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Abstract

Recently, the password-authenticated key exchange protocol J-PAKE of Hao and Ryan
(Workshop on Security Protocols 2008) was formally proven secure in the algebraic ad-
versary model by Abdalla et al. (IEEE S&P 2015). In this paper, we propose and examine
two variants of J-PAKE - which we call RO-J-PAKE and CRS-J-PAKE - that each makes
the use of two less zero-knowledge proofs than the original protocol. We show that they are
provably secure following a similar strategy to that of Abdalla et al. We also study their
efficiency as compared to J-PAKE’s, also taking into account how the groups are chosen.
Namely, we treat the cases of subgroups of finite fields and elliptic curves. Our work reveals
that, for subgroups of finite fields, CRS-J-PAKE is indeed more efficient than J-PAKE, while
RO-J-PAKE is much less efficient. On the other hand, when instantiated with elliptic curves,
both RO-J-PAKE and CRS-J-PAKE are more efficient than J-PAKE, with CRS-J-PAKE be-
ing the best of the three. We illustrate this experimentally, making use of recent research
by Brier et al. (CRYPTO 2010). Regardless of implementation, we note that RO-J-PAKE
enjoys a looser security reduction than both J-PAKE and CRS-J-PAKE. CRS-J-PAKE has
the tightest security proof, but relies on an additional trust assumption at setup time. We
believe our results can be useful to anyone interested in implementing J-PAKE, as perhaps
either of these two new protocols may also be options, depending on the deployment context.

1 Introduction

The objective of Password-Authenticated Key Exchange (PAKE) is to allow secure authenticated
communication over insecure networks between two or more parties who only share a low-entropy
password. Many different protocols have been proposed in the literature to accomplish this.
Among them, the J-PAKE protocol [19] has been implemented due to its patent-free nature.

J-PAKE is quite unique because it integrates Non-Interactive Zero-Knowledge proofs of
knowledge (NIZKs in the rest of the paper) - specifically, Schnorr proofs of knowledge [31] -
effectively into its design. However, the presence of these proofs is actually one of the main
arguments of J-PAKE’s detractors: Indeed, they add more exponentiations to a protocol that
already contains many. A question that can be asked therefore is whether variants of J-PAKE
using less proofs of knowledge can be found, and how they compare in terms of efficiency to the
original protocol.
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1.1 Our Contribution 1 INTRODUCTION

1.1 Our Contribution

We answer these questions by exhibiting two new protocols - which we call RO-J-PAKE and
CRS-J-PAKE - that are very similar to J-PAKE, but each use two less zero-knowledge proofs.
We explicitly prove the security of RO-J-PAKE, following a similar strategy to that of Abdalla
et al. in their recent analysis of J-PAKE [6], and show how the proof can be adapted to the case
of CRS-J-PAKE. We also provide a more refined analysis of these protocols’ efficiency relative
to J-PAKE’s. We do this by explicitly examining costs depending on which groups are used to
deploy the protocol. This is especially important for RO-J-PAKE, since it requires hashing into
the group in question. Indeed, while on paper, this appears to have no importance, in practice
it requires some attention. We treat the cases of Elliptic Curve (EC) groups and Subgroups
of Finite Fields (SFFs), since all three protocols require the Decisional Diffie-Hellman (DDH)
assumption to hold. In more detail, our findings are as follows.

• In terms of provable security: RO-J-PAKE and CRS-J-PAKE are asymptotically as
secure as J-PAKE, and against the same kind of adversaries, namely, algebraic adversaries.
However, RO-J-PAKE enjoys a looser security proof than J-PAKE and CRS-J-PAKE, essentially
because of the addition of a random oracle. CRS-J-PAKE has the tightest proof of the three
protocols. See the theorem bounds in Section 4.

• In terms of computational and communication efficiency: The apparent computa-
tional gain in efficiency that RO-J-PAKE and CRS-J-PAKE enjoy due to their having two less
zero-knowledge proofs than J-PAKE can be summarized as follows:

• When all three protocols are instantiated with ECs, CRS-J-PAKE and RO-J-PAKE cost a
total of about 8 group-sized exponentiations less than J-PAKE. CRS-J-PAKE has a slight
edge over RO-J-PAKE, because the latter requires hashing into an EC group. However,
experimental results (see Section 2.4) using recent research by Brier et al. [14] shows that
this edge can be practically ignored.

• When all three protocols are instantiated with SFFs, CRS-J-PAKE takes 8 group-sized
exponentiations less than J-PAKE, but RO-J-PAKE suffers from two additional exponen-
tiations of size comparable to that of the base field’s prime - which is typically way larger
than the actual group - thus making it much less efficient than J-PAKE in practice, see
Table 2. This is also due to the need to hash into a SFF. Thus, unless an efficient hashing
method is devised, this instantiation of RO-J-PAKE may only have theoretical interest.

• Regardless of the group instantiation, both RO-J-PAKE and CRS-J-PAKE are more effi-
cient than J-PAKE in terms of communication, as they both send four less group elements
and two less scalars than J-PAKE does.

RO-J-PAKE and CRS-J-PAKE have a few other (dis)advantages related to their deployability,
and that are worth mentioning. See Section 2.4 for more details.

1.2 Related Work

PAKE in general has been very heavily studied in the past twenty years. We briefly indicate
some landmark papers here, and refer to Pointcheval’s survey [30] for more complete references.
PAKE was introduced by Bellovin and Meritt in [11]. Their EKE protocol was the first of its
kind. It was later followed by Jablon’s SPEKE protocol [21]. The first viable formal security
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models for PAKE appeared in [9] and [13]. A year later, Katz et al. [23] demonstrated that PAKE
could be practically realized without random oracles, but at the expense of assuming a Common
Reference String (CRS) to be in place. Meanwhile, Goldreich et al. [16] showed that PAKE could
be realized in a reasonable security model, solely based on general complexity assumptions, and
without any form of trusted setup. Finally, Canetti et al. introduced universally composable
PAKE in [15].

Some other work has been devoted to making PAKE more practical for deployment. For
instance, in [28] MacKenzie has revisited the PAK protocol [27], showing how to optimize the
underlying protocols with EC and SFF implementations. The use of short exponents has also
been considered, see [29]. Yet another line of research involved determining the lowest communi-
cation costs for standard-model-secure, CRS-based PAKE, see [24, 22]. More recently, work by
Abdalla et al. [7] has shown that the computation costs (in terms of number of exponentiations)
of many of these protocols can be diminished as well.

The work most relevant to ours is that by Hao and Ryan [19] introducing J-PAKE. The
protocol has been deployed in several commercial products and software libraries (e.g. in Firefox
sync [2] (later discontinued), OpenSSL [3], PaleMoon [4], and the Thread network protocol [5]
(EC version)), mainly because of its simplicity and patent-free nature, but a formal analysis of
its security had remained elusive until the work of Abdalla et al. in [6]. Our work is heavily
inspired by theirs.

1.3 Organization

The rest of the paper is organized as follows. Section 2 describes our new protocols, and contains
a detailed analysis of their efficiency when deployed with EC and SFF. Then, in Section 3, we
review the PAKE security model from [8], which is used to prove our protocols’ security in
Section 4. Finally, we conclude the paper in Section 5.

2 The RO-J-PAKE and CRS-J-PAKE Protocols

In this section we describe the RO-J-PAKE and CRS-J-PAKE protocols, which are presented
in Fig. 1 and Fig. 2, respectively. These two protocols can be seen as more efficient variants
of J-PAKE protocol from [19]. In addition, we present the practical considerations when these
protocols are deployed.

2.1 Notation

For a given security parameter k, let G be a finite multiplicative group1 of prime order q, such
that |q| := k. Being the strongest assumption necessary, we will assume the Decisional Square
Diffie Hellman (DSDH, see paragraph 3.2) holds over G. Let H0 be a full-domain hash mapping
{0, 1}∗ to G. H1 is a hash function from {0, 1}∗ to {0, 1}k. A function f is used to ensure that
both parties sort values identically. This can be done in various ways (e.g. using max or min
functions). Let a← A denote selecting a uniformly at random from A.

1As previously mentioned, the group of interest is either a SFF or EC group. Throughout this paper, protocols
will be presented multiplicatively.
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2.2 The RO-J-PAKE Protocol

As described in [19] and analyzed in [6], the original J-PAKE protocol (see Appendix A) consists
of two message rounds. In the first round, each party generates two random group elements
and sends them together with corresponding NIZK proofs of the chosen exponents. A client
receives X3 and X4 values and computes α := (X1X3X4)

x2pw, while a server receives X1 and
X2 values and computes β := (X1X2X3)

x4pw. In the second round, the client and the server
exchange these α and β values, again with corresponding NIZK proofs. In order to compute
the shared secret, both parties first cancel the gx2x4pw factor from the received value, and then
exponentiate what is left to either x2 (client) or x4 (server). If everything goes according to the
protocol’s specification, both parties end up with K := (X1X3)

x2x4pw.
We observed that the exponents x1 and x3 are never explicitly used to compute α, β, or K.

Parties only need to use the X1 and X3 values to generate what can be considered as a random
base TK = g(x1+x3) for a Diffie-Hellman (DH) transform2. Our idea is to exploit this fact and
change the protocol such that the number of NIZK proofs in protocol can be reduced. However,
as in the proof of the original J-PAKE (see [6]), we still need to know the discrete logs of X1

and X3 for the reduction to work (i.e. in order to simulate the protocol in a sound way). A
solution for this is to employ a random oracle taking as input fresh messages from each party
to provide a random base with exponents known only to the simulator. This idea gives rise to
the RO-J-PAKE protocol below.

The RO-J-PAKE Protocol Description. A mathematical description of RO-J-PAKE is
shown in Fig. 1. Next, we rephrase the protocol informally. In the description below, we will
assume that the client and server always check if the received message is well-formed and if the
validity of NIZK proof holds under appropriate label.

After initialization in which public parameters are fixed and a password different from zero
is shared between the client and server, the protocol runs in two phases. In the first phase, each
party generates one group element and corresponding NIZK proof and sends them – along with
its ID – to the other party. In the second phase, upon receiving the first message, both parties
compute a common base D as H0(f(A,B,X1, X2)). Then, each party computes and sends to
other party its commit message that consists of α := (DX2)

x1pw and corresponding NIZK proof
πα under label lA in case of client, and β := (DX1)

x2pw and πβ under label lB in case of server.
Upon receipt of the second message, each party derives a shared secret K, which should be an
element of group G, and then a bit-string sk, which will act as a session key.

The purpose of function f is to preserve the symmetry and keep the protocol within two
message rounds by making sure that both parties sort values identically and compute the same
D. In Section 2.4, we discuss the instantiation of the hash function H0, while H1 can be seen
as a computational randomness extractor (see Section 3.2).

It is worth mentioning that RO-J-PAKE’s design prevents the weird-but-benign case of swap-
ping instances which happens in the original J-PAKE protocol if the values X1 and X2 (or X3

and X4 in case of server) are flipped. In that case, the NIZK proof πβ (or πα resp.) from second
message round would still be valid (since the base for the β and α values stay as intended),
however, the derived keys would not be the same. A simple solution, proposed in [6], is to
expand the NIZK proof labels and add to them all the received values. In RO-J-PAKE, the

2To be exact, we should also include pw into the formula for computing the base TK and thus have g(x1+x3)pw,
but this does not change our claim.
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Client A Server B
Initialization

Public: G, g, q; H0 : {0, 1}∗ → G; H1 : {0, 1}∗ → {0, 1}k

Secret: pw ∈ Zq, pw 6= 0

x1 ← Zq x2 ← Zq
X1 := gx1 X2 := gx2

π1 ← PK((X1, g), x1, A) π2 ← PK((X2, g), x2, B)

A,X1, π1

B,X2, π2
abort if X2 = 1 abort if X1 = 1

check V K((X2, g), π2, B) check V K((X1, g), π1, A)

D := H0(f(A,B,X1, X2)) D := H0(f(A,B,X1, X2))

α := (DX2)
x1pw β := (DX1)

x2pw

πα ← PK((α,DX2), x1pw, lA) πβ ← PK((β,DX1), x2pw, lB)

α, πα

β, πβ

check V K((β,DX1), πβ, lB) check V K((α,DX2), πα, A, lA)

K := (βX2
−x1pw)x1 K := (αX1

−x2pw)x2

sk ← H1(D,K) sk ← H1(D,K)

Figure 1: The RO-J-PAKE protocol. The value of labels are lA := (A,B,X1, X2) and lB :=
(B,A,X2, X1). PK generates NIZK proofs and V K verifies them.

swapping case does not occur even with the labels left out. However, we strongly advise using
the labels in NIZK proofs to ensure that the messages from different rounds are bound together.
This additionally makes the proof significantly tighter.

2.3 The CRS-J-PAKE Protocol

The observation that J-PAKE’s X1X3 value can be in a sense replaced by a random group
element that neither party has control over can be exploited in another direction as well: We
can simply add to the protocol’s setup a randomly generated value U ∈ G that is fixed once and
for all, and plays the role of X1X3 in J-PAKE and D in RO-J-PAKE for all protocol executions.
Hence, we can also consider the CRS-J-PAKE protocol, described fully below. Just like RO-
J-PAKE, we eliminate two of the NIZK proofs by design. The name comes from the value U ,
which is a Common Reference String (CRS). In particular, it carries with it an underlying secret
- i.e. the discrete log u of U to the base g - which must be unknown to all parties. In the security
proof however, the simulator does get access to u, similarly to the way it knows the discrete logs
of the outputs of hash values in the case of RO-J-PAKE (by programming the RO in this way).

Since we no longer need to hash into the underlying group, in contrast to RO-J-PAKE, CRS-
J-PAKE has no efficiency issues with respect to a hash implementation. However, the need to
generate and trust the hard-coded value U poses its own deployment issues (see Section 2.4).
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The CRS-J-PAKE Protocol Description. CRS-J-PAKE is shown in Fig. 2. In compar-
ison to RO-J-PAKE, the major difference is the adoption of the common reference string U ,
which will be securely chosen in the initialization phase and be hard-coded into the protocol
implementation. As in RO-J-PAKE, swapping instance case does not occur by design.

Client A Server B
Initialization

Public: G, g, q, U ∈ G, e← {0, 1}t; H1 : {0, 1}∗ → {0, 1}k

Secret: pw ∈ Zq, pw 6= 0

x1 ← Zq x2 ← Zq
X1 := gx1 X2 := gx2

π1 ← PK((X1, g), x1, A, U) π2 ← PK((X2, g), x2, B, U)

A,X1, π1

B,X2, π2
abort if X2 = 1 abort if X1 = 1

check V K((X2, g), π2, B, U) check V K((X1, g), π1, A, U)

α := (UX2)
x1pw β := (UX1)

x2pw

πα ← PK((α,UX2), x1pw, lA) πβ ← PK((β, UX1), x2pw, lB)

α, πα

β, πβ

check V K((β, UX1), πβ, lB) check V K((α,UX2), πα, lA)

K := (βX2
−x1pw)x1 K := (αX1

−x2pw)x2

sk ← H1(e,K) sk ← H1(e,K)

Figure 2: The CRS-J-PAKE protocol. The client label lA := (A,B,X1, X2, U) and the server
label lB := (B,A,X2, X1, U).

2.4 Practical Considerations

In theory, for J-PAKE and the two new variants, the modular exponentiations are the predomi-
nant factors in the computation. Hence, the computational cost is estimated based on counting
the number of such modular exponentiations. Note that it takes one exponentiation to generate
a Schnorr NIZK proof and two to verify it [31]. Referring to the protocol specifications in Fig.
1, 2, and 5, we summarize their complexities in Table 1.
In practice however, counting the modular exponentiations is insufficient, in particular for RO-
J-PAKE. This is because the true speed depends highly on how H0 - which lands into the
protocol’s underlying group - is computed. This is known to be less efficient than just hashing
into a set of bitstrings and sometimes tricky to implement, especially in PAKEs. For instance,
in protocols such as PAK [13], SPEKE [21] and Dragonfly [20, 26], a password is used as an
input to a hash function, which means that the whole hashing procedure must be done in a
constant time, otherwise side-channel attacks are possible (i.e. timing attack). This is not the
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Table 1: The efficiency comparison between J-PAKE, RO-J-PAKE and CRS-J-PAKE.

Protocol Complexity

Communication Computation

J-PAKE 12× G+ 6× Zq 28|q|-bit exp

RO-J-PAKE 8× G+ 4× Zq 20|q|-bit exp + 2 H0

CRS-J-PAKE 8× G+ 4× Zq 20|q|-bit exp

case with RO-J-PAKE, since all the inputs to the hash function are public values, but we still
need to address the efficiency concern. Thus, we further discuss the computational complexity
with respect to two different instantiations. It is important to recall that for the security proofs
to be valid, G must be such that the DDH assumption is believed to hold, see [12] for examples.

• SFF instantiation. Here, we assume that G is deployed as the q-order subgroup of
GF (p)∗, where p = rq + 1 and p and q are both prime. Thus, we have |r| = |p| − |q|.
Standard techniques implement H0 by first hashing into GF (p)∗, which is truly cheap, and
then exponentiating the result by r, which depends on |r|. In particular Table 1, indicates
that J-PAKE is more efficient than RO-J-PAKE if and only if 28|q| ≤ 20|q| + 2|r|, i.e. if
and only if 4|q| ≤ |r|. In other words, J-PAKE is better than RO-J-PAKE provided that
a single |r|-bit exponentiation costs more than 4 |q|-bit ones. Since Table 2 shows that in
general, |r|-bit exponentiations cost way more than that, J-PAKE is definitely the better
option when using SFFs3. Note that CRS-J-PAKE would be better than J-PAKE in this
setting.

• EC instantiation. We carried out an experiment based on a Win7 64-bit operating
system, with Intel(R) Core(TM) i7-5600U CPU@2.60GHz and 8.0GB RAM. In our test,
we assumed the EC is over prime field GF (p) with |p| = 256, and took G to be an EC
group of prime order q with |q| > 160. H0 was implemented using the recently discovered
hashing algorithms of Brier et al. [14]. We found that an exponentiation takes on average
0.001383 seconds, while hashing a message into the EC group only takes 0.000086 seconds.
(For reference, the source codes are listed in Appendix C.) This shows that hashing is
about 16 times cheaper than exponentiating. Hence, using ECs, both RO-J-PAKE and
CRS-J-PAKE are definitely more efficient than J-PAKE.

Further deployment notes for practitioners. On one hand, in favor of the new protocols,
both are most-likely patent-free, like their big brother. Indeed, the structure of all three is
essentially the same, having nothing really to do with that of EKE [11] or SPEKE [21]. For
instance, none of the “J-PAKE”s perform any password-keyed encryption (like EKE) nor do
they hash the password to get a commonly agreed-upon base (like SPEKE). The password is
not even encrypted, as is done in many PAKEs that are standard-model-secure, e.g. [23, 22].

On the other hand, RO-J-PAKE and CRS-J-PAKE also have specific implementation issues
to deal with for their security proofs to be of any use.

3Table 2 contains some NIST-recommended parameters, but even in theory the situation seems hopeless.
Indeed, from [12] we see that for the DDH to reasonably hold in a SFF, we actually need 10|q| > |p| = |r|,
rendering the 4|q| ≤ |r| requirement unachievable.
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Table 2: Cost of an |r|-bit exponentiation compared to a |q|-bit one. E.g, for a 2048-bit modulus
and 224-bit exponents, one |r|-bit exponentiation costs a bit over 8 |q|-bit ones. One sees the
ratio getting much worse as the NIST-recommended [1] parameters grow.

|p| |q| |r| |r|/|q|
1024 160 856 5.35

2048 224 1824 8.14

3072 256 2816 11

• The random oracle model. All three protocols’ theoretical security relies on the ran-
dom oracle model which is implicitly present in the security of the Schnorr NIZK proofs.
However, RO-J-PAKE uses it arguably more than the other two, because of H0. This does
not point to any particular weakness, but care must always be taken when selecting the
hash function in practice. It also introduces a additional degradation factor in the security
proof.

• The CRS. It is important to understand that CRS-J-PAKE’s security relies crucially on
the CRS U being generated randomly and such that logg(U) remains unknown to attackers.
This should be done in a trustworthy way [18]. For instance, a trusted authority can be
asked to generate U by selecting u at random, setting U = gu, and throwing u away, or
even selecting a purely random string µ, and checking that µ encodes good U , without
needing to “handle” u at all. This is an option for large institutions trying to deploy this
protocol internally for employees. Another option would be for a predetermined set of
users to jointly compute U , with the drawback that any additional user would have to
trust the generated value.

3 Model

To prepare for the proofs, we outline the security model from [8] and present the complexity
assumptions and cryptographic building blocks.

3.1 Model

Participants, Passwords and Initialization. Each principal U comes from either the Clients
or Servers set, which are finite, disjoint, nonempty sets. We assume that each client A ∈ Clients
is in possession of a password pwA, while each server B ∈ Servers holds a vector of the pass-
words of all clients pwB = 〈pwA〉A∈Clients. Before the execution of a protocol, an initialization
phase occurs, in which public parameters are fixed and for each client a secret pwA is drawn
uniformly (and independently) at random from a finite set PasswordsPasswords of size N and given to all
servers.

Protocol Execution. The protocol P specifies how principals react to network messages. Since
in reality each principal may run multiple executions of P with different partners, each principal
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is allowed an unlimited number of instances executing P. We denote client instances by Ai and
server instances by Bj . In this model, a bit b is flipped at the beginning of the game. To assess
P’s security, we assume that an adversary A has total network control, i.e. A provides inputs
to instances, via the following queries:

• SendSend(U i,M): A sends message M to instance U i. As a response, U i processes M according
to P and outputs a reply. This query models active attacks.

• ExecuteExecute(Ai, Bj): This triggers an honest run of P between Ai and Bj , and its transcript
is given to A. It covers passive eavesdropping on protocol flows.

• RevealReveal(U i): A receives the current value of the session key skiU . This captures session key
leakage.

• TestTest(U i): If b = 1, A gets skiU . Otherwise, it receives a random string from the session
key space. This query measures skiU ’s semantic security.

• CorruptCorrupt(U): pwU is given to A. This models compromise of the long-term key.

Partnering. An instance U i accepts if it holds a session key skiU , a session ID sidiU and a
partner ID pidiU . An instance U i terminates if it will not send nor receive any more messages.

Instances Ai and Bj are partnered if: (1) both accept; (2) sidiA = sidjB 6= ⊥; (3) pidiA = B and

pidjB = A; (4) skiA = skjB; and (5) no other instance accepts with the same sid.

Freshness. Freshness captures the idea that the adversary should not trivially know the session
key being tested. An instance U i is said to be fresh with forward secrecy if: (1) it accepts; (2) no
RevealReveal query was made to U i nor to its partner U ′j ; and (3) no CorruptCorrupt(U ′) query was made be-
fore U i defined its session key skiU , and a SendSend(U i,M) query was made at some point, for any U ′.

Advantage of the Adversary. We say that A wins and breaks the ake security of P, if upon
making TestTest queries to fresh instances U i that have terminated, A outputs a bit b′, such that
b′ = b, where b is the bit selected at the beginning of the protocol. We denote the probability of
this event by SuccSuccakeP (A). The ake-advantage ofA in breaking P is AdvAdvakeP (A) = 2 SuccSuccakeP (A)−1.

3.2 Cryptographic Building Blocks

We state the hardness assumptions upon which the security of our protocols rests, and introduce
other useful building blocks.

Let D be a probabilistic algorithm trying to break a hardness assumption while running in
time t and let ε ∈ [0, 1]. We say that the assumption holds over G if there does not exist a (t, ε)-
solver for polynomial t and non-negligible ε. For any x, y and z from Zq, set DHg(g

x, gy) := gxy,

SDHg(g
x) := gx

2
and TGDHg(g

x, gy, gz) := gxyz. Let C be a challenger.

Decision Diffie-Hellman (DDH). We say that D is a (t, ε)-DDH solver if AdvAdvddhg,G(D) :=

SuccSuccddhg,G(D)− 1
2 ≥ ε, where SuccSuccddhg,G(D) := Pr[b′ = b] in the following game.

C flips a bit b, and chooses uniformly at random values x, y, and z in Zq. Then, X := gx and
Y := gy are computed and, Z is set as follows: Z := gz if b is equal to 0 and Z := DHg(X,Y )
otherwise. Now, D gets as input (g,X, Y, Z) and tries to distinguish whether Z is the real
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Diffie-Hellman value DHg(X,Y ) or a random group element of G. At the end of the game, D
outputs a bit b′.

Decision Square Diffie-Hellman (DSDH). We sayD is a (t, ε)-DSDH solver if AdvAdvdsdhg,G (D) :=

SuccSuccdsdhg,G (D)− 1
2 ≥ ε, where SuccSuccdsdhg,G (D) := Pr[b′ = b] in the following game.

First x and y are chosen uniformly at random from Zq and a bit b is flipped by C. Let
X := gx. If the bit b that C holds is equal to 0, then Y := gy. Otherwise, set Y := SDHg(X).
Now, D gets as input (g,X, Y ) and tries to distinguish whether Y is a square Diffie-Hellman
value or a random group element of G. At the end of the game, D outputs a bit b′.

Decision Triple Group Diffie-Hellman (DTGDH). We say D is a (t, ε)-DTGDH solver if

AdvAdvdtgdhg,G (D) := SuccSuccdtgdhg,G (D)− 1
2 ≥ ε, where SuccSuccdtgdhg,G (D) := Pr[b′ = b] in the following game.

C chooses x, y, z, and w uniformly at random in Zq and flips a bit b. C computes X := gx,
Y := gy, and Z := gz. The value W is set to gw if b = 0, or W := TGDHg(X,Y, Z) otherwise.
D gets (g, X, Y , Z, DHg(X,Y ), DHg(X,Z), DHg(Y, Z), W ), and tries to tell whether W is a
Triple Diffie-Hellman value or a random group element. At the end of the game, D outputs bit
a b′.

Random Oracle. In the random oracle model [10], hash functions are modeled as public,
random functions - with co-domain {0, 1}k or some particular group - that the adversary has
query access to. Answers to new input are selected randomly, while answers to previous inputs
are repeated, see Fig. 3.

Common Reference String (CRS). In the CRS model, a public, trusted value – called the
CRS – is selected at setup time, and given to all participants and the adversary. To CRS may
be associated an underlying trapdoor, which the simulator gets access to during the security
proof.

Simulation-Sound Extractable NIZK Proofs (SE-NIZK). We keep the discussion here
informal; for more details on SE-NIZK, we refer to [17] and [6].

Let R be an efficiently computable relation with a binary output and two inputs (x,w),
where x and w are called the statement and the witness, respectively. Let L be the NP-language
that consist of statements with respect to R: L = {x | ∃w,R(x,w) = 1}. A NIZK proof system
(Setup, PK, V K) for R is a two-party protocol, where on input w a prover is able to prove to a
verifier that some statement x is the member of L without revealing w. In practice, the prover
produces a proof π ← PK(x,w, l) for some label l. Anyone holding x, π, and l can check the
proof by running algorithm V K(x, π, l), which outputs 1 if the proof is valid, and 0 otherwise.

If (unbounded) zero-knowledge (UZK) and simulation-sound-extractability (SE) both hold,
we say that (Setup, PK, V K) is SE-NIZK. Informally, UZK ensures that simulated proofs are
indistinguishable from real one, while SE guarantees that there exists an Ext algorithm that can
extract a witness from any adversary-generated proof, even if the adversary can see simulated
proofs. These properties are typically enabled in NIZK proof systems by generating a trapdoor
for some additional CRS at setup time. However, this is not the case for Schnorr proofs [31],
which are used to instantiate SE-NIZK in J-PAKE. Fortunately, it was shown in [6] that under
certain conditions Schnorr proofs satisfy both properties: ZK stems from the programmability
of the RO, while for SE the adversary has to be assumed algebraic, and all the bases used in
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protocol must be hard-linear.

Computational Randomness Extractor. In the original J-PAKE paper [19], the hash func-
tion used for key derivation is implicitly modeled as a random oracle. However, it was shown
in [6] that a computational randomness extractor for random group elements [25] is sufficient.
Such a randomness extractor is a function extR : {0, 1}t × G → {0, 1}k, for some t ≥ 0. The
extractor is said to be secure if a polynomial-time adversary A’s advantage in distinguishing
extR(r, e) from a random bitstring in {0, 1}k given r, and where (r, e) is randomly sampled from
{0, 1}t ×G, is negligible. For more details, see [6].

4 Security Analysis

In this section we present the security proofs for RO-J-PAKE and CRS-J-PAKE. Due to their
similarity with the J-PAKE protocol, we are able to structure the proofs in the vein of [6] with
the goal to simplify proofreading. The proofs that are demonstrated here are slightly simpler
than the original J-PAKE proof. This is true even in case the labels lA and lB only contain the
identity of the originator of the NIZK proofs πα and πβ (see Appendix B.1), as in the original
J-PAKE.

Throughout our analysis, we will assume that the NIZK proofs used in are SE-NIZK. This is
crucial, since it will allow the simulator to tell apart correct and incorrect password guesses and
simulate all queries made by the adversary. As in J-PAKE, we keep Schnorr proofs of knowledge
as the instantiation of SE-NIZK in our protocols. In [6], they are shown to be SE-NIZK in
the algebraic adversary model with random oracles under one additional condition: the hard-
linearity property of bases used in proof must be exhibited. Since the security of our protocols
rests on the the same hardness assumptions as those in [6], the hard-linearity property of bases
is preserved. Additionally, for the proofs to go through, it is as well crucial that the discrete
logs of D in RO-J-PAKE (from the RO) and of U in CRS-J-PAKE (the CRS) are known to the
simulator.

4.1 Proof of Security for RO-J-PAKE

To exhibit the security of RO-J-PAKE, we will bound the adversarial advantage in attacking the
ake security of the studied protocols by using sequence-of-games approach. Starting from the
original attack game G0 – which is played between a challenger C and an adversary A – we will
make a small change to a corresponding protocol P0 and thus define the next game. Our goal is
to prove that A’s advantage is proportional to that of the “dummy” online guesser by showing
that A has negligible advantage to distinguish between two successive games with the exception
of game G4, where guessing-the-right-password event occurs with non-negligible probability.4

Going further, the challenger C takes the role of a simulator that executes the protocol for A.
The protocol execution begins by an initialization phase(see Fig. 4). Then, the simulator gives
to A all public values generated in the initialization phase. Upon receiving an oracle query from
A, C will respond by executing the appropriate algorithm as in Fig. 3. All state information
generated during the execution of protocol will be recorded by the simulator.

4This is where the cost is paid for using a small entropy secret for authentication instead of cryptographically
strong authenticator.
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Theorem 1. Consider RO-J-PAKERO-J-PAKE as specified in Fig. 1, with a password set of size N . Let A
be an adversary that runs in time at most t, and makes at most nse, nex, nre, nte, nh0 queries
of type SendSend, ExecuteExecute, RevealReveal, TestTest and RO queries to H0. It holds that

AdvAdvakero−j−pake(A) ≤ nse
N

+ O

(
(nse + nex + nho)

2

q
+

n2h0
q

+ AdvAdvdsdhg,G (t′)

+ (nex + n2se)AdvAdvdtgdhg,G (t′) + 2nh0nseAdvAdvddhg,G(t′)

+ (nre + nte)AdvAdvcompextR
(t′) + AdvAdvuzkNIZK(t′) + AdvAdvextNIZK(t′)

)
,

and where t′ = O(t+(nse+nex+nho)texp) with texp being the time required for an exponentiation
in G.

Proof. From now on, the values that are received by an honest party and possibly coming from
A will be denoted as X ′1, α

′, etc. We say that instance is matching if X1 = X ′1 and X2 = X ′2.
In that case, the client’s hash output DA will be equal to the server’s DB. Also, we say that
instances are fully matching, if both message rounds are honestly forwarded by A.

Game G0 : (Original protocol) This game is faithful to Fig. 1.

Game G1 : (Simulation and extraction) As defined in Sect. 3, we simulate SendSend, ExecuteExecute,
RevealReveal, CorruptCorrupt, and TestTest queries that A may make, with the difference now that for SendSend
queries, the simulator runs an extractor Ext, which takes as input a NIZK proof that is pro-
duced by A, and outputs a corresponding witness. If the extraction fails, so does A. Also, all
hash queries to H0 are answered by maintaining a list Lh0 (see Fig. 3).

From now on, we assume that an instance receiving a non-valid NIZK proof aborts. More
importantly, the simulator – by running the extractor Ext – can obtain discrete logs x′1, x

′
2,

x′1pw
′, and x′2pw

′ (and thus pw′) from corresponding NIZK proofs that are generated by A.
Note that we assume that the simulator knows the discrete logarithms of the outputs of H0

queries.

AdvAdvakero−j−pake(A) = AdvAdvakeP1
(A) +O

(
AdvAdvuzkNIZK(t′) + AdvAdvextNIZK(t′)

)
. (1)

H0: For each hash query H0(w), if the same query was previously asked, the simulator retrieves
the record (w,D, d) from the list Lh0 and answers with D. Otherwise, the answer D is chosen
according to the following rule:

? Rule H
(1)
0

Choose d← Zq. Compute D := gd and write the record (w,D, d) to Lh0.

Figure 3: Simulation of the hash function H0

Game G2 : (Force uniqueness and avoid collisions) In this game, collisions on the partial
transcript ((A, X1, π1),(B, X2, π2)) and the H0 random oracle are avoided.

12
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More precisely, if a value X1 or X2 is repeated in the protocol execution or has already
appeared in the random oracle query made by A, the protocol halts and A fails. The same
happens if the outputs of distinct H0 random oracle queries coincide. Both events are bounded
with the birthday paradox:

AdvAdvakeP1
(A) = AdvAdvakeP2

(A) +O

(
(nse + nex + nh0)

2

q

)
+O

(
nh0

2

q

)
. (2)

Game G3 : (Allow instance linking) Same as G2.

As we can see in Fig. 1, the values A, B, X1 and X2 are all included in the labels lA and lB.
This renders the game G3 from the J-PAKE proof unnecessary. Moreover, we show in Appendix
B.1 that the security of RO-J-PAKE still holds even if labels that contain only the identity are
used.

AdvAdvakeP2
(A) = AdvAdvakeP3

(A) . (3)

Game G4 : (Check password guesses) If before a CorruptCorrupt query, A makes a SendSend query to
a non-matching instance containing α′ or β′ that corresponds to a correct password guess, the
protocol halts and A succeeds.

The crucial observation here is that the simulator can check whether the password guess
is correct or not. This is so, since the simulator can obtain discrete logs of X ′1, X

′
2, α

′ and
β′ by running Ext on the corresponding NIZK proofs. The extraction does not work for the
value coming from a reduction, which we will call a simulated value, otherwise the simulator
could break the hardness assumption trivially. To determine if the password guess is correct,
the simulator can proceed as follows: 1) if both X ′1 and α′ (or X ′2 and β′ in the case of server
impersonation) come from A, the simulator extracts two discrete logs from the corresponding
NIZK proofs (e.g. x′1 from π1 and x′1pw

′ from πα), divides them and checks whether the result
is equal to pwA; or 2) if one of the values that instance receives is a simulated value (X ′1 or α′

and X ′2 or β′), the simulator extracts one discrete log of the value coming from A and combines
it with the correct password pwA to perform a check against the simulated value.

AdvAdvakeP3
(A) ≤ AdvAdvakeP4

(A) . (4)

Game G5 : (Randomize session keys for wrong password guesses) In case of an false
password guess to a non-matching instance, K is set randomly.

The proof is split into two parts. In the first, we set K randomly only in the non-matching
client instances in case of a wrong guess – we will call those target client instances. We construct
an algorithm D that given a tuple 〈X,Y 〉, where X ← gx and Y ∈ G, attempts to break the
DSDH assumption by running A as a subroutine. The algorithm D simulates the protocol for
A by setting K randomly for all target client instances, and computing K normally for all other
client instances as follows.5

5Due to the labels lA and lB , the random self-reducibility of the DSDH assumption can be used. This affects
the tightness of the proof: we do not need to use a hybrid argument, so the factor nse in front of AdvAdvdsdh

g,G (D) in
the Theorem 1 does not appear.
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For a given DSDH instance 〈X,Y〉, any client instance Ai chooses a, b ← Z∗q and sets

X1 = Xagb. When Ai receives a SendSend(Ai, (B, X ′2, π
′
2)) query, the simulator extracts x′2 from

π′2, computes DA and sets α = Xa(d′+x′2)pwA gb(d
′+x′2)pwA . After receiving SendSend(Ai, (β′, π′β))

and extracting a witness from π′β, the client instance Ai computes K = Xad′x′2pw
′
gbd

′x′2pw
′

Y a2x′2(pw
′−pwA) X2abx′2(pw

′−pwA) gb
2x′2(pw

′−pwA). Note that the value pw′ is obtained by dividing
extracted witnesses from the NIZK proofs pw′ = Ext(π′β)/Ext(π′2), while d′ comes from the

list Lh0 (see Fig. 3). In case of matching instances or a correct password guess K = XdApwAx
′
2

gbd
′x′2pw

′
, since pw′ is equal to pwA. If Y is a real DSDH challenge, then the value K will be

computed as in G4. On the other hand, if Y is random and an incorrect password guess is made,
then K will be random, since x′2 6= 0 (checked in the protocol, see Fig. 1) and a(pw′−pwA) 6= 0.

Now we show that the simulation is sound for any instance of B that generates X2 and
receives possibly simulated X ′1 or α′. If any of the two received values is not from Ai, the
simulator can extract a witness from the NIZK proof and check whether the password is correct
or not. Moreover, if both received values are from Ai, the instances are matching, otherwise
πα would not be valid. Thus, there is no need to check the password in this case. Since the
reduction for the second part of proof in case of relevant server instances is analogous, we get
the following bound:

AdvAdvakeP4
(A) = AdvAdvakeP5

(A) + AdvAdvdsdhg,G (t′) . (5)

Game G6 : (Randomize session keys for paired instances) In case of a matching instance,
set K randomly (and matching instances get the same K).

We use DTGDH (see Sec. 3.2) in a hybrid argument. We build an algorithm D that randomly
chooses indexes i, j ← {1, 2, . . . , nse} and simulates the protocol by computingK randomly for all
(lexicographically) previous instances (Ai

′
, Bj′) that are fully matching, and setting K normally

for all later (Ai
′
, Bj′).

For (Ai, Bj), Ai sets X1 = X, Bj sets X2 = Y , while the value Z is embedded as the
output of H0(A

i, Bj , X, Y ). If Ai and Bj match, Ai sets α = (DHg(X,Z)DHg(X,Y ))pwA and
Bj sets β = (DHg(Y,Z)DHg(X,Y ))pwA . If they fully match, the shared secret is computed as
K = W pwA . If W = gxyz then this simulates computing K normally. If W is random, then K
is random since pwA 6= 0.

We now need to check if the simulation is sound for other possible queries to Ai and Bj . If Ai

(resp. Bj) receives non-simulated values X ′2 and β′ (resp. X ′1 and α′), it can extract witnesses
from the NIZK proofs, check the password guess, and respond accordingly. If Ai (resp. Bj)
receives an X ′2 (resp. X ′1) value from A and a simulated β (resp. α), πβ (resp. πα) would not
be valid due to the labels lB (resp. lA). Conversely, if after the first message flow the instances
are matching (X1 = X ′1 and X2 = X ′2), but α′ or β′ are from A, the password guess will be
wrong. In case a password guess is correct and the simulation continues, a CorruptCorrupt query has
been made due to G4. Since the simulator can extract x′1 or x′2 in case of impersonation, K can
be computed as A expects it to be. Therefore,

AdvAdvakeP5
(A) = AdvAdvakeP6

(A) + (nex + n2se)AdvAdvdtgdhg,G (t′) . (6)

Game G7 : (Randomize α and β) If there was no CorruptCorrupt query, set α and β randomly in
all instances. In the case of a correct password guess to a non-matching instance (after CorruptCorrupt
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query), compute K as the other party would.

Again the proof is split into two parts. Firstly, using a reduction from DDH, the α values
are set randomly. We construct an algorithm D that randomly chooses i ← {1, 2, . . . , nse} and
j ← {1, 2, . . . , nho}, and simulates the protocol for A by setting an exponent x1pwA in α to be
random for all client instances prior to Ai and computing α normally for all client instances
after Ai as follows.6

Ai sets X1 = X, and the challenge Y is embedded as the output of the jth H0(A,B,X1, X
′
2)

query. After receiving SendSend(Ai, (B, X ′2, π
′
2)), the simulator extracts x′2 to compute α =

ZpwAXx′2pwA . Clearly, if Z is random, so is α, and if Z = DHg(X,Y ), α is computed as in
G6. If A succeeds (by guessing b or the correct password), D’s guess to the DDH challenger is
b1
′ = 1, and 0 otherwise.
Note that upon receiving β which corresponds to a correct password guess (either from A or

from B), the simulator can make other instances of A compute the key as A or B would, even if
α is random. This is possible since it can extract x′2, x

′
2pw

′ from the proofs, check the password
guess, and run A accordingly.

We now show the simulation is sound for any instance of B that generates X2 and receives
a possibly simulated X ′1 or α′ from Ai: 1) if both values are from Ai, set K randomly (due to
G6); 2) if either value is not from Ai, the simulator can extract witnesses from the proof, checks
if the password is correct (and satisfies G4) or not (and sets K randomly due to G5); 3) if some
α′ corresponding to a correct password guess submitted to an instance of B is not from Ai and
the execution continues (a CorruptCorrupt query has been made), the discrete log of X1 is known and
the simulator can compute the shared secret KB as A would.
Since the reduction for the second part of proof in case of relevant server instances is analogous,
we get the following bound:

AdvAdvakeP6
(A) = AdvAdvakeP7

(A) + 2nh0nseAdvAdvddhg,G(t′) . (7)

Game G8 : (Randomize sk) Set sk randomly in all instances in which K is set randomly (the
matching instances get the same sk).

Remember that sk is computed as H1(D,K) and that D is the output of a random oracle.
The games are computationally indistinguishable, since K is random and H1 is a computational
randomness extractor.

AdvAdvakeP7
(A) = AdvAdvakeP8

(A) + (nre + nte)AdvAdvcompextR
(t′) . (8)

This concludes the proof.

4.2 Proof of Security for CRS-J-PAKE

Due to its very high similarity with the proof from Section 4.1, we will only show a sketch of
the security proof for CRS-J-PAKE. The main idea behind the proof is that instead of knowing
the discrete logs of H0’s output, the simulator knows the discrete log of parameter U .

6In addition to factor nse, which appears in the proof of original J-PAKE [6], there is a security degradation
of factor nho, since in this reduction the simulator also needs to guess the ‘right” random oracle query.
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Theorem 2. Consider CRS-J-PAKECRS-J-PAKE (see Fig. 2) with a password set of size N and fixed public
value U . Let A be an adversary that runs in time at most t, and makes at most nse, nex, nre,
nte, nh0 queries of type SendSend, ExecuteExecute, RevealReveal, and TestTest. It holds that

AdvAdvakecrs−j−pake(A) ≤ nse
N

+ O

(
(nse + nex)2

q
+ (nex + n2se)AdvAdvdtgdhg,G (t′)

+ AdvAdvdsdhg,G (t′) + 2nseAdvAdvddhg,G(t′) + (nre + nte)AdvAdvcompextR
(t′)

+ AdvAdvuzkNIZK(t′) + AdvAdvextNIZK(t′)

)
,

where t′ = O(t + (nse + nex + nho)texp) with texp being the time required for an exponentiation
in G.

Proof Summary. At first, the value of the public parameter U is fixed in the initialization
phase and its discrete log u is discarded. A first distinction with the RO-J-PAKE proof occurs
in game G2, where we do not need to avoid collisions on the function H0. Then, in game G3,
the initialization phase is changed as shown in Fig. 4. This means that the discrete log u of
the public parameter U is now saved and can be used by the simulator during the protocol
execution. Game G4 stays the same as in the RO-J-PAKE proof.

After the initial four games, we come to the “reduction” games G5, G6, and G7, where we
use similar reductions from DSDH, DTGDH and DDH respectively (as in RO-J-PAKE proof),
but with a minor differences. In all three reductions, the value u is used during the simulation
to compute α and K values, instead of using dA as in RO-J-PAKE. Also, in G6, the Z value
from a DTGDH challenge tuple is inserted in place of U instead of being inserted as the output
of H0. Similarly, the value Y that comes from the DDH challenge tuple in G7 is inserted in
place of U instead of in the output of H0. This last change removes the security degradation
factor nho which appears in RO-J-PAKE’s bound. Finally, the public random string e, which is
generated during the initialization phase, allows us to set sk randomly in all instances in which
K is set randomly and to argue the computational indistinguishability between games G7 and
G8.

Proof Sketch. We will keep the meaning and fully-matching instances as in the proof of RO-J-
PAKE. The value of the parameter U is fixed in the initialization phase and its discrete log u is
discarded.

Game G0 : (Original protocol) This game is faithful to Fig. 2.

Game G1 : (Simulation and extraction) Same as in Sec. 4.1.

Game G2 : (Force uniqueness and avoid collisions) In this game, collisions on the partial
transcript ((A, X1, π1),(B, X2, π2)) are avoided.

We do not need to avoid collisions on the hash function H0 as in RO-J-PAKE and therefore

AdvAdvakeP1
(A) = AdvAdvakeP2

(A) +O

(
(nse + nex)2

q

)
. (9)

Game G3 : (Keep the discrete log of public parameter) During the initialization phase,
the discrete log u of the public parameter U is saved for future use.
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At this point, the change is made in the initialization procedure as in Fig. 4. During the
protocol execution, the simulator can retrieve the record (U, u) from LU if necessary.

Initialization(1k): Let G be a finite multiplicative group of prime order q, and g be a
generator of G. Clients and Servers sets are well defined. The initialization procedure is
performed as follows:

? Rule Initialization(3)

Choose u← Z∗q . Compute U := gu and write the record (U, u) to LU .

Choose e← {0, 1}t.
For each A ∈ Clients: pwA ← PasswordsPasswords.
For each B ∈ Servers: pwA,B = pwA.
Return G, g, q, e, A,B,U .

Figure 4: Initialization procedure

AdvAdvakeP2
(A) = AdvAdvakeP3

(A) . (10)

Game G4 : (Check password guesses) If before a CorruptCorrupt query, A makes a SendSend query to
a non-matching instance containing α′ or β′ that corresponds to a correct password guess, the
protocol halts and A succeeds.

As in G4 from the RO-J-PAKE proof (see Sec. 4.1), by using the extraction property of
SE-NIZK, the simulator can check whether the password guess is correct or not.

Game G5 : (Randomize session keys for wrong password guesses) In case of an incorrect
password guess to a non-matching instance, K is set randomly.

In this game, as in RO-J-PAKE proof, we use the random self-reducibility of DSDH to show
that the adversary needs to solve DSDH in order to distinguish between the two games. There
is only a minor difference with the RO-J-PAKE proof of G5. Namely, during the simulation,
the value u is used instead of dA when computing the α and K values.

As before, we split the proof in two parts. In the first part of the proof, we set K randomly
only in the non-matching client instances in case of a wrong password guess – we will call those
target client instances. We construct an algorithm D that given a tuple 〈X,Y 〉, where X ← gx

and Y ∈ G, attempts to break the DSDH assumption (i.e. determine whether Y is random or
Y = gx

2
) by running the adversary A as a subroutine. The algorithm D simulates the protocol

for A by setting K randomly for all target client instances, and computing K normally for all
other client instances as follows.

For a given DSDH instance 〈X,Y〉, any client instance A chooses a, b ← Zq and sets X1 =
Xagb. When Ai receives a SendSend(Ai, (B, X ′2, π

′
2)) query, the simulator extracts x′2 from π′2, and

sets α = Xa(u+x′2)pwAgb(u+x
′
2)pwA . After receiving a SendSend(Ai, (β′, π′β)) and extracting a witness

from π′β, the client instance Ai computes K = Xaux′2pw
′
gbux

′
2pw

′
Y a2x′2(pw

′−pwA) X2abx′2(pw
′−pwA)

gb
2x′2(pw

′−pwA). Note that the value pw′ is obtained by dividing the extracted witnesses from
the NIZK proofs pw′ = Ext(π′β)/Ext(π′2), while u comes from the record LU (see Fig. 4). In
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case of matching instances or a correct password guess K = XupwAx
′
2gbux

′
2pw

′
, since pw′ is equal

to pwA. If Y is a real DSDH challenge, then the value K will be computed as in the previous
game. If Y is random and an incorrect password guess is made, then K will be random, since
x′2 6= 0 (check is performed in protocol, see Fig. 1) and pw′ − pwA 6= 0.

We now have to show that the simulation is sound for any instance of B that generates X2

and receives a possibly simulated X ′1 or α′. If either value is not from Ai, the simulator can
extract a witness from the corresponding NIZK proof and check whether the password guess is
correct or not. Moreover, if both received values are coming from Ai, the instances are matching
otherwise πα would not be valid. Thus, there is no need to check a password guess in this case.

Since the reduction for the second part of proof in case of relevant server instances is analo-
gous, we get the following bound:

AdvAdvakeP4
(A) = AdvAdvakeP5

(A) + AdvAdvdsdhg,G (t′) . (11)

Game G6 : (Randomize session keys for paired instances) In case of a matching instance,
set K randomly (with matching instances holding the same random K).

In this game, in order to bound the difference in the adversary’s advantage between G5 and
G6, we reduce from DTGDH by using a hybrid argument in the following fashion. First, we
construct an algorithm D that for a given tuple 〈X, Y, Z, DHg(X,Y ), DHg(X,Z), DHg(Y,Z),
W 〉 attempts to break the DTGDH assumption (i.e. determine whether W is random or W =
gxyz) by running the adversary A as a subroutine. The algorithm D chooses two random
indexes i, j ← {1, 2, . . . , nse} and simulates the protocol for A by computing K randomly for all
lexicographically previous instances of (Ai, Bj) that are fully matching, and setting K normally
for all lexicographically subsequent instances of (Ai, Bj).

The client instance Ai sets X1 = X, the server instance Bj sets X2 = Y , while the value Z is
embedded in place of U . In case of matching instances, Ai sets α = (DHg(X,Z)DHg(X,Y ))pwA

and Bj sets β = (DHg(Y, Z)DHg(X,Y ))pwA . If the instance is fully matching it computes the
shared secret as K = W pwA . If W = gxyz then this simulates computing K normally. If W is
random, then K is random since pwA 6= 0.

We now need to check if the simulation is sound for other possible queries to Ai and Bj .
If Ai (resp. Bj) receives non-simulated values X ′2 and β′ (resp. X ′1 and α′), it can extract
witnesses from the corresponding NIZK and check whether the password guess is correct or not,
and respond accordingly. If Ai (resp. Bj) receives an X ′2 (resp. X ′1) value from the adversary
and a simulated β (resp. α), the NIZK proof πβ (resp. πα) would not be valid due to the labels
lB (resp. lA). Conversely, if after the first message flow the instances are matching (X1 = X ′1
and X2 = X ′2), but α′ or β′ are from the adversary, the corresponding password guess will be
incorrect.

In case a password guess is correct and the simulation continues, a CorruptCorrupt query has been
made due to G4. Since the simulator can extract x′1 or x′2 in case of an impersonation attempt,
the value K can be computed as the adversary expects it to be. Therefore,

AdvAdvakeP5
(A) = AdvAdvakeP6

(A) + (nex + n2se)AdvAdvdtgdhg,G (t′) . (12)

Game G7 : (Randomize α and β) If there was no CorruptCorrupt query, set α and β randomly in
all instances. In the case of a correct password guess to a non-matching instance (after CorruptCorrupt
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query), compute K as the other party would have.

Again the proof is split in two parts. Firstly, using a reduction from DDH, the α values
are set randomly. We construct an algorithm D that for a given tuple 〈X, Y, Z〉 from a DDH
challenger, attempts to break the DDH assumption (i.e. determine whether Z is random or
Z = gxy) by running the adversary A as a subroutine. The algorithm D chooses a random index
i ← {1, 2, . . . , nse}, and simulates the protocol for A by setting an exponent x1pwA (in the
computation of α) to be random for all client instances prior to Ai and computing α normally
for all client instances after Ai as follows.

The client instance Ai sets X1 = X, while the challenge value Y is embedded in place of U .
After receiving SendSend(Ai, (B, X ′2, π

′
2)), the simulator extracts x′2 to compute α = ZpwAXx′2pwA .

It is obvious that if Z is random, α is random, too. Also, if Z = DHg(X,Y ), α is computed
as in G6. In case the adversary A succeeds in the protocol (by guessing the TestTest bit b or the
correct password), D’s guess to the DDH challenger is b1

′ = 1, and b1
′ = 0 otherwise. Note that

upon receiving β which corresponds to a correct password guess (either from the adversary or
from B), the simulator is able to ensure that other instances of A compute the same key as the
adversary or B would, even if α is random. This is possible since the simulator can extract x′2,
x′2pw

′ values from the received NIZK proofs and check whether the password guess is correct or
not, and complete the simulation of A accordingly.

We now have to show that the simulation is sound for any instance of B that generates X2

and receives possibly simulated X ′1 or α′ from Ai: 1) if both values are from Ai, set K randomly
(due to G6); 2) if any of two received values is not from Ai, the simulator can extract a witness
from the corresponding NIZK proof, check whether the password guess is correct (and satisfy
G4) or not (and set K randomly due to G5); 3) if an α′ that corresponds to a correct password
guess submitted to an instance of B is not from Ai and the execution of the protocol continues (a
CorruptCorrupt query has been made), the discrete log of X1 is known and the simulator can compute
the shared secret KB as A would.

The reduction for the second part of proof in case of relevant server instances is analogous,
so we get the following bound:

AdvAdvakeP6
(A) = AdvAdvakeP7

(A) + 2nseAdvAdvddhg,G(t′) . (13)

Game G8 : (Randomize sk) Set sk randomly in all instances in which K is set randomly
(matching instances get the same sk).

Two games are computationally indistinguishable, since public string e and K are random
and H1 is a computational randomness extractor. This concludes the proof.

5 Conclusion

In this paper, we proposed two new variants of J-PAKE, showed that the security proof from [6]
can be adapted to cover our proposals, and compared the overall efficiency of all three protocols
when instantiated with ECs or SFFs. Since RO-J-PAKE using SFFs is the least efficient because
of the implementation of the hash function H0, it would be interesting to see if it can be proven
secure using a large SFF (and therefore, a “small r”), all while using a short-exponent-type
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complexity assumption (e.g. as in [29]).
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B SECURITY PROOFS

A Original J-PAKE protocol

Client A Server B
Initialization

Public: G, g, q, e← {0, 1}t; H0 : {0, 1}∗ → G; H1 : {0, 1}∗ → {0, 1}k

Secret: pw ∈ Zq, pw 6= 0

x1, x2 ← Zq x3, x4 ← Zq
X1 := gx1 X3 := gx3

X2 := gx2 X4 := gx4

π1 ← PK((X1, g), x1, A) π3 ← PK((X3, g), x3, B)

π2 ← PK((X2, g), x2, A) π4 ← PK((X4, g), x4, B)

A,X1, X2, π1, π2

B,X3, X4, π3, π4
abort if X4 = 1 abort if X2 = 1

check V K((X3, g), π3, B) check V K((X1, g), π1, A)

check V K((X4, g), π4, B) check V K((X2, g), π2, A)

α := (X1X3X4)
x2pw β := (X1X2X3)

x4pw

πα ← PK((α,X1X3X4), x2pw,A) πβ ← PK((β,X1X2X3), x4pw,B)

α, πα

β, πβ

check V K((β,X1X2X3), πβ, B) check V K((α,X1X3X4), πα, A)

K := (βX4
−x2pw)x2 K := (αX2

−x4pw)x4

sk ← H1(e,K) sk ← H1(e,K)

Figure 5: The J-PAKE protocol. The public random value e is added as in Abdalla et al. to
remove unnecessary random oracle assumption.

B Security proofs

B.1 Security Proof of RO-J-PAKE with Partial Labels

Here we prove the security of RO-J-PAKE protocol, even in case that labels lA and lB only
contain an identity of the originator of NIZK proofs πα and πβ, as in originally proposed J-
PAKE. In this case, the major difference occurs in the game G3 where we need to show that
the adversary can not manipulate X1 and X2 values such that non-matching client and server
instances compute the same bases for α or β. Also, without full labels, we need to use a hybrid
argument in G5 to reduce to DSDH assumption.

Theorem 3. Consider RO-J-PAKERO-J-PAKE as specified in Fig. 1 with labels lA and lB only containing
the identity A and B respectively. Let A be an adversary that runs in time at most t, and makes
at most nse, nex, nre, nte, nh0 queries of type SendSend, ExecuteExecute, RevealReveal, TestTest and RO queries to
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H0. It holds that

AdvAdvakero−j−pake(A) ≤ nse
N

+ O

(
(nse + nex + nho)

2

q
+

n2h0
q

+ nseAdvAdvdsdhg,G (t′)

+ (nex + n2se)AdvAdvdtgdhg,G (t′) + 2nh0nseAdvAdvddhg,G(t′)

+ (nre + nte)AdvAdvcompextR
(t′) + AdvAdvuzkNIZK(t′) + AdvAdvextNIZK(t′)

)
,

and where t′ = O(t+(nse+nex+nho)texp) with texp being the time required for an exponentiation
in G.

Game G3 : (Disallow same-base attacks) In case of the client instance Ai that generate X1

and the server instance Bj that generate X2, the following events are avoided:

1. If X2 6= X ′2 after A has made a SendSend(Ai, (B,X ′2, π
′
2)) query, and Ai and Bj compute the

same base for α.

In this case, the values DA = H0(A,B,X1, X
′
2) and DB = H0(A,B,X

′
1, X2) are distinct (even

if X1 = X ′1), since we avoid collisions on H0 in G2. The client will compute a base for α as
TαA = DAX

′
2, while the server will compute the same base as TαB = DBX2. Remember that πα

contains TαA , which server must check before verifying the validity of πα. The probability that
TαA = TαB , or more precisely, that the output of a hash function H0(A,B,X1, X

′
2) is equal to

the bad value DBX2/X
′
2 is nho/q. Notice also that in sub-case when X1 = X ′1, the base for β

computed by the client T βA = DAX1 can not be equal to the same base T βB = DBX1 computed
by the server – also due to G2.

2. If X1 6= X ′1 after A has made a SendSend(Bj , (A,X ′1, π
′
1)) query, and Ai and Bj compute the

same base for β.

As in case above, the output of a hash function H0(A,B,X
′
1, X2) is equal to the bad value

DAX1/X
′
1 with the probability of nho/q. Notice that in sub-case when X2 = X ′2, t

α
A 6= tαB since

this would mean that DA = DB for distinct inputs, which is avoided in G2.

3. IfX1 6= X ′1 andX2 6= X ′2 afterA has made a SendSend(Bj , (A,X ′1, π
′
1)) and a SendSend(Ai, (B,X ′2, π

′
2)),

such that TαA = TαB or T βA = T βB.

The third case is practically covered with previous two, and the analysis is analogous. In the
case either of the above three events occur, the protocol halts and A fails.

AdvAdvakeP2
(A) = AdvAdvakeP3

(A) +O

(
nh0
q

)
. (14)

Game G5 : (Randomize session keys for wrong password guesses) In case of an incorrect
password guess to a non-matching instance, K is set randomly.

In this game, the reduction is very close to the one in [6]; we use similar hybrid argument,
and split the proof in two parts. At first we set K randomly only in the non-matching client
instances in case of a wrong password guess – we will call those target client instances.
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We construct an algorithm D that given a tuple 〈X,Y 〉, where X ← gx and Y ∈ G, attempts
to break DSDH assumption (i.e. determine whether Y is random or Y = gx

2
) by running the

adversary A as a subroutine. The algorithm D chooses a random index i← {1, 2, . . . , nse} and
simulates the protocol for A by setting K randomly for all target client instances prior to Ai,
and computing K normally for all client instances after Ai as follows.

For a given DSDH instance 〈X,Y〉, the client instance Ai sets X1 = X. When Ai receives
SendSend(Ai, (B, X ′2, π

′
2)) query, the simulator extracts x′2 from valid π′2, computes DA and sets

α = X(dA+x′2)pwA . After receiving SendSend(Ai, (β′, π′β)) and extracting a witness from π′β, the client

instance Ai computes K = (β′g−x
′
2xpwA)x = Xd′pw′x′2Y x′2(pw

′−pwA). Note that the value pw′ is
obtained by dividing extracted witnesses from the NIZK proofs pw′ = Ext(π′β)/Ext(π′2), while
d′ comes from the list Lh0 (see Fig. 3). In case of matching instances or a correct password
guess K = XdApwAx

′
2 , since pw′ is equal to pwA. If Y is real DSDH challenge, then the value K

will be computed as in G4. On the other hand, if Y is random and an incorrect password guess
is made, then K will be random, since x′2 6= 0 (check is performed in protocol, see Fig. 1) and
pw′ − pwA 6= 0 .

We now have to show that simulation is sound for any instance of B that generates X2

and receives possibly simulated X ′1 or α′. If any of two received values is not coming from Ai,
the simulator can extract witness from corresponding NIZK proof and check whether password
guess is correct or not. Moreover, if both received values are coming from Ai and instances are
non-matching, πα would be valid only if non-matching Ai and Bj would compute the same base
for α – meaning that Di

AX
′
2 = Dj

BX2. However, this event is discarded in the G3, and therefore
there is no need to check password guess in this case.
Since the reduction for the second part of proof in case of relevant server instances is analogous,
we get the following bound:

AdvAdvakeP4
(A) = AdvAdvakeP5

(A) + nseAdvAdvdsdhg,G (t′) . (15)

C Experiment Source Codes

// . / t e s t s /TestAddMul x 80 23 7
#de f i n e N TESTS 1
//#de f i n e DEBUG 1

// s t r ing s t r eam
#inc lude <sstream>

#inc lude ” P la in t ex t . h”
#inc lude ”DoubleCRT . h”
#inc lude ”Ciphertext . h”
#inc lude ”NTL/ZZ pX . h”
#inc lude <NTL/ vecto r . h>

#inc lude ”SHA1. hpp”

#inc lude <time . h>
#inc lude ”FHE−SI . h”
#inc lude <vector>

// time co s t
#inc lude <ctime>
std : : c l o c k t s t a r t ;
double durat ion ;
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//ns time t e s t
#inc lude <chrono>
typede f std : : chrono : : h i g h r e s o l u t i o n c l o c k Clock ;

#inc lude <NTL/ZZ p . h>
#inc lude <NTL/ZZ . h>
// http ://www. shoup . net / n t l /doc/ZZ . cpp . html
// http ://www. shoup . net / n t l /doc/ZZ p . cpp . html

i n t l en =256;
i n t TIMES=1000;

ZZ p ;
ZZ p a , b ;
ZZ p Px , Py ;

void CurveGen ( ){
//ZZ p ,
//ZZ p a , b ;

//gen p
GenPrime (p , len , 8 0 ) ; //prime with 2ˆ(−80)
whi l e ( rem(p , 3 ) !=2)

GenPrime (p , len , 8 0 ) ;
// cout<<”p:”<<hex<<p<<endl ;

ZZ p : : i n i t (p ) ;

//gen a , b
random( a ) ;
random(b ) ;

//gen a random point , not n e c c e c a r i l y on the curve
//From P12 ”Generation Methods o f E l l i p t i c Curves”
// the whole computation o f G and v e r i f y i n g i t s order

// i s o f b i t−complexity O( log ˆ4(p ) )
random(Px ) ;
random(Py ) ;

}

void Pgen1 (ZZ m){
ZZ tp3 ;
ZZ p u , v , x , y ;
ZZ p tp1 , tp2 , tp4 ;

//u=hash (m)
// sha−1
// https : // github . com/ j a s i nb / sha1/blob /master /main . c
conv (u ,m) ;

//embed message
//compute v
mul ( tp1 , a , 3 ) ;
power ( tp2 , u , 4 ) ;
sub ( tp1 , tp1 , tp2 ) ;
mul ( tp2 , u , 6 ) ;
d iv (v , tp1 , tp2 ) ;

power ( tp1 , v , 2 ) ;
sub ( tp1 , tp1 , b ) ;
mul ( tp2 , u , u ) ; // uˆ6/27=(uˆ2/3)ˆ3
div ( tp2 , tp2 , 3 ) ; // tp2=uˆ2/3
power ( tp4 , tp2 , 3 ) ;
sub ( tp1 , tp1 , tp4 ) ;

26



C EXPERIMENT SOURCE CODES

mul ( tp3 , p , 2 ) ;
sub ( tp3 , tp3 , 1 ) ;
d iv ( tp3 , tp3 , 3 ) ;

power ( tp1 , tp1 , tp3 ) ;
add (x , tp1 , tp2 ) ; //x

mul ( tp1 , u , x ) ;
add (y , tp1 , v ) ; //y

// cout<<”x:”<<hex<<x<<endl ;
// cout<<”y:”<<hex<<y<<endl ;

}

// po int add i t i on in Jacobian
void AD(ZZ p& X1 , ZZ p& Y1 , ZZ p& Z1 , ZZ p X2 , ZZ p Y2){

ZZ p A, B, C, D, E, F , G;
ZZ p Z2 ;

conv (Z2 , 1 ) ;

A=(X1∗power (Z2 , 2 ) ) ;
B=(X2∗power (Z1 , 2 ) ) ;
C=(Y1∗power (Z2 , 3 ) ) ;
D=(Y2∗power (Z1 , 3 ) ) ;
E=(B−A) ;
F=(D−C) ;

G=power (Z2 , 2 ) ;

X1=(−power (E,3)−2∗A∗power (E,2)+power (F , 2 ) ) ;
Y1=(−C∗power (E,3)+F∗(A∗power (E,2)−X1) ) ;
Z1=(Z1∗Z2∗E) ;

}

// po int doubl ing in Jacobian
void DB(ZZ p& X1 , ZZ p& Y1 , ZZ p& Z1){

ZZ p A, B;

A=(4∗X1∗power (Y1 , 2 ) ) ;
B=(3∗power (X1,2)+a∗power (Z1 , 4 ) ) ;

Z1=(2∗Y1∗Z1) ;
X1=(−2∗A+power (B, 2 ) ) ;
Y1=(−8∗power (Y1,4)+B∗(A−X1) ) ;

}

// us ing m∗P f o r po int hashing
// us ing Jacobian coo rd ina t i on
// i f sha−1, m i s 160−b i t ?
void Pgen2 (ZZ m){

ZZ p X1 , Y1 , Z1 ;
ZZ p tp1 ;

X1=Px;// suppose MSB of m=1
Y1=Py ;
conv (Z1 , 1 ) ;
f o r ( i n t i=len −1; i>=0; i−−)
{

DB(X1 , Y1 , Z1 ) ;
i f ( b i t (m, 0 ) ) //LSB

AD(X1 ,Y1 , Z1 ,Px ,Py ) ;
m=m>>1;

}
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tp1=inv ( power (Z1 , 3 ) ) ;
Y1=Y1∗ tp1 ;
X1=X1∗Z1∗ tp1 ;

// cout<<”X1:”<<hex<<X1<<endl ;
// cout<<”Y1:”<<hex<<Y1<<endl ;

}

ZZ stringToNumber ( s t r i n g s t r )
{

ZZ number = conv<ZZ>( s t r [ 0 ] ) ;
long l en = s t r . l ength ( ) ;
f o r ( long i = 1 ; i < l en ; i++)
{

number ∗= 16 ;
number += conv<ZZ>( s t r [ i ] ) ;

}

r e turn number ;
}

i n t main ( i n t argc , char ∗argv [ ] ) {
ZZ tpm ;
vector<ZZ> m;
SetSeed ( to ZZ ( time ( 0 ) ) ) ;

//Curve Gen
CurveGen ( ) ;

//Message Gen1
f o r ( i n t i = 0 ; i < TIMES; i++)
{

RandomBits (tpm , l en ) ;
m. push back (tpm ) ;

}

//hash 1
//”How to Hash in to E l l i p t i c Curves”
s t a r t = std : : c l o ck ( ) ;

f o r ( i n t i = 0 ; i < TIMES; i++)
{

Pgen1 (m. back ( ) ) ;
m. pop back ( ) ;

}

durat ion = ( std : : c l o ck ( ) − s t a r t ) / ( double ) CLOCKS PER SEC;
cout<<”HASH1:”<< durat ion /TIMES <<’\n ’ ;

//Message Gen2
f o r ( i n t i = 0 ; i < TIMES; i++)
{

RandomBits (tpm , l en ) ;
m. push back (tpm ) ;

}

//hash 2
//m∗P
s t a r t = std : : c l o ck ( ) ;

f o r ( i n t i = 0 ; i < TIMES; i++)
{

Pgen2 (m. back ( ) ) ;
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m. pop back ( ) ;
}

durat ion = ( std : : c l o ck ( ) − s t a r t ) / ( double ) CLOCKS PER SEC;
cout<<”HASH2:”<< durat ion /TIMES <<’\n ’ ;

}
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