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Abstract. Distance bounding (DB) emerged as a countermeasure to the so-called
relay attack, which affects several technologies such as RFID, NFC, Bluetooth, and
Ad-hoc networks. A prominent family of DB protocols are those based on graphs,
which were introduced in 2010 to resist both mafia and distance frauds. The security
analysis in terms of distance fraud is performed by considering an adversary that,
given a vertex labeled graph G = (V,E) and a vertex v ∈ V , is able to find the most
frequent n-long sequence in G starting from v (MFS problem). However, to the best of
our knowledge, it is still an open question whether the distance fraud security can be
computed considering the aforementioned adversarial model. Our first contribution
is a proof that the MFS problem is NP-Hard even when the graph is constrained to
meet the requirements of a graph-based DB protocol. Although this result does not
invalidate the model, it does suggest that a too-strong adversary is perhaps being
considered (i.e., in practice, graph-based DB protocols might resist distance fraud
better than the security model suggests.) Our second contribution is an algorithm
addressing the distance fraud security of the tree-based approach due to Avoine and
Tchamkerten. The novel algorithm improves the computational complexity O(22

n+n)
of the naive approach to O(22nn) where n is the number of rounds.

Key words: security, relay attack, distance bounding, most frequent sequence,
graph, NP-complete, NP-hard

1 Introduction

Let us consider a little girl willing to compete with two chess grandmasters, say Fischer
and Spassky. She agrees with both on playing by post and manages to use opposite-colored
pieces in the games. Once the little girl receives Fisher’s move she simply forwards it to
Spassky and vice versa. As a result, she wins one game or draws both even though she
might know nothing about chess. This problem, known as the chess grandmaster problem,
was introduced by Conway in 1976 [7] and informally describes how relay attacks work.

In a relay attack, an adversary acts as a passive man-in-the-middle attacker relaying
messages between the prover and the verifier during an authentication protocol. In case the
adversary is active, the attack is known as mafia fraud [8] and succeeds if the prover and the
verifier complete the authentication protocol without noticing the presence of the adversary.

With the widespread deployment of contactless technologies in recent years, mafia fraud
has re-emerged as a serious security threat for authentication schemes. Radio Frequency
IDentification (RFID), Near Field Communication (NFC), and Passive Keyless Entry and
Start Systems in Modern Cars, have been proven to be vulnerable to mafia fraud [10, 13].
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Other contactless technologies such as smartcards and e-voting are also threatened by this
attack [9, 16].

The most promising countermeasure to thwart mafia fraud is distance bounding (DB) [4],
that is, an authentication protocol where time-critical sessions allow to compute an upper
bound of the distance between the prover and the verifier. However, this type of protocols is
vulnerable to another type of fraud, the distance fraud [4]. Contrary to mafia fraud, distance
fraud is performed by a legitimate prover, who aims to authenticate beyond the expected
and allowed distance.

In 2010, graph-based DB protocols aimed at being resistant to both mafia and distance
frauds were introduced [19]. This type of protocols is flexible in the sense that different
graph structures can be used so as to balance memory requirements and security properties.
However, neither the graph-based approach in [3] nor the one in [19] have computed their
actual distance fraud security. Indeed, this analysis was left as an open problem in [19].
Contributions. In this article we address the open problem of computing the distance fraud
resistance of graph-based DB protocols. We first reformulate the security model provided
in [19] and define it in terms of, to the best of our knowledge, two new problems in Graph
Theory. The Most Frequent Sequence problem (MFS problem) and its simplified version the
Binary Most Frequent Sequence problem (Binary MFS problem).

We then provide a polynomial-time reduction of the Satisfiability problem (SAT) to the
Binary MFS problem, proving that both the Binary MFS and the MFS problems are NP-
Hard. This result suggests that a too-strong adversary is perhaps being considered by the
security model, unless P = NP . However, the implications of our reduction goes beyond
that. It also provides a clue of how to design graph-based DB protocols resistant to distance
fraud.

Our next contribution is a novel algorithm to compute the distance fraud resistance
of the tree-based DB protocol proposed by Avoine and Tchamkerten [3]. Our algorithm
significantly reduces the time complexity of the naive approach from O(22

n+n) to O(22nn)
where n is the number of rounds. This paves the way for a fair comparison of graph-based
proposals with other state-of-the-art DB protocols.
Organization. The rest of this article is organized as follows. Section 2 introduces graph-
based DB protocols and the new problems Binary MFS and MFS. Related works close to the
MFS problem are reviewed in Section 2 as well. Section 3 contains proofs on the hardness
of the Binary MFS problem. The algorithm for computing the distance fraud resistance
of the tree-based DB protocol is described and analyzed in Section 4. The discussion and
conclusions are drawn in Section 5.

2 Preliminaries

2.1 Graph-based distance bounding protocols

Graph-based DB protocols were introduced in [19] aimed at resisting both mafia and distance
frauds, yet requiring low memory to be implemented. The idea is to define a digraph G =
(V,E) and a starting vertex v ∈ V . Then, a challenge-response protocol (see Figure 1) is
executed where the challenges define a walk in G according to an edge labeling function
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ℓE : E → {0, 1} and the responses are stored on the vertices according to a vertex labeling
function ℓV : V → {0, 1}.

Algorithm 1 Graph-based distance bounding protocol

Verifier Prover
(Secret x) (Secret x)

(Digraph G = (V,E)) (Digraph G = (V,E))
(Starting vertex v ∈ V ) (Starting vertex v ∈ V )

Pick a random NV Pick a random NP

NV−−−−−−−−−−−−−−−→
NP←−−−−−−−−−−−−−−−

On input PRF (K,NP , NV )
Create ℓV and ℓE
v′0 = v

On input PRF (K,NP , NV )
Create ℓV and ℓE
v0 = v



















for i = 1 to n
Pick ci ∈R {0, 1}

Start Timer
ci−−−−−−−−−−−−−−−→

Look for vi such that

Stop Timer
ℓV (vi)

←−−−−−−−−−−−−−−− ℓE(vi−1, vi) = ci
Look for v′i such that

ℓE(v
′

i−1, v
′

i) = ci

Check that ∆ti ≤ tmax and
ℓV (v′i) = ℓV (vi)

As shown by Figure 1, prover and verifier exchange two nonces and use a pseudo-random
function (PRF (.)) with a shared private key to compute two labeling functions ℓV : V →

∑

and ℓE : E →
∑

where
∑

= {0, 1}. For ℓE it must hold that ℓE(u, v) 6= ℓE(u,w) for
every pair of different edges (u, v) and (u,w) in E. By contrast, ℓV is chosen randomly.
After labeling the graph, n rounds of time-critical sessions are executed. At the ith round,
the verifier sends the binary challenge ci. Then, the prover answers with ℓV (vi) where vi
holds that (vi−1, vi) ∈ E and ℓE(vi−1, vi) = ci. Note that v0 is the starting vertex v. At the
end of the n time-critical sessions, the verifier checks all prover’s responses (ℓV (vi)) and the
round-trip-times (∆ti), which should be below some threshold tmax. Intuitively, the lower
tmax the closer the prover to the verifier is expected to be.

Two graph-based DB protocols exist; the tree-based approach [3] and the Poulidor pro-
tocol [19]. As suggested by its name, the former uses a tree of depth n and 2n+1 − 1 nodes
(see Figure 1(a)). By contrast, Poulidor uses a graph structure with 2n nodes only in order
to reduce memory requirements (see Figure 1(b)). Both have proven to resist mafia fraud
better than other DB protocols such as [12, 20]. Its resistance to distance fraud, however, is
still an open problem.

There exist other DB protocols, more computationally demanding, based on signatures
and/or a final extra slow phase [4, 21]. Others simply could be plugged into most DB
protocols such as [23, 22]. The interested reader could refer to [2] for more details.
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(a) Tree-based’s graph for 3 rounds

0

1

10

1

0

1

1

(b) Poulidor’s graph for 4 rounds

Fig. 1. Graph structures used by the tree-based and Poulidor approaches. Vertices of both graphs
have been randomly labeled.

2.2 Distance fraud security analysis

The security analysis in terms of distance fraud is usually performed within a well-known
framework proposed by Avoine et al. [2]. In this framework, a distance fraud adversary uses
the early-reply strategy to defeat the DB protocol. This strategy consists on sending the bits
answer in advance (i.e., before receiving the challenges.) Doing so, the adversary simulates
to be closer than really is, and its success probability is lower-bounded by 1/2n.

In [19], the best early-reply strategy against what they called a family of DB protocols
is defined. This family includes graph-based DB protocols. However, their definition is too
generic to be used for simply analyzing graph-based DB protocols. Therefore, we reformulate
it here in terms of a new problem in Graph Theory. The problem is named Binary MFS
problem (See Definition 2) and is based on its more general version MFS problem (see
Definition 1).

Definition 1 (The most frequent sequence problem (MFS problem)). Let G =
(V,E) be a vertex-labeled digraph where Σ and ℓ : V → Σ are the set of vertex labels and the
labeling function respectively. For a label sequence t = t1t2...tk, occ

G
v (t) denotes the number

of walks v1v2...vk in G such that v1 = v and ∀i ∈ {1, ..., k} (ℓ(vi) = ti). The MFS problem
consists on finding, given the triple (G, v, k), the most frequent sequence of size k defined
as argmaxt∈Σk(occGv (t)).

Definition 2 (Binary MFS problem). The Binary MFS problem is an MFS problem
where G is constrained to use a binary vertex set (

∑
= {0, 1}) and the out-degree of every

vertex should be at most 2.

Example. Either the graph in Figure 1(a) or the one in Figure 1(b) can be the input of
the Binary MFS problem. Assuming k = 4 and the starting vertex as the top one, the most
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frequent sequences for the tree in Figure 1(a) is 0010 (occurs 3 times), and for the graph in
Figure 1(b) is 0101 (occurs 4 times).

To successfully apply a distance fraud attack against a graph-based DB protocol with n
time-critical sessions, the best adversary’s strategy consists of: i) solving the Binary MFS
problem defined by the triple (G, v, n+ 1) and finding the most frequent sequence t0t1...tn,
ii) sending t1...tn in advance to the verifier as the responses to the n verifier’s challenges.

By this strategy, the adversary’s success probability is maximized to
occGv (t)

2n [19]. Coming
back to the previous example, the adversary success probability of the tree-based approach
defined by Figure 1(a) is 3/8, which is higher than the expected lower bound 1/8.

Definition 3 (Distance fraud success probability). Let
∏

be a graph-based DB protocol
with n time-critical sessions that uses the vertex-labeled digraph G = (V,E) and v ∈ V as
the starting vertex. Let MG,v,n be a random variable on the sample space of all labeling
functions ℓ : V → Σ that outputs the maximum value max(occGv (t)) where t ∈ {0, 1}n+1.

The distance fraud success probability of an adversary against
∏

is defined as
E(MG,v,n)

2n

where E(MG,v,n) represents the expectation of the random variable MG,v,n.

Note that, following the design of graph-based DB protocols, Definition 3 considers that
G is randomly labeled at each execution of the protocol.

To the best of our knowledge, computing distance fraud security according to Definition 3
has been only addressed in its seminal work [19]. Apparently, the problem is one of those
problems that remain intractable even if P = NP because all, or almost all, the labeling
functions should be considered. For this reason, an upper bound was proposed in [19] and
the exact distance fraud security was left as an open problem. We have shown that this
problem depends on a problem named the MFS problem and, in particular, on the Binary
MFS problem. Below, we review some work related to them.

2.3 Review on frequent sequences problems

Sequential Pattern Mining is a well-studied field introduced by Agrawal and Srikant [1] in
1995. Given a databases of transactions (e.g., customer transactions, medical records, web
sessions, etc.) the problem consists on discovering all the sequential patterns with some
minimum support. The support of a pattern is defined as the number of data-sequence
within the database that are contained in the pattern.

The sequential pattern mining problem is #P -complete [24] and several variants of it
exist. For instance, Mannila et al. say that two events are connected if they are close enough
in terms of time [15]. They define an episode as a collection of connected events and the
problem is to find frequently occurring episodes in a sequence. A simpler variant, known
as the most common subsequent problem, was introduced by Campagna and Pagh [5]. The
most common subsequent problem does not consider time-stamped events. Instead, it aims
to find all the label sequences in a vertex-labeled acyclic graph that appear more often. Other
variants have arisen from complex applications namely, telecommunication, market analysis,
and DNA research. We refer the reader to [6] for an extensive survey on this subject.

Frequent paths on a graph have also been used to define Kernel functions [17, 18]. Kernel
functions has applicability in chemoinformatics and bioinformatics where objects are mapped
to a feature space. In this case, the feature space representation is the number of occurrences
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of vertex-labeled paths and the problem is to infer the graph from such a feature vector.
This problem has been proven to be NP-Hard even for trees of bounded degree [18].

It can be seen that the MFS problem is different to the sequential pattern mining prob-
lems and its nature is obviously different to the one of Kernel methods. On one hand,
sequential pattern mining is an enumeration problem while MFS is just a search problem.
On the other hand, the MFS problem requires all walks to begin from a given vertex and
the size of the sequences should be equal. As in [5], the time dimension is not considered.

3 On the hardness of the Binary MFS problem

Binary MFS is a search problem that looks for the most frequent sequence of length k in
a vertex-labeled digraph G starting from a given vertex v (see Definition 2). Intuitively, all
or almost all the walks in G starting from v should be analyzed in order to find such a
sequence, which means that Binary MFS might not be in the complexity class P . However,
we cannot even state that Binary MFS is in NP − P since it is not trivial how to check
a solution in polynomial time. Nevertheless, we prove in this Section (see Theorem 1) that
the general Boolean Satisfiability problem (SAT) reduces to Binary MFS. Therefore, Binary
MFS can be considered NP-Hard even thought it may not even be in NP [11].

Definition 4 (SAT). Let x = (x1, x2, ..., xn) be a set of boolean variables and c1(x), c2(x), ..., cm(x)
be a set of clauses where ci(x) is a disjunction of literals. The Boolean satisfiability problem
(SAT) consists on deciding whether there exists an assignment for the boolean variables x
such that the function fSAT = c1(x) ∧ c2(x) ∧ ... ∧ cm(x) = 1.

Algorithm 2 shows our reduction from SAT to an instance of the Binary MFS problem.
First, it creates a binary tree T of depth ⌈logm⌉ with m leafs c1, c2, ..., cm

1, and a graph
G′ = (V ′, E′) where V ′ = {u2

0, v
2
0 , ..., u

n
0 , v

n
0 } and E′ = {(x, y)|∃k ∈ {2, ..., n − 1}(x ∈

{uk
0 , v

k
0} ∧ y ∈ {uk+1

0 , vk+1
0 })}. The graph G = (V,E) is initialized with the two connected

components T and G′. In addition, V is increased with the vertices uj
i and vji where i ∈

{1, ...,m} and j ∈ {1, ..., n}. Then, for each clause ci and each variable xj (j < n), the

vertex uj
i is connected with uj+1

0 and vj+1
0 if xj ∈ ci(x), with uj+1

i and vj+1
i otherwise.

Similarly, the vertex vji is connected with uj+1
0 and vj+1

0 if ¬xj ∈ ci(x), with uj+1
i and vj+1

i

otherwise. Finally, for every i ∈ {1, ...,m}: i) the vertices un
i and vni are removed together

with their incident edges, ii) the edges (un−1
i , un

0 ) and (vn−1
i , un

0 ) are added if xn ∈ ci(x),
iii) if ¬xn ∈ ci(x) the added edges are (un−1

i , vn0 ) and (vn−1
i , vn0 ). The vertex-label function

is simply defined as a function that outputs 0 on input vji for every i ∈ {0, 1, ...,m} and
j ∈ {1, ..., n}, outputs 1 otherwise.

To better illustrate Algorithm 2, Figure 2 shows an example of its output for a given SAT
instance. Note that, Algorithm 2 does not consider tautologies such as the empty clause or
one containing x ∨ ¬x.

Lemma 1. The longest walk in G starting from the root vertex has length n+ ⌈logm⌉ and
ends either at un

0 or vn0 .

1 The leafs are intentionally labeled by using the same clause names.
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Algorithm 2 Reduction from the SAT problem

Require: A SAT instance where x = (x1, x2, ..., xn) are the boolean variables and
c1(x), c2(x), ..., cm(x) are the set of clauses

1: Let G = (V,E) be a digraph with just one vertex named root

2: From the root, a directed binary tree with m leafs is created such that all the leafs are at the
same depth. The leaf vertices are denoted as c1, c2, ..., cm

3: Let G′ = (V ′, E′) be a digraph where V ′ = {u2
0, v

2
0 , ..., u

n
0 , v

n
0 } and E′ = {(x, y)|∃k ∈ {2, ..., n−

1}(x ∈ {uk
0 , v

k
0} ∧ y ∈ {uk+1

0 , vk+1
0 })}

4: Set G = G ∪G′

5: for all vertex ci do

6: Set V = V ∪ {u1
i , v

1
i , u

2
i , v

2
i , ..., u

n
i , v

n
i }

7: Set E = E ∪ {(ci, u
1
i ), (ci, v

1
i )}

8: for all j ∈ {1, 2, ..., n− 1} do
9: if xj ∈ ci(x) then
10: Set E = E ∪ {(uj

i , u
j+1
0 ), (uj

i , v
j+1
0 )} and E = E ∪ {(vji , u

j+1
i ), (vji , v

j+1
i )}

11: else if ¬xj ∈ ci(x) then
12: Set E = E ∪ {(uj

i , u
j+1
i ), (uj

i , v
j+1
i )} and E = E ∪ {(vji , u

j+1
0 ), (vji , v

j+1
0 )}

13: else

14: Set E = E ∪ {(uj
i , u

j+1
i ), (uj

i , v
j+1
i )} and E = E ∪ {(vji , u

j+1
i ), (vji , v

j+1
i )}

15: Remove un
i and vni from G

16: if xn ∈ ci(x) then Set E = E ∪ {(un−1
i , un

0 ), (v
n−1
i , un

0 )}

17: if ¬xn ∈ ci(x) then Set E = E ∪ {(un−1
i , vn0 ), (v

n−1
i , vn0 )}

18: Create vertex-label function ℓV (.) such that ∀i ∈ {0, 1, ..., m}, j ∈ {1, ..., n}(ℓV (vji ) = 0), ℓV (.)
outputs 1 otherwise.

19: Return G and ℓV as result.

Proof. Let w = w0...wk be a walk in G = (V,E) starting from the root vertex. Let
us assume that w is maximal in the sense that wk does not have out-going edges. Ac-
cording to Algorithm 2, wk does not have out-going edges only if wk ∈ {un

0 , v
n
0 } or

wk ∈ {un−1
1 , vn−1

1 , un−1
2 , vn−1

2 , ..., un−1
m , vn−1

m } (see Step 15 of Algorithm 2). Therefore, either
the longest walk ends at un

0 or vn0 and its length is n+⌈logm⌉ or its length is n−1+⌈logm⌉.
The proof concludes by remarking that there must exist at least one walk ending at un

0 or
vn0 unless all the clauses are empty, which is a tautology not-considered in SAT. ⊓⊔

Lemma 2. Let s = s0s1...sn+⌈logm⌉ and t = t0t1...tn+⌈logm⌉ two different maximal length
walks in G that start from the root vertex. Then, ∀k ∈ {0, ..., n + ⌈logm⌉}(ℓV (sk) =
ℓV (tk)) ⇒ ∃i 6= j(ci ∈ s ∧ cj ∈ t).

Proof. According to Algorithm 2, there exist i, j ∈ {1, ...,m} such that ci = s⌈logm⌉ and
cj = t⌈logm⌉. In addition, every vertex sk (resp. tk) where ⌈logm⌉ < k < n + ⌈logm⌉ is

either u
k−⌈logm⌉
i (resp. u

k−⌈logm⌉
j ) or v

k−⌈logm⌉
i (resp. v

k−⌈logm⌉
j ).

Now, according to the vertex-label function ℓV , if ∀k ∈ {0, ..., n− 1+ ⌈logm⌉}(ℓV (sk) =

ℓV (tk)), then ∀k ∈ {⌈logm⌉ + 1, ..., n − 1 + ⌈logm⌉}(sk = v
k−⌈logm⌉
i ⇔ tk = v

k−⌈logm⌉
j ).

Similarly, if ℓV (sn+⌈logm⌉) = ℓV (tn+⌈logm⌉) then sn+⌈logm⌉ = vn0 ⇔ tn+⌈logm⌉ = vn0 (see
Lemma 1). Therefore, i = j ⇒ s = t, which is a contradiction. ⊓⊔

Theorem 1. The Binary MFS problem is NP-Hard.
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Fig. 2. The resulting graph when applying Algorithm 2 on input the boolean formula (x1 ∨¬x2)∧
(x2∨¬x3)∧ (¬x1∨¬x2∨¬x3). For the sake of a good visualization some nodes have been “cloned”,
however, they actually represent a single node in the graph. Such “cloned” nodes can be easily
identified as the ones with dashed incident edges.

Proof. Let
∏

be an instance of the SAT problem and let G be the graph obtained by applying
Algorithm 2 on input

∏
. Let

∏′
be the problem of finding the most frequent sequence of

length n + 1 + ⌈logm⌉ in G starting from the vertex root. Given a solution s for
∏′

, our
aim is to prove that a true assignment for

∏
exists (and can be found) in polynomial time

if and only if s appears m times in G. Doing so,
∏

is proven to be polynomially reducible
to

∏′
, which is a Binary MFS problem.

First, let us assume that the most frequent sequence s = s0s1...sn+⌈logm⌉ in G occurs
exactlym times. Let w0w1...wn+⌈logm⌉ be a walk such that ∀i ∈ {0, ..., n+⌈logm⌉}(ℓV (wi) =
si). By Algorithm 2, there must exist i ∈ {1, ...,m} such that w⌈logm⌉ = ci. Let wk+⌈logm⌉ be

the vertex such that wk+⌈logm⌉ /∈ {uk
0 , v

k
0} and wk+1+⌈logm⌉ ∈ {uk+1

0 , vk+1
0 }. Note that, such

a vertex exists due to Lemma 1 and Algorithm 2. According to such an algorithm, either
wk+⌈logm⌉ = uk

i and ci(x) contains the literal xk or wk+⌈logm⌉ = vki and ci(x) contains the

literal ¬xk. Therefore, if wk+⌈logm⌉ = uk
i then xk = sk+⌈logm⌉ = ℓV (u

k
i ) = 1 satisfies the

clause ci(x), otherwise xk = sk+⌈logm⌉ = ℓV (v
k
i ) = 0 does. Consequently, the assignment

xj = sj+⌈logm⌉ ∀j ∈ {1, ..., n} satisfies ci(x).
Considering that s appears m times, then by Lemma 2 we can conclude that all the

clauses are satisfied by such assignment, whereupon we finish the first part of this proof.
Now, let x = (y1, ..., yn) be a true assignment for

∏
. Let us consider the induced sub-

graph Gi formed by the vertex ci and all the other vertices reachable from ci. By design of
Algorithm 2, there exists a walk w = w0w1...wn−1 in Gi such that ∀k ∈ {1, ..., n− 1}(yk =
ℓV (wk)) and w0 = ci. In addition, if yj satisfies clause ci(x) (i.e., yj = 1∧xj ∈ ci(x) or yj =
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0∧¬xj ∈ ci(x)), then according to Algorithm 2 either (xj ∈ ci(x)∧{(uj
i , u

j+1
0 ), (uj

i , v
j+1
0 )} ∈

E) or (¬xj ∈ ci(x) ∧ {(vji , u
j+1
0 ), (vji , v

j+1
0 )} ∈ E). Consequently, it must hold that wn−1 ∈

{un−1
0 , vn−1

0 } if and only if (x1, ..., xn−1) = (y1, ..., yn−1) satisfies ci(x). If (y1, ..., yn−1) does
satisfies ci(x), the walk w = w0w1...wn−1wn where wn = un

0 if yn = 1 and wn = vn0 if yn = 0
holds that ∀k ∈ {1, ..., n}(yk = ℓV (wk)). On the other hand, if (y1, ..., yn−1) does not satisfies
ci(x), then yn = 1 ⇒ xn ∈ ci(x) and yn = 0 ⇒ ¬xn ∈ ci(x). According to Steps 16 and 17 of
Algorithm 2, w = w0w1...wn−1wn where wn = un

0 if yn = 1 and wn = vn0 if yn = 0 is a walk
holding that ∀k ∈ {1, ..., n}(yk = ℓV (wk)). As a conclusion, for every i ∈ {1, ...,m} there
exists a walk passing through ci that generates the sequence 11...11

︸ ︷︷ ︸

⌈logm⌉+1

y1...yn. This result

together with Lemma 2 conclude that such a sequence repeats exactly m times. ⊓⊔

Corollary 1. The MFS problem is NP-Hard.

4 Distance fraud analysis for the tree-based approach

In this section, the problem of computing the distance fraud resistance of the tree-based DB
protocol [3] is addressed. A naive algorithm to solve this problem consists on analyzing all
the labeling functions for a full binary tree of depth n and then computing the most frequent
sequence for each labeling function (see Definition 3). This results in a time-complexity of
O(22

n+n), which is unfeasible even for small values of n. We propose an algorithm that
reduces this time-complexity to O(22nn). Although still exponential, it might be used up to
reasonable values of n (e.g., n = 32).

For the sake of clarity, we first adapt Definition 3 to the context of the tree-based pro-
posal.

Problem 1 (Tree-based distance fraud problem). Let
∏

be a tree-based DB protocol
with n time-critical sessions that uses the full binary tree T = (V,E) and root ∈ V as the
starting vertex. Let Mn be a random variable on the sample space of all labeling functions
ℓ : V → {0, 1} that outputs the maximum value max(occTroot(t)) where t ∈ {0, 1}n+1. The
tree-based distance fraud problem consists on finding the expectation of the random variable
Mn.

Theorem 2. Let m and n be two positive integers. Let Tm
n be a tree such that: i) the root

has 2m children and ii) each root’s children is the root of a full binary tree of depth n− 1.
Let Mm

n be the random variable on the sample space of all binary vertex-labeling functions

over Tm
n that outputs the maximum value max(occ

Tm
n

root(t)). The expectation of the random
variable Mn can be computed as follows:

E(Mn) = E(M1
n) =

2n∑

i=1

(
Pr(M1

n < i+ 1)− Pr(M1
n < i)

)
i.

where

Pr(Mm
n < x) =

2m∑

i=0

(
2m
i

)

22m
(
Pr(M i

n−1 < x) Pr(M2m−i
n−1 < x)

)
.
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and

Pr(Mm
n < x) =







0 if x = 1
0 if n = 1 ∧m > x

1
22m

(
(
2m
m

)
+ 2

x−1∑

i=m+1

(
2m
i

)
)

if n = 1 ∧m ≤ x ≤ 2m

1 if n = 1 ∧ 2m < x
1 if m = 0

Proof. A full binary tree of depth n can be denoted as T 1
n and the random variable Mn is

equivalent to M1
n. Therefore, in what follows, we focus on computing the expectation of the

random variable Mm
n .

Let us consider now a labeling function ℓ over Tm
n . Let V0 and V1 be the set of children of

the Tm
n ’s root labeled with 0 and 1 respectively. Let C0

1 , C
0
2 , ..., C

0
2|V0|

and C1
1 , C

1
2 , ..., C

1
2|V1|

be the subtrees rooted in the children of the vertices in V0 and V1 respectively. Let X be
a labeled tree whose root is labeled with 0 and the root’s children are the full binary trees
C0

1 , C
0
2 , ..., C

0
2|V0|

. In the same vein, Y is defined as a labeled tree whose root is labeled with

1 and the root’s children are the full binary trees C1
1 , C

1
2 , ..., C

1
2|V1|

. It can be noted that, if a
sequence t = t1...tn occurs exactly k times either in X or Y , then the sequence t = t0t1...tn
where t0 is the label of Tm

n ’s root also appears exactly k times in Tm
n . Therefore, taking into

account that X = T
|V0|
n−1 and Y = T

|V1|
n−1, the following recurrent result can be obtained:

Pr(Mm
n < x) =

2m∑

i=0

Pr(|V0| = i)
(
Pr(M i

n−1 < x) Pr(M2m−i
n−1 < x)

)

=

2m∑

i=0

(
2m
i

)

22m
(
Pr(M i

n−1 < x) Pr(M2m−i
n−1 < x)

)
. (1)

Equation 1 shows that Pr(Mm
n < x) could be computed recursively. To do so, stop

conditions must be found as follows:

Pr(Mm
n < x) =







0 if x = 1
0 if n = 1 ∧m > x

1
22m

(
(
2m
m

)
+ 2

x−1∑

i=m+1

(
2m
i

)
)

if n = 1 ∧m ≤ x ≤ 2m

1 if n = 1 ∧ 2m < x
1 if m = 0

(2)

Let us analyze Pr(Mm
1 < x), which is the less trivial stop condition in Equation 2. Since

Tm
1 has depth 1 and 2m children, Tm

1 generates 2m sequences, p of them ending with 0
and q with 1. Consequently, Mm

1 = max(p, q) ≥ m and thus, Pr(Mm
1 < x) = 0 if x < m.

Similarly Mm
1 ≤ 2m, which implies that Pr(Mm

1 < x) = 1 if x > 2m. Finally, let us assume
that m ≥ x ≥ 2m. In this case, Mm

1 < x holds if Mm
1 ∈ {m,m + 1, ..., x − 1}, therefore,

Pr(Mm
1 < x) =

x−1∑

i=m

Pr(Mm
1 = i) where Pr(Mm

1 = i) =
(2mm )
22m if i = m, otherwise Pr(Mm

1 =

i) = 2
(2mi )
22m . This yields to Pr(Mm

1 < x) = 1
22m

(
(
2m
m

)
+ 2

x−1∑

i=m+1

(
2m
i

)
)

if m ≥ x ≥ 2m.
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The proof concludes by using the definition of expectation for a discrete variable together
with Equations 1 and 2. ⊓⊔

Time-complexity analysis. The result provided by Theorem 2 can be implemented by
a dynamic algorithm, meaning that a three-dimensional matrix will dynamically store the
values of Pr(Mm

n < x) and will use them when needed. In the worst case, the algorithm
requires to fill the whole matrix, which results in a time-complexity of O(2n × n × 2n) =
O(22nn).

5 Discussion and Conclusions

Before the introduction of graph-based DB protocols, computing resistance to distance fraud
was not a big issue (e.g., Hancke and Kuhn [12] and Kim and Avoine [14] proposals.) Actu-
ally, the well-known early-reply strategy used to analyze distance fraud security implicitly
assumes that the adversary is able to compute the best answer without knowing the chal-
lenges and within a “reasonable” time frame. In this article, however, we have shown that
this assumption might not hold for graph-based DB protocols by proving that the Binary
MFS problem is NP-Hard. This opens two interesting research questions: i) What instances
of the Binary MFS problem are actually hard to solve? ii) In a practical setting, does the
adversary have enough time to solve a probably exponential problem between the end of the
slow phase and the beginning of the fast phase? iii) What kinds of heuristics can be used
and what would the implications be?

Even though we do not give answers to those questions, we provide a clue of how to build
graph-based DB protocols resistant to distance fraud. As indicate our reduction from the
SAT problem, a good strategy is to label the vertices of G as follows: if the vertices u and
v have incident edges from the same vertex, then ∀b ∈ {0, 1}(ℓV (u) = b ⇔ ℓV (v) = b ⊕ 1).
Doing so,G is likely to generate all the sequences {0, 1}n just once, in which case its resistance
to distance fraud achieves the lower bound 1/2n. As a consequence, we conjecture that the
best graph DB protocol in terms of mafia fraud constrained to have no more than certain
number of nodes, is also the best in terms of distance fraud. Note that, this conjecture
becomes trivial if no limit on the size of the graph is considered.

This article has also addressed the problem of computing the distance fraud security
of the tree-based DB proposal [3]. This is an inherent exponential problem since a graph
with N nodes can be labeled in 2N different ways. The tree-based proposal uses a tree with
2n nodes and thus 22

n

labelling functions exists. However, we provide an algorithm that
avoids considering all the labelling functions and has a time complexity of O(22nn), which
is significantly better than the naive approach with O(22

n+n). This result makes realistic
the challenge of computing the distance fraud security of the two graph-based DB protocols
proposed up-to-date; the tree-based approach [3] by using the proposed algorithm (O(22nn)),
and the Poulidor protocol [19] by simply using a brute-force algorithm (O(23n)). Doing so,
both can be fairly compared with other state-of-the-art DB protocols. Such a challenge is
out of the scope of this article and is left as future work, though.

Acknowledgments. The author thanks to Gildas Avoine, Sjouke Mauw, Juan Alberto
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