
ARTICLE

Received 20 Nov 2014 | Accepted 19 Jun 2015 | Published 22 Jul 2015

A draft network of ligand–receptor-mediated
multicellular signalling in human
Jordan A. Ramilowski1, Tatyana Goldberg2,3,*, Jayson Harshbarger1,*, Edda Kloppman2,*,

Marina Lizio1, Venkata P. Satagopam4, Masayoshi Itoh1,5, Hideya Kawaji1,5, Piero Carninci1,

Burkhard Rost2,3 & Alistair R.R. Forrest1,6

Cell-to-cell communication across multiple cell types and tissues strictly governs proper

functioning of metazoans and extensively relies on interactions between secreted ligands

and cell-surface receptors. Herein, we present the first large-scale map of cell-to-cell

communication between 144 human primary cell types. We reveal that most cells express

tens to hundreds of ligands and receptors to create a highly connected signalling network

through multiple ligand–receptor paths. We also observe extensive autocrine signalling with

approximately two-thirds of partners possibly interacting on the same cell type. We find that

plasma membrane and secreted proteins have the highest cell-type specificity, they are

evolutionarily younger than intracellular proteins, and that most receptors had evolved before

their ligands. We provide an online tool to interactively query and visualize our networks and

demonstrate how this tool can reveal novel cell-to-cell interactions with the prediction that

mast cells signal to monoblastic lineages via the CSF1–CSF1R interacting pair.
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D
evelopment of multicellular organisms from unicellular
ancestors is one of the most profound evolutionary events
in the history of life on Earth1. In this transition, cells of

multicellular organisms had to acquire various modes of cell-to-
cell (intercellular) communication to develop and then control
their coordinate functioning2. This process is critical during early
embryonic development where the cell’s differentiation and
ultimate fate are controlled by communication with
neighbouring cells3–5. In the developed organism, intercellular
communication coordinates the activities of multiple cell types
required for complex organismal processes such as immune
response6, growth7 and homeostasis8. Defects in cell-to-cell
communication, including dysregulation of autocrine signalling,
are also medically important in cancer9, autoimmune10 and
metabolic diseases11.

Despite its importance, studies of intercellular communication
across specialized cells of higher metazoa have generally focused
on communication between only a few cell types and via limited
numbers of ligand–receptor pairs. Currently there are no reports
of systematic studies trying to elucidate and quantify the
repertoire of signalling routes between different cell types. To
address this, we have systematically reviewed the expression
profiles of 642 ligands and their 589 cognate receptors in our
1,894 literature-supported interacting pairs across a panel of 144
human primary cell types12. In particular, we used known
interacting ligand–receptor pairs and public protein–protein
interaction (PPI) information to generate the first large-scale
draft map of primary cell-to-cell interactions. Highlighting their
important role in the evolution of higher order metazoans, we
show that receptors and ligands have more cell-type-specific
expression profiles and are evolutionarily younger as a class than
nuclear and cytoplasmic proteins. Applying a 10 tags per million
(TPM; B3 transcripts per cell) detection threshold to our data,
we find that primary cells express on average less than one-third
of all ligands and receptors (roughly 140 ligands and 140
receptors). We also find that messages between any two given cell
types are carried in a rather specific manner despite the hundreds
of possible connecting paths and have significant potential for
autocrine signalling. We also discuss in more detail the level of
communication between different cell lineages. Finally, to benefit
the research community, we provide an interactive visualization
and query tool for ligand–receptor networks in humans (available
at http://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/).
This work is part of the FANTOM5 project. Data download,
genomic tools and co-published manuscripts have been
summarized at http://fantom.gsc.riken.jp/5/.

Results
PM and secreted proteins are young and cell-type specific.
Recently the FANTOM5 consortium used Cap Analysis of
Gene Expression (CAGE) to generate a promoter level
expression atlas12. Based on CAGE measurements across a
collection of 975 human samples (primary cells, cell lines and
tissues), gene expression profiles were classified as non-
ubiquitous (cell-type restricted), ubiquitous-non-uniform and
ubiquitous-uniform (housekeeping)12. Gene Ontology (GO)13

analysis of genes with cell-type-restricted expression showed
their enrichment for proteins annotated with the terms receptor
activity, plasma membrane (PM) and multicellular organismal
process. This suggested that proteins involved in intercellular
communication were more likely to have cell-type-restricted
expression profiles. To explore this more systematically,
we used protein experimental localization information14,15

and computational predictions16,17 (Methods) to classify
human protein-coding genes (HGNC18 release 03 April 2014;

http://www.genenames.org/cgi-bin/hgnc_downloads) based on
the subcellular localization of the proteins they encode into:
PM, secreted, cytosolic, nuclear, multiple and ‘other’ proteins
(Supplementary Data 1). Comparing the cell-type specificity of
each class, we find that secreted and PM proteins are significantly
more cell-type specific (Fig. 1) than proteins that localize to other
cellular compartments (Mann–Whitney U-test, each adjusted
P valueo0.001). We also confirmed this trend using whole cell
proteome data available for five haematopoietic primary cell
types19 (Mann–Whitney U-test, each adjusted P valueo0.001;
Supplementary Fig. 1).

As cell-type-specific proteins are likely to appear with the
emergence of new cell types and increased organismal complex-
ity, we next examined the predicted ages of proteins from each
subcellular localization using Protein Historian20 (pre-computed
estimates based on Wagner parsimony21 and P-POD’s22

OrthoMCL23 clustering of proteins in the PANTHER24

database were used). Evolutionary profiles of proteins from
the different subcellular localizations show that secreted
proteins (average age 412.2 mya) and PM proteins (average age
517.2 mya) are younger (Mann–Whitney U-test, each adjusted
P valueso0.001) than proteins that localize to the nucleus
(average age 663.1 mya), cytoplasm (average age 855.1 mya)
(Supplementary Data 1; Fig. 1c,d) or to other compartments.
Using additional protein age estimates25,26, also confirmed the
trend that PM and secreted proteins are generally the youngest
proteins (Supplementary Fig. 2).

Identification of putative ligand–receptor pairs. We next sought
to examine in more detail PM and secreted proteins specifically
involved in cell-to-cell communication. Building on previous
efforts to curate lists of ligand–receptor pairs, we merged the
lists from Database of Ligand�Receptor Partners (DLRP)27,
IUPHAR28 and Human Plasma Membrane Receptome
(HPMR)29 databases to generate a non-redundant set of 1,179
known interacting ligand–receptor pairs. Given that these
resources originated many years ago, and are not extensively
updated, we found many genuine ligand–receptor pairs were
missing, for example GDF2-4ACVR1 (ref. 30) and CCL4-
4CCR3 (ref. 31).

To extend this set, we first expanded the lists of candidate
ligands and receptors by incorporating proteins predicted to be
secreted and localized to the PM, respectively. We then searched
for PPIs between all putative ligands and putative receptors
(Supplementary Fig. 3a) as described in the Methods section.
From this analysis, we inferred 2,117 experimentally supported
interactions in the HPRD15 and STRING32 databases, which
included 1,288 ligand–receptor pairs absent from our known
collection of DLRP, IUHPAR and HPMR interactions.

From the above, we compiled a unique list of 2,467 known and
inferred interactions. We next aimed to curate these interactions
with a primary citation (PubMed ID), either by extracting the
reference from the primary data sources (IUHPAR, HPMR and
HPRD) or by manually searching the literature. Through the
manual curation, we excluded 135 pairs, as the partners were not
a genuine ligand or receptor, and found an additional 90 pairs.
This resulted in a final curated set of 2,422 interactions: 1,894
interactions with primary literature support which we refer to as
‘reference’ and use in our subsequent analysis, and the remaining
set of 528 curated interactions without primary literature support
we refer to as ‘putative’ (Supplementary Fig. 3b). All ligand–
receptor interactions are available in Supplementary Data 2.

Receptors often evolved before their ligands. Using our
reference ligand–receptor pairs and the protein age estimates20,21,
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we examined whether the interacting partners appeared during
the same evolutionary period as previously reported33, or if one
had preceded the other29. We found that many cognate partners
originated at the same phylostratum (273 pairs). However, we
also observed an excess of 1,082 pairs where the ligand was
younger than the receptor as compared with only 431 pairs where

the ligand was older (Fig. 2). As ligands (median length 267
amino acids) are often shorter than receptors (median length 515
amino acids), we sought to exclude the possibility that length-
related gene age estimate biases explain why ligands appeared to
come after their cognate receptors. To address this, we generated
a comparative matrix that consisted of interacting proteins
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Figure 1 | Relationship between protein subcellular localization, cell-type specificity and gene ages. (a) Breakdown of known subcellular localization

of protein-coding genes expressed 41 TPM in at least one primary state for which protein ages were available. (b) Interquartile range distributions

(whisker boxes) and relative cell-type specificity for each protein subcellular compartment from FANTOM5 primary cell expression profiles. Both secreted

and plasma membrane proteins are significantly more cell-type specific than nuclear and cytoplasmic proteins (each Mann–Whitney U-test-adjusted

P valueo000.1). (c) Relative fractions of proteins at each evolutionary stage for selected subcellular localization (secreted, plasma membrane, nucleus,

cytoplasmic and other) using the methods of Wagner21. All fractions at a given age add to 100%. (d) As in c but scaled for visualization purposes to the

number of nuclear proteins. Both secreted (average age: 412.2 mya) and plasma membrane (average age: 517.2 mya) proteins are significantly younger than

nuclear (average age: 663.1 mya) and cytoplasmic proteins (average age: 855.1 mya), each Mann–Whitney U-test-adjusted P valueo000.1. Note: exact

numbers of proteins for each subcellular localization class in each phylostrata are available in Supplementary Data 1.
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extracted from HPRD (Supplementary Fig. 4), where one partner
was shorter (lower quantile of all protein lengths) and the other
was longer (upper quantile of all protein lengths). From this we
found that in 1,933 out of 3,271 pairs the younger protein
was shorter. Using a binomial one-sided test, adjusted for the
length factor probability (1,933/3,271¼ 0.591), we found that
ligands are still significantly younger than their cognate receptors
(P valueo0.001; 95% confidence interval [0.695, 1]). We also
confirmed the trend held with other measures of protein age25,26

(Supplementary Fig. 4c,d), and thus can conclude that for the
majority of ligand–receptor pairs the ligands appeared after their
cognate receptors.

Receptor and ligand repertoires of mammalian cell types. To
reliably determine the repertoire of ligands and receptors in each
primary cell type using CAGE data requires extracting their
expression levels at a certain detection threshold. In FANTOM5,
we previously used 10 TPM as a conservative detection threshold
as it theoretically equates to B3 transcript copies per cell34.
Cell-to-cell signalling, however, requires that these transcripts
are translated into proteins, therefore we examined the level of
protein support at three different thresholds of CAGE expression
levels (10, 50 and 100 TPM). For the comparison, we used
B lymphocytes as they have been extensively studied over the past
50 years, have large amounts of flow cytometry data available and
their whole cell proteome was recently measured by Kim et al.19.
At the 10 TPM threshold, 82% (147/179) of the ligands and

receptors detected by CAGE were also found in the whole B-cell
proteome data set or were previously reported as detectable in
B cells by antibody staining (Supplementary Data 3). At the higher
thresholds, the level of support increased; (82/83—99%) and
(57/57—100%) ligands and receptors detected by CAGE at 50 and
100 TPM, respectively, were found in the proteome data, but many
true positives were lost. In addition, to estimate the fraction of
potential false negatives at 10 TPM, we compared the set of gene
products not detected in the FANTOM5 B-cell transcriptome but
present in the proteome data of Kim et al.19 to a high quality
microarray data set collected for the Haematlas project35. We
found that only 4% of these gene products (8/192 with unique
probes on the arrays) had detectable transcripts, in contrast to 78%
of gene products detected by FANTOM5 at 10 TPM (125/161 with
unique probes on the arrays). We conclude that the remaining 184
proteins detected in the proteome data only, are most likely not
produced by B cells but instead are either false positives of the
proteome analysis or non-cell autonomous36 contributions to the
proteome. In particular, we note that well known liver specific
proteins ASHG, ALB and APOB and the testis-specific AMH were
detected in the B-cell proteome yet there is no evidence of their
expression in any other B-cell transcriptome data set (not
restricted to FANTOM5 and Haematlas). We thus concluded
that applying the 10 TPM detection threshold is likely to yield
relatively low false positive and false negative rates and used it for
the remainder of the manuscript.

Systematically examining ligand and receptor expression at this
threshold across 144 primary cell types, we detected 464 ligands
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Figure 2 | Comparative age of genes encoding receptors and ligands. Top and left panels list the number of ligands and receptors estimated to have

arisen at each phylostratum using the method of Wagner21. Middle panel shows the number of ligand–receptor pairs observed in a given phylostrata.

Intensity of red scales with the number of pairs. Note: many interactions (297 pairs) appeared at the same evolutionary stage (diagonal boxes), but we also
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appeared first (binomial one-sided P valueo0.001; 95% confidence interval [0.695, 1]).
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and 477 receptors expressed in at least one cell type (376 ligands,
369 receptors at 50 TPM, 309 ligands and 286 receptors at 100
TPM). We also observed that on average, each cell type expresses
B30% of these genes (B140 ligands and B140 receptors), (82
ligands and 60 receptors at 50 TPM; 59 ligands and 35 receptors
at 100 TPM).

Next we carried out hierarchical clustering of the receptor and
ligand expression patterns across the primary cell types
(Supplementary Fig. 5). We found that most cell types largely
clustered by cell lineage and shared sets of lineage-specific
receptors and ligands. For example, we identified a cluster of
ligands and receptors that are enriched in all endothelial cell
types, which included two of the vascular endothelial growth
factor receptors KDR and FLT4. We also highlight a vascular
smooth muscle cell cluster with a striking enrichment for
cytokines and chemokines (CXCL1, CXCL3, CXCL5, CXCL6,
CXCL11, IL6, IL11, CCL7, CCL8, GDF6, BMP2, NPPB and CSF3).
The expression profiles for all ligands and receptors found in
reference and putative interaction sets across the 144 primary
cells are available in Supplementary Data 4.

General statistics of the cell-to-cell signalling network. Broadly
classifying the cell types using cell ontologies37 into endothelial,
epithelial, haematopoietic, mesenchymal, nervous system and
other lineages, and reviewing their ligand/receptor expression

profiles, we observed that the blood lineages appeared to be
outliers in that they express less ligands on average (B92, B51,
B36 ligands at 10, 50, 100 TPM, respectively; Mann–Whitney
U-test P valueso0.001) and less receptors on average (B120
receptors at 10 TPM; Mann–Whitney U-test P valueo0.001)
compared with the other lineages (Fig. 3a, Supplementary
Fig. 6a,b). This suggests that immune cells use fewer paths to
broadcast their state to their neighbours. We also observe that on
average two-thirds of ligands and receptors expressed from any
given cell can potentially bind to at least one of its cognate
partners on the same cell type (Fig. 3b), indicating that the extent
of autocrine signalling is significant.

Based on the expression profiles of ligands and receptors across
the panel of 144 primary cells, we then considered specificity of
expression of 1,287 interacting ligand–receptor pairs (Fig. 3c).
The median number of cell types that express any given ligand
was 30, while the median number of cell types that express any
given receptor was 32 (threshold of Z10 TPM). Using these
medians to classify genes as specific or broad, we found that 29%
of all pairs have cell-type-restricted expression of both their
ligand and receptor, 43% had restricted expression of only the
ligand or the receptor and 28% of pairs used both broadly
expressed ligands and broadly expressed receptors. Thus 72% of
pairs involve at least one partner with restricted expression,
facilitating selective information transfer via the use of restricted
transmitters and/or receivers. Further examining our complete set
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of 1,287 ligand–receptor signalling paths between all cell types, we
found that at a threshold of 10 TPM for both interacting partners
all 144 cell types had the potential to signal to each other through
a minimum of 22 signalling paths and that on average a pair of
cells can communicate using 190 of these paths (Fig. 3d). Only at
a threshold of 100 TPM did we predict some cell pairs would not
communicate. Repeating the analyses of Fig. 3a–c at the 50 and
100 TPM thresholds reduced the number of detected pairs, but
most findings were on a similar scale (Supplementary Fig. 6).

To understand the biology of ligand–receptor pairs that use
restricted or broadly expressed transmitters/receivers, we used the
DAVID38 tool (http://david.abcc.ncifcrf.gov/) to search for
enrichment of protein domain, molecular function and
biological process annotations in the quadrants of Fig. 3c. Pairs
involving broadly expressed receptors and ligands were enriched
for EGF domains, integrin binding and blood vessel development
terms. Pairs with broadly expressed ligands but restricted
receptor expression were enriched for G protein coupled
receptor, protein kinase domains and chemokine, receptor
kinase, cyclic nucleotide and second messenger signalling terms.
Pairs involving restricted ligands and broadly expressed receptors
were enriched for transforming growth factor-beta domains,
growth factor activity and regulation of protein phosphorylation/
modification terms. Finally, pairs involving restricted ligands and
restricted receptors were enriched for small chemokine, c-type
lectin- and rhodoposin-like domains and peptide receptor,
cytokine, cell-to-cell signalling and locomotory behaviour terms
(Supplementary Data 5).

Ligand–receptor signalling network interface. Using the ligand
and receptor pairs described above, we then calculated all cell-to-
cell edges where both ligand and receptor were expressed in at
least one primary cell state (Z10 TPM). To benefit the research
community, we provide an online resource that visualizes on
demand cell-to-cell networks for any given ligand–receptor pair
across all 144 primary cell types. The tool allows users to select
primary cells and ligand–receptor pairs to be visualized, and then
filters the edges (receptor expression� ligand expression) and
nodes (cells) based on the expression levels. Visualized networks
can be downloaded as SVG (scalable vector graphics) or in a data
format compatible with other network visualization platforms
such as Cytoscape39 and Gephi40 for additional exploration. In
Fig. 4, we show an example of top cells communicating via the
CSF1 ligand–CSF1R receptor pair, where mast cells are the major
broadcasters (the highest levels of CSF1 expression), and
monocytes and related cells are the major recipients (the
highest levels of CSF1R expression) of these signals. We also
note that monocyte-derived macrophages demonstrate autocrine
signalling via this pair, expressing both CSF1 and CSF1R at
notable levels. Additional use cases are provided in
Supplementary Note 1.

Multicellular processes in cell-to-cell communication. Con-
ceptually, our entire cell-to-cell communication network can be
thought of as multi-edge (tens to hundreds of paths between any
two cells), weighted (variable ligand/receptor expression levels),
directed (cell A signals to cell B), hypergraph (a ligand can be
secreted from multiple cells to interact with its cognate recep-
tor(s) on multiple cells) network with millions of potential con-
nections. To reduce the complexity of this graph (namely to
remove its hypergraph aspect), we extracted the pair of cells that
expressed the highest level of ligand and the highest level of
receptor; we refer to these as the major-transmitter and major-
receiver, respectively, and to the pair as the major-signalling pair
(Supplementary Data 6; these major-signalling pairs are likely to

be of the highest physiological significance). Using the six cell
lineage classes described above, that is, endothelial, epithelial,
haematopoietic, mesenchymal, nervous system and other linea-
ges, we counted the number of major-signalling pairs that were
communicating within and across lineages (summarized in
Fig. 5). As the numbers of cell types in each lineage varied, we
tested whether the number of ligands and receptors that were
found at maximum levels in a given lineage were different than
expected by chance. We observed that although the mesenchymal
lineages had more cell types (63) (cf. epithelial (34) and haema-
topoietic (29)), they had significantly less ligands and receptors
than expected by chance (false discovert rate (FDR)-corrected
binomial P valueso0.001 for both ligands and receptors). Con-
versely, the blood lineages were significantly more often expres-
sing the maximum levels of various ligands and receptors than
expected (FDR-corrected binomial P valueso0.001 for both
ligands and receptors). Similarly, we noticed that epithelial and
nervous lineages were significantly more often expressing the
maximum levels of various receptors and ligands than expected
(FDR-corrected binomial P valueso0.001). For detailed results of
this analysis, see Supplementary Data 7 and Supplementary Fig. 7.

Next, given the distribution of max-receivers and max-
transmitters across and within the lineages (and now ignoring
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Figure 4 | Ligand–receptor signalling network interface (hive view). The

results of a search for the CSF1–CSF1R ligand–receptor pair, filtered for the

top cell-to-cell paths (ranked by the product of CSF1 and CSF1R expression).

In this network, stimulated mast cells express the highest levels of CSF1

(1,109 TPM), while CD14þ derived endothelial progenitor cells express

the highest levels of CSF1R (699 TPM). Users can select cells and/or
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based on expression levels of L and R. The interface is available at:

http://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/.
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the numbers of cell types in each lineage class), we checked
whether any paths (cell-lineage-A to cell-lineage-B) were more
common than expected by chance. We observed a striking
enrichment for intra-lineage signalling for cells in the haemato-
poietic, mesenchymal and nervous system lineages, where both
receptors and ligands were more likely to be bound by interacting
partners from cells of the same lineage (FDR-corrected binomial
P valueso0.001). In contrast, we did not observe such significant
enrichment in any inter-lineage signalling (FDR-corrected
binomial P values40.2; Supplementary Data 7).

We next carried out GO enrichment analysis on the pairs of
genes used for communication between or within lineages using
the entire set of receptors and ligands (Supplementary Data 6) as
the background to avoid enrichment of generic terms such as PM
and secreted. As might be expected, genes involved in intra-
haematopoietic lineage signalling were enriched for immune,
defense and inflammatory response genes, whereas genes
involved in intra-endothelial lineage signalling were involved in
angiogenesis. Inter-lineage signalling revealed some of the most
interesting sets of genes enriched in processes that are known to
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Figure 5 | Enrichment of multicellular processes in the max-signalling pair network. About 1287 ligand–receptor (LR) pairs where the receptor (R) and

the ligand (L) are expressed above 10 TPM in at least 1 primary cell state are considered. For each LR pair, the cell expressing the highest level of L and
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require the concerted actions of cells from multiple lineages.
Mesenchymal cell signalling to haematopoietic, nervous system
and endothelial cells, respectively, revealed relevant processes
such as chemotaxis; nervous system development, neurogenesis
and neuron differentiation; and angiogenesis, respectively.
Similarly epithelial to haematopoietic signalling was enriched
for genes involved in defense response, inflammatory response
and innate immune response, while epithelial to endothelial
signalling was enriched for genes involved in wound healing,
blood coagulation and haemostasis (see Supplementary Data 6 for
the full set of enriched terms). Notably, examining signals to
haematopoietic lineages from three different lineages, mesench-
ymal, epithelial and haematopoietic cells, revealed different
biological processes. Mesenchymal to haematopoietic signals
were enriched for proteins annotated with the term chemotaxis,
epithelial to haematopoietic signals were enriched with the term
defense response and haematopoietic to haematopoietic signals
was most highly enriched for the term immune response. These
results reflect that distinct multicellular processes are at work
(even when one of the cellular partners is the same; haemato-
poietic) and that only by considering pairs in this way can they be
revealed.

Discussion
To date there is little systematic literature on the degree of
intercellular communication between human cell types. The most
comprehensive collections of literature-derived ligands and
receptors are the DLRP27 and the HPMR29, however, neither of
these address the complex network of signals between normal cell
types. We have compiled and largely expanded the set of 1,179
known ligand–receptor pairs to 1,894 primary literature-
supported and 528 putative (interacting PM and secreted
proteins) pairs. Using these ligand–receptor pairs and the
unique FANTOM5 resource, which provides expression levels
of these genes in the major human primary cell types, we have
constructed and analysed the first large-scale map of cell-to-cell
communication and revealed extensive intra- and inter-lineage
signalling.

Based on expression profiles of proteins classified into different
subcellular localization classes, we found, as might be expected,
that secreted and PM proteins have the most cell-type-specific
expression profiles. Using different gene estimates for these
proteins, we observed that younger proteins are also more likely
to be PM or secreted proteins, while older ones are more likely to
be nuclear or cytoplasmic. Overall this suggests that as metazoans
continued to evolve new cell types, new cell-type-specific PM
proteins were required to specifically tag these new cell types and
that new secreted proteins were required to report the state of the
new cell type to other cells, these are key features required for
specific cell-to-cell communication. Examining the evolutionary
appearance of interacting ligand and receptor pairs with the
method of Wagner21, we observe a burst of new receptors and
ligands appearing after Opisthokonta at Bilateria and
Euteleostomi, however, we also consistently observe, using
various gene estimate methods, a general bias for receptors to
appear before their cognate ligands. This would seem to fit with
one of the models for ligand–receptor pair formation proposed by
Ben-Shlomo et al.29, where existing PM proteins (pre-receptors)
adopt ligands that modulate their activity.

To benefit the research community, we have created a web tool
(http://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/vis)
that allows users to find the following: (i) the most highly
expressed receptors and ligands for any cell type of interest; (ii)
the most specific signalling paths between any two cell types and
(iii) all cells that use a defined set of ligand–receptor pairs

(Supplementary Note 1). For known pairs, we provide links to the
primary literature via PubMed, but also allow the user to examine
putative novel pairs identified by our study. We suspect that
many of these putative pairs are genuine based on known
interactions of paralogues (for example, ENG is known to be
bound by INHBA, but we also predict binding of the paralogue
INHBE; similarly CCR9 is known to bind to CCL25 but we
predict it also binds CCL13)41,42. In addition, the genes in some
of these putative pairs are co-implicated in disease, for example,
APOE is predicted as a ligand for CHRNA4 and several papers
have shown a genetic interaction between these genes affecting
age-related cognitive decline43 and white matter volume44;
similarly BDNF is predicted as a new ligand for DRD4 and a
genetic interaction between these two genes has been found
associated with bulimia nervosa45.

The network of connections between cells appears to be
incredibly complex with many routes between the same two cells
at different levels of expression and specificity. Unlike a
transcriptional regulatory network, which is generally simplified
to a set of genes as nodes and transcription factor binding as
regulatory edges, a cell-to-cell network consists of cells as nodes
and between any two cells there can be hundreds of potential
messages passed between them. In addition, it is not easy to
model the physiological response of the node (the cell) without
extensive biochemical data. Herein, focusing only on the major-
signalling pairs (the pair of cells that expressed the highest level of
ligand and highest level of receptor for each interacting pair) and
abstracting the network further, grouping cells into lineages
(Fig. 5) we showed a significant bias for intra-lineage commu-
nication. In particular for blood, more than half of the ligands
were targeted to other blood cells. GO enrichment analysis on the
pairs of genes used in communicating, within or between
lineages, showed that genes involved in intra-haematopoietic
lineage signalling were enriched for immune response and
inflammation genes, whereas genes involved in intra-endothelial
lineage signalling were involved in angiogenesis. Signalling of the
mesenchymal and epithelial lineages to haematopoietic cells was
enriched for chemotaxis and defense response terms, respectively.

Examining individual edges in more detail, we found examples
of lineage-specific paralogues being used to communicate with
ligand–receptor families that are often thought of as restricted to
another lineage. For example, chemokines and their receptors are
generally thought of as haematopoietic; however, we find
chemokines that are most highly expressed in mesenchymal,
epithelial and endothelial lineages and appear to be used for
communication to haematopoietic lineages. Signalling from
mesenchymal to haematopoietic cells, we find CCL11 and
CXCL12 chemokines. CCL11 is highly expressed in smooth
muscle cells, in particular non-vascular tissues (colonic, oeso-
phageal, prostatic and uterine), and can bind to the CCR3
receptor expressed on myeloid cells. This association has
functional evidence as CCL11 expression in uterine smooth
muscle cells has been implicated in the recruitment of mast cells
via CCR3 into uterine cellular leiomyosarcoma46 and with
eosinophilic infiltration of other tissues in disease47. Similarly,
we find that CXCL12 (which binds to CD4, CXCR3 and CXCR4
on haematopoietic cells) is highly expressed in synoviocytes.
CXCL12 has been shown to be upregulated in rheumatoid
arthritis synoviocytes and influences T-cell accumulation in the
disease48. We also observe epithelial to haematopoietic signalling
via CCL15 binding to CCR1/3 and via CCL16 binding to CCR1/
2/5/8 and HRH4, and endothelial to haematopoietic signalling via
CCL14 binding to CCR1/3/5. In the case of CCL16, this ligand is
most highly expressed in hepatocytes49, is a trigger effector for
macrophages via CCR1 (ref. 50), and recruits eosinophils via the
non-canonical receptor HRH4 (ref. 51).

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms8866

8 NATURE COMMUNICATIONS | 6:7866 | DOI: 10.1038/ncomms8866 | www.nature.com/naturecommunications

& 2015 Macmillan Publishers Limited. All rights reserved.

http://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/vis
http://www.nature.com/naturecommunications


Since the wealth of observed paths between cells of interest is
too large to go into additional detailed examples here, we direct
the user to the web tool to explore further. Systematic
examination of ligand and receptor expression across 144
primary cell types can, however, give insights enabling us to
make some general observations. Most cells express on the order
of 140 receptors and 140 ligands at appreciable levels, equating to
roughly 30% of all ligands and receptors, with the exception of
haematopoietic cells, which express only 18–22% of all ligands
and receptors on average. This suggests that they use fewer paths
to broadcast their state to their neighbours, but given the large
number of haematopoietic cells acting as major receivers or
transmitters as seen in Fig. 5 this may also reflect greater
specificity in the set of cells they target. Another observation was
that on average 70% of ligands expressed by any given cell type
can bind a cognate receptor on the same cell type, and conversely
60% of receptors expressed by a cell can bind ligands expressed by
the same cell type. This may indicate that many autocrine
signalling paths are used to reinforce the cell state, or that
juxtacrine signalling to cells of the same type is used to
communicate the state to its neighbours. Examining the numbers
of cell types expressing each ligand and receptor, we find that 72%
of pairs have at least one partner (ligand or receptor) with
restricted expression, which further suggests the importance of
ligand–receptor cell-type expression specificity for selective
information transfer in multicellular organisms.

We acknowledge that there are several simplifications and
assumptions that we made in our analyses. We use CAGE to
measure mRNA levels, but physiologically meaningful interac-
tions of endogenous ligands and receptors require that they are
expressed as proteins, correctly post-translationally modified and
then localized to the PM or extracellular space. Without PM and
secretome proteomics data on human primary cells19,52,
transcriptomics data is our best alternative, and defendable
given the good degree of correlation between mRNA and protein
levels52. We must note, however, that the analysis of whole cell
proteomics is not as mature as the transcriptome analyses. While
82% of the ligands and receptors detected by CAGE in B cells also
had protein level support, our literature review found that many
of the proteins detected only in the B-cell proteome of Kim
et al.19 (and not detected in the FANTOM5 B-cell transcriptome)
are most likely not produced by B cells and are likely to be false
positives of the analysis or non-cell autonomous36 contributions
to the proteome.

In addition, we do not consider direct cell-to-cell contact, which
is particularly important in juxtacrine signalling. We assume that
binding elicits some state change in the target cell, yet to correctly
estimate physiological responses, affinity of ligands, receptor
internalization, recycling, intracellular signalling pathways and
whether the receptor requires to dimerize or interact with
additional proteins would need to be considered. We are not
aware of comprehensive data covering these aspects across primary
cell types and have thus abstracted to the simple requirements that
the receptor and ligand are expressed and known to bind. We also
recognize that we need to add new cell types to the resource over
time as new CAGE and RNA-seq data sets become available. This
is necessary as 177 ligands and 112 receptors were not expressed at
appreciable levels in the 144 primary cell types considered. In
particular, GO analyses revealed that the missing proteins were
often involved in neuropeptide signalling, virus response (espe-
cially alpha interferons) or were hormones expressed in very
restricted cell populations (for example, insulin from beta cells,
gastrin from G cells and gonadotropin-releasing hormone 1 from
GnRH neurons) (Supplementary Data 8).

Despite these caveats, we recover known and discover novel
physiologically important cell-to-cell relationships including the

CSF1–CSF1R network (Fig. 4). CSF1 is a key growth factor for
macrophages and CSF1R is expressed on most myeloid lineage
cells53. As previously reported, we observe an autocrine signalling
potential of monocyte-derived macrophages54, but also for
immature monocyte-derived dendritic cells and basophils. Most
interestingly, we observed that mast cells produce the highest
levels of CSF1 and upregulate it on stimulation. To our
knowledge this is a novel relationship revealed by our analysis.

In summary, we introduce the first large-scale map of cell-to-
cell signalling by presenting a network, where cells are the nodes
and receptor–ligand pairs form the edges. This information is
critical for organism-level systems biology (molecular physiology)
to better understand the cellular participants and signalling pairs
used in complex cellular networks employed in disease, develop-
ment, immune response and normal homeostasis. Finally, at an
immediate and practical level it will allow us to find novel factors
for improved culture of various cell types, as we have shown
recently with the use of BMPs for mast cells55 and CCL2 for
embryonic stem cells56. In the future, we hope to cover more
primary cell types by incorporating single cell expression data
sets57 including those that capture spatial relationships58 and
allow us to examine juxtacrine signalling between neighbouring
cells.

Methods
Reference set of human protein-coding genes. We downloaded the set of 19,074
HGNC18 protein-coding genes (03 April 2014) and used the subset of 19,053 genes
with an existing UniProt ID for our analyses (Supplementary Data 1). HGNC-
approved symbols were used as the common identifier throughout our analyses to
match identifiers from other data sources.

FANTOM5 protein-coding gene expression profiles. The expression profiles of
protein-coding genes in primary cells were obtained from the FANTOM5 promo-
terome expression atlas12 (403 samples corresponding to 144 primary cell types—
Supplementary Data 9). Expression of each gene across a given primary cell was
estimated from the summed expression of its promoters across each library and then
averaged for biological and/or technical replicates (most libraries are biological
triplicates). The summarized gene expression data is available at http://fantom.gsc.
riken.jp/5/suppl/Ramilowski_et_al_2015/data/ as ‘ExpressionGenes.txt’.

Subcellular localization classifications. For each protein-coding gene, we first
extracted known subcellular localization annotations from the UniProtKB and
from the HPRD15. Over one-third of these proteins lacked experimental
localization information, therefore we used the computational tools LocTree3
(ref. 16) and PolyPhobius17 to predict subcellular localizations and transmembrane
helices (TMHs) for all proteins in our data set. Predictions were run on protein
sequences of the Reference Human Proteome (http://www.ebi.ac.uk/
reference_proteomes) from the European Bioinformatics Institute, and if not
available we used the longest isoform sequence from UniProt (ftp://ftp.uniprot.org/
pub/databases/uniprot/current_release/knowledgebase/proteomes/).

Tier1 (12,976 proteins with known localizations): the subcellular localization of
the protein is already annotated in UniProt or HPRD. From UniProt, we accept all
experimentally verified and probable subcellular localizations. From HPRD, we
accept all localizations with associated PubMed ID. For PM annotations from
HPRD, we additionally require that at least one TMH is predicted for this protein
by PolyPhobius. Tier2 (5,906 proteins): The remaining proteins were annotated
using the subcellular localization predicted by LocTree3. Here we also required at
least one TMH predicted by PolyPhobius for PM proteins and at most one TMH
predicted for secreted proteins. The proteins that did not meet the last criteria
could not be classified and were denoted as ‘n/a’ (171 proteins).

For the analysis purposes, we excluded these unclassifiable proteins and
assigned the others into one of the six localization classes: cytoplasm, multiple,
nucleus, other, PM and secreted.

Known ligand–receptor interactions. Known ligand–receptor pairs were down-
loaded from the DLRP27 (http://dip.doe-mbi.ucla.edu/dip/dlrp/dlrp.txt),
IUPHAR28 (http://www.guidetopharmacology.org/ DATA/interactions.csv) and
HPMR29 (http://receptome.stanford.edu/) databases (download dates 23 July 2013,
23 June 2014 and 03 July 2014, respectively). After mapping to current HGNC
symbols, we obtained 469, 371 and 855 ligand–receptor pairs from DLRP,
IUPHAR and HPMR, respectively.

An additional 128 orphan ligands and 479 orphan receptors were also
downloaded from HPMR (26 June 2014).
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Prediction of novel ligand–receptor pairs. Computationally inferred ligand–
receptor pairs (2,117) were obtained by searching for experimentally validated PPIs
(HPRD—http://www.hprd.org/download and STRING32—http://string.uzh.ch/
download/protected/string_9_1/protein.links.full.v9.1/
9606.protein.links.full.v9.1.txt.gz databases) between a set of putative ligands and
putative receptors (Supplementary Fig. 3a). Putative ligands (2,132) were compiled
from known interacting ligands (470), orphan HPMR ligands (140) and from our
set of secreted proteins that were not found in the set of known receptors (1,866).
Putative receptors (2,363) were compiled from known interacting receptors (448),
orphan HPMR receptors (488) and from our set of PM proteins that were not
found in the set of known ligands (2,076).

From HPRD (Release9_062910), we obtained 1,322 binary PPIs supported by
any of the three types of evidence source (in vitro, in vivo and yeast 2-hybrid). In
STRING9.1, we found 1,362 ‘Homo sapiens’ physical-binding interactions
(confidence score Z700) and 428 experimental interactions (confidence score
Z700). STRING’s internal ‘ENSP IDs’ were first matched using Ensembl BioMart
mapping of ‘Ensembl Protein ID’ to ‘HGNC Gene Symbol’ for Homo sapiens genes
(GRCh37.p13) then further matched to a current HGNC ‘Gene Symbol’.

Protein age estimates. Pre-computed protein age estimates were downloaded
from Protein Historian: Protein Age Estimation and Enrichment Analysis tool20

(http://lighthouse.ucsf.edu/ProteinHistorian/downloads.html) and from the
phylostratigraphic age estimates for the human loci as described by Neme et al.26

Protein historian phylogenetic age estimates relied on the P-POD22 (Princeton
Protein Orthology Database), and were based on an OrthoMCL23 clustering of all
proteins in the 48 species present in v7.0 of the PANTHER24 (Protein analysis
through evolutionary relationships) classification system. They used either
Wagner21 or Dollo25 parsimony ancestral reconstruction algorithms.

Statistical analysis. Mann–Whitney U-tests for subcellular localizations specifi-
city, age comparisons and distribution of ligands/receptors in blood versus all
others were carried out using R package wilcox.test with default parameters.
Binomial tests for ligand–receptors pairs age comparisons, for lineage-specific
over- and under-representation of ligands/receptor in the major-signalling pairs
and for the bias in cell-to-cell intra- and inter-lineage signalling were carried out
using R package binom.test with default parameters. When necessary, P values
were corrected using R package p.adjust with p.adjust.method¼ ‘fdr’.

GO and InterPro domain enrichment analysis. GO and InterPro59 enrichment
analysis for ligands and receptors pairs in Fig. 3c were carried out using the
DAVID38 tool. All HGNC identifiers were first converted to Entrez GeneIDs. GO
analysis in Fig. 5 was carried out using GOstat60 (http://gostat.wehi.edu.au/). Lists
of background and foreground Entrez GeneID sets are included in Supplementary
Data 5 and 6.

Online visualization resource. The interactive visualization and query tool for
ligand–receptor networks was developed using custom and open source tools. The
vector graphic visualization was generated using the D3.js visualization library61

(http://d3js.org/). The application interface was developed using the AngularJS web
application framework (https://angularjs.org/) and the twitter bootstrap front-end
framework (http://getbootstrap.com/).

The visualization interface takes the expression files generated in this study
along with other metadata in tabular format to generate the network/hive
visualization as shown in Fig. 5. An online version of the resource is located at:
http://fantom.gsc.riken.jp/5/suppl/Ramilowski_et_al_2015/vis/ and mirrored at
http://forrest-lab.github.io/connectome. The source code is under MIT license and
is available at: https://github.com/Hypercubed/connectome/ (version: /tree/v0.1.0).
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