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ABSTRACT 11 

Ubiquinone and menaquinone are membrane lipid-soluble carriers of electrons that are essential 12 
for cellular respiration. Eukaryotic cells can synthesize ubiquinone but not menaquinone, 13 
whereas prokaryotes can synthesize both quinones. So far, most of the human gut microbiome 14 

(HGM) studies have been based on metagenomic analysis. Here, we applied an analysis of 15 
individual HGM genomes to the identification of ubiquinone and menaquinone biosynthetic 16 

pathways. In our opinion, the shift from metagenomics to analysis of individual genomes is a 17 
pivotal milestone in investigation of bacterial communities, including the HGM. The key results 18 
of this study are as follows. (i) The distribution of the canonical pathways in the HGM genomes 19 

was consistent with previous reports and with the distribution of the quinone-dependent 20 
reductases for electron acceptors. (ii) The comparative genomics analysis identified four 21 

alternative forms of the previously known enzymes for quinone biosynthesis. (iii) Genes for the 22 

previously unknown part of the futalosine pathway were identified, and the corresponding 23 

biochemical reactions were proposed. We discuss the remaining gaps in the menaquinone and 24 
ubiquinone pathways in some of the microbes, which indicate the existence of further alternate 25 

genes or routes. Together, these findings provide further insight into the biosynthesis of quinones 26 

in bacteria and the physiology of the HGM.  27 

INTRODUCTION 28 

Quinones are membrane lipid-soluble carriers of electrons that are essential for cellular 29 
respiration (Collins and Jones, 1981). Of the numerous types of quinones used for respiration, 30 
the three that are the most studied and most widespread among microorganisms are ubiquinone 31 

(UQ, coenzyme Q), menaquinone (MK, vitamin K), and 2-demethylmenaquinone (DMK) 32 
(Collins and Jones, 1981;Nowicka and Kruk, 2010). In bacteria, only one pathway has been 33 

described for UQ biosynthesis (Meganathan, 2001b), whereas two different pathways are known 34 
for MK synthesis (Figure 1). The first “traditional” pathway includes DMK as an immediate 35 
precursor of MK, and both MK and DMK are synthesized via this pathway (Bentley and 36 
Meganathan, 1982;Meganathan, 2001a). In the second pathway, which was more recently 37 
discovered, MK is synthesized through futalosine (Hiratsuka et al., 2008). The final steps of this 38 
pathway remain unclear, and no information is available about the synthesis of DMK by this 39 
pathway (Arakawa et al., 2011;Barta et al., 2014;Zhi et al., 2014). UQ can be synthesized by 40 
Alpha-, Beta-, and Gammaproteobacteria and by Eukaryotes, whereas MK/DMK can be 41 

synthesized only by various groups of Bacteria and Archaea (Collins and Jones, 1981;Bentley 42 
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and Meganathan, 1982;Meganathan, 2001a;Nowicka and Kruk, 2010;Zhi et al., 2014). All three 43 
pathways begin with chorismate and have no shared enzymes except for the UbiE/MenG 44 

methyltransferase, which is involved in both the UQ and the “traditional” MK/DMK pathways 45 
(Lee et al., 1997) (Figure 1).  46 

 47 
Because of the inability of humans to synthesize MK, this compound should be consumed in 48 

food. MK is found in meat, dairy, and fermented food products (Walther et al., 2013). MK can 49 
also be obtained by the interconversion of a dietary derived phylloquinone (PK). PK is 50 
synthetized by plants and Cyanobacteria and differs from MK only by its side chain. While MK 51 

has a polyprenyl side chain, PK has a phytyl side chain (Nowicka and Kruk, 2010). The extent of 52 
PK derived MK has been estimated to range from 5 to 25% of the digested PK (Shearer and 53 
Newman, 2008;Shearer et al., 2012). The dietary requirements of vitamin K (i.e., PK and MK) 54 

range from 0.86 – 3.15 g per day for infants of 0 to 6 months (Canfield et al., 1990;Canfield et 55 

al., 1991;Greer et al., 1991;Shearer and Newman, 2008) and from 0.75 to 1.0 g per kg of body 56 
mass per day for adults (Frick et al., 1967;Booth and Al Rajabi, 2008;Shearer et al., 2012). 57 

 58 

The classic role of MK in humans is as an enzyme cofactor for the -carboxylation of peptide-59 
bound glutamate residues, and evidence has recently been mounting that there is a correlation 60 
between human health and dietary MK (Shearer and Newman, 2008;Booth, 2009;Van Winckel 61 

et al., 2009;Walther et al., 2013;Shearer and Newman, 2014). 62 
 63 

In addition to dietary sources, a portion of the total available MK is synthesized by the human 64 
gut microbiome (HGM); however, the extent of MK derived from the HGM has not been 65 
determined (Ramotar et al., 1984;Conly and Stein, 1992;Suttie, 1995;LeBlanc et al., 66 

2013;Ramakrishna, 2013). Various HGM communities have been intensively studied in recent 67 
years (Eckburg et al., 2005;Gill et al., 2006;Sonnenburg et al., 2006;Kinross et al., 2011;Flint et 68 

al., 2012;Lozupone et al., 2012;Leimena et al., 2013;Maurice et al., 2013), but most of these 69 

studies have concentrated on the analysis of metagenomic data. Metagenomic analysis is a 70 

powerful tool for the determination of HGM composition in healthy and diseased states (Cowan 71 
et al., 2005;Kinross et al., 2011;Simon and Daniel, 2011;Cho and Blaser, 2012;Gosalbes et al., 72 

2012;Kelly and Mulder, 2012;Walker et al., 2014) as well as HGM variability related to age 73 
(Clemente et al., 2012;Yatsunenko et al., 2012), diet (Kurokawa et al., 2007;Hehemann et al., 74 
2010;Wu et al., 2011), geography (Yatsunenko et al., 2012;Tyakht et al., 2013;Suzuki and 75 
Worobey, 2014), host genetics, and lifestyle (Yatsunenko et al., 2012). However, analysis of the 76 

completely or partially assembled genomes of representative HGM samples can also yield 77 
additional knowledge about the cellular physiology of individual bacterial strains and 78 
information about interactions between different organisms. Thus, a shift from metagenomic 79 
analysis to the analysis of individual genome sequences may become important in the 80 
investigation of the HGM and its interactions with the human organism. To date, there are 382 81 

HGM genomes available through the National Institutes of Health (NIH) Human Microbiome 82 

Project (http://www.hmpdacc.org/HMRGD/), providing an excellent opportunity for gaining a 83 

further understanding of HGM biology.  84 

MATERIALS AND METHODS 85 

From the list of human gut microbes found in at least 50% of the analyzed HGMs (Nelson et al., 86 
2010;Qin et al., 2010), we selected 250 genomes of human intestinal inhabitants that were 87 

available in the PubSEED (Overbeek et al., 2005;Disz et al., 2010) and Integrated Microbial 88 
Genomes (IMG) databases (Markowitz et al., 2014). The following four model genomes were 89 
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added to the reference set: an inhabitant of the lower gut, Escherichia coli K-12 MG1655 90 
(Blattner et al., 1997); an intestinal inflammation-causing agent, Salmonella enterica 91 

Typhimurium LT2 (Winter et al., 2010); a model organism for the analysis of carbohydrate 92 
metabolism in the intestine, Bacteroides thetaiotaomicron VPI-5482 (Hooper et al., 2002;Xu et 93 

al., 2003); and a model organism related to multiple gut strains, Bacillus subtilis 168 (Hong et 94 
al., 2009). All 254 of the selected genomes are presented in Table S1 in Supplementary 95 
Materials. The added model organisms belong to the three main phyla represented in HGM 96 
(Nelson et al., 2010;Qin et al., 2010), Bacteroidetes (B. thetaiotaomicron), Firmicutes (B. 97 
subtilis), and Proteobacteria (E. coli and S. enterica). We included of the model organisms to 98 

expand known metabolic functions in these organisms to the HGM genomes as well as to use 99 
their predictions as mean to quality control the predictions for the HGM genomes. For example, 100 
usage of genomes for the model organisms can be used to avoid wrong predictions for the 101 
functions of novel genes by verifying their absence in the model genomes. Note that three of the 102 
four model organisms (B. thetaiotaomicron, E. coli, and S. enterica) have been also detected in 103 

HGM, but in less than 50% of the studied samples (Qin et al., 2010). 104 

 105 

The PubSEED platform was used to annotate the genes for quinone biosynthesis proteins. To 106 

avoid misannotations, all of the proteins with the same function were checked for orthology. 107 
Orthologs were defined as the best bidirectional hits that have a similar genomic context. To 108 
search for the best bidirectional hits, a BLAST algorithm (Altschul et al., 1997) was 109 

implemented in PubSEED and the IMG platform (cutoff = e-20). Additionally, in the search for 110 
orthologs, the GenomeExplorer program package (Mironov et al., 2000) was used, and orthologs 111 

were determined as the best bidirectional hits with protein identity no less than 20%. To analyze 112 
genomic context and gene occurrence, we used PubSEED and STRING v9.1 (Franceschini et al., 113 
2013) along with phylogenetic trees for protein domains in MicrobesOnline (Dehal et al., 2010). 114 

To analyze protein domain structure, we used searches in the Pfam (Finn et al., 2014) and CDD 115 
(Marchler-Bauer et al., 2013) databases, and the “Domains & Families” service implemented in 116 

the MicrobesOnline platform. Additionally, functional annotations of the analyzed genes were 117 

performed using the UniProt (Magrane and Consortium, 2011) and KEGG (Kanehisa et al., 118 

2012) databases. 119 
 120 
Multiple protein alignments were performed using the ClustalX v 2.0 tool (protein weight 121 

matrix: BLOSUM series; gap opening: 15; gap extension: 0.5) (Larkin et al., 2007). Phylogenetic 122 
trees were constructed using the maximum-likelihood method with the default parameters 123 

implemented in PhyML-3.0 (Guindon et al., 2010). The obtained trees were visualized and 124 
midpoint-rooted using the interactive viewer Dendroscope, version 3.2.10, build 19 (Huson et al., 125 
2007). To clarify the taxonomic affiliations of the analyzed genomes, the NCBI Taxonomy 126 

database (http://www.ncbi.nlm.nih.gov/taxonomy) was used. To predict substrate specificities 127 
according to the specificity-determining positions (SDP), the SDPfox web tool (Mazin et al., 128 
2010) was used with the maximum percent of gaps allowed in a group in each column being 129 

50%. As an input for the SDP analysis, we used multiple alignments for all UbiA/MqnP, 130 
UbiD/MqnL, and UbiX/MqnM proteins found in the analyzed genomes. No preliminary division 131 
to into specific groups was done. The specificity groups were determined based on the SDP 132 
analysis as follows. An uploaded aligned sequence set was randomly divided into groups (the 133 
minimal number of the groups = 2, the number of the sequences = 10), then ‘SPDgroup’ 134 
procedure and the ‘Move sequences according to the best weight’ procedure were applied. 135 

 136 
All of the annotated genes are represented as a subsystem in PubSEED 137 

(http://pubseed.theseed.org/SubsysEditor.cgi?page=ShowSubsystem&subsystem=Quinones_bios138 
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ynthesis_HGM) and all of the protein sequences for the annotated genes in FASTA format are 139 
represented in file Sequences S1 in the Supplementary materials. 140 

RESULTS 141 

Here, we present a systematic analysis of the biosynthetic pathways for UQ, MK, and DMK in 142 
254 genomes, including 250 genomes for commonly found in the human gut (Qin et al., 2010) 143 

and four genomes for model organisms. Application of a comparative genomic analysis to 144 
individual HGM genomes identified the distribution of various pathways for quinone 145 
biosynthesis in HGM microorganisms and revealed four alternative forms of known enzymes in 146 
these pathways. Our analysis resulted in a prediction of the genes responsible for the last three 147 
steps of the futalosine biosynthesis pathway, which were previously unknown. Additionally, we 148 

compared the distribution of quinone biosynthetic pathways with the distribution of quinone-149 
dependent reductases for electron acceptors within the HGM genomes. 150 

KNOWN GENES FOR QUINONE BIOSYNTHESIS 151 

To reconstruct the biosynthetic pathways of UQ, MK, and DMK in the 254 studied genomes, we 152 
analyzed the distribution of previously known genes involved in these pathways (Figure 1). On 153 

the basis of the presence of known genes, a pathway can be classified as complete or incomplete. 154 
A pathway was assigned as complete when known genes found in the genome could form an 155 

uninterrupted biosynthetic pathway from chorismate to UQ or MK and as incomplete when the 156 
pathway was interrupted because of the absence of certain genes. The presence of only one gene 157 
was classified as an incomplete pathway. To avoid misannotations, all genes possibly involved in 158 

quinone biosynthesis were checked for orthology with the known genes, as described in 159 
“Experimental procedures”. The distribution of the genes for UQ biosynthesis (Ubi pathway) 160 

among the analyzed genomes was restricted to Gamma- and Betaproteobacteria. Complete Ubi 161 
pathways were found in 19 genomes (Table S1 in Supplementary Materials), whereas incomplete 162 

pathways were found in 4 genomes. The pathway for MK/DMK biosynthesis through O-163 
succinylbenzoate (Men pathway) was more broadly distributed among the analyzed genomes. 164 

Complete Men pathways were found in 24 genomes of Firmicutes and Proteobacteria, whereas 165 
incomplete pathways were found in 91 genomes belonging to the phyla Actinobacteria, 166 
Bacteroidetes, Firmicutes, Fusobacteria, Proteobacteria, and Verrucomicrobia. Because the 167 
enzymes for the last steps of MK synthesis through the futalosine biosynthesis pathway (Mqn 168 

pathway) were not known (Arakawa et al., 2011;Barta et al., 2014;Zhi et al., 2014), this pathway 169 
was considered complete when all of the enzymes catalyzing the reactions for the synthesis of 170 
1,4-dihydroxy-6-naphthoate from chorismate (Figure 1) were found in the genome. The 171 
complete pathway was found in 10 genomes from the phyla Bacteroidetes, Firmicutes, and 172 
Proteobacteria, whereas an incomplete pathway was found in 2 Firmicutes genomes. 173 

NOVEL ENZYME IN THE UBI PATHWAY 174 

Using genomic analysis of the Ubi pathway, we predicted an alternative form of 3-polyprenyl-4-175 

hydroxybenzoate carboxy-lyase (EC 4.1.1.-) (Figure 2). Previously, two alternative forms of this 176 
enzyme, UbiD and UbiX, were described (Cox et al., 1969;Alexander and Young, 177 
1978;Gulmezian et al., 2007). Analysis of the genome of Acinetobacter junii SH205 revealed the 178 
presence of all the genes for the Ubi pathway except for ubiD and ubiX. To find a non-179 
orthologous replacement (Koonin et al., 1996) for this enzyme, we searched for ubiD and ubiX 180 
orthologs in the genomes of organisms related to A. junii (Figure 2). These genomes belonged to 181 
two families of the order Pseudomonadales: Moraxellaceae (which also includes A. junii) and 182 
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Pseudomonadaceae. Orthologs of Escherichia coli K-12 MG1655 ubiD (e-value ≤ 9e-54, identity 183 
≥ 86%) and ubiX (e-value ≤ 3e-60, identity ≥ 54%) were found in Pseudomonadaceae but not in 184 

the Moraxellaceae genomes. Thus, the Moraxellaceae genomes should encode an alternative 3-185 
polyprenyl-4-hydroxybenzoate carboxy-lyase that is non-orthologous to ubiD or ubiX, and this 186 

alternative gene should be present in Moraxellaceae but not in Pseudomonadaceae. Analysis of 187 
gene occurrence by IMG revealed 29 candidates. A hypothetical protein (the locus tag in A. junii 188 
is HMPREF0026_02430), was considered to be the most probable candidate because of its co-189 
localization on the chromosome with the ubiE and ubiB genes in the genomes of Acinetobacter 190 
spp. and Psychrobacter sp. PRwf-1. We named this gene ubiZ. The number of genomes with a 191 

complete Ubi pathway thus increased from 19 to 20. 192 

NOVEL ENZYMES IN THE MEN PATHWAY 193 

We predicted alternative genes for 1,4-dihydroxy-2-naphthoyl-CoA thioesterase (EC 3.1.2.28) 194 
and for (1R,6R)-2-succinyl-6-hydroxy-2,4-cyclohexadiene-1-carboxylate synthase (EC 195 

4.2.99.20) (Figure 2). The first enzyme is typically encoded by the menI gene (Widhalm et al., 196 
2009;Chen et al., 2013), whereas the second enzyme is typically encoded by the menH gene 197 
(Jiang et al., 2007;Jiang et al., 2008). No menI orthologs were found in the genomes of 198 

Eggerthella sp. 1_3_56FAA or Gordonibacter pamelaeae 7-10-1-b. A sequence similarity search 199 
using the tblastn algorithm (Altschul et al., 1997) revealed in these genomes a distantly related 200 

homolog of menI (e-value = 1.4, identity = 30%, the locus tag in G. pamelaeae is GPA_07290) 201 
that was annotated as a hypothetical protein. Because such an e-value and identity is not 202 
significant, we verified the presence of this protein in the analyzed genomes. The orthologs of 203 

this new gene were found only in genomes having the Men pathway but lacking menI. 204 
Consequently, we propose that this gene, called menJ, could replace the function of menI. There 205 

are no additional corroborations for this prediction, such as a genomic location with other MK 206 
synthesis genes or a sequence similarity to functionally relevant proteins. Hence, this prediction 207 
remains quite speculative. 208 

 209 

A non-orthologous replacement for the menH gene was predicted by a detailed analysis of the 210 
menI genes in the studied genomes. This analysis revealed two types of MenI proteins. The first 211 
type has the same domain structure as a protein from E. coli and includes a single thioesterase 212 

domain (Pfam ID: PF03061). The second type of MenI has the same PF03061 domain at its C-213 
terminus and an additional hydrolase domain (Pfam ID: PF08282) at its N-terminus (Figure S1A 214 

in Supplementary Materials). The PF08292 domain belongs to the haloacid dehydrogenase 215 
superfamily, the members of which catalyze reactions similar to the one catalyzed by MenH 216 

(Koonin and Tatusov, 1994). In the analyzed genomes, we observed two types of orthologs 217 
containing the PF08282 domain: the PF08282-MenI fusions and proteins having a single 218 
PF08282 domain (Figure S1B in Supplementary Materials). All the proteins that contained a 219 
PF08282 domain were present only in genomes lacking the MenH orthologs. Thus, the PF08282-220 
domain protein, called MenY, was proposed to be a non-orthologous displacement for MenH. 221 

The prediction of the menJ and menY genes increased the number of genomes with a complete 222 
Men pathway from 24 to 72. 223 

NOVEL ENZYME IN THE MQN PATHWAY 224 

Using a genomic analysis of the Mqn pathway, we predicted an alternative form of 1,4-225 
dihydroxy-6-naphthoate synthase (EC 1.14.-.-) and proposed an enzyme for the previously 226 

unknown steps of this pathway. In the genomes of Mitsuokella multacida DSM 20544 and 227 
Megamonas hypermegale ART12/1, no mqnD genes were found, but we detected a gene that co-228 
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localized together with the mqnC and mqnE genes (the locus tag in M. hypermegale is 229 
MHY_27640). In addition to M. multacida and M. hypermegale, this protein was found to cluster 230 

with the mqnC and mqnE genes in six genomes, including Selenomonas artemidis F0399, 231 
Selenomonas flueggei ATCC 43531, Selenomonas noxia ATCC 43541, Selenomonas sp. 232 

67H29BP, Selenomonas sp. F0430, and Selenomonas sputigena ATCC 35185. In further four 233 
genomes, Pelotomaculum thermopropionicum SI, Syntrophomonas wolfei str. Goettingen, 234 
Syntrophothermus lipocalidus DSM 12680, and Thermosinus carboxydivorans, this protein was 235 
found to co-localize with the mqnEAC operon. Because this gene was found only in conjunction 236 
with the other genes in this pathway but not with mqnD, we proposed that this gene (mqnZ) can 237 

replace the gene function of mqnD. Unfortunately, sequence analysis of this protein did not 238 
provide additional support for its prediction as the only sequence similarity was found with the 239 
phosphorylase superfamily (Pfam ID: PF01048) (e-value = 1.14e-32).  240 

 241 

PREDICTION OF THE LAST STEPS OF THE MQN PATHWAY 242 

Previously, it has been proposed that the final biosynthetic stages of the Mqn pathway should be 243 
catalyzed by a polyprenyltransferase, a carboxy-lyase, and a methyltransferase (Arakawa et al., 244 

2011;Barta et al., 2014;Zhi et al., 2014), but the particular enzymes are unknown. Analysis of 245 
genomes containing genes for the Mqn pathway revealed genes that are homologous to 246 

ubiE/menG, ubiA, ubiD, and ubiX. The UbiE/MenG proteins encode S-adenosyl-L-methionine-247 
dependent methyltransferases that transfer a methyl group to the carbon atom of the aromatic 248 
ring, which is part of both UQ and MQ. These methyltransferases are involved in both the Ubi 249 

and Men pathways (Lee et al., 1997). Thus, we propose that the Mqn co-occurring homologs of 250 
UbiE/MenG could be involved in menaquinone synthesis. To test this hypothesis, we constructed 251 

a phylogenetic tree for the UbiE/MenG-like proteins co-occurring with the Ubi, Men, and Mqn 252 
pathways (Figure S2 in Supplementary Materials). The Mqn co-occurring proteins did not form a 253 
separate monophyletic branch but were mixed with the Men co-occurring proteins. Based on this 254 

co-occurrence, we propose that the Mqn co-occurring UbiE/MenG proteins play the same role as 255 

UbiE/MenG, i.e., catalyzing the methylation of DMK to produce MK. 256 
 257 

The UbiA protein catalyzes the attachment of a polyprenyl group to the quinone aromatic ring 258 

(Melzer and Heide, 1994). We propose that the Mqn co-occurring homologs of UbiA are 259 
involved in the Mqn pathway. On the other hand, in the Mqn pathway a polyprenyl group could 260 

be attached to 1,4-dihydroxy-6-naphthoate or its derivatives, whereas UbiA catalyzes the 261 
attachment of a polyprenyl group to 4-hydroxybenzoate. Thus, different substrate specificities of 262 

UbiA and its Mqn co-occurring homologs could correlate with distinguishable differences on the 263 
amino acid sequence level. Correlations between phylogeny and substrate specificity have been 264 
reported for various enzymes (Lee et al., 2007;Olivares-Hernandez et al., 2010;Reddy et al., 265 
2013;Ratnikov et al., 2014). Consequently, we proposed that UbiA and its Mqn co-occurring 266 
homolog form a clearly distinguished branches in their phylogenetical tree. To test this 267 

hypothesis, we constructed a phylogenetic tree (Figure S3 in Supplementary Materials) for the 268 
three homolog groups: (1) UbiA proteins, (2) the Mqn co-occurring homologs of UbiA, and (3) 269 

MenA proteins. Each group in the tree formed a monophyletic branch. The UbiA proteins and 270 
the Mqn co-occurring homologs of UbiA (named MqnP) branches were neighboring but were 271 
clearly separated from each other. Thus, we propose that UbiA and MqnP have similar functions 272 
but have different substrate specificities. The MqnP protein is proposed to be a 273 
polyprenyltransferase in the Mqn pathway.  274 

 275 
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The UbiD and UbiX proteins are carboxy-lyases in the Ubi pathway (Cox et al., 276 
1969;Alexander and Young, 1978;Gulmezian et al., 2007). Homologs for both of these proteins 277 

were found in the genomes encoding enzymes for the Mqn pathway. As for the UbiA homologs, 278 
we suspected that the Ubi pathway proteins and their Mqn co-occurring homologs would have 279 

different substrate specificities and would be clearly separated based on the corresponding 280 
phylogenetic trees. Construction of such trees (Figure S4A in Supplementary Materials) 281 
confirmed this proposition. The UbiD proteins and their Mqn co-occurring homologs formed 282 
monophyletic branches that were clearly separated from each other. The same was true for the 283 
UbiX proteins and their Mqn co-occurring homologs (Figure S4B in Supplementary Materials). 284 

Based on these results, we propose that the Mqn co-occurring homologs of UbiD and UbiX are 285 
carboxy-lyases in the Mqn pathway; we named them MqnL and MqnM, respectively.  286 

 287 
Additionally, the presence of SDPs (Kalinina et al., 2004;Mazin et al., 2010) was analyzed for 288 

the UbiA/MqnP, UbiD/MqnL, and UbiX/MqnM proteins were found in the HGM genomes. For 289 

each of these groups of homologous, 33, 27, and 7 SDPs were determined, respectively (Figure 290 

S5 in Supplementary Materials). After grouping by determined SDPs (see “Materials and 291 

Methods” for details), each set of homologs was divided to two groups. In all three groups of 292 

homologs, SDPs-based groups turned out to be in agreement with the division of phylogenetic 293 
trees and our predictions of functions.  294 

 295 

Thus, the enzymes for all three steps (polyprenylation, decarboxylation, and methylation) in 296 
the transformation of 1,4-dihydroxy-6-naphthoate into MK were predicted. However, the order 297 

of these steps is not completely clear. Because the Mqn pathway associated with UbiE/MenG 298 
was indistinguishable from the Men pathway, we propose that methylation may be the final step 299 
of the Mqn pathway, as is the case for the Men pathway. For the ordering of polyprenylation and 300 

decarboxylation, we propose two alternative scenarios (Figure 1). In the first scenario, 1,4-301 
dihydroxy-6-naphthoate is initially polyprenylated to form 3-polyprenyl-1,4-dihydroxy-6-302 

naphthoate, which then is decarboxylated to DMK. In the second scenario, 1,4-dihydroxy-6-303 

naphthoate is initially decarboxylated to form naphthoquinone, which could then be 304 

polyprenylated to form DMK. The mqnP, mqnL, and mqnM genes were all found in each 305 
genome containing the Mqn pathway, but these genes were absent in the other genomes, 306 
supporting our predictions of their involvement in the Mqn pathway.  307 

CO-DISTRIBUTION OF QUINONE BIOSYNTHETIC PATHWAYS AND QUINONE-DEPENDENT 308 

REDUCTASES FOR ELECTRON ACCEPTORS 309 

Based on the presence of the Ubi, Men, and Mqn pathways in each analyzed genome, we 310 

predicted the patterns of the synthesized quinones. The ability to synthesize UQ is directly 311 
determined by the presence of the Ubi pathway, whereas the situation for DMK and MK 312 
synthesis is more complicated. Because DMK is an intermediate in the Men and Mqn pathways, 313 
organisms with genomes having one of these pathways should be able to synthesize DMK. The 314 

ability to synthesize MK depends on the presence of the ubiE/menG genes. In the presence of the 315 
Men or Mqn pathway, having ubiE/menG in the genome determines the ability to synthesize 316 
both MK and DMK. Meanwhile, the presence of the Men or Mqn pathway without ubiE/menG 317 
in the genome results in the synthesis of DMK only. Overall, five different patterns of quinone 318 
synthesis were found (Table S2 in Supplementary Materials). A total of 19 genomes were able to 319 
synthesize UQ, MK, and DMK, 4 genomes were able to synthesize UQ only, 99 genomes were 320 
able to synthesize MK and DMK, 8 genomes were able to synthesize DMK only, and, finally, 321 

124 genomes were not able to synthesize any of the quinones. 322 
 323 
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The distribution of quinone synthesis patterns in the HGM genomes was also compared to the 324 
distribution patterns of quinone-dependent reductases for electron acceptors (also referred to as 325 

reductases) obtained from a previous analysis of HGM genomes (Ravcheev and Thiele, 2014). 326 
Only quinone-interacting reductases were included in our analysis. A reductase was considered 327 

as quinone-interacting if orthologs of known quinone-interacting subunits were found in 328 
chromosomal gene cluster encoding for this reductase. In total, we analyzed 17 types of 329 
reductases with the following electron acceptors: oxygen (Cyo, Qox, and Cyd), nitrate (Nar and 330 
Nap), nitrite (Nrf), tetrathionate (Ttr), thiosulfate (Phs and Tsr), sulfite (Dsr), polysulfite (Psr), 331 
trimethylamine N-oxide (Tor), dimethyl sulfoxide (Dms), selenate (Ynf), fumarate (Frd), and 332 

arsenate (Arx), as well as the Ynf reductase with unknown specificity. Overall, orthologs of 23 333 
quinone-interacting membrane subunits were found in the analyzed genomes. For 14 of these 334 
membrane subunits, interactions with quinones have been confirmed experimentally, whereas for 335 
the 6 proteins interactions with quinones have been previously predicted based on similarity with 336 
known quinone-interacting subunits. For the remaining three proteins, TsrF, DmsH, and YdhD, 337 

interactions with quinones were predicted in this study based on sequence similarity with the 338 

experimentally validated quinone-interacting NrfD protein from E. coli (Table S3 in 339 

Supplementary Materials). 340 

 341 
Of the 254 genomes, 225 (88.6%) genomes demonstrated good agreement between the 342 

distributions of reductases and quinones (Figure 3 and Table S2 in Supplementary Materials): 343 

121 genomes (47.6%) encoded both reductases and quinone-synthesis pathways, whereas the 344 
remaining 104 genomes (40.9%) encoded neither reductases nor quinone-synthesis pathways. 345 

The remaining 29 genomes (11.4%) disagreed in their distributions of quinone-synthesis 346 
pathways and reductases. In 20 genomes (7.9%), reductases were identified but no quinone 347 
biosynthetic pathways were found. Finally, 9 genomes (3.5%) encoded pathways able to 348 

synthesize at least one quinone but contained no identified reductases. 349 

DISCUSSION 350 

In this study, we analyzed the distribution of three pathways for the biosynthesis of respiratory 351 

quinones in 254 genomes, including 250 genomes for microbes commonly found in the healthy 352 
human gut and four genomes for model organisms. Our key results are as follows. (i) The HGM 353 
distribution of canonical pathways was consistent with previous reports and with the distribution 354 

of reductases for electron acceptors. (ii) A comparative genomics analysis identified four 355 
alternative forms of the previously known enzymes for quinone biosynthesis. (iii) Genes for a 356 
previously unknown part of the futalosine pathway were identified, and the corresponding 357 
biochemical reactions, enzymes, and genes were proposed. Furthermore, we discuss the 358 

remaining gaps in some of the genomes. 359 
 360 

The distributions of the three studied quinone biosynthesis pathways in the HGM correspond 361 
to previous data on the distribution of these pathways (Collins and Jones, 1981;Nowicka and 362 

Kruk, 2010). For instance, the Men pathway has been previously shown to be more frequent 363 
among Prokaryotes (Zhi et al., 2014). This observation corresponds to the presence of this 364 
pathway in almost half of the analyzed genomes. In comparison, the Ubi and Mqn pathways are 365 

present in 9% and 5% of the studied genomes, respectively. Additionally, only Alpha-, Beta-, 366 
and Gammaproteobacteria synthesize UQ (Meganathan, 2001b;Cluis et al., 2012). Indeed, 367 
among the studied genomes, the UQ biosynthetic genes were not found to be absent in any of 368 

analyzed Beta- or Gammaproteobacteria (no Alphaproteobacteria genomes were analyzed in 369 
this work). Two-thirds of the studied genomes belong to genera for which experimental data on 370 
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the production of respiratory quinones is available (Table S4 in Supplementary Materials). The 371 
predictions from the genomic analysis were consistent with the experimental data for all HGM 372 

genomes. A similar concordance was observed when the distributions of quinone biosynthetic 373 
pathways and of quinone-dependent reductases for electron acceptors were compared (Figure 3). 374 

For instance, the genes for the UQ-interacting aerobic reductase complex CyoABCD (Abramson 375 
et al., 2000) were found only in genomes encoding the UQ biosynthetic pathway. Additionally, 376 
anaerobic reductases for tetrathionate, thiosulfate, polysulfide, sulfite, fumarate, trimethylamine 377 
N-oxide, dimethyl sulfoxide, selenate, and arsenate were found exclusively in the genomes 378 
encoding the MK/DMK biosynthetic pathways, but not in genomes having only the UQ or DMK 379 

biosynthetic pathways. A comparative genomics approach can thus be used to accurately 380 
annotate quinone biosynthetic pathways. 381 

 382 
Comparative genomic analysis of the quinone biosynthetic pathways revealed four non-383 

orthologous replacements for previously known enzymes. A total of four alternative enzymes 384 

were predicted: one for the Ubi pathway, two for the Men Pathway, and one for the Mqn 385 

pathway. These predictions were made possible by analysis of multiple genome sequences and 386 

by the use of multiple comparative genomics methods. For example, the prediction of MenY, a 387 

non-orthologous replacement for the previously known protein MenH, is based on the following 388 
assumptions. (1) The MenY protein belongs to the superfamily of HAD hydrolases, i.e., its 389 
general function is relevant. (2) The MenY protein forms protein fusions (multi-domain proteins) 390 

with the MenI protein. (3) The menY gene is co-located on the chromosome with other men 391 
genes in the 31 studied genomes. (4) The menY gene is present only in genomes that lack the 392 

menH gene. Each of these assumptions alone is not enough to confirm the prediction that MenY 393 
is a MenH-replacing enzyme, but collectively, they provide a sufficient basis for such a 394 
prediction. Thus, the combinatorial use of multiple methods can increase the impact of genome-395 

based predictions. Additionally, the use of comparative genomics for the prediction of alternative 396 
enzyme forms provides a good basis for further experimental validation. 397 

 398 

The most notable result of this work is the prediction of previously unknown stages of the 399 

futalosine pathway and of genes encoding the corresponding enzymes: mqnP, mqnL, and mqnM 400 
(Figure 1). This prediction was permitted by the application of multiple genomic techniques to 401 
large numbers of analyzed genomes. Further experimental verification is required to confirm the 402 

validity of this prediction. This re-annotation also resolves the incomplete Ubi pathway in a 403 
number of genomes outside of Alpha-, Beta-, and Gammaproteobacteria, making the annotation 404 

consistent with data on the taxonomic distribution of this pathway (Meganathan, 2001b;Cluis et 405 
al., 2012).  406 

 407 

The detection of enzymes for previously unknown stages of the Mqn pathway increases our 408 
knowledge of the evolutionary history of the quinone biosynthetic pathways. The Mqn pathway 409 
was shown to be the primordial pathway for the MK biosynthesis, whereas the Men pathway 410 

appeared later in evolution (Zhi et al., 2014). The narrow taxonomic distribution of the Ubi 411 
pathway clearly indicates that it is the most recently evolved pathway. The results of the current 412 
work specify the details of pathway evolution. Quinone biosynthetic pathways that newly 413 
emerge during evolution may use parts of preexisting pathways. Thus, the Men pathway adopted 414 
a methyltransferase and, because the MenA is a homolog of the MqnP, possibly a 415 
polyprenyltransferase from the more ancient Mqn pathway. The Ubi pathway, the youngest of 416 
the three studied pathways, adopted three proteins from the Mqn pathway: polyprenyltransferase 417 
and two non-homologous carboxy-lyases. Additionally, the Ubi pathway from the Mqn or Men 418 

pathway adopted a methyltransferase. Thus, younger pathways contain more enzymes adopted 419 
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from older pathways. This assumption is based on only the three analyzed pathways and is 420 
therefore quite speculative. Nonetheless, this assumption can lead to an interesting conclusion. 421 

For example, the alternative isoprenoid quinones, such as sulfolobusquinone, caldariellaquinone, 422 
and benzodithiophenoquinone, have a very narrow taxonomic distribution (Nowicka and Kruk, 423 

2010;Zhi et al., 2014), and their biosynthetic pathways should be younger than the Men and Mqn 424 
pathways. The pathway for the biosynthesis of the alternative quinones would thus be expected 425 
to contain homologs of enzymes from more ancient pathways. This expectation could be used to 426 
predict such pathways. Of course, such predictions will also be quite speculative and will require 427 
experimental validation. However, if this assumption is true, it can be used for the prediction of 428 

various novel pathways beyond quinone biosynthesis. 429 

FURTHER DIRECTIONS 430 

Our study resulted in the functional predictions for a number of genes involved in quinone 431 
biosynthesis. Such predictions illustrate the power of comparative analysis of individual 432 

genomes. Nonetheless, some problems related to microbial quinone biosynthesis still remain 433 
unresolved. The first problem is the presence of incomplete biosynthesis pathways. For instance, 434 
incomplete Men pathways were found in 43 genomes. Three non-exclusive hypotheses might 435 

explain this pathway incompleteness: (1) the incompleteness of genome sequences, (2) inter-436 
microbe exchange of metabolites, and (3) non-orthologous replacements. Two-thirds of the 437 

analyzed genomes have a draft status, and some genes for the quinone biosynthetic pathways 438 
may thus be absent from the current version of the genome. Completion of the sequences of 439 
current draft genomes may complete the Men pathway. For example, the draft genome sequence 440 

of Escherichia sp. 1_1_43 lacks genes for the Men pathway and lacks some genes in the Ubi 441 
pathway (Table S1 in Supplementary Materials). Nevertheless, in all the complete genomes of 442 

Escherichia spp., all the genes for these two pathways were found. Thus, we can be confident 443 
that the quinone biosynthesis genes missing from the current genome of Escherichia sp. 1_1_43 444 
will be detected in the finished version of this genome. Thus, the first further direction is an 445 

update of the study results using a novel, complete version of previously incomplete genomes. 446 

 447 
The availability of finished genomes for all the studied organisms will only partially resolve 448 

the problem of pathway incompleteness, as incomplete pathways were also found in a number of 449 

finished genomes (Figure 4). For example, the multiple finished genomes of Lactobacillus spp. 450 
showed incomplete Men pathways. The common feature of these incomplete pathways is that 451 

early steps of the pathway are missing whereas late steps are present, at least the steps required 452 
for the polyprenylation and methylation catalyzed by MenA and MenG, respectively (Figure 4). 453 

Because the addition of a hydrophobic polyprenyl group takes place at the penultimate step of 454 
the Men pathway, all MK precursors from isochorismate to 1,4-dihydroxy-2-naphthoate are 455 
soluble ; thus, exchange of these metabolites between different microorganisms could be 456 
possible. For example, 1,4-dihydroxy-2-naphthoate could be used by microbes having only the 457 
menAG genes, whereas O-succinylbenzoate could be used by microbes having the menEBIAG 458 

genes. We hypothesize that such organisms could utilize soluble precursors of MK. Hence, the 459 
corresponding transport genes should be present in their genomes, but remain to be annotated. 460 

Two types of transporters would be required, (1) transporters for the export of soluble quinone 461 
precursors in the producing organisms and (2) transporters for the import of these precursors in 462 
the consuming organisms. Whereas nothing is known about the exchange of quinone precursors 463 
in microbial communities, inter-species exchange of metabolites has been demonstrated for the 464 
HGM. For instance, HGM organisms can exchange acetate, extracellular polysaccharides, 465 
formate, fucose, molecular hydrogen, secondary bile acids, short-chain fatty acids, sialic acid, 466 
and succinate (Stams and Plugge, 2009;De Vuyst and Leroy, 2011;Ng et al., 2013;Kovacs, 467 
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2014;Vogt et al., 2015). Thus, the proposed exchange of soluble quinone precursors is very 468 
likely. 469 

 470 
The hypothesis that MK precursors may be exchanged between microbes is tempting but 471 

remains speculative. To confirm this hypothesis, the transporters of the corresponding MK 472 
precursors must be computationally predicted and then experimentally validated. For better 473 
support of the exchange hypothesis, co-presence of the producing and consuming organisms in 474 
various HGM samples would need to be analyzed. These inter-microbe interactions should also 475 
be validated experimentally and/or tested computationally using the mathematical models (see 476 

below).  477 
 478 
 Even if the exchange hypothesis were true, the problem of incomplete pathways could not be 479 

sufficiently resolved. In some finished genomes, such as Akkermansia muciniphila or 480 
Megamonas hypermegale, the pathways lack internal steps (Figure 4). For these genomes, an 481 

important next step would be the search for non-orthologous replacements in incomplete 482 

pathways. Non-orthologous replacements are well known for quinone biosynthetic pathways. For 483 

example, in E. coli, the decarboxylation of 3-polyprenyl-4-hydroxybenzoate can be catalyzed by 484 

two non-homologous proteins, UbiD and UbiX (Cox et al., 1969;Alexander and Young, 485 
1978;Gulmezian et al., 2007). Another example is the existence of multiple non-orthologous 486 
replacements for enzymes catalyzing the early steps of the Mqn pathway (Arakawa et al., 2011). 487 

Additionally, four non-orthologous replacements were predicted in this study. The non-488 
orthologous replacement hypothesis is very promising because these replacements can be 489 

successfully determined even using computational methods alone. If such replacements are 490 
found, the problem of pathway incompleteness could be resolved. 491 
 492 

The other unresolved problem is the inconsistency between the distributions of quinone 493 
biosynthetic pathways and quinone-dependent reductases for electron acceptors (Figure 3). Two 494 

main types of inconsistencies were observed: (1) absence of reductases in the presence of 495 

quinone biosynthetic pathways and (2) absence of quinone biosynthetic pathways in the presence 496 

of reductases. Of course, both of these problems may be partially resolved by the availability of 497 
finished genomes. On the other hand, such inconsistencies were also found in finished genomes 498 
(Table S1 in Supplementary Materials). The absence of reductases could be explained by the use 499 

of unknown reductases by an organism. In a previous study, we have predicted two novel 500 
membrane reductases among HGM genomes (Ravcheev and Thiele, 2014), and at least one of 501 

them, thiosulfate reductase Tsr, was predicted as quinone-dependent (Table S3 in Supplementary 502 
Materials). Further systematic analysis of respiratory enzymes in the HGM genomes could 503 
resolve this type of inconsistencies.  504 

 505 
The absence of quinone biosynthetic pathways could be explained by the existence of 506 

alternative quinone biosynthetic pathways. For instance, the alternative Mqn pathway for MK 507 

biosynthesis has been discovered in 2008 (Hiratsuka et al., 2008). Additionally, alternative types 508 
of quinones may be used for respiration in organisms having reductases but lacking the Ubi, 509 
Men, and Mqn pathways. In this study, we limited our analysis to the biosynthesis of UQ, MK, 510 
and DMK, but the diversity of microbial respiratory quinones is much wider (Collins and Jones, 511 
1981;Nowicka and Kruk, 2010). Nonetheless, the biosynthetic pathways of alternative quinones 512 
are poorly understood. We anticipate that increasing wealth of experimental and genomic data 513 
will substantially improve our understanding of these pathways. 514 
 515 
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In this study, the non-orthologous displacements and genes for previously unknown reactions 516 
were only computationally predicted;thus requiring experimental confirmation. For example, the 517 

predicted 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate dehydrogenase 518 
MenY could be verified using model organisms, such as Corynebacterium spp. or Bacteroides 519 

spp. Similarly, the novel enzymes in the Mqn pathway could be experimentally analyzed using 520 
Helicobacter spp.  521 

 522 
Furthermore, the respiratory systems in the HGM organisms are not limited to reductases and 523 

quinones. For broader coverage of the respiratory systems, our study will need to be extended to 524 

the analysis of ATP synthases and dehydrogenases for electron donors. Other pathways of 525 
relevance to human health, such as the B-vitamin synthesis capability of the HGM (Magnusdottir 526 
et al., 2015), should be also considered. The identification of novel enzymes and pathways will 527 
lead to better understanding of the HGM biochemistry and physiology. This is a pre-requisite to 528 
understand the HGM’s contribution to human health and disease as well as to rationally alter 529 

HGM. Current approaches aiming to modify the HGM, such as fecal transplants (Kelly et al., 530 

2015) and probiotics, lack mechanistic bases, which is partially due to insufficient biochemical 531 

knowledge.  532 

 533 
The quinone biosynthesis needs also to be analyzed in the context human-microbe 534 

interactions. An inability of human cells to synthetize MK, together with the importance of this 535 

compound for the human health (Shearer and Newman, 2008;Booth, 2009;Van Winckel et al., 536 
2009;Walther et al., 2013;Shearer and Newman, 2014), raises the question about a role of gut 537 

microbiota in the MK supply of the host. So far, MK biosynthesis has been studied in 538 
monocultures of model organisms (Bentley and Meganathan, 1982;Ramotar et al., 539 
1984;Fernandez and Collins, 1987;Walther et al., 2013) or in animal-microbe models (Kindberg 540 

et al., 1987;Davidson et al., 1998) but the information about the human-microbe exchange of 541 
MK is still very scarce. Nonetheless, rat models demonstrated that luminal concentrations of MK 542 

produced by Escherichia coli and Bacteroides vulgatus could reach 6-7 and 8 g per g of dry 543 
feces, respectively. Assuming a similar ratio for humans and a daily fecal output of 25-50 g solid 544 

matter in healthy individuals (Wyman et al., 1978), microbial produced and excreted MK could 545 

range from 150-400 g feces. The recommended dietary intake of vitamin K, of which MK is a 546 

minor part, is for sucking infants 0.86 – 3.15 g per day for sucking infants (Canfield et al., 547 
1990;Canfield et al., 1991;Greer et al., 1991;Shearer and Newman, 2008) and for adults 75 – 90 548 

g per day (Frick et al., 1967;Booth and Al Rajabi, 2008;Shearer et al., 2012). In fact, the 549 
microbial contribution to MK requirements has been suggested to be approximately 50% 550 

(Wyman et al., 1978), but evidence is still missing.  551 
 552 
Computational modeling (Palsson, 2006;Orth et al., 2010) of HGM metabolism could be used 553 

to systematically elucidate the MK biosynthesis potential of different HGM representatives. In 554 
fact, genome-scale metabolic models for numerous HGM microorganisms have been published 555 

(Thiele et al., 2005;Orth et al., 2011;Thiele et al., 2011;Thiele et al., 2012;Branco dos Santos et 556 
al., 2013;Heinken et al., 2013;Heinken et al., 2014;Bauer et al., 2015), but still require better 557 
coverage of the respiratory chain and quinone biosynthesis pathways. At the same time, 558 
computational models for human metabolism (Duarte et al., 2007;Sahoo et al., 2012;Heinken et 559 

al., 2013;Thiele et al., 2013a;Thiele et al., 2013c;Sahoo et al., 2015) are available, thereby, 560 
enabling the in silico study of HGM and their interactions with each other (Freilich et al., 561 
2011;Zomorrodi and Maranas, 2012;Khandelwal et al., 2013;Heinken and Thiele, 2015a) as well 562 
as with the human host (Thiele et al., 2013b;Bauer et al., 2015;Heinken and Thiele, 2015b;c). 563 
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Particularly, such a modeling approach could help us to estimate the microbial contribution to 564 
the MK requirements in humans. 565 

 566 
Quinone biosynthesis has been studied in many taxonomically diverse microbial species 567 

(Collins and Jones, 1981;Meganathan, 2001b;Shearer and Newman, 2008;Nowicka and Kruk, 568 
2010;Cluis et al., 2012), but no systematic analysis of quinone biosynthesis has yet been done for 569 
microbes found in a particular ecosystem. Considering that many microbes remain unculturable, 570 
as their culturing conditions remain unidentified, it is crucial to search their genomes for 571 
potential exchanges of metabolites with other community members. Particularly, quinones may 572 

play an important role in the co-metabolism of microbial communities, as they are main electron 573 
transfer molecules in microbial respiratory chains. Quinones influence the energy production and 574 
further, through cellular redox status and central metabolism, they affect the utilization of carbon 575 
and nitrogen sources and biosynthesis of indispensable compounds, such as amino and fatty 576 
acids. Thus, the ability of a microbe to de novo synthetize, salvage, or utilize quinones 577 

determines vital cellular properties, such as growth and replication. The presented results of the 578 

distribution of quinone biosynthetic pathways could be further expanded to include strains with 579 

high relevance in the biotechnological industry, in ecology, and in human health. Such large-580 

scale comparative genomics effort could provide further insight into evolutionary mechanisms, 581 
including co-evolution of microbiomes with the host.  582 
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 925 

FIGURE LEGENDS 926 

Figure 1. Pathways for UQ, MK, and DMK biosynthesis in the analyzed genomes. The 927 

names of relevant enzymes are shown for each reaction. Circled numbers show the numbers of 928 

genomes in which genes for the corresponding enzyme were found. Solid arrows correspond to 929 

previously known enzymes, and dashed arrows together with italicized enzyme names 930 

correspond to enzymes predicted in the current work. Because the products of the reactions 931 

catalyzed by MenL and MenP are unknown, two possible variants of the pathway are shown. 932 

Abbreviations: Met, L-methionine; SAH, S-Adenosyl-L-homocysteine; SAM, S-adenosyl-L-933 

methionine. 934 

Figure 2. Non-orthologous replacements and novel genes in quinone biosynthesis pathways. 935 

(A) Model organisms; (B) examples of genomes with predicted non-orthologous replacements 936 

and novel genes; (C) legend. 937 

Figure 3. Co-distribution of quinone biosynthetic pathways and quinone-dependent 938 

reductases for electron acceptors. The number of genomes is shown. Inconsistencies between 939 

the reductase and quinone patterns are indicated by ellipses. TMAO, trimethylamine N-oxide; 940 

DMSO, dimethyl sulfoxide. 941 

Figure 4. Incompleteness or loss of quinone biosynthetic pathways in the finished genomes. 942 
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