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Restricting mutualistic partners to enforce trade
reliance
Gregory A.K. Wyatt1, E. Toby Kiers2, Andy Gardner3 & Stuart A. West1,4

Mutualisms are cooperative interactions between members of different species, often

involving the trade of resources. Here, we suggest that otherwise-cooperative mutualists

might be able to gain a benefit from actively restricting their partners’ ability to obtain

resources directly, hampering the ability of the restricted partner to survive and/or reproduce

without the help of the restricting mutualist. We show that (i) restriction can be favoured

when it makes the resources of the restricting individual more valuable to their partner, and

thus allows them to receive more favourable terms of trade; (ii) restriction maintains

cooperation in conditions where cooperative behaviour would otherwise collapse; and (iii)

restriction can lead to either an increase or decrease in a restricted individual’s fitness. We

discuss the applicability of this scenario to mutualisms such as those between plants and

mycorrhizal fungi. These results identify a novel conflict in mutualisms as well as several

public goods dilemmas, but also demonstrate how conflict can help maintain cooperation.
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M
utualistic interactions are central to the survival and/or
reproduction of most species. They provide essential
ecosystem services such as pollination and seed

dispersal, as well as constituting critical components of global
carbon and nutrient cycles1,2. Mutualistic cooperation usually
involves the different species trading either services or resources.
For example: mycorrhizal fungi supply their host plants with
phosphorous and other nutrients in exchange for host carbon;
ants defend trees in exchange for food and housing; and flowering
plants provide insects and birds with food in exchange for
pollination services3–5.

Although these mutualisms are based on cooperative trade,
there is an underlying tension because each partner is favoured to
maximize its benefit from the interaction, leading to conflict and
the potential for exploitation. In the extreme, non-cooperative
cheats, who gain benefits from the cooperation of others without
paying the cost of cooperation themselves, can even lead to the
collapse of mutualisms6. At first glance, it seems unlikely that
conflict could ever lead to increased cooperation in mutualisms.
One possible way that this could happen is if mutualists could be
favoured to restrict the resource acquisition pathways of
their partners, in a way that made their partners more reliant
on their mutualist to supply resources. In this case, conflict over
the source of acquired resources could favour increased
cooperation. However, the theoretical plausibility of this
hypothesis remains unclear, as an actively restricting
partner would incur costs, which could outweigh any benefits
of increased trade.

We assess the theoretical feasibility of this hypothesis by
modelling the interaction between two species. Our aim is to
examine whether and why individuals would be favoured to
restrict the resource acquisition ability of their mutualistic
partners. Although we examine a relatively general model, we
phrase it in terms of the interaction between plants and
mycorrhizal fungi to provide biological grounding. We consider
a costly trait that enables mycorrhizal fungi to restrict (decrease)
the ability of their plant partners to directly take up phosphorus
from the soil7. We first examine whether such a trait can be an
evolutionarily stable strategy in mycorrhizal fungi. We then
examine the consequences of restriction, for both the stability of
the mutualism and the fitness of their restricted plant partners.

We found that mutualists can be selected to actively restrict
their partners’ ability to directly obtain resources. This prediction
arises because restriction increases the partner’s comparative
advantage when engaging in the mutualism, and therefore
improves the restricting individuals’ terms of trade. We further
found that this restriction of a partner’s ability to directly obtain
resources may maintain cooperation in conditions where
cooperative behaviour would otherwise collapse, by enforcing
reliance upon mutualistic partners. The combined effect of
restriction and the maintenance of cooperation can lead to either
an increase or a decrease in the restricted individual’s fitness.
These results emphasize how mutualists will continue to be
favoured to maximize their own fitness, even at a cost to their
partner.

Results
Co-evolution of specialization and trade. We consider the
co-evolution of strategies in both mycorrhizal fungi and plants.
We assume that each plant has nf fungal social partners, that each
fungus has np plant social partners and that all individuals in a
species are identical except for strategy. Both mycorrhizal fungi
and plants require phosphorus and carbon for growth. We define
an individual mycorrhizal fungus as a unit with high cooperation
and low conflict, such that natural selection acts to maximize its

inclusive fitness8,9. Most often, this will be the network that arises
from a single fungal spore, as this network will likely be
essentially clonal10,11. Each individual fungus has an initial supply
of one unit of carbon and acquires a quantity Pf of phosphorus
from the soil. The mycorrhizal fungus may restrict its plant
partners, reducing the plants’ phosphorus uptake. A fungus
investing an amount r into this restriction incurs a fitness cost,
which reduces the fungus’s fitness to a fraction 1� r of what it
would be in the absence of restriction. We assume that plants face
a linear trade-off between the acquisition of carbon and
phosphorus. That is, a plant that invests a proportion x of its
acquisition effort into carbon acquisition obtains an amount xCp

of carbon and 1� xð Þ 1��rð ÞePp of phosphorus. Cp and Pp are the
maximum availabilities of carbon and phosphorus, respectively,
�r is the average restriction strategy of its fungal partners
(phosphorus acquired diminishes as restriction increases), and
the exponent e40 modulates the cost effectiveness of the
restricting trait (this form means that the cost effectiveness e
has no effect when restriction is zero, as we would expect).

Fungi can only benefit from restriction through changes that
the restriction causes in plant strategies. These changes must be
immediate, otherwise restriction would always have a fitness cost
to fungi when it first emerges12. Therefore, studying the evolution
of restriction requires a model that takes into account phenotypic
plasticity in plants, rather than just assuming a genetically fixed
strategy (reviewed by McNamara13). A model that also
incorporates the possibility for phenotypic plasticity in
mycorrhizal fungi would add further biological realism but is
technically challenging, because plants and fungi would respond
to each other’s responses in a potentially infinite feedback loop.
Therefore, we assume that fungal strategy is fixed over the course
of the interaction, and hence its dynamics are over evolutionary
timescales, but the plant’s allocation to trade and resource
acquisition is dynamic over behavioural timescales, and it is the
strategy underlying how it trades in response to partner
cooperation that evolves.

Plants transfer a proportion qp of their carbon to mycorrhizal
fungi, while mycorrhizal fungi transfer a proportion qf of their
phosphorus to plants. We assume that plants and mycorrhizal
fungi can discriminate among trading partners, as has been
empirically demonstrated in this and other mutualisms14–17. We
further assume that all individuals use a ‘linear proportional
discrimination’ rule to divide resources among their partners,
which means rewarding better trading partners by transferring
more resources in proportion to the ratio in which they are
received. For example, if a plant receives two-thirds of the benefits
it acquires through trade from one mycorrhizal fungus and
one-third from another, it sends two-thirds of the total carbon it
allocates for trade to the former and one-third to the latter.
Wyatt et al.18 have shown previously that linear proportional
discrimination can be an evolutionarily stable strategy (ESS19,20)
in trading mutualisms with the characteristics presented in this
model.

We assume fitness functions wp¼Ctp
aPtp

1� a for plants and
wf¼Ctf

bPtf
1� b(1� r) for mycorrhizal fungi, where Ctp, Ptp, Ctf

and Ptf are the total amounts of carbon and phosphorus acquired
(after trade), and where 0oao1 and 0obo1 mediate the effects
of carbon and phosphorus on fitness. These functions simplify
our analysis by supposing that the effects of kin selection and
local competition cancel21. In the Methods, we give explicit
expressions for the total amounts of carbon and phosphorus
acquired in terms of evolved strategies (x, qp, qf and r) and model
parameters (Cp, Pp, Pf, np, nf, a, b and e). We then calculate
co-evolutionary ESSs for resource acquisition, allocation to trade
and restriction (Methods, expressions (7a)–(7d), (8), (10), (13)
and (15)). We do not list the expressions for the ESSs here,
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because the expressions are cumbersome and change in different
ecological scenarios. Instead, we analyse some key properties of
these ESSs below. We find that at the competitive equilibrium, all
individuals in a species are predicted to adopt the same strategy.

When it pays to restrict a partner’s access to resources. In the
Methods (expressions (7a)–(7d)), we show that restriction occurs
at the ESS (that is, �r40 in the ESS expression) when two
conditions are satisfied: (i) phosphorus restriction by the fungus
is sufficiently cost effective; (ii) plants would otherwise obtain an
appreciable amount of phosphorus directly from the soil. If
conditions (i) and (ii) are both satisfied, then mycorrhizal fungi
are favoured to restrict plants’ access to phosphorus. By doing
this, they make phosphorus more valuable to plants, and are then
able to get more carbon in exchange for the phosphorus that they
trade.

Restriction is cost effective when e4nf/b (condition (i), above).
Increasing the cost effectiveness of restriction (e) makes this
condition less stringent, and hence promotes restriction. Increasing
the number of mycorrhizal fungi per plant (nf) makes restriction
less likely because a single fungus colonizes fewer of a plant’s roots,
and therefore gets a lower individual payoff for unilateral
restriction of plant phosphorus uptake. Decreasing the importance
of carbon for fungal fitness (b) devalues trade for fungi, and
therefore diminishes the likelihood that they invest in restricting to
acquire more carbon per unit of phosphorus they trade.

Restriction is only favoured if plants would otherwise obtain
an appreciable amount of phosphorus directly from the
soil (condition (ii), above). If plant phosphorus acquisition
were minimal relative to fungal phosphorus acquisition
(npxPpoonfPf), then restricting this phosphorus uptake would
have little influence on trading dynamics. Appreciable plant
phosphorus acquisition requires sufficient carbon availability for
plants. That is, plants must have enough carbon that selection
favours re-allocating some resources away from acquiring carbon,
and investing them into acquiring phosphorus directly. This
occurs when

Cp4
np� 1þ a
� �

n2
f

1� að Þ np� 1
� �

np be� nfð Þ : ð1aÞ

In addition, plants must be efficient at obtaining phosphorus
directly from the soil, which is when

Pp4
Cp np� 1
� �

be� nfð ÞPf

np 1� bð Þeþ nfð Þ: ð1bÞ

Our results can be understood through the lens of comparative
advantage22. Comparative advantage is an economic framework
for analysing trade. It predicts that both trader types can be better
off if they specialize in acquiring a resource that they have a
relative advantage in acquiring, and use that resource to trade for
another. Individuals gain more from trade if the resource they
acquire is scarcer, so they can benefit from restricting the access
of other market participants to that resource23–26. However,
in complex ecological systems, this may mean that resources
flow out of the mutualistic system as a whole and go to
non-mutualistic competitors. The potential cost of this depends
on the degree of ecological versus intraspecific competition.

The restriction of a partner is a public good, as other
mycorrhizal fungi interacting with a restricted plan gain from
the plant’s increased reliance on trade for phosphorus. These
benefits to other unrelated fungi are not taken into account by
natural selection on a restricting fungus, so the level of restriction
is always less than would be socially optimal from the perspective
of fungi as a species. This can even lead to a failure to restrict even
when all fungi would be better off if they all practised restriction,

a public goods dilemma. This dilemma is exacerbated when
plants have more fungal partners, as provision of the public good
depends on a larger number of participants. This increases the
incentive to free-ride. The public good nature of restriction also
means that it could be more likely to be favoured if the different
mycorrhizal fungi interacting with a single plant tended to be
related10. However, local competition between fungi could mean
that restriction is less likely to be favoured10,21,27.

How restriction affects the stability of mutualistic trade.
Theory suggests that hosts are under strong selection pressure to
avoid cooperating with less-beneficial symbionts. Therefore, we
might expect a breakdown in cooperation when fungi restrict the
amount of phosphorus that plants can take up from the soil. In
the Methods, we show that our model leads to the opposite result:
allowing mycorrhizal fungi to restrict the direct phosphorus
uptake pathway in plants maintaining cooperation under condi-
tions where it otherwise would not be (expressions (7a)–(7d)).

When plants take up more phosphorus from the soil, they do
not need to trade with mycorrhizal fungi to acquire phosphorus.
This would lead to plants decreasing the carbon supply to their
fungal partners. Because fungi have less carbon available to trade
for, they are favoured to transfer less phosphorus. In turn, plants
become even less reliant on fungal phosphorus, which favours
them to decrease carbon transfers further. Without restriction,
trade collapses altogether if the amount of phosphorus that plants
can take up from the soil goes beyond the threshold

Pp4
CpPf b np� 1

� �
1� bð Þnp

: ð2Þ

However, we find that restriction can maintain trade in situations
when it would otherwise collapse (Fig. 1). Restriction reduces the
quantity of phosphorus that plants can take up from the soil,
so they are favoured to increase trade with mycorrhizal fungi. The
increased stability of mutualisms when each partner has greater
control over one resource has already been recognized18,28—our
result provides a novel mechanism by which this control can be
achieved.

We might expect that decreased carbon availability would lead
to increasing outbidding competiton by mycorrhizal fungi in
trade. Instead, our model predicts that they allocate less
phosphorus to trade. This is because selection optimises the level
of fungal investment into mutualistic cooperation before the
decrease in carbon availability. When carbon decreases, the
returns for outbidding competition are lower, so they invest less
phosphorus in trade.
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Figure 1 | The effect of phosphorus restriction on the stability of

mutualistic trade. In the blue region, mutualistic trade is favoured with or

without fungal phosphorus restriction. In the red region, mutualistic trade is

only favoured when we allow fungal phosphorus restriction. Restriction

favours trade when it would otherwise collapse because the benefit of trade

(relative increase in mutualism efficiency if plants rely more on trade for

phosphorus) is too low.
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How restriction affects plant fitness. Restriction could
potentially have positive or negative consequences for plant
fitness. Restriction reduces phosphorus availability, so the
first-order effect of restricting the resource acquisition pathway is
to decrease plant fitness. However, phosphorus restriction also
changes the terms of trade, which increases plant allocation to
carbon acquisition (x; Fig. 2). This specialization can increase the
efficiency of the mutualistic system as plants are relatively better
at carbon acquisition, and so can provide a fitness benefit to the
plants22.

Overall, we find that the influence of restriction on plant fitness
depends on the amount of phosphorus available for direct uptake
by plants (Fig. 3). Although restriction usually decreases plant
fitness, we find that in certain situations restriction can increase
plant fitness. At low levels of phosphorus availability, restriction
never evolves.

At intermediate phosphorus availability, when there would be
trade even without restriction, the restriction increases plant
fitness when

Cpo
nf 1� bð Þ
np� 1
� �

np
ð3Þ

This requires two biological conditions to be satisfied. First,
mycorrhizal fungi must be relatively less dependent on carbon
obtained via its own trading interactions (small Cp), such that
only a small amount of trade would be favoured without
restriction. Second, there must be few plants relative to fungal
individuals (small np, large nf). This means that an individual
plant controls a large proportion of the tradable carbon. It also
means that more fungi benefit from a single fungus’ restriction,
thus increasing the public goods dilemma. This ensures that when
sanctions are nonetheless favoured, they are at a much lower level
than would be optimal from the perspective of mycorrhizal fungi
as a whole. This means that they do not have an excessively
negative impact on plant fitness. Without restriction, this
individual plant places less value on phosphorus received in
trade because it takes up more from the soil. Hence, its costs
(decrease in total quantity of phosphorus received) when it
decreases carbon supply in order to benefit by increasing the
quantity of phosphorus it receives per unit of carbon (increasing
the price of carbon in units of phosphorus paid) are lower. Each
individual plant is favoured to adopt this strategy. However, it
causes a public goods dilemma in plants. Their collective decrease
in carbon traded favours less mutualistic cooperation in
mycorrhizal fungi. That is, the fungi are favoured to transfer

less phosphorus to plants. Restriction resolves this problem
because it increases the individual costs to plants of decreasing
carbon supply because they value fungal phosphorus more. The
higher dependence on trade of restricted plants greatly increases
total volumes traded, which benefits all partners.

When sufficient phosphorus is available for trade to collapse in
the absence of restriction (inequality (2) is satisfied), plant fitness
increases with restriction when

Ppo
ðbCpeðnp� 1Þnpþ nf ðnf �Cpðnp� 1ÞnpÞÞPf

n2
pðð1� bÞeþ nf Þ

: ð4Þ

This increase in plant fitness despite resource losses owing to
restriction occurs because restriction increases trade, as described
above. However, at high levels of phosphorus availability to
plants, it is increasingly difficult for fungal trade to compensate
for the costs of restriction. At extremely high levels of
phosphorus, trade with mycorrhizal fungi cannot compensate
for restriction so the trait decreases plant fitness.

Even though plants may sometimes benefit from restriction,
plants are never favoured to reduce their own direct phosphorus
uptake. The cost to an individual plant of taking up less
phosphorus from the soil would not be outweighed by increased
phosphorus received in trade. The reason for this is that
the phosphorus available in trade depends on the direct uptake
of all plants that share a fungal partner, not just that of a single
plant. Our model has no means for them to resolve this public
goods problem. Another factor could be that mycorrhizal fungi
can more efficiently control the supply of soil resources, but
building in such complexity would require more empirical
evidence on mechanistic detail.

Our model, where mutualistic cooperation is driven by
market dynamics, makes an opposite prediction to models where
mutualistic cooperation is driven by alignment of fitness
interests12,29,30. We found that plant fitness increases with
restriction only when each fungus interacts with a small
number of plants. As discussed above, this is because less
mutualistic cooperation is favoured in plants when there are
fewer plant competitors, which decreases benefits returned.

a bC C

Pp PpPf Pf

qf P
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Figure 2 | The effect of phosphorus restriction on the mutualistic system.

(a) Plants acquire phosphorus and carbon, whereas mycorrhizal fungi

acquire phosphorus. Plants trade carbon to mycorrhizal fungi in exchange

for phosphorus. (b) Mycorrhizal fungi restrict the ability of plants to directly

acquire phosphorus (red cross). This restriction makes plants reliant on

fungal phosphorus, so plants invest more into acquiring carbon directly and

trade more carbon to compete for phosporous. The increased flows of

carbon in trade favour mycorrhizal fungi that transfer more phosphorus.

Unrestricted plants: Restricted plants:

Restriction possible: Without restriction:

Trade collapses

No plant

4 5 6 7 8 9 10

0.90

0.95

1.00

1.05

1.10

1.15

P
la

nt
 fi

tn
es

s 
(w

p)

P uptake

Plant P
uptake >0

Phosphorus available to plants (Pp)

Figure 3 | Plant fitness with and without restriction. The impact of fungal

restrictions on plant fitness changes with the phosphorus available for

direct uptake by plants (Pp). When plants do not acquire any phosphorus,

restrictions are not favoured and so have no impact (left of black dashed

line). When restriction does not happen, phosphorus acquisition by

competitor plants reduces carbon supply (downward sloping dotted line),

and can mean that restricted plants would have higher fitness (as shown in

graph). When restrictions are not possible, trade collapses and plant fitness

recovers to exceed fitness without restriction as Pp increases (upward

sloping dotted line). (In graph, np¼ 2, nf¼ 12, Cp¼ 1.9, Pf¼ 5.5, a¼0.17,

b¼0.6, e¼ 110).
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In contrast, other models predict that when there are fewer
competitors in a species (higher relatedness), mutualistic
cooperation increases12,29,30. In these models, benefits from the
mutualism are shared, rather than competed for, and so
cooperation is more favoured when benefits are shared between
fewer individuals (or relatives).

Do we expect plants to respond to restriction? They cannot be
favoured to preferentially trade with non-restricting fungi,
because trade is separate from the restricting trait. If they
preferentially trade with non-restricting fungi, they are making
suboptimal trades and this is not favoured by natural selection. Is
it ever beneficial for plants to cut connections with their fungal
partners completely? Our model suggests that when phosphorus
available for direct uptake by plants is present in very high
concentrations, plants without any fungal symbionts gain more
phosphorus compared with plants that are colonized, but
restricted, by fungal partners (Fig. 4). In these circumstances,
interacting with mycorrhizal fungi leads to a fitness cost not
benefit, and so if plants can completely terminate their interaction
with their fungal partners, then they would be favoured to do so.
A reduction in fungal colonization is sometimes observed under
very high nutrient conditions31,32. However, in some cases, plants
might not be able to completely cut their interactions with their
fungal partners, which could lead to a fitness cost of interacting
with fungi, termed mycorrhizal depression (Fig. 4)7,28,33.

Discussion
How relevant is this model to mutualisms in nature? Mycorrhizal
fungi appear to inhibit plants’ direct phosphorous uptake
pathway via molecular suppression mechanisms33–36. Further
evidence for restriction in mutualisms comes from the ant–acacia
mutualism. Acacia trees have been shown to provide a protein
food source that alters their mutualistic ants’ digestion, limiting
the extent to which these ant partners can use other food
sources37. Our model suggests that restriction mechanisms
should be looked for in any trading mutualism where there is
scope for a partner to increase their comparative advantage. More
generally, we might also expect restriction within species when
different classes of individual exchange benefits; for example,
when a male harms a female to decrease her life expectancy and

thus increase her immediate investment into reproduction with
the harming male38–40.

We have shown that individuals can be favoured to restrict the
quantity of resources directly acquired by their mutualistic
partners to make their own supply of those resources more
valuable. Human history has repeatedly proven how devastatingly
effective such strategies can be, as demonstrated by the
eradication of spice-producing trees in the East Indies by the
Dutch colonial authorities. This eradication strategy restricted the
ability of other European nations to acquire cloves, nutmeg and
mace except through direct trade with the Dutch East India
Company. Another example of restriction increasing comparative
advantage is England’s embargo on textiles manufactured
abroad41,42. This helped launch England’s textile industry by
granting domestic producers exclusive access to the domestic
market. These examples also help illustrate that restriction is most
effective where restriction is under the control of a single agent
(inequalities (3) and (4)). The efforts of taxi companies to lobby,
strike and serve lawsuits against the introduction of both licensed
and non-licensed (that is, rideshare) competitors are a more
recent example of restriction. Here, the multitude of drivers and
taxi licence owners that must act to make restriction effective
does not prevent it occurring. However, in mutualisms where
restricting individuals compete with their peers for trade,
restriction may lead to increased reliance on trade by both
partner species, and consequently promote cooperation. This can
even stabilize mutualisms in circumstances under which they
would otherwise break down.

Methods
Conditions for the evolution of trade and restriction. We derive expressions for
the total amounts of carbon and phosphorus acquired (Ctp, Ptp, Ctf and Ptf) in terms
of evolved variables and model parameters. To do so, we first consider a focal plant
with a strategy pair (x, qp), which may or may not be an ESS. This plant is in a
nearly uniform population in each species with plant proportions of investment
into carbon acquisition and allocations to trade clustered around �x and �qp,
respectively, and where the fungal allocations to trade and investments in
restriction are nearly uniform and clustered around �qf and �r, respectively. The focal
plant acquires an amount xCp of carbon and retains a fraction 1� qp of this, so that
it has a total quantity of carbon Ctp¼ xCp(1� qp).

The plant also acquires an amount of phosphorus 1��rð Þ 1� xð ÞPp directly and
receives an amount of phosphorus Pr ¼ Pf �qf nf sp via trade, where Pf �qf is the
average quantity of phosphorus each mycorrhizal fungus trades, nf is the total
number of mycorrhizal fungi hosted by the plant, and the dummy variable sp is the
share of the traded phosphorus the focal plant acquires. We now consider how to
substitute evolved variables and model parameters for the dummy variable sp.
By linear proportional discrimination, plants acquire traded phosphorus based
on the relative amount each provides. Thus, the focal plant’s share (sp) is the
proportion of total carbon transferred that the focal plant provides. This is the
total quantity that the plant transfers (xCpqp), divided by the total quantity
provided by all competitors including the focal plant ððnp � 1Þ �xCp�qp þ xCpqpÞ.
Hence, the proportion of total traded phosphorus that the plant acquires is
sp¼ðxqpÞ=ððnp � 1Þ�x�qpþ xqpÞ. The total quantity of phosphorus available to plants
is the sum of the quantity they take up from the soil and the quantity they acquire
via trade, so Ptp¼ð1��rÞ 1� xð ÞPp þPf �qf nf ðxqpÞ=ððnp � 1Þ�x�qpþ xqpÞ.

Substituting the expressions for Ctp and Ptp that we have derived above into the
plant’s fitness function given in the main text yields

wp¼ xCp 1� qp
� �� �a

1� xp
� �

Pp 1��rð Þd þ nf Pf �qf xqp

np � 1
� �

�x�qpþ xqp

� �1� a

: ð5aÞ

Similarly, the focal mycorrhizal fungus has an initial amount of carbon 1 and
receives an amount of carbon Cr¼Cp�qpnpsf via trade, where Cp�qp is the average
quantity of phosphorus each mycorrhizal fungus trades, np is the total number of
mycorrhizal fungi hosted by the plant and the dummy variable sf is the share of the
traded carbon that the focal fungus acquires. We now consider how to substitute
evolved variables and model parameters for the dummy variable sf. By linear
proportional discrimination, fungi acquire traded carbon based on the relative
amount each provides. Thus, the focal fungus’ share (sf) is the proportion of
total phosphorus transferred that the focal fungus provides. This is the
total quantity that the fungus transfers (Pfqf), divided by the total quantity
provided by all competitors including the focal fungus ðnf � 1ÞPf �qf þPf qfð Þ.
Hence, the proportion of total traded phosphorus that the plant acquires is
sp ¼ ðqf Þ=ððnf � 1Þ�qf þ qf Þ. The total quantity of phosphorus available to plants is
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Figure 4 | Plant fitness with and without trade. The impact of trade on

plant fitness changes with phosphorus available for direct uptake by plants

(Pp). When plants do not directly acquire any phosphorus, trade increases

plant fitness (left of black dashed line). When plants acquire phosphorus

but mycorrhizal fungi are not favoured to restrict, trade also increase plant

fitness (solid blue line right of dashed black line). When fungi begin to

restrict, the restriction cancels out any beneficial effects of increases in

Pp for plants (red line). Here, plants may be better off if they do not have

trading partners. (In graph, np¼ 3, nf¼ 3, Cp¼ 5, Pf¼ 2, a¼0.5, b¼0.5,

e¼ 12).
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the sum of the quantity they take up from the soil and the quantity they acquire via
trade, so Ctf¼ 1þCp�qpnpðqf Þ=ððnf � 1Þ�qf þ qf Þ.

The focal fungus also acquires an amount Pf of phosphorus and retains a
fraction 1� qf of this, so that it has a total quantity of phosphorus Ptf¼ Pf(1� qf).
Substituting the expressions for Ctf and Ptf, we have derived above into the fungus’
fitness function given in the main text yields

wf ¼ 1þ np�xCp�qpqf

nf � 1ð Þ�qf þ qf

� �1� b

Pf 1� qfð Þð Þb 1� rð Þ: ð5bÞ

We use equations (5a) and (5b) to calculate evolutionary maxima. Specifically,
we calculate ESSs, strategies where deviations from population mean strategies
leads to decreased fitness (mathematically, we calculate: @wp=@x x¼�x;qp¼�qp

�� ¼0 and
@wp=@qp x¼�x;qp¼�qp

�� ¼ 0 for plants, @wf=@qf qf¼�qf ;r¼�r

�� ¼0 and @wf=@r qf¼�qf ;r¼�r

�� ¼ 0
for mycorrhizal fungi). We find that the fitness equilibrium is always unique given
parameter values and that the second derivatives of fitness with respect to
individual strategy are always negative (@2wp=@x2

x¼�x;qp¼�qp

�� o0 and
@2wp=@q2

p x¼�x;qp¼�qp

�� o0 for plants, @2wf=@q2
f qf¼�qf ;r¼�r

�� o0 and @2wf=@r2
qf¼�qf ;r¼�r

�� o0
for mycorrhizal fungi). Therefore, the fitness equilibrium is a unique ESS. In this
analysis, we do not consider whether the ESS is also convergence stable43–46. The
ESSs for plants depend on the strategies used by fungi, and the ESSs for fungi
depend on the strategies used by plants20. Hence, we need to find the ESSs for
plants given fungal strategy (x� �qf ;�r

�� and q�p �qf ;�r

�� ), and the ESSs for fungi given plant

strategy (q�f �x;�qp

�� and r� �x;�qp

�� ). Then, we can solve these four resulting expressions to
find co-evolved ESSs in terms of model parameters only (x*, qp*, qf*, r*). We first
calculate the equilibria of fitness for allocation to direct carbon uptake and trade in
a focal plant, @wp/@xp¼ @wp/@qp¼ 0. At an ESS, any individual receives
population mean fitness to first order, so we take the focal plant’s strategy to be the
population average (x¼�x; qp¼�qp). Substituting, we find that at equilibrium

�x ¼ aþ np � 1þ a
� �

Pf qf þ nf � 1ð Þ�qfð Þ
n2

pPp 1� 1� �r nf � 1ð Þþ r
nf

� �� � ð6aÞ

and

�qp ¼
1� að Þ np � 1

� �
Pf qf þ nf � 1ð Þ�qfð

np � 1þ a
� �

Pf qf þ nf � 1ð Þ�qfð Þ� a 1� �xð Þn2
pPp 1� �r nf � 1ð Þþ r

nf

� �e : ð6bÞ

We use the expressions for �x and �qp in equations (6a) and (6b) in the equation for
fungal fitness equation (5b) and calculate the maxima with respect to allocation to
trade and phosphorus restriction, @wf/@qf¼ @wf /@r¼ 0. Again, at an ESS, any
individual receives population mean fitness to first order, so we take the focal
fungus’ strategy to be the population average (qf ¼ �qf , r ¼ �r). Substituting, we find
that at a fixed point

�qf ¼
nf

1� bð Þeþ nf
ð7aÞ

and

�r ¼ 1� Cp np � 1
� �

be� nfð ÞPf

np 1� bð Þeþ nfð ÞPp

� �1
e

: ð7bÞ

Using the expressions for �qf and �r from equations (7a) and (7b) in equations (6a)
and (6b), we find plant strategy as a function of model parameters only

�x ¼ aþ np � 1þ a
� �

n2
f

Cp np� 1
� �

np be� nfð Þ

� �
ð7cÞ

�qp ¼
np� 1
� �

n2
f Pf

np � 1
� �

n2
f Pf þ aCp np � 1

� �
np be� nfð ÞPf

ð7dÞ

Therefore, equations (7a)–(7d) specify a co-evolutionary ESS when each of �x, �qp, �qf

and �r are between 0 and 1, as all values outside this range are not feasible strategies.
The values of �qp and �qf specified by equations (7a) and (7d) are always between 0
and 1. The value of �r specified by equation (7b) is between 0 and 1 if e4nf /b and
Pp4Cp(np� 1)(be� nf)Pf /np((1� b)eþ nf), while the value of �x specified by
equation (7c) is between 0 and 1 if Cp4ðnp�1þ aÞn2

f = 1� að Þ np � 1
� �

npðbe� nf Þ.
Hence, when these three inequalities are satisfied, equations (7a)–(7d) are a
co-evolutionary ESS.

We look for other strategies that are constrained maxima. That is, strategies
where any alternative with higher fitness is not feasible (allocations o0 or 41).
We eliminate �x ¼ 0 and �qp ¼ 1 as this would leave plants without carbon, and
�r ¼ 1 and �qf ¼ 1 as this would leave mycorrhizal fungi with either zero fitness or
no phosphorus. We first set �qf ¼ qf ¼ 0 and work out the evolved best response
values for the other variables if all other individuals use the same strategy:

�x;�qp; �qf ;�r
� �

¼ a; 0; 0; 0ð Þ: ð8Þ

We verify whether fitness at qf¼ 0 is greater than at qf40, given the corresponding
values of �x, �qp and �r:

@wf

@qf
�qf¼0

�� o0, Pp4
Cp np � 1
� �

bPf

1� bð Þnp
: ð9Þ

Hence, the strategies defined by expression (8) are a co-evolutionary ESS if the
inequalities in expression (9) are satisfied. We then set �r ¼ r ¼ 0 and find the
condition for a co-evolutionary ESS by the same method with:

�x; �qp; �qf ;�r
� �

¼

aþ np� 1þ a
� �

nf bCp np � 1
� �

Pf � 1� bð ÞnpPp
� �
Cp np � 1
� �

n2
pPp

 
;

np � 1
� �

nf bCp np � 1
� �

Pf � 1� bð ÞnpPp
� �

np aCp np � 1
� �

np � 1� bð Þ np� 1þ a
� �

nf
� �

Pp þ bCp np � 1
� �

np � 1þ a
� �

nf Pf
;

bþ 1� bð ÞnpPp

Cp np � 1
� �

Pf
; 0

�
:

ð10Þ
We verify whether fitness at r¼ 0 is greater than at r40, given the corresponding
values of �x, �qp and �qf :

@wp

@r �r¼0j o0, Pp4
Cp np � 1
� �

be� nfð ÞPf

np 1� bð Þeþ nfð Þ : ð11Þ

In the parameter region from expression (11), the best response values in
equation (10) are feasible (and equation (10) is thus a co-evolutionary ESS) if

Cp4
np � 1þ a
� �

n2
f

1� að Þ np � 1
� �

np be� nfð Þ : ð12Þ

Finally, we set �x ¼ x ¼ 1. In this case, the phenotype of plants may or may not
respond to a small change in fungal strategy, depending on parameter values. We
first suppose that it does not, so

�x; �qp; �qf ;�r
� �

¼ 1þ 1� að Þ np � 1
� �

np� 1þ a

�
;

1� að ÞbCp np� 1
� �

np nf � 1ð Þ
nf � bð Þ 1� að ÞCp np � 1

� �
np þ 1� bð Þ np � 1þ a

� �
n2

f

; 0

�
:

ð13Þ

Now, we verify whether fitness at xo1 is indeed greater than at x¼ 1, given the
corresponding values of �qp, �qf and �r:

@wp

@x �x¼1j 40, Ppo
bCp np � 1
� �

np � 1þ a
� �

nf � 1ð Þnf Pf

np nf � bð Þ 1� að ÞbCp np � 1
� �

np þ 1� bð Þ np � 1þ a
� �

n2
f

� �
:

ð14Þ
Hence, plant phenotype does not deviate from �x ¼ 1 when fungal strategy is at its
optimum and equation (13) is thus a co-evolutionary ESS whenever parameter
values satisfy inequality (14).

If instead the phenotype of plants responds to fungal strategy when �x¼x¼1,
fungal strategy is set so that �x in equation (7d) is exactly 1:

�x;�qp; �qf ;�r
� �

¼ 1;
1� að Þ np � 1

� �
np � 1þ a

;
1� að Þn2

pPp

np� 1þ a
� �

nf Pf
; 0

� �
: ð15Þ

We verify whether fitness at qf ¼ 1� að Þn2
pPp= np � 1þ a

� �
nf Pf is a maximum,

given the corresponding values of �qp, �qf and �r:

@wf

@qf
�qf

�� ¼ 0, Ppo
bCp np � 1
� �

np � 1þ a
� �

nf Pf

np 1� að ÞCp np� 1
� �

npþ 1� bð Þ np � 1þ a
� �

nf
� �

:
ð16Þ

So, equation (15) is a co-evolutionary ESS whenever parameter values satisfy
inequality (16), but not inequality (14). If inequality (14) is satisfied, plant
phenotype would not deviate from �x ¼ 1 with a change in fungal strategy.
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