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Abstract. This paper is part of a study on the receptivity characteristics 
of the shear flow in a channel whose walls are subjected to a wave-like 
excitation. The small amplitude forced wavy wall motion is characterised 
by a wave number vector 21, 22 and a frequency o~g. The basic flow in 
the problem is a superposition of the PoiseuiUe flow and a periodic 
component that corresponds to the wave excitation of the wall. The aim 
of the study is to examine the susceptibility of this flow to transition. The 
problem is approached through studying the stability characteristics of 
the basic flow with respect to small disturbances. The theoretical 
framework for this purpose is Floquet theory. The solution procedure for 
solving the eigenvalue problem is the spectral collocation method. 
Preliminary results showing the influence of the amplitude and the wave 
number of the wall excitation on the stability boundary of the flow are 
presented. 

Keywords. Dynamical characteristics; wave-excited channel flow; forced 
wavy wall motion; stability characteristics; spectral collocation method. 

1. Introduction 

In the broad area of study under the title "the stability of fluid motions", a subject 
that has attracted increased attention in recent years is the response to further 
disturbances of the shear flow that is excited by waves travelling in the plane of the 
walls. Besides the inherent fundamental interest that disturbance-propagation problems 
hold as such in fluid mechanics, the possibility of influencing transition and thus of 
managing turbulence through wall excitation has been recognised for some time now 
and this has lent additional impetus to research on this subject. It is therefore not 
surprising to find this subject occupying a prominent position in papers at conferences 
on turbulence control and management (see e.g. Liepmann & Narasimha 1988), and 
at special sessions at larger conferences. Of the latter we mention here only the first 
European Fluid Mechanics Conference, 1991 (Cambridge, UK), The SIAM Conference 
on Applications of Dynamical Systems, 1992 (Salt Lake City), and the Fourth 
European Turbulence Conference 1992 (Delft, Netherlands). 

In studies of disturbance propagation in these flows the points of main interest 
centre around the effects of the wall-wave excitation parameters, viz. its frequency, 
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wave number (vector) and amplitude, on the growth (or decay) characteristics of the 
further disturbances. At moderate Reynolds numbers one is particularly interested 
in the shift in the surface of neutral stability due to the wave excitation at the wall 
since this is an indication of the susceptibility of the flow to transition to turbulence. 
When the Reynolds numbers are much larger, the propagation of disturbances has 
to be studied in a flow that is already turbulent and this belongs to the realm of 
"management" of turbulence through the wave excitation of the walls. The latter 
context requires for its understanding a much deeper insight into the turbulence 
mechanism in the flow than is available today. It poses a problem of formidable 
diversity and complexity. As against this, the former has .the advantage of being more 
tractable, yet retaining some, if not all, physical elements that characterise a turbulent 
flow. It is therefore better suited for study at the present stage and therefore defines 
the scope of this work. The disturbance propagation problem in the laminar flow 
with wave excited walls, despite its conceptual simplicity, is a difficult one, not ,only 
because it involves a larger number of parameters than the classical problem with 
unexcited walls, but also due to additional physical phenomenon that are encountered 
due to the wave-like component present in the basic flow. These call for a modification 
of the mathematical tools used to handle these problems. 

The subject of the present paper is the propagation of small amplitude disturbances 
in the channel flow whose walls undergo a travelling wave type of deformation of 
one wave number and frequency only. We also regard the amplitude of the wave 
excitation at the wall to be sufficiently small, so that the basic flow in which disturbance 
propagation is to be studied comprises only one wave component superposed upon 
the classical fully developed flow with a parabolic velocity profile in a channel with 
rigid walls. The number of parameters involved in this problem is much larger than 
in the classical problem and its thorough investigation calls for a more extensive 
study than is possible in the relatively brief time span of around two years over which 
this work has been in progress. Even with the limited scope set, the study is too 
extensive to be accommodated within this paper, so we restrict ourselves for the present 
primarily to outlining our approach and presenting a selection of preliminary results 
that we have obtained so far. The reader interested in further details is referred to 
Selvarajan & Vasanta Ram (1991). 

2. The basic flow 

The equations of motion for an incompressible fluid &e, in the usual notation, 

OUl/OX 1 =0, I=  1,2,3 

0ul 0Ul Op 
a~- + U'ox. Ox~ + 

where the lengths are referred to 

(la) 

1 02ul l,m= 1,2,3, (lb) 
Re dxm dxm' 

the mean semi-channel height H, the velocity 
components to the mean centre line velocity U0, the time to H/Uo, the pressure to 
pU~ and the Reynolds number Re is based on H and Uo. 

We specify the wall motion through the following expression (see figure 1), 

yw(t, xt,  x3) = -4- 1 -T- ewReal(exp[i(2t xt + 23x3 - ¢%t)]), (2) 
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Figure 1. Flow configuration. 

which represents a wave travelling in the wall plane around the position x 2 = +__ 1 

with amplitude ew, wave number vector (21,23) and frequency tOg. In the above form 
the waves on the upper and lower walls are in phase so that at any instant of time 
the local channel width expands and contracts around the value 2H. It is relatively 
straightforward in principle to extend the study to permit the waves on the two 
walls to be out of phase with each other. This might be important for the behaviour 
of further disturbances and hence from the point of view of transition control. 
However, an additional parameter, viz. the phase difference, would then enter the 
picture. In the present state of such studies it is desirable to keep the number of 
additional parameters within limits and therefore we restrict ourselves in this work 
to walls excited in phase as in (2). 

For small amplitudes of the wave excitation at the wall, the solution for the flow 
quantities may be sought as a perturbation from the parabolic velocity profile of the 
fully developed channel flow. To a linear approximation in ew we may then write for 
the flow quantities: 

!~ 1 = t~lZ(1 - x 2) + ewfi 1 + O(e2), l = 1, 2, 3, (3a) 

p = - (2Xl/Re) + ew/~ + O(e2). (3b) 

Transferring the boundary conditions in (2) to the mean position of the wall by 
standard methods (see, e.g. Van Dyke 1975) we get the boundary conditions for the 
perturbation Ul as follows: 

~1(+ 1) = - 2Real(exp[i(21x1 + 2 3 x  3 - tOut)]), (4a) 

t~2(___ 1) = Real(+ itOgexp[i(21x I + 23x a -- coat)]), (4b) 

Q3(+ 1) = 0. (4c) 

The form of the solution for Q1 may then be written as 

ut = ½[at(x2)exp[i(21xt + 23x3 - togt)] + 

a * ( x 2 ) e x p [ ~ i ( 2 1 x l + 2 3 X a - t o a t ) ] ] ,  l =  1,2,3, (5a) 

ff = ½E~(x2)exp[i(2tx 1 + 23x 3 -- ~gt)] + ~*(xz)exp[i(21 x l  + Z3xa -- COat)]] 

(5b) 

where the superscript * denotes the complex conjugate. 
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The complex amplitude functions frr  the velocity ul and pressure p in (5) then 
obey the following linearised equations of motion: 

i2t ~1 + ( d u 2 / d x 2 )  -t- i23a 3 = 0, (6a) 

i [ - -  CO o + (1 - -  X 2 ) 2 1 ] a l  - -  2 X 2 a  2 ---- 

- i21/~ + (1/Re)[( -  22 - 22) + (d2/dx2)] a~, (6b) 

i [ -  eJg + (1 - x~)21] t t  = = -- (dp/dx2) + ( 1 / R e ) [ ( -  42 -- 2 ] )  + (d2/dx2) ]  a2, 

(60) 

i[--  09g + (1 -- x~)2a]a 3 = -- i23/~ + (1/Re)[(-- 4 2 - -  ,~2) .~_ (d2/dx22)] d3 
3 

(6d) 

The above equations (6a-d) are the linearised equations of motion from which the 
well-known Orr-Sommerfeld equations for investigations of the more classical studies 
on fluid flow stability are derived. The difference from the classical problem here is 
that in the present case they satisfy inhomogeneous boundary conditions due to wall 
excitation. These are" 

a 1 ( + 1 ) = - 2 ;  a2(+l)=-t- iogg;  a3(-t-1)=0. (7) 

The set of equations (6) with the boundary conditions (7) have been solved numerically 
by two methods. One of the methods uses superposition coupled with an orthonor- 
malization procedure with a variable-step Runge-Kutta-Fehlberg integration scheme 
(Scott & Watts 1977), and the other is the pseudo-spectral collocation method 
described in Gottlieb et al (1984, pp. 1-54). The solution procedures are outlined in 
Selvarajan & Vasanta Ram (1991). Plots of the velocity components for a set of 
parameters are shown in figures 2-7. The frequency cog prescribed here is the same 
as the frequency of the neutrally stable Tollmien-Schlichting wave at the chosen 
wave number (21,23). 
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Variation ofd3,. Basic flow parameters: 21 = 1"04; 23 = 0"29; tog = 0"27. 

3. The propagation of disturbances in the basic flow 

The basic flow in which we study disturbance propagation in this work is defined 
through (3) above. Since this contains components that are periodic in time and in 
two space variables, the disturbance propagation problem has to be approached 
through the Floquet theory. For  small amplitude, further disturbances of the order 
O(e~) over the basic flow, with e~<<w, we may linearise the equations of motion to 
obtain the governing equations for the disturbance. 

Writing the velocity and pressure as 

Ul----~ll(] --X2)+gw~lWesUsl, l---- 1,2,3, 

P = -- (2xl/Re) + ewiP + e p,, 

(8a) 

(8b) 

the linearised equations of motion for the further disturbance are 

c~u,,/cgx 1 = O, (9a) 
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Ou*---A + (1 - x2) Ou'l - 2x2U.z + OP* + e~,~fi ~u** + u.,,~fil ] 
Ot " cgxx cgx, L Ox. Ox.]  

1 02u,1 
Re Ox.,Ox,. 

~Us2 ~_ (] __ X2)0U*2 ~Ps F -  ~U*2 U ~I~2 ] 1 ~2U,2 

Ox, + Fx2 + + q L Ox.. ~ Ox,.] Re Ox,.Ox,. 

F" OU'3 U ~ ] OUs3 .3L (1 __ X2) 0U__~s3 _~_ 0~Ps .+. ,w | U ~ n _ _  ,.~. 
cot °xt °x3 L dx,,, *" Ox,.] 

- -  = 0, (9b) 

- -  = 0 ,  ( 9 ¢ )  

1 02u,3 
- -  = 0. (9d) 

Re OxmOx,. 

Our interest lies in the stability characteristics of the wave excited basic flow due 
to further disturbance, so homogeneous boundary conditions for u,z are appropriate. 
It is consistent with the approximations to impose these conditions at the mean 
position of the channel walls x2 = + 1. 

4. Form of  solution for the eigenvalue problem (Floquet-Ansatz)  

The outstanding feature of the disturbance equation (9) that demarcates it from more 
classical stability problems is the presence of periodic terms in t, x, and x3 through 
~1. It is known (see e.g. Bender & Orszag 1984) that, although the parameter .ew may 
be small, the structure of the solution is drastically changed by the periodic terms. 
The form of the solution for (9) that transforms the partial differential equation into 
an ordinary differential equation may be written as follows: 

n = + O 0  

Us I E (n) • (n) = A a ( x 2 ) e x p [ l f p  * ], 1= 1,2,3, (10a) 
n m - - 0 0  

n =  -I- ~ 

P, = E (n) • (n) A,p (x2)exp[ttp , ], (10b) 
n m  - c o  

where 
~0(; ) = (OCs q- n21)X l 4- (fls + h23)x 3 -- (to, "[- ntog)t. (10¢) 

The expression in (10) represents a superposition of waves of wave number (~, + n2t), 
(ft, + n23) and frequency (to, + n%). In the temporal problem ~, and/~, are regarded 
real, Solution of the problem then yields the complex frequency to, for which (9) 
admits nontrivial solutions. The real part of to, then indicates the growth or decay 
of the further disturbance characterised by (u,, ft,). We write the dispersion relation 
of the problem symbolically in the following form 

F(cos,~s, fls, Re, sw,2x,23,tog ) =0, (11) 

that shows the additional parameters that enter the problem due to the wave excitation 
of the wall. These are ew, 21, 23 and tog. 

The equations governing the eigenfunctions (") (") A a (x2) and as follows, A,p (X2) are 

dA (n) 
i(~, + n2t)A~7) + - s2 + i(fls + n23)A~) = O, (12a) 
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i [ -  (% + n%) + (~s + n2~)(l - x2)]A~] ) -- 2x2A ~ + i(cq + n2x ~At") + i s p  

(~ts + n2x) 2 + (fls + n23) 2 -- At") + O~ ") = 0, (12b) 

i[-(o. + n%) + (~, + .2 ,  )(1 - x ~ ) l A ~  + da~.~) + 
dx2 

l )2 + (fls + n23) -- ~-~.2- As2 + -2 02 = 0, (t2c) Re (°is + n2~ 2 d (,) w (.) 
(IX 2 _J Z 

i [ -  (co s + no)g) + (0t + n2x)(1 -- xZ)]At" 3) + i(fl~ + n23)A~) + 

R--e d x  2_j ,3 2 0 7 )  = 0. (12d) 

The quantity O1"), with I=  1, 2, 3, that multiplies e~ in (12) is an abbreviation for the 
following expression, 

O1")= [ ia  x [~q + ( n -  1)21] + it] 3 [fls(n- 1)23] + a 2 d l A(. - 1) 

dx 2 J st 

+ [ i~*[~s + (n + l )21] + ifl* [fls(n + l )23] + ~* d-d-2 ] A~ +1) 

d ]  a 
+ [i21A]] -1)+ i 2 3 A ~ - ' ) +  A~2-1)dx2. j , 

+[_i21A~.x+x,_i2aA~+tl+A(.+l ) d ] s~ a ~  al'. (13) 

To bring out the differences between studies of the stability of the flow with a wave 
excited wall and the classical problem more clearly, it is meaningful to rewrite the 
ordinary differential equations for the complex amplitude velocity functions A (") in 

s l  

a form in which the contribution of the Orr-Sommerfeld part and of the additions 
can be more easily recognised. We therefore subject (12) to the following steps: 

Step 1. Multiplication and addition: (~s + n21) + (fl~ + n23). 
(12b) (12d) 

Step 2. (d/dx2)(outcome of step 1) - i[(cq + n21 )2 .at. (fls -~- n23)2 ]. 

Step3. Multiplication and subtragtion: (fl~ + n23)-(~, + n2~). 
(12b) (12d). 

The r, esulting equation after steps 1 and 2 above is (15) below where the abbreviation 
k, stands for 

k2 = (~s at- n2t )2 + (fls + n23) 2. (14) 

aA~") q _ (o~, + n21) L [2x2 A~)] + d2[[(cos+n%)--(c%+n21)(1--x2)l- s21 
2 .-~x2_ ] 
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k, 2 [ - (cos + moo) + (~ + n21 )(1 - x22)] A~  + 

;eE l - ik~ A ~  + ~ ~t.) - -  - isc~. 4 --  =0 .  2ik2" dx~ dx z 2 (15) 

The quantity qJt,) which is the multiplier of ew in (15) is a sum of thirteen terms as 
follows. 

13 

W(")= Z W) ")" (16) 
j = l  

The W~")'s, j = 1, 2, 3 . . . . .  13 are listed in Selvarajan & Vasanta Ram (1991). 
The outcome of step 3 is (18) below, where f~t,) stands for: 

fit.) = (fl, + n23)At]) _ (~  + n2a)At~" (17) 

i[--  [co + ncog] + [ ~  + n21](1 -- x2 ) ]~  t") -- 2x2(fl s + n~,a)A~2l 

+ l F k z n ( " )  62n(")] e~,(")=0.  (18) 
Re[_ " dx22 _]+ 2 "" 

The quantity Z t"), the multiplier of ew in (18), is a sum of twelve terms as follows, 

12 

; ( , )= ~ ~,t.). (19) t~j 
j = l  

The ;t~l, j = 1,2,3 . . . . .  12, are listed in Selvarajan & Vasanta Ram (1991). 
Equations (15) and (18), together with the continuity equation (12a), are the set of 

equations for the complex amplitude functions of the velocity At"),1, At"),2 and --,3at"). The 
boundary condition on all these quantities is zero at x 2 = + 1 so that the problem 
reduces to an eigenvalue problem requiring solution of the dispersion relation (11) 
for the (complex) frequency cos (temporal stability problemY). 

A cursory inspection of the governing equations shows that for the case of the 
unexcited wall, ew = 0, (15) reduces to the Orr-Sommerfeld equation for A t") and (18) s2 

to the Squire equation for f~t,). For % # 0, (12a), (15) and (18) form an infinite set of 
coupled equations. We truncate them at n = + 1 and - 1, setting A t") to zero for all sl 

n > 1 and n > - 1. We then have nine unknowns, viz. --slAt-a), As 2t- 1), At-s3 a), At°)sl , At°)s2 , 
AtO) at+x) a t+~)an d t+x) s3, "-sl , "'s2 As3 . The nine equations are obtainable by writing (12a), (15) 
and (18) for n = - 1, 0 and + 1, setting at,) to zero for all n > 1 and n < - 1. 

5. Outline of the solution procedure 

The solution procedure, both for the basic flow that involves inhomogeneous 
boundary conditions, and for the problem of further disturbances which is treated 
as a temporal eigenvalue problem, is given in some detail in Selvarajan & Vasanta 
Ram (1991). Here we restrict ourselves to observing that the occurrence of the Or r -  
Sommerfeld operator in both the problems may be used to advantage in the 
computational procedures. Whereas the basic flow problem was solved by two 
methods (vide § 2) we used only the spectral collocation method together with an 
iterative scheme to solve the temporal eigenvalue problem. 
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Stability characteristics of the wave-excited channel flow. 

6. Results 

Figure 8 shows the characteristics of the further disturbance in the ~s and ew plane 
for a Reynolds number Re = 8000 for two sets of the other parameters whose values 
are indicated on the figure. Judging from our present results, which should be regarded 
as preliminary, there are threshold values of the wall excitation amplitude parameter 
ew which divides the stable from the unstable regions. However, it is interesting to 
note that there may be disturbances at discrete bands of wave numbers which are 
damped even at higher amplitudes of excitation. More extensive analytical and 
computational studies are necessary to substantiate these findings. 
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study at the Ruhr Universit~it Bochum, Germany. SS wishes to thank the Council 
of Scientific & Industrial Research for leave, the German Academic Exchange Service 
for the award of a scholarship and Professor K Gersten, Director of the Institut fiir 
Thermo- und Fluiddynamik of the Ruhr University, Bochum for hospitality during 
this period. 
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List of symbols 

A(n) s! 

F 
It 
k~ 
(n) 
P 

P 
P~ 
Re 
t 

U! 

~z 
Ust 
Uo 
X! 

Y~ 
~s 

~w 
11 
23 
v 
~z 
X(n) 

l,i,j 

amplitude function of velocity disturbance, complex quantity, see (10); 
amplitude function of pressure disturbance, complex quantity, .see (10); 
dispersion relation, defined in (11); 
mean semi-channel height; 
defined in (14); 
mode number, see (10); 
pressure; 
periodic part of pressure, see (3); 
amplitude function of pressure, complex quantity, see (5); 
pressure disturbance, defined in § 3, l =  1, 2, 3, see (8); 
Reynolds number, Re = UoH/v; 
time coordinate; 
velocity component in direction x~, l =  1, 2, 3; 
periodic part of velocity component in x:direction, l = 1 2, 3, see (3); 
amplitude function of velocity t~t, complex quantity, see (5); 
velocity disturbance, defined in § 3, l = 1, 2, 3, see (8); 
mean centre line velocity; 
spatial coordinates, l = 1, 2, 3; 
wall motion, defined in (2); 
wave number of disturbance in x:direct ion,  see (10c); 
wave number of disturbance in x3-direction, see (10c); 
amplitude parameter of disturbance, defined in § 3, see (8); 
amplitude parameter of wall motion, see (2); 
wave number in x 1-direction, see (2); 
wave number in x3-direction, see (2); 
kinematic viscosity; 
function defined in (13), complex quantity, l =  1, 2, 3; 
function defined in (19); 
function defined in (15); 
frequency, real quantity, see (2); 
frequency of disturbance, complex quantity, see (10c); 
function defined in (17); 
indices; 
as superscript, denotes complex conjugate; 

above a particular symbol denotes differentiation of that parameter with 
respect to x2. 

References 

Bender C M, Orszag S A 1984 Advanced mathematical methods for scientists and engineers 
(New York: McGraw Hill) 

Gottlieb D, Hussaini M Y, Orszag S A 1984 Theory and application of spectral methods. In 
Spectral methods for partial differential equations (eds.) D Gottlieb, M Y Hussaini, 
S A Orszag (New York: SIAM) 

Liepmann H W, Narasimha R (eds.) 1988 Turbulence management and relaminarization. 
IUTAM Symposium, Bangalore, India 1987 (Berlin: Springer Verlag) 



360 S Selvarajan and V Vasanta Ram 

Selvarajan S, Vasanta Ram V 1991 Dynamical characteristics of wave excited channel flows. 
Report 162 of the Institut fiir Thermo- und Fluiddynamik, Ruhr UniversitY, t, Bochum 

Scott M R, Watts H A 1977 Computational solution of linear two-point boundary value 
problems via orthonormalization. SIAM J. Numer. Anal. 14:40-70 

Van Dyke M 1975 Perturbation methods in fluid mechanics (Stanford, CA: Parabolic Press) 


