ATSC-229

Influence of Al₂O₃ addition on the wear and corrosion behaviour of HVOF sprayed WC-12Co coatings

R.P.S Chakradhar^a, Meenu Srivastava^a, K Venkateswarlu^b ^aSurface Engineering Division, ^bMaterials Science Division

CSIR-National Aerospace Laboratories, Bangalore -560017.

<u>Abstract</u>

WC-12Co and 30wt.% of Al₂O₃ powder mixture was sprayed on EN-24 steel using high velocity oxy fuel (HVOF) method. The chemical, mechanical and tribological performances of WC-12Co and WC-12Co-Al₂O₃ coatings have been evaluated. XRD analysis clearly showed the presence of WC, Co and Al₂O₃ peaks in WC-12Co-Al₂O₃ coating. The FESEM studies showed a homogeneous microstructure with low amount of porosity in WC-12Co-Al₂O₃ samples as compared to WC-12Co coatings. An improved hardness of 1100 Hv was observed with the addition of Al₂O₃ content compared to 950 Hv (WC-12 Co). The 3D roughness profiles show a higher roughness of R_a ~ 7.6µm for Al₂O₃ incorporated coatings when compared to WC-12Co coating (Ra ~ 6.5µm). Dry sliding wear results of WC-12Co-Al₂O₃ coating exhibited higher wear resistance as compared to WC-12Co coating. This is probably due to low porosity levels and good metallurgical bonding between the EN24 substrate and the coating. Electrochemical impedance spectroscopy (EIS) studies showed better corrosion resistance for WC-12Co-Al₂O₃ coating. It is concluded that WC-12Co-Al₂O₃ coating exhibited better chemical, mechanical and tribological properties compared to WC-12Co coating under identical HVOF coating conditions.