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We study the effect of intrinsic noise on the thermodynamic balance of complex chemical networks subtending
cellular metabolism and gene regulation. A topological network property called deficiency, known to determine
the possibility of complex behavior such as multistability and oscillations, is shown to also characterize the
entropic balance. In particular, when deficiency is zero the average stochastic dissipation rate equals that of
the corresponding deterministic model, where correlations are disregarded. In fact, dissipation can be reduced
by the effect of noise, as occurs in a toy model of metabolism that we employ to illustrate our findings. This
phenomenon highlights that there is a close interplay between deficiency and the activation of new dissipative
pathways at low molecule numbers.

I. INTRODUCTION

Today, advanced methods in genomics and
metabolomics allow to reconstruct the chemical
networks (CN) describing the metabolism of complex
organisms1,2. These reconstructions are graphical
repositories of thousands of pathways, metabolites, and
their stoichiometry. Much like heat engines, metabolism
operates thermodynamic cycles far from equilibrium
that transform low chemical potential environmental
resources into valuable products, at the expense of high
chemical potential waste. Unlike the working substance
of heat engines (e.g. steam), some metabolites, enzymes
and cofactors might reach very low concentrations.
At this level intrinsic noise, due to discreteness and
randomness of molecular collisions, enters into play3.
Suppression of noise and control of correlations in
the abundance of regulatory molecules is crucial for
the correct functioning of metabolic networks4–6. A
stochastic description of dynamics and thermodynamics
based on jump processes in molecules’ populations is
then required.

In this direction, the growing field of Stochas-
tic Thermodynamics created the basis for a com-
plete and consistent characterization of irreversibility
in small nonequilibrium systems subject to fluctua-
tions. Dissipation is quantified by the rate at which
entropy is produced (EPR) and eventually delivered
to the environment7. The theory has been applied
to general CNs8–10 such as those involved in gene
regulation12, cellular computation13, copolymerization14,
kinetic proofreading15, chemical switches16, and signal
transduction17. On the other hand, there is a growing
body of mathematical literature linking a CN’s topol-
ogy to its dynamics, and still bearing no thermody-
namic interpretation. In particular, it has been under-
stood that a topological number called deficiency sub-
tends the onset of complex behavior, such as bistability
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and oscillations18–20, which are the mechanisms of chemi-
cal switches and clocks21. When intrinsic noise is impor-
tant, a crucial result by Anderson, Craciun and Kurtz
(ACK)22 relates the deficiency of the CN to steady sta-
tistical properties of the chemical mixture.

In this paper we merge stochastic thermodynamics and
deficiency theory, via the ACK theorem. We compare the
behavior of an arbitrary CN subject to intrinsic noise and
that of the corresponding deterministic model without
noise, which follows deterministic rate equations where
correlations between species are neglected. In the limit
of large particle numbers the deterministic dynamics de-
scribes the mode, i.e. the most typical behavior of the
system. The difference between the stochastic and the
deterministic EPR in the two cases, here named corre-
lation EPR (previously known as fluctuating EPR, to-
day ambiguous), is known to vanish at steady states for
linear CNs where only input/output and conformational
changes of a molecule are allowed, and reaction velocities
are linear-affine in the molecules’ populations23.

The main result in this paper is to extend this obser-
vation to nonlinear CNs with null deficiency at steady
states, and to linear networks at all times. We rely on
the following formula for the steady correlation EPR as
the weighted difference between the mean and the mode
of the reaction velocity v,

correlation EPR = (mean v −most probable v)G, (1)

where G is the free-enthalpy increase. Hence the correla-
tion EPR might be interpreted as a measure of a system’s
“propensity to complexity”.

The plan of the paper is as follows. In Sec. II B we pro-
vide a simple definition of deficiency with the aid of a toy
model of metabolism. More generally, under the assump-
tion that the law of mass-action holds and that the mix-
ture is well-stirred, we illustrate the dynamics and ther-
modynamics of CNs, in the stochastic (II C) and in the
deterministic (II D) settings. We then derive the above
formula, and by virtue of the ACK theorem (whose proof
we briefly sketch in Appendix B) we draw our main con-
clusion that the correlation EPR vanishes for networks
with zero deficiency. Our toy model will finally serve as
a testing ground. We employ it to illustrate through Figs.
2, 3 the predictions of the ACK theorem. Incidentally,
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the model displays a non-positive correlation EPR, some-
what contrary to the intuition that “large variability is
likely to [. . . ] increase metabolic burden”6. We give an
explanation of this phenomenon in terms of the topology
of the state space where stochastic population dynam-
ics occurs, showing that when deficiency is nonzero, for
low molecule numbers certain irreversible closed reaction
pathways are switched off.

II. SETUP

A. Notation

As customary in CN studies, we employ a rather com-
pressed notation. Letting X be the vector of chemical
species, a CN is depicted by a set of stoichiometric equa-
tions

ν+ρ ·X
k+ρ

GGGGGGGBFGGGGGGG

k−ρ
ν−ρ ·X (2)

where vectors ν+ρ and ν−ρ contain, respectively, the
numbers of molecules of each species being consumed and
produced by reaction ρ, and a · b is the scalar product.
The stoichiometric vector is defined as ∇ρ := ν−ρ−ν+ρ,
and it describes the net increase of species’ populations.
The stoichiometric matrix is the matrix that has the stoi-
chiometric vectors as columns, ∇ = (∇ρ)ρ>0. We assume
that all reactions are strictly reversible, that is, k±ρ > 0.
In sums

∑
ρ, index ρ spans over reactions in both di-

rections, unless otherwise specified. Analytic operations
between vectors are performed component-wise and im-
ply the scalar product, e.g. ab :=

∏
i a
bi
i , a! :=

∏
i ai!,

a · ln b :=
∑
i ai ln bi. Boltzmann’s constant kB is set to

unity.

B. From metabolism to deficiency

Roughly speaking, the deficiency of a CN is the num-
ber of “hidden” closed pathways, or thermdynamic cy-
cles. Let us make this more precise with a simple model
inspired by metabolism. Emphasis is on the cycle struc-
ture (see24 for a formal introduction). The model reads

∅ 1−→ N

N +mE
2−→ (m+ n)E + W

nE + W
3−→ ∅,

(3)

where ∅ signifies the “environment” as a whole. The first
reaction introduces nutrients N. The second processes
the nutrients with the aid of m tokens of energy E to pro-
duce more tokens of energy and waste W, and the third
delivers waste and excess energy to the environment.

When all three reactions in the above network are per-
formed in a pathway, a thermodynamic cycle is com-
pleted, restoring all concentrations in the system to their

initial value at the expense of irreversibly dissipated free
enthalpy (entropy production). Correspondingly, the sto-
ichiometric matrix

∇ =

 +1 −1 0
0 +1 −1
0 +n −n

 (4)

admits c = (1, 1, 1)T as a right-null vector, ∇c = 010.
The crucial step to understand deficiency is to intro-

duce a symbolic representation of the network in terms
of complexes, which are aggregates of species appearing
as either reactants or products in a reaction. In our case,
the complexes are Y1 = ∅,Y2 = N,Y3 = N + mE,Y4 =
(m + n)E + W,Y5 = W + nE. We then obtain a repre-
sentation of the CN as a graph by drawing each reaction
as an edge connecting vertices given by the complexes.

For m = 0, we notice that Y2 = Y3 and Y4 = Y5 and
that a representation of the above network in terms of
complexes is a graph consisting of one cycle:

Y1
1 // Y2

2~~
Y4

3

``
. (5)

Its topology is fully described by its incidence matrix

∂ =

 −1 0 +1
+1 −1 0
0 +1 −1

 (6)

which admits one right null vector.
For m > 0 we obtain the representation

Y5
3 // Y1

1 // Y2 , Y3
2 // Y4 , (7)

with incidence matrix

∂ =


−1 0 +1
+1 0 0
0 −1 0
0 +1 0
0 0 −1

 (8)

This graph has no cycles; in fact its incidence matrix
admits no right-null vectors.

The deficiency δ of a CN is the number of indepen-
dent closed reaction pathways that cannot be visualized
as independent cycles in the graphical representation in
terms of complexes, and thus in some sense are “hidden”.
In our example when m = 0 then δ = 0, otherwise the
system is deficient, δ = 1. Notice that null deficiency
occurs when the autocatalytic mechanism of reaction 2
is not present.

The general recipe to calculate the deficiency is: (i)
write down the stoichiometric matrix ∇ of the network;
(ii) write down the incidence matrix ∂ of the graph where
the reactions are arrows and complexes of reactants dis-
tinct vertices of the graph; (iii) then the deficiency is

δ = dim ker∇− dim ker ∂ ≥ 0 (9)
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where dim ker calculates the dimension of the null space.
The deficiency is non-negative. In fact one can write

∇ =
∂Y

∂X
∂ (10)

where the entry (∂Y/∂X)ij quantifies the amount of
species Xi in complex Yj . Since by Eq. (10) a right-null
vector of ∂ is necessarily a right-null vector of ∇, then
δ ≥ 0.

C. Average stochastic EPR

The setup of Markovian population dynamics of chem-
ical species is as follows. The number of molecules in the
reactor performs a jump process on the discrete lattice
orthant ZX0 of populations that, starting from the ini-
tial state X0, are reachable by a finite number of reac-
tions1. According to the law of mass-action, transition

X
ρ−→X + ∇ρ is performed at rate

vρ(X) = kρ
X!

(X − νρ)!
. (11)

The probability (or ensemble) pt(X) that X molecules
are present in the reactor at time t obeys the Chemical
Master Equation ṗt = Lpt with generator

Lpt(X) = −
∑
ρ

[
v+ρ(X)pt(X)

− v−ρ(X + ∇ρ)pt(X + ∇ρ)
]
. (12)

Multiplying by, and summing overX, one obtains for the
mean populations

d

dt
〈X〉t =

∑
ρ

∇ρ〈vρ(X)〉t (13)

where the average 〈 · 〉t is taken with respect to pt(X).
The equation is not closed, as it involves higher moments
on the right-hand side.

For finite ZX0 , it can be proven that any ensemble sup-
ported on ZX0

evolves towards a unique steady ensemble
p∞ such that Lp∞ = 0. We assume that for unbounded
ZX0

conditions are met by which at all times pt(X →∞)
decays fast enough (e.g. exponentially) so that no proba-
bility leak to infinity occurs, and that a steady ensemble
exists.

In this framework, the average EPR characterizing the
CN’s dissipation is defined as25

σt :=
∑
ρ

〈
vρ(X) ln

v+ρ(X)pt(X)

v−ρ(X +∇ρ)pt(X +∇ρ)

〉
t

≥ 0

(14)

1 That is, ZX0
:= {X = X0 + ∇n,n ∈ ZR,X ≥ 0}, some-

times called the stoichiometric compatibility class, compatible
with X0.

It can easily be proven that the EPR is non-negative,
embodying the second law of thermodynamics. The log-
arithmic term measures the thermodynamic cost of re-
action ρ for a given X, and it quantifies the degree by
which detailed balance is broken.

D. Deterministic EPR

The corresponding deterministic model is obtained by
neglecting correlations and higher cumulants, i.e. by
replacing 〈Xνρ〉t → (Ωx)

νρ
t , where Ω is a large vol-

ume parameter that makes x a continuous variable with
the interpretaton of a concentration; in the following
we will set Ω = 1 for notational clarity and only re-
sume proper scalings when studying the model systems
in Sec. III B. Also, in the large volume limit the approxi-
mation vρ(x) ≈ kρxνρ is made. Then Eq. (13) yields the
rate equation8

dxt
dt

=
∑
ρ

∇ρvρ(xt) (15)

Again, we are interested in steady behavior, when the
right-hand side vanishes. Importantly, while the Chemi-
cal Master Equation admits one unique steady ensemble,
the corresponding deterministic dynamics might admit
none or several locally stable fixed points x∞ and more
complicated phenomenology such as limit cycles and frac-
tal attractors8. Deterministic multistability corresponds
to the steady ensemble being multimodal. Notice that
x cannot be interpreted as a mean, as for bistable sys-
tems the mean might be far from both stable fixed points.
Rather, in a scaling limit with the system size, random
jump processes can be shown to typically behave deter-
ministically, as rigorously detailed in Ref. 26.

In this setting, the deterministic EPR is defined as27

σ̄t :=
∑
ρ

vρ(xt) ln
v+ρ(xt)

v−ρ(xt)
≥ 0. (16)

The connection to free-energy differences and other ther-
modynamic potentials in a nonequilibrium setting is de-
tailed in Ref. 10.

III. RESULTS

A. Theoretical

First, we re-work the above expressions for the deter-
ministic and stochastic EPRs to make them closer one to
another. Introducing the thermodynamic forces

Gρ := ln
k+ρ
k−ρ

, (17)

that measure the kinetic imbalance of reactions, with a
few manipulations we can bring the deterministic EPR
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FIG. 1. We consider a class of toy models for metabolism
∅ � N,N + mE � (m + 2)E, 2E � ∅, for varying m. In this
figure we compare stochastic and deterministic time evolution
of nutrient and energy molecules in the model corresponding
to m = 0, that has deficiency δ = 0 (on the left), and in
model corresponding to m = 3, with deficiency δ = 1 (on the
right). The reactor is initially empty; rates are scaled accord-
ing to the volume-parameter Ω = 10−21NA ≈ 602 (see main
text), which is the number of molecules at the fixed point,
for both models and for both species. In the zero-deficiency
case, stochastic dynamics only adds structure-less noise to the
deterministic behavior. Instead, in the deficient case, while
the deterministic system has damped oscillations towards the
fixed point, oscillations are sustained in the corresponding
stochastic dynamics, yielding a structural deviation between
the two.

to

σ̄t =
∑
ρ

vρ(xt)Gρ − lnxt ·
dxt
dt

(18)

As regards its stochastic counterpart, plugging the mass-
action rates, Eq. (11), into Eq. (14) we obtain

σt =
∑
ρ

〈vρ〉tGρ −
∑
X

ln[pt(X)X!]Lpt(X). (19)

This is the first main result in our paper. Its most
remarkable feature is that in the first term, related to
the entropy flow to the environment9, only the “macro-
scopic” average reaction velocity appears, and that “mi-
croscopic” dependencies on X are within the second
term, which is related to the system’s entropy change. At
the trajectory level, this grants the validity of so-called
Fluctuation Theorems28, hence σt is a proper notion of
EPR. It is important, and a priori not obvious that the
thermodynamic force Gρ is the same in the stochastic
and in the deterministic settings.

Second, we define the correlation EPR as δσt := σt−σ̄t
and notice that, in the steady regime, it can be ex-
pressed as a weighted difference between the average and
the deterministic reaction velocity, as was anticipated in
Eq. (1). Explicitly, we obtain a formula for the steady
correlation EPR as a weighted sum of population mo-

ments:

δσ∞ =
∑
ρ

[
〈vρ〉∞ − vρ(x∞)

]
Gρ (20)

=
∑
ρ

Gρkρ

(
〈X . . . (X − νρ + 1)〉∞ − xνρ∞

)
.(21)

The latter expression might pave the way for approxi-
mate estimations of the correlation EPR based on Van
Kampen’s system size expansion, moment-closure tech-
niques or other diffusion approximations, provided due
care is paid to the fact that such approximations often
fail to reproduce the stochastic thermodynamics out of
equilibrium11 or even the distibution moments29.

Third, we evaluate the stochastic EPR when the sys-
tem is in a product-form Poisson-like ensemble2 with a
generic time-dependent parameter yt,

Poisyt(X) =
1

ZX0

yt
X

X!
, (22)

with ZX0
the normalization factor over ZX0

. In this case
it can be shown with few manipulations (see Appendix
A for a step-by-step derivation) that 〈vρ〉Poisyt = vρ(yt),
and consequently

σPoisyt =
∑
ρ

vρ(yt)Gρ − lnyt ·
∑
ρ

∇ρvρ(yt). (23)

Notice that this expression coincides with the deter-
ministic EPR at t→∞ if the Chemical Master Equation
admits a steady product-form Poissonian with parameter
y∞ being a deterministic fixed point, and at all times if
the system admits a product-form Poissonian with time-
dependent parameter solving the deterministic rate equa-
tions.

Fourth, we investigate under which conditions such hy-
pothesis are met. The ACK theorem22 entails that, un-
der our reversibility assumption, if the network has null
deficiency, then the Chemical Master Equation admits a
product-form Poissonian with parameter x∞ being the
fixed point of the corresponding deterministic dynamics,
which by Feinberg’s results18 for δ = 0 is unique and lo-
cally stable. Hence the steady correlation EPR vanishes
for zero-deficiency networks. For sake of reference we
sketch a proof of the theorem in Appendix B. Further-
more, it is known that in linear networks where no more
than one molecule is consumed or produced at a time
(i.e.

∑
i νρ,i = 0, 1), provided the system is prepared in

a product-form Poissonian, it maintains such form at all
times, with its parameter subjected to the correspond-
ing rate equations30. Hence for linear CNs prepared in a
product-form Poissonian ensemble, the correlation EPR
vanishes at all times. These results thus generalize those
by Mou et al.23, who observed that the correlation EPR
vanishes at steady states in linear networks.

2 Notice that, because the range of summation is the lattice or-
thant ZX0

and not Z|X|, |X| being the number of species, a
“product-form Poisson-like” distribution is Poissonian in form
but not in fact.
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B. Numerical

We will now illustrate the consequences of the ACK
theorem and our findings with the aid of the above class
of toy models. In fact we will further simplify the sce-
nario by eliminating the waste W , which does not play
any substantial kinetic role. Details on the simulation
methods can be found in Appendix C.

Let Ω be a scaling parameter regulating the system’s
size and let x = N/Ω be the concentration of N and
y = E/Ω that of E. A convenient choice of parameters
is kρ = K±Ω1−

∑
i νiρ , where K± are independent of the

reaction, in their respective units (which depend on ρ).
Then for given Ω all models turn out to have the same
fixed point concentrations and steady EPR, making them
easily comparable. Concentrations obey the system of
rate equations

ẋ = K+ −K−x−K+xy
m +K−y

n+m

ẏ = n
(
K+xy

m −K−yn+m +K− −K+y
n
)
.

(24)

A fixed point is found at x∞ = y∞ = 1, for all values of
m,n. Its stability depends on m,n,K+,K−. The deter-
ministic EPR at the fixed point is given by

σ̄∞ = 3Ω(K+ −K−) ln
K+

K−
(25)

(notice that parameter Ω cancels within the logarithms,
so that the EPR is extensive) and again it is independent
of m,n.

We will consider the cases n = 2, for values m =
0, 1, 2, 3, m = 0 being the zero-deficiency case, all others
having δ = 1. We take K+ = 10, K− = 1, which signi-
fies that the system is very far from a detailed balanced
thermodynamic equilibrium. We start from an empty
reactor, x0 = y0 = 0. For these values the above fixed
point is stable for all m < 4. For m = 0 the dynamics
converges uniformly to the fixed point, as shown in the
left-hand side of Fig. 1. A more interesting behavior ap-
pears for higher m: for m = 3 the deterministic system
displays damped oscillations towards the fixed point (as
shown by the innermost smoother lines in the left-hand
side of Fig. 1). Indeed, for m = 4 the fixed point becomes
unstable and the system displays steady oscillations.

As regards the stochastic setting, so far our framework
was that of ensemble thermodynamics, describing a large
sample of processes at a given time. From now on we con-
sider one given process in a large time. Indeed, Stochastic
Thermodynamics has two complementary formulations:
one along ensembles, and one along individual processes7.
The two frameworks are compatible, since the ergodic
principle ensures that long-time averages almost surely
(a.s.) equal ensemble averages at the steady state. In
particular it can be proven that for the reaction velocity

〈vρ〉∞ = lim
t→∞

1

t
#t(ρ), a.s. (26)

where #t(ρ) is the number of times reaction ρ has been
performed along the stochastic trajectory up to time t.

FIG. 2. The ACK theorem states that, if a CN has zero
deficiency, then given an initial state (in our case, N = E =
0), the steady ensemble of the Chemical Master Equation has
product form. Here we display color-plots of the histograms
of the steady distribution of nutrient and energy molecules,
for our toy models with m = 0, 1, 2, 3, and rates scaled down
by the volume-parameter Ω = 10−23NA = 6.02, giving a low
number of molecules at the steady state. Zebra lines (present,
but not displayed for m > 0 for sake of better visualization)
indicate that the stochastic dynamics preserves the parity of
the energy molecules, which are produced in pairs. Owing to
the outer smudge, the deficient models m = 1, 2, 3 have a non-
product form distribution. The product-form distribution of
the zero-deficiency case m = 0 is shown in more detail in
Fig. 3.

Similarly, a histogram for the steady ensemble p∞(N,E)
can be obtained by calculating the average time spent
by the trajectory at state N,E. Let us then illustrate
the ACK theorem. In Fig. 2 we provide color-plots for
p∞(N,E). For m = 0, the color plot renders the distri-
bution’s product-form. Zebra-lines are due to the fact
that energy tokens are produced in pairs, hence starting
from x0 = y0 = 0 only even numbers of energy molecules
can be populated. The same zebra-structure occurs for
higher m > 0, but for sake of better visualization we
drew pixels twice the width, covering the whole area.
The smudge in the color plots in Fig. 2 for m > 0 reveals
that the steady ensemble does not have product form.
Instead, in the zero-deficiency case, Fig. 3 compares the
histograms of the marginals for the energy and the nutri-
ent, showing that they perfectly agree with the prediction
from the product-form Poissonian.

In Fig. 4 we plot the average stochastic EPR as a func-
tion of volume Ω. The perfect overlap between the de-
terministic EPR (upper line) and the dots corresponding
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FIG. 3. The nonlinear CN ∅� N � 2E � ∅ (corresponding
to m = 0) has zero deficiency. Hence, by the ACK theorem its
corresponding Chemical Master Equation affords a product-
form steady ensemble, and the marginals for the number of
nutrients and of energy molecules also have Poisson-like dis-
tributions. We plot histograms for the populations of nutrient
and energy molecules generated by stochastic simulations via
Gillespie’s algorithm, with rates scaled by a volume parame-
ter Ω = 6.02, showing perfect agreement with the predictions
of the ACK theorem.

to the m = 0 case confirms our result that for deficiency-
zero systems the correlation EPR vanishes. For m > 0
this particular class of models has negative correlation
EPR. The plots of the relative error in the inset show
that the effect vanishes at large system sizes where fluc-
tuations become negligible.

Finally, another interesting aspect to inquire is the de-
pendency of the correlation EPR on the affinity A =
3 logK+/K−, which determines the distance from de-
tailed balance, i.e. from thermodynamic equilibrium. In
particular, we are interested in the so-called linear regime
where the affinity is small and stationary currents are ap-
proximately linear in the affinity. Then

δσ∞ = (`− ¯̀)A2 (27)

with the deterministic linear response coefficient ¯̀= Ω/3.
The inset in Fig. 5 shows that in a model with nonvanish-
ing deficiency, in the linear regime the correlation EPR,
relative to the deterministic linear regime approximation,
does not vanish in the limit A → 0, which implies that
the stochastic linear response coefficient ` differs from the
deterministic one.

Our result proves that having δ = 0 is a sufficient
condition for a vanishing correlation EPR. A prelimi-
nary question is then whether it is also necessary. The
answer is trivially negative. In fact, if rates are such
that detailed balance holds, then both the stochastic,
the deterministic, and hence the correlation EPRs van-
ish. More generally, for the ACK theorem to hold it
is sufficient that the more general condition of complex

FIG. 4. The main result of our paper is that dissipation
(EPR) in stochasic chemical dynamics only coincides with
the deterministic EPR when the CN has zero deficiency, and
that already in simple systems intrinsic noise affects dissipa-
tion. In the main frame we plot in log-log scale the stochastic
EPR for our toy models, for all values m = 0, 1, 2, 3, as a func-
tion of the volume-parameter Ω that sets the average number
of molecules present in the reactor at the steady ensemble.
The upper straight line represents the deterministic value,
Eq. (25). The dots on top of it are the values of the corre-
sponding stochastic zero-deficiency system, m = 0. Models
m ≥ 1 with deficiency δ = 1 have lower EPR than the deter-
ministic model. An explanation for this is in Fig. 6. In the
inset, we show that the relative error between stochastic and
deterministic values decreases with volume.

balance holds: even if deficiency is greater than zero,
rates can conjure in such a way that currents look “as
if” the system had null deficiency. Furthermore, by the
theory of Schnakenberg25 it can be shown that the cor-
relation EPR can be decomposed in fundamental cycles
δσ(∞) =

∑
α [〈Jα〉∞ − Jα(x∞)]Aα, with index α span-

ning a basis of the null space of the stoichiometric ma-
trix, Aα a cycle affinity and Jα a cycle current. Cycle
affinities are invariant under a wide range of transforma-
tions of the rate constants which affect the cycle currents;
hence even for non-complex balanced rates it might be
feasible to tune the rates in such a way that several cycle
contributions all cancel each other.

The above argument rests on the fact that rate con-
stants might be fine-tuned. The question becomes more
interesting if properly reformulated. For systems with
nonvanishing deficiency, complex-balanced rates are a set
of measure zero in the space of possible rates. So, is
the condition δ = 0 necessary for a vanishing correlation
EPR, for all possible values of rates? Very special sys-
tems with nonvashing deficiency which still have Poisso-
nian steady states have been found35. An example is the
chemical network X+Y 
 2X+Y, X 
 2X. In this case,
the number of molecules of Y is constant and determines
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FIG. 5. The affinity A = 3 logK+/K− determines the dis-
tance from thermodynamic equilibrium (detailed balance). In
this figure we show the dependency of the deterministic and
the stochastic EPRs with respect to the affinity, for m = 3
and Ω = 6.02, at fixed K− = 1 and variable K+. The dashed
curve is the linear-regime approximation of the deterministic
EPR, where the current is approximately linear in the affin-
ity and the EPR is approximated by a quadratic. Clearly the
EPRs approach zero for vanishing affinity (no dissipation).
The inset shows the error between stochastic and determin-
istic EPR, relative to the linear approximation. The relative
error increases with the affinity and, remarkably, it does not
tend to vanish for A→ 0. This implies that for nonvanishing
deficiency, the Onsager coefficients of the deterministic and
stochastic systems differ.

the stoichiometric compatibility class where the dynam-
ics is restricted. The deficiency is δ = 1, still the steady
ensemble is a product-form Poissonian with parameter
given by the solution of the deterministic equations of
motion, and the correlation EPR can be easily shown
to vanish. To take this class of cases into the descrip-
tion, Cappelletti and Wiuf have introduced the concept
of “stochastically complex-balanced” chemical reaction
networks. The analysis of whether correlation EPR van-
ishes for all values of the rates if and only if the network
is stochastically complex-balanced goes beyond the scope
of the present paper.

IV. DISCUSSION AND CONCLUSIONS

While it could have been expected that fluctuations
would increase dissipation, our simple model displays the
opposite behavior. This can be explained as follows.
Notice that for m = 3 in Fig. 1 the stochastic dynam-
ics has amplified oscillations, such as those characterized
in Ref. 36, where a purely stochastic mechanism for bio-
chemical oscillations was proposed. Such oscillations are
forcedly stabilized in the deterministic setting. Hence
the stochastic model is more flexible and capable of ex-

ploring modes that the deterministic system abandons.
Lower EPR then occurs when such modes are entropi-
cally convenient. A way to characterize these modes is
by a switching mechanism of chemical pathways. Fig. 6
details that in deficient networks, at low molecule num-
bers certain reactions can be effectively shut off because
of the temporary absence of a sufficient number of reac-
tants. This phenomenon eventually reshapes the struc-
ture of the irreversible closed reaction pathways that the
system can locally perform. In our particular model, for
low molecule numbers reaction 2 is inhibited, and the
other two reactions alone do not contribute to dissipa-
tion. Instead, in the CN with δ = 0 the dissipative cycle
can be performed at any particle number.

The above example might then lead to hypothesize
that the correlation EPR could be non-positive in gen-
eral. This is not the case though. A counterexample can
be found in the literature. The Schlögl model ∅ 
 X,
2X 
 3X has deficiency δ = 1, and its most important
feature is that for certain critical values of the parameters
it displays a bifurcation. Gaspard compared stochastic
and deterministic EPRs for this model16, and as can be
observed from Fig. 2 in Ref.16, close to the critical point
the stochastic EPR is larger than the deterministic one,
while in the bistable region it interpolates between the
two possible values that the deterministic EPR takes at
each of the two stable fixed points.

Despite the fact that our toy model is oversimplified,
the mechanisms we observed might carry out to more
realistic networks. At the level of gene expression, it is
known that intrinsic noise is a crucial factor in phenotypic
variation within isogenic populations3. One step below,
while in cells metabolites might be large in number, gene-
expressed regulatory molecules might be very few3, allow-
ing the switching mechanisms that we described above.
In metabolism, the action of enzymes typically adds a
level of complexity. In fact, most (if not all) of the reac-
tions in biochemical CNs are not elementary, hence their
connectivity and kinetic rules have to be determined a
posteriori by advanced experimental methods (see32 for
a systematic review). Nevertheless, in our models the in-
built deficient cycle could be seen as the core structure
of any metabolic model. The network should be enriched
by resolving individual metabolites within nutrients and
waste, adding intermediate reactants such as cofactors
and enzymes, resolving the environment and outer ther-
modynamic cycles, separating time-scales and resorting
to effective rate laws when applicable. As a proof of con-
cept, all these operations will in general maintain the core
cycle and hence the deficient character of the network,
hence it can be argued that, because of its autocatalytic
character, metabolism is deficient.

3 In E. coli, the lowest-concentration metabolite, nucleoside adeno-
sine, is present in ∼ 102 copies, but over 80% of the variety
proteins is much lower in copy numbers31
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To conclude, we emphasize that understanding ther-
modynamic constraints on the regulation of metabolic
networks is a crucial problem in CN reconstruction33,34.
In this work we displayed a close connection between the
topological notion of deficiency of a CN and nonequilib-
rium thermodynamics, proving that at steady states only
in zero-deficiency CNs the EPR evaluated by the mean-
field deterministic theory coincides with that of the cor-
responding stochastic model, accounting for stochastic
variability in molecules’ number at low concentrations.
For deficient CNs a nonvanishing correlation EPR quanti-
fies the disagreement between deterministic and stochas-
tic modeling, and at low molecule numbers this disagree-
ment can be understood in terms of a switching mech-
anisms of reaction pathways. A more detailed study of
the conditions for positive vs. negative correlation EPR
is demanded to future inquiry. Immediate perspectives
also include the study of non-well-stirred mixtures, where
reaction-diffusion processes allow for pattern formation,
and of systems with separation of time scales and effec-
tive enzymatic reactions. On the computational side, the
more demanding stochastic techniques can be blended
with deterministic algorithms to provide efficient tools
for the systematic computation of the entropic balance
of a CN, e.g. in software like COPASI37. More work
has to be done to delineate future application of defi-
ciency theory and stochastic thermodynamics to realistic
metabolic networks.
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5856127 and of the AFR Ph.D. Grant 7865466.

Appendix A: Explicit derivation of Eq. (23)

From Eq. (14), plugging into the rates Eq. (11) and the
Poisson-form distribution Eq. (22) we obtain

σPoisyt =
∑
ρ

∑
X

Poisyt(X)vρ(X)

ln
v+ρ(X)Poisyt(X)

v−ρ(X +∇ρ)Poisyt(X +∇ρ)

=
1

ZX0

∑
ρ

∑
X

kρ
yt
X

(X − νρ)!
ln

kρ
yt

X

(X−νρ)!

k−ρ
yt

X+∇ρ

(X+∇ρ−ν−ρ)!

=
1

ZX0

∑
ρ

∑
X

kρ
yt
X

(X − νρ)!

(
ln

kρ
k−ρ
−∇ρ · lnyt

)
We now shift the summation over X to obtain

σPoisyt =
1

ZX0

∑
X

yt
X

X!

∑
ρ

kρyt
νρ

(
ln

kρ
k−ρ
−∇ρ · lnyt

)
=
∑
ρ

kρyt
νρ

(
ln

kρ
k−ρ
−∇ρ · lnyt

)
which is the desired result, Eq. (23).

FIG. 6. Chemical stochastic kinetics occurs on lattice or-
thants, called stoichiometric compatibility classes (SCC). For
our class of models, given an initial state, random jumps
preserve the parity of the energy molecules (even or odd),
hence there are two distinct SCCs. In the zero-deficiency
case, m = 0, all of the drawn transitions are possible, and
both SCCs can be obtained by repeatedly copy-pasting a mo-
tif corresponding to the full CN, marked bold in the figure,
through the whole lattice orthant. That is, locally each SCC
looks like the full CN. Only cycling trajectories that carry
a thermodynamic affinity contribute to the steady stochastic
EPR25,28. Hence, for m = 0, even for very low molecule num-
bers it is always possible to perform the entropy-producing
cycle. On the other hand, the structure of the SCCs for defi-
cient networks is: for m = 1 dotted transitions type I are not
feasible (since at least one energy token is needed to perform
reaction ρ = +2 and three energy tokens are needed to per-
form ρ = −2), for m = 2 dotted transitions type I and II are
switched off, and for m = 3 transitions type I, II and III are
shut. Hence for low-enough molecule numbers, the stochas-
tic trajectory explores a portion of the SCC where there is
no possibility of producing entropy along an irreversible cycle
(cycles consisting only of reactions ρ = ±1,±2 don’t dissi-
pate). This explains the lower stochastic EPR observed for
m = 1, 2, 3 in Fig. 4.

Appendix B: Sketch of derivation of the deficiency-zero
theorem

One of the corollaries that incarnate the Anderson-
Craciun-Kurtz theorem22 states that if a (weakly) re-
versible CN has deficiency zero, then on each stoichiomet-
ric compatibility classes the Chemical Master Equation
admits a product-form Poisson-like steady distribution
with parameter given by the unique fixed point of the
corresponding rate equations. For sake of completeness,
we provide the sketch of a derivation based on the graph-
theoretical perspective that was briefly introduced in the
main text. For another derivation based on quantum
techniques, see39.
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Plugging the product-form Eq. (22) with parameter
given by the fixed point x∞ into the generator Eq. (12),
and using rates Eq. (11) one obtains

LPoisx∞(X) =

=
1

ZX0

∑
ρ

[
k−ρ

x∞
X+∇ρ

(X + ∇ρ − ν−ρ)!
− k+ρ

x∞
X

(X − νρ)!

]
=

2

ZX0

∑
ρ>0

x∞
X−νρ

(X − νρ)!

[
v−ρ(x∞)− v+ρ(x∞)

]
(B1)

where we used ∇ρ = ν−ρ−νρ, and antisymmetrized. We
now observe that the sum over reaction vectors ρ > 0 can
be commuted with a sum over complexes Yi, followed by
a sum over all reactions ρ that have Yi as a source com-
plex. The latter information is stored into the incidence
matrix ∂ of the graph of complexes. Noticing that νρ
only depends on the complex of reactants ahead of ρ, we
can write

LPoisx∞(X) =
2

ZX0

∑
i

x∞
X−νi

(X − νi)!∑
ρ

∂i,ρ

[
v−ρ(x∞)− v+ρ(x∞)

]
. (B2)

After Eq. (15), the fixed point satisfies∑
ρ>0

∇ρ [v+ρ(x∞)− v−ρ(x∞)] = 0 (B3)

which implies that v+ρ(x∞) − v−ρ(x∞) is a right-null
vector of the stoichiometric matrix. But if δ = 0, then
v+ρ(x∞)− v−ρ(x∞) is also a right-null vector of the in-
cidence matrix (see last paragraph in Sec. II B), hence
Eq. (B2) vanishes.

Appendix C: Materials and methods

We employed the CN simulation software COPASI37 to
simulate the Chemical Master Equation via Gillespie’s al-
gorithm, and the LSODA algorithm implemented in the
scientific python stack (SciPy)38 to solve deterministic
rate equations. Histograms in Fig. 3 and Fig. 2 were sam-
pled from stochastic trajectories for random-time change
Markov jump processes spanning over 105 s with a time
resolution of 10−1 s, for a total of 106 binned particle
number pairs, while the stochastic time-courses in Fig.1
employ trajectories of 5 s with a resolution of 10−5 s.
Each value for the average stochastic EPR in Fig. 4 was
calculated along single simulations of 105 s. Notice that
Gillespie’s algorithm keeps track of all reaction events,
hence the final result for the stochastic average EPR is
independent of time resolution. For the deterministic
transients we used the same time-span and resolution as
for the stochastic ones. The deterministic EPR was cal-
culated via Eq. (25) and not from the simulation data.
Thus it is only valid at the fixed point.
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