 368 377 388 264 

Sr 144 156 144 141 148 144 133 129 152 35.3 28.1 68.0 46.3 36.8 40.8 34.5 35.6 49.9 

Y 31.0 28.8 27.0 30.1 39.0 22.4 22.3 21.5 26.2 32.7 34.0 28.8 35.9 25.1 42.8 22.3 23.0 21.4 
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Sample 
Xin’anzhai granite Tongtiange granite 

HH -43A HH -43C HH -43D HH -43E HH -43F HH -45A HH -45B HH -45D HH -45E ML -34A ML -34B ML -34C ML -34D ML -34E ML -34F ML -34G ML -34H ML -34I 

Zr 68.3 174 158 171 178 142 122 101 155 132 134 248 105 113 134 88.5 75.0 123 

Nb 12.8 13.2 11.7 12.3 13.9 11.9 11.7 11.8 12.1 11.4 10.5 13.2 6.91 9.76 10.3 8.70 8.36 5.25 

Cs 16.2 13.7 13.8 15.2 14.5 17.8 11.4 16.8 11.1 13.8 13.3 3.31 3.57 9.94 11.5 7.75 11.3 3.45 

Ba 421 389 555 411 434 376 383 387 290 161 141 476 287 140 172 105 159 281 

La 24.0 45.6 25.8 31.3 38.2 36.7 23.6 24.8 30.7 12.7 12.9 39.8 21.1 11.8 18.6 7.66 9.91 17.0 

Ce 49.7 89.5 51.2 61.9 74.8 71.1 50.9 50.1 61.2 26.5 29.1 78.7 42.4 26.5 38.3 16.7 19.2 33.3 

Pr 6.16 10.6 6.36 7.67 9.20 8.42 6.37 6.03 7.29 3.24 3.32 9.25 4.94 2.82 4.45 1.93 2.36 3.93 

Nd 23.5 38.4 24.2 28.4 34.4 30.6 25.0 22.8 27.3 11.6 12.1 33.3 16.7 9.61 15.9 7.08 8.57 14.1 

Sm 5.39 7.08 5.35 5.86 7.04 5.71 5.11 4.60 5.44 3.26 3.40 7.06 4.06 2.50 4.15 2.06 2.45 3.08 

Eu 1.17 1.14 1.08 1.05 1.06 0.935 0.876 0.820 0.849 0.307 0.243 0.869 0.504 0.222 0.389  0.134 0.436 

Gd 5.25 6.06 5.12 5.36 6.66 4.96 4.56 4.23 4.89 3.44 3.42 6.36 4.34 2.59 4.57 2.15 2.55 2.90 

Tb 0.949 0.918 0.840 0.911 1.10 0.831 0.789 0.724 0.854 0.810 0.788 1.05 0.907 0.572 1.00 0.470 0.637 0.540 

Dy 5.51 5.06 4.73 5.07 6.21 4.40 4.17 4.16 4.67 5.56 5.42 5.97 6.45 4.09 6.61 3.03 4.62 3.80 

Ho 1.12 0.970 0.928 1.00 1.25 0.846 0.820 0.816 0.946 1.05 1.06 1.03 1.31 0.750 1.23 0.560 0.850 0.770 

Er 2.90 2.45 2.45 2.57 3.29 2.23 2.16 2.24 2.53 3.16 3.32 3.07 3.99 2.28 3.63 1.53 2.46 2.52 

Tm 0.459 0.378 0.373 0.399 0.495 0.348 0.344 0.352 0.400 0.480 0.480 0.440 0.600 0.340 0.520 0.210 0.360 0.380 

Yb 2.92 2.57 2.52 2.71 3.31 2.34 2.30 2.35 2.70 3.03 3.13 2.78 3.69 2.14 3.16 1.27 2.11 2.50 

Lu 0.462 0.414 0.401 0.422 0.527 0.366 0.366 0.360 0.437 0.424 0.445 0.435 0.519 0.297 0.424 0.140 0.265 0.360 

Hf 1.93 4.29 4.01 4.21 4.47 4.02 3.56 3.12 4.66 4.29 4.39 6.97 3.71 3.55 3.97 2.29 3.21 3.94 

Ta 1.50 1.51 1.39 1.45 1.68 1.98 2.01 2.19 2.30 1.55 1.64 2.03 0.590 1.34 1.17 0.490 1.27 0.39 

Pb 38.4 40.0 38.5 39.4 35.5 37.8 31.7 34.1 33.9 26.6 21.3 19.0 18.4 38.0 14.9 46.0 19.9 3.71 

Th 12.9 24.2 14.6 17.3 19.6 19.0 15.1 14.8 17.6 15.4 18.4 24.9 19.7 14.0 16.6 9.3 15.3 14.4 

U 7.49 5.27 4.55 7.69 4.17 3.98 3.87 4.27 6.50 3.89 4.42 3.66 4.43 4.76 3.49 4.64 4.26 2.71 

TZr(℃) 755 835 827 836 839 822 808 793 829 835 841 910 811 816 835 796 785 823 
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Sample 
Xin’anzhai granite Tongtiange granite 

HH -43A HH -43C HH -43D HH -43E HH -43F HH -45A HH -45B HH -45D HH -45E ML -34A ML -34B ML -34C ML -34D ML -34E ML -34F ML -34G ML -34H ML -34I 

87Rb/86Sr 3.70  3.50   4.00  4.75  29.07   14.25   29.43   

147Sm/144Nd 0.138  0.134   0.113  0.122  0.170   0.147   0.176   

87Sr/86Sr 0.728081  0.727403   0.729864  0.732911           

2σ 0.000013  0.000011   0.000012  0.000013           

143Nd/144Nd 0.512093  0.512099   0.512065  0.512066  0.512038   0.512014   0.512020   

2σ 0.000006  0.000007   0.000006  0.000008  0.000026   0.000005   0.000013   

(87Sr/86Sr)i 0.714931  0.714949   0.715651  0.716027           

εNd(t) -8.78  -8.50   -8.51  -8.78  -10.84   -10.59   -11.38   

TDM(Ga) 2.14  2.00   1.64  1.80  3.82   2.59   4.50   

LOI: Loss ion ignition. Chondrite uniform reservoir values, 147Sm/144Nd=0.1967 and 143Nd/144Nd=0.512638, are used for the calculation. εNd(t) is calculated by assuming 250 Ma for these 

samples. 
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Highlights 

► The granitic plutons in the Ailaoshan zone yield zircon U-Pb ages of 247-252 Ma.  

► Indosinian magmatism were confirmed along the Ailaoshan zone 

► The accretion of Indochina with South China Blocks occurred at ~247 Ma 

 

 


