
A Symbolic Algorithm for the Analysis of
Robust Timed Automata

Piotr Kordy2, Rom Langerak1, Sjouke Mauw2, and Jan Willem Polderman1

1 University of Twente, Drienerlolaan 5, 7522 NB Enschede, The Netherlands
2 Université du Luxembourg, rue Richard Coudenhove-Kalergi 6, L-1359

Luxembourg, Luxembourg

Abstract. We propose an algorithm for the analysis of robustness of
timed automata, that is, the correctness of a model in the presence of
small drifts of the clocks. The algorithm is an extension of the region-
based algorithm of Puri and uses the idea of stable zones as introduced
by Daws and Kordy. Similarly to the assumptions made by Puri, we
restrict our analysis to the class of timed automata with closed guards,
progress cycles, and bounded clocks. We have implemented the algorithm
and applied it to several benchmark specifications. The algorithm is a
depth-first search based on on-the-fly reachability using zones.

1 Introduction

One of the most successful current paradigms for the specification and analy-
sis of real-time systems is the timed automata model [2]. Timed automata are
automata extended by clock variables that can be tested and reset. Numerous
real-time systems have been specified and analysed using the Uppaal tool [3, 17]
and the approach can be said to be mature and industrially applicable.

An important issue for timed automata specifications is robustness: what
happens if there are small imprecisions in the clocks or in the tests on clocks?
It appears that in that case more states are reachable, which means that a
specification that has been proven to be correct may no longer be correct in
the presence of imprecisions, even if they are arbitrarily small. Of course, this
has disturbing implications for the implementation of systems, as in real systems
imprecisions cannot be avoided. This important problem has been first addressed
in the seminal work by Puri [18], later improved and extended by De Wulf et
al. [11]. Their main result is the introduction of an enlarged semantics of timed
automata. In the enlarged semantics all clocks are allowed to drift by a small
(positive) perturbation ε, in order to model the imprecisions of the clocks. A
timed automaton is said to be implementable if there exists a value for ε for
which the behaviour of the timed automaton conforms to the specification under
the enlarged semantics.

Robust model-checking has been solved for safety properties [18, 11] and for
richer linear-time properties [4, 5]. The analysis and algorithms provided by these

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Repository and Bibliography - Luxembourg

https://core.ac.uk/display/31228486?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

papers are based on region automata. As the number of regions grows exponen-
tially with the size of the largest constant used in a timed automaton, region-
based algorithms are not really suitable for a practical implementation. What
would be needed is a symbolic analysis in terms of zones, which form the funda-
mental concept for the implementation of a tool like Uppaal [3]. A first step in
this direction has been provided by Daws and Kordy [8], who defined the notion
of stable zones and related it to the region-based approach of Puri et al. [18, 10].
The algorithm of Daws and Kordy, which uses the concept of a stable zone, works
only for flat timed automata, i.e., automata that have no nested cycles. This re-
striction significantly limits the practical usability of the algorithm. One solution
could be to transform the timed automaton into a flat timed automaton using
results from Comon and Jurski [7]. Unfortunately, the resulting flat timed au-
tomaton may be exponentially larger than the starting timed automaton. In this
paper we show how the stable zone concept leads to a practical implementation.
We propose a fully symbolic algorithm to solve the robust reachability problem.
To validate practical usability of the algorithm, we implemented a simple tool
and performed a number of experiments.

Another solution to the robustness problem was suggested by Dima [13], who
proposed to combine the symbolic reachability algorithm with cycle detection
and expanding borders of the zones. That algorithm is an improvement over the
purely region-based algorithm of Puri. But at one point it looks for bordering
regions to the reachable set of states and checks if they are on a strongly con-
nected component. So, similarly to the region-based algorithm, the running time
may depend on the size of the constants used in the timed automaton.

The rest of the paper is structured as follows: in Section 2 we provide the
necessary background on timed automata, extended semantics, and stable zones.
In Section 3 we present a reachability algorithm based on stable zones, which is
proven correct in Section 4. Section 5 contains the results of experiments with
the implementation, and Section 6 contains the conclusions and perspectives.

2 Preliminaries

2.1 Timed Automata (TA)

Let X = {x1, . . . , xn} be a set of variables, called clocks. In this work we will
only consider bounded clocks, meaning that there is an upper bound M ∈ N
on the clock values. A clock valuation is a function v : X 7→ [0,M] ⊂ R, which
assigns to each clock a non-negative value v(x) that is smaller than or equal to
this upper bound. By RX≥0 we denote the set of all valuations over X .

Definition 1 (Closed Zones). A closed zone over a set of clocks X is a set
of clock valuations that satisfy constraints defined by the grammar g ::= x B d |
x−y B d | g∧g, where x, y ∈ X , d ∈ Z and B∈ {≤,≥}. The set of closed zones
over X is denoted by Z(X).

To simplify notation, we will often simply write the constraint itself to denote
the set of clock valuations that it implies. Further, we will use familiar notation,

like a ≤ x ≤ b, to denote composite constraints, such as (a ≤ x) ∧ (x ≤ b).
We will often write Z instead of Z(X) if X can be derived from the context.
A rectangular zone Z is a closed zone with no bounds on clock differences, i.e.,
with no constraints of the form x− y B d. The set of rectangular zones over X
is denoted by ZR(X). The set ZU (X) denotes the set of upper zones, that is,
rectangular zones with no lower bounds on the clocks.

Definition 2 (TA). A timed automaton [2] is a tuple A = (X , Q, I, q0, E) where
– X is a finite set of clocks,
– Q is a set of locations,
– I : Q→ ZU (X) is a function that assigns to each location an invariant I(q),
– q0 ∈ Q is the initial location,
– E is a finite set of edges. An edge is a tuple of the form e = (q, Zg, X, q

′),
where q, q′ are the source and target locations, Zg ∈ ZR(X) is an enabling
guard and X ⊆ X is the set of clocks to be reset.

We use the word location to denote a node of the automaton, rather than the
more commonly used word state, which we will use in the semantics to denote
a pair of a location and a valuation. An example of a timed automaton can be
seen in Figure 1. The set of clocks is X = {x1, x2, x3} and the set of locations is
Q = {q1, q2, q3}. The initial location is q1. The arrows represent the set of edges
E . For example in the edge from q1 to q2 the guard requires 2 ≤ x1 ≤ 4, and,
when taking this edge, clock x1 will be reset (X = {x1}). In this example, we
ignored the potential use of invariants.

2.2 Semantics

The semantics of a timed automaton is defined as a transition system, where a
state (q, v) ∈ Q × RX≥0 consists of the current location and the current values
of the clocks. There are two types of transitions between states: the automaton
may either delay for some time (a delay transition), or follow an enabled edge
(an action transition) while resetting some clocks.

For t ∈ R, we define the valuation v+ t as follows: for all x ∈ X , (v+ t)(x) =
v(x) + t. This expression is only defined if for all clocks x, 0 ≤ v(x) + t ≤ M .
We sometimes write v − t for v + (−t). For X ⊆ X , v[X := 0] is the valuation
such that v[X := 0](x) = 0, for x ∈ X, and v[X := 0](x) = v(x), for x ∈ X \X.
We denote the valuation that assigns 0 to every clock by 0.

Definition 3 (Standard semantics). The standard semantics of a timed au-
tomaton A = (X , Q, I, q0, E) is a transition system [A] = (S,→), where states
are pairs (q, v) ∈ S, with q ∈ Q, v ∈ I(q). The initial state is s0 = (q0,0), i.e.,
the initial location with all clocks equal to zero. For t ∈ R≥0 and e ∈ E, the

transition relation · ·→ · : S × (R≥0 ∪ E)× S is defined by:

– (q, v)
t→ (q, v + t), if v + t ∈ I(q) , t ∈ R≥0,

– (q, v)
e→ (q′, v[X := 0]), if e = (q, Zg, X, q

′) ∈ E, v ∈ Zg, v[X := 0] ∈ I(q′).

Given a timed automaton, the interesting question is which states are reachable
from the initial state. Reachable states may be used to characterize safety prop-
erties of a system. Formally, the set of reachable states of a timed automaton
is the smallest set U ⊆ S of states containing s0 = (q0,0), and satisfying the

following condition: if (q, v)
t→ (q′, v′) for some t ∈ R≥0 or (q, v)

e→ (q′, v′) for
some e ∈ E , and (q, v) ∈ U , then (q′, v′) ∈ U .

Let us look again at the example in Figure 1. To simplify notation, we will
denote the values for the consecutive clocks by a vector [x1, x2, x3]. The initial
state is (q1, [0, 0, 0]). Here is an example of a sequence of states implied by the
standard semantics [A]:

(q1, [0, 0, 0])
2→ (q1, [2, 2, 2])

e1→ (q2, [0, 2, 2])
e2→ (q3, [0, 0, 2])

e3→ (q1, [0, 0, 0]),

where ei denotes an edge from a location qi. Note that this is the only possible
sequence that will get us back into the initial location (disregarding splitting the
first transition into separate delay steps). As we can see, it is not possible to
reach the Err location using the standard semantics [A].

2.3 Symbolic Semantics

In general, the semantics [A] has a non-countable number of states. To be able to
reason about these states, abstractions are used which are based on zones [14].
This results in a symbolic semantics where a symbolic state S is a pair (q, Z) ∈
Q×Z consisting of a location and a zone.

We define time passing for zones: ↑Z = {v + t ∈ RX≥0 | v ∈ Z ∧ t ∈ R≥0}.
Similarly, we define ↓Z = {v − t ∈ RX≥0 | v ∈ Z ∧ t ∈ R≥0}. It can be shown
that the set of zones Z(X) is closed under these operations.

Definition 4 (Symbolic semantics). The symbolic semantics [[A]] is a tran-
sition system (Q×Z,⇒) with initial state (q0, {0}), where {0} is the zone in
which all clocks are equal to zero. For e ∈ E, transitions are defined by the rules:

– (q, Z)
↑⇒ (q, I(q) ∩ ↑Z),

– (q, Z)
e⇒ (q′, Z ′), where e = (q, Zg, X, q

′) is an edge and Z ′ = {v′ | ∃v ∈
Z, (q, v)

e→ (q′, v′)} 6= ∅.

To differentiate between states of standard and symbolic semantics, we will refer
to the latter as symbolic states. Such a symbolic state can be interpreted as a
set of states. Given state s = (q, x) and symbolic state S = (q′, Z) when q = q′

and x ∈ Z we will abuse notation and write s ∈ S. Similarly, given S = (q, Z)
and S′ = (q, Z ′) we say that S ⊆ S′ when Z ⊆ Z ′ and ↑S = (q, ↑Z).

For timed automata with bounded clocks, the symbolic semantics defined
above is sound, complete and finite [2]. For timed automata with unbounded
clocks, extrapolation can be used to ensure finiteness of the symbolic seman-
tics [3]. To illustrate the symbolic semantics, we show a sequence of symbolic

states of the timed automaton from Figure 1.

(q1, {x1 =x2 =x3 =0}) ↑⇒ (q1, {x1 =x2 =x3}) e1⇒
(q2, {x1 =0, x2 =x3, 2 ≤ x2 ≤ 4}) ↑⇒ (q2, {x2 =x3, 2 ≤ x2 − x1 ≤ 4}) e2⇒
(q3, {x1 =x2 =0, x3 =2}) ↑⇒ (q3, {x1 =x2 =x3 − 2}) e3⇒ (q1, {x1 =x2 =x3 =0})

Note that the Err location is again not reachable.

2.4 Extended Semantics

The semantics of timed automata makes unrealistic assumptions because it re-
quires instant reaction time and clocks that are infinitely precise. To remedy
these limitations, we give the parametric semantics introduced by Puri [18] that
enlarges the (normal) semantics of timed automata. This semantics can be de-
fined in terms of timed automata, extended with a small, positive, real valued
parameter, denoted ε.

Definition 5 (Extended semantics.). Given parameter ε, the extended se-
mantics [A]ε is a transition system (S, ε) with initial state s0 = (q0,0). For
t ∈ R≥0 and e ∈ E, transitions are defined by the rules:

– (q, v)
t
 ε (q, v′) if v′ ∈ I(q) and ∀x ∈ X v′(x)− v(x) ∈ [(1− ε)t, (1 + ε)t],

– (q, v)
e
 ε (q′, v[X := 0]), if e = (q, Zg, X, q

′) ∈ E, v ∈ Zg, v[X := 0] ∈ I(q′).

Note that the above definition allows perturbation to grow with time. If we
substitute ε by 0, then we obtain the standard semantics. Let Sε denote the set of
states reachable using transitions ε in extended semantics [A]ε. Clearly, the set
of reachable states U ⊆ S in standard semantics [A] is a subset of Sε. Calculating
Sε is undecidable for more than two clocks [20]. As a solution, Puri has proposed
to calculate the set S∗ = lim

ε→0
Sε, which equals

⋂
ε>0 Sε, and represents the set

of states that are reachable for an arbitrarily small ε.
Looking again at the example in Figure 1, for any small ε > 0 we have the

following sequence of states:

(q1, [0, 0, 0])
2
 ε (q1, [2, 2− 2ε, 2− 2ε])

e1 ε (q2, [0, 2− 2ε, 2− 2ε])
2ε
 ε (q2, [2ε, 2, 2])

e2 ε (q3, [2ε, 0, 2])
e3 ε (q1, [2ε, 0, 0])

2−2ε
 ε (q1, [2, 2− 4ε+ 2ε2, 2− 4ε+ 2ε2]) ε

. . . ε (q1, [4ε, 0, 0]) ε . . . ε (q1, [n2ε, 0, 0]), where n ∈ N≥2.

Note that after one cycle we reach the state (q1, [2ε, 0, 0]), which is not reachable
in [A]. Following the same sequence of edges n times allows us to accumulate
the small imprecision and reach state (q1, [n2ε, 0, 0]). For any value ε we can find
sufficiently large n such that n2ε ≥ 2, so the Err location is reachable in S∗.

Puri’s approach [18] to calculate S∗ is based on the concept of a region.
We will briefly explain his approach and indicate possibilities for improvement.
For arbitrarily small ε, the geometrical distance between clock valuations in

(q1, [n2ε, 0, 0]) and (q1, [(n+1)2ε, 0, 0]) is small. Intuitively, if two clock valuations
are close enough, we say that states are in the same region. By close enough we
mean that they give to each clock the same integral part and when the clocks
are sorted according to the fractional part of their valuation, they will form the
same sequence of clocks. Consequently, regions form an equivalence relation on
the set of states. Regions are interesting because states in the same region will
give rise to similar behaviours, meaning that the same transitions are available.
The region graph is a graph where the nodes are regions and there exists an
edge between regions c1 and c2 if ∃s1 ∈ c1 s2 ∈ c2 such that s1 → s2. The states
(q1, [n2ε, 0, 0]) and (q1, [(n+ 1)2ε, 0, 0]) would be on a cycle in the region graph.
For a precise description of region graphs we refer to [2, 3].

Puri [18] shows that being on a cycle in a region graph is a necessary and
sufficient condition to accumulate errors due to clock drift. Based on this ob-
servation, he proposes an algorithm to calculate S∗. The algorithm does normal
reachability analysis and adds regions that are on a cycle in a region graph and
have some common part with the set of states calculated so far. To avoid the
problem of an infinite number of possible cycles in the region graph, he uses
strongly connected components.

This way, Puri reduced the problem of finding the set S∗ to the problem
of finding all reachable strongly connected components on the region graph of
a timed automaton and calculating normal reachability, and thus he does not
need to use extended semantics in his algorithm.

Though of conceptual value, this algorithm is not suitable for implementa-
tion, since the number of regions is exponentially large: O

(
|X |!M |X |

)
[2]. In order

to obtain a practical, more efficient robustness algorithm, we need an analysis
in terms of zones [21].

To summarize, we have introduced standard semantics, which has an infinite
number of possible states. The symbolic semantics uses zones to reduce the
number of states to a finite amount of abstract states and this is the semantics
used in any practical implementation. The last one is the extended semantics
that allows the clocks to drift in time, which is undecidable in general for a given
value of ε, but which can be calculated if ε is infinitely small. In the rest of the
paper we will show how to calculate S∗ using abstractions based on zones rather
than on regions.

2.5 Stable Zones

In this section we briefly recall the most important notions concerning the con-
cept of stable zones as introduced in [8]. Note that a stable zone is a set of states,
not a set of valuations. Stable zones are defined for edge cycles.

Definition 6 (Edge cycle). An edge cycle of a timed automaton A is a finite
sequence of edges σ = e1 . . . ek such that the source location of e1 is the same as
the destination location of ek. A progress cycle is an edge cycle where each clock
is reset at least once.

Following the assumptions in previous work on robustness [18, 11, 8], we will
only consider automata in which all edge cycles are progress cycles.

To simplify notation, given a sequence of edges σ = e1 . . . ek, we will write
σ⇒ for

↑⇒ e1⇒ ↑⇒ e2⇒ ↑⇒ . . .
↑⇒ek⇒ ↑⇒ and

σ→=
t0→ e1→ t1→ . . .

ek→ tk→ for any t0, t1 . . . tk ∈ R≥0.

Definition 7 (Stable zone). A stable zone for an edge cycle σ in a timed
automaton is the largest set of states Wσ ⊆ Q× RX≥0 such that

∀s ∈Wσ ∃s1, s2 ∈Wσ : s1
σ→ s

σ→ s2.

Thus, a stable zone Wσ is a set of states such that if we cycle (forward or back-
ward) along an edge cycle σ we have the possibility to stay inside Wσ. Intuitively
this allows infinite cycling and as a consequence arbitrary accumulation of small
imprecisions in clock drifts. This has been formally shown in [8], which can be
summarized in the following lemma:

Lemma 1. For any s, s′ ∈Wσ and for any ε > 0, s ε ε . . . ε s
′.

Lemma 1 states that, given an arbitrarily small ε, starting from any state in Wσ,
we can reach any other state in Wσ in the extended semantics [A]ε. Therefore,
during extended reachability analysis, we can add stable zones as a whole in
a similar way as Puri’s algorithm adds strongly connected components of the
region graph.

q1

q2

q3

Err

x3 := 0 x3 = 2

x1 := 0
x1 ≥ 2
x1 ≤ 4

x2 := 0
x1 ≤ 2
x3 ≤ 2

x3 = 0
x1 ≥ 2

0.5

1

1.5

2

x2

0.5 1 1.5 2
x1

c

c′

Wσ \ c ∪ c′

Fig. 1. Timed automaton (left) and graph of S∗(right). The graph shows a part of S∗
for location q1 and clock value x3 = 0.

Looking at the example in Figure 1, we can see a timed automaton on the left
side. On the right side, the three grey areas represent the set S∗ for location q1
and clock value x3 = 0. For this clock value, the only reachable state in standard
semantics on the graph is (q1, [0, 0, 0]). In order to illustrate Puri’s algorithm,
we divided the grey area in three subareas. The areas c and c′ are regions that
are on a cycle in the region graph, meaning that from any state in c, we can
reach some other state c by taking at least one edge transition. For example
(q1, [0.5, 0.2, 0])

e1e2e3→ (q1[0.5, 0.5, 0]).

Puri’s algorithm would calculate S∗ in the following way: state (q1, [0, 0, 0])
would be added by standard reachability. Next, region c would be added because
it is on a cycle in the region graph. After that, region c′ would be added because
c ∩ c′ 6= ∅ and c′ is also on a cycle. The lighter shaded area would be added
at the end, by checking what states are reachable from newly added regions.
In contrast, the algorithm from [8] would add the whole grey area in one step
because it lies inside a stable zone.

To show how to calculate stable zones in an efficient way, we introduce some
additional notation. Let e = (q, Zg, X, q

′) be an edge. We define poste((q, Z)) =

(q′, ↑Z ′), where (q, Z)
e⇒ (q′, Z ′). In other words, for S ∈ Q × Z, poste(S) is a

symbolic state that contains all states that can be reached from the state S by
taking edge e and later allowing time to pass. Similarly, we define pree((q

′, Z)) =

(q, ↓Z ′), where Z ′ = {v | ∃v′ ∈ Z, (q, v)
e→ (q′, v′)}. For sequence of edges

σ = e1 . . . en, we define as postσ(S) = posten(. . . poste1(S)) and preσ(S) =
preen(. . . pree1(S)).

The following lemma from [8] gives a feasible algorithm to calculate stable
zones as a fixpoint:

Lemma 2. Wσ = νS.(postσ(S) ∩ preσ(S)) = (νS.postσ(S)) ∩ (νS.preσ(S)).

The ν operator is the greatest fixpoint operator from μ-calculus. We need this
operator because a stable zone is defined as a maximal set. Intuitively, we need
postσ and preσ to ensure existence of predecessors and successors for any state
in Wσ. The algorithm proposed in [8] starts from the idea that all stable zones
are calculated a priori, on the basis of all edge cycles σ in the timed automaton.
Thus, the approach works only for flat timed automata (automata without nested
cycles). To extend the algorithm to non-flat timed automata is not trivial. For
example, it is not enough to consider only minimal edge cycles. It is possible
that two edge cycles σ1 and σ2 both have an empty stable zone, whereas the
edge cycle σ1σ2 has a non-empty stable zone. In the next section we present
an algorithm that uses the concept of stable zones. but calculates them using
fixpoint calculation.

3 A Symbolic Algorithm for the Extended Semantics

The purpose of the algorithm is to calculate the reachability relation for the
extended semantics. It means that, given a state Goal and an initial state S0, the
algorithm will check if the Goal state is reachable for an arbitrarily small value
of ε > 0 under extended semantics [A]ε. This can be achieved by performing
a normal reachability analysis in [[A]] while ensuring that all reachable stable
zones are added. We will detect that we touched a potential stable zone when
we reach a symbolic state that we have seen before. Given a symbolic state
potentially touching a stable zone (or zones), we need to do the greatest fixed
point calculation, described in detail in Section 3.2 (function AllSZones).

To make the algorithm more efficient we try to limit the set of states/edges
for which we have to do the fixpoint calculation by grouping locations together

into strongly connected sets – SCSU). SCSU is a minimal set of locations with
the property that, if we start with any reachable state in these locations and
follow any path that returns to the same location, we will not visit any location
outside SCSU . Given e = (q, Zg, X, q

′) we say that e � SCSU if q ∈ SCSU and
q′ ∈ SCSU . Similarly σ � SCSU if σ = e1 . . . en and ∀1≤i≤n ei � SCSU .

Definition 8 (Strongly Connected Set – SCSU). Let U ⊆ S be a set of states
in [A]. SCSU ⊆ Q is the minimal set of locations q, such that ∀(q, v), (q, v′) ∈ U
such that (q, v)

σ→ (q, v′) it holds that σ � SCSU , and ∀(q, v) ∈ U : q ∈ SCSU

To find all such SCSU sets, we will combine the depth-first search reachabil-
ity algorithm for timed automata and Tarjan’s algorithm [19] to find strongly
connected components.

3.1 The Main algorithm

We use the following notation: U ,U ′,Ucurr,Uprev,Useen ⊆ Q × Z, are sets of
symbolic states; S, S′, S′′, S0,Goal ∈ Q×Z are symbolic states; Qmark,SCSU ⊆ Q
is a set of locations; q ∈ Q is a location; ST,Open are stack structures holding
symbolic states. We can do typical operations on stack structures: ST.push(S)
will add S at the top of ST, and S := ST.pop() will remove the symbolic state
from the top of ST and store it in S. For each symbolic state S we will store the
edge by which it was reached, and two integers, S.index and S.lowlink. The integer
variable index ∈ Z is used to associate a unique integer value to each symbolic
state; variable lowlink ∈ Z holds the lowest value of index of the state that we
can reach from the current state. lowlink and index have direct equivalents in
Tarjan’s algorithm [19].

The algorithm takes as input initial symbolic state S0 and the symbolic goal
state Goal. The algorithm will return true, if Goal ⊆ S∗ and false otherwise.
The main algorithm is a depth-first search reachability algorithm with structures
typical of Tarjan’s algorithm [19]. The pseudo code is presented in Algorithm 1.

To find S∗, the algorithm needs to find all stable zones that touch the set
of reachable states. Unfortunately, we cannot calculate the stable zones by an a
priori analysis of the edge cycles of the timed automaton as there are potentially
infinitely many of them. Calculating stable zone Wσ only for the case where σ
is a simple cycle (a cycle with no repeated nodes or edges) is not enough: simple
cycles may have empty stable zones whereas combinations of them may have
non-empty stable zones.

The approach we take is to do a depth first search exploration of the au-
tomaton and, for locations that we visit more than once, we calculate the set
of stable zones (function AllSZones). Calculating AllSZones, for location q, is
expensive if we do it for the whole automaton. To speed things up, we exclude
locations from which we cannot go back to the starting location q. We do it by
grouping locations into SCSU and limit AllSZones to one SCCU at a time.

The way we calculate all sets SCSU is similar to Tarjan’s algorithm. The
integer S.index numbers symbolic states in the order in which they were explored

Algorithm 1: DFS Reachability Algorithm based on Tarjan’s algorithm

function Reach(S0,Goal : Q×Z): B
U := ∅; index := 1; ST := ∅; Qmark := ∅ // Initialisation

return Search (↑S0,Goal) // Calling main function

function Search(S,Goal : Q×Z): B
if Goal ⊆ S: return true
else:
U := U ∪ {S} // Mark S as visited

ST.push(S) // Push S on the stack

S.index := index // Set the depth index for S
S.lowlink := index // Initialise lowlink for S
index := index + 1

foreach S′, e: S
e⇒ ↑⇒ S′do // Consider successors of S

if S′ ∈ U :
if ∃S′′ ∈ ST such that S′ ⊆ S′′: // Is it backedge?

S.lowlink := min(S.lowlink, S′′.lowlink)
q := location of S
Qmark := Qmark ∪ {q} // Mark q for stable zones

else: // S′ has not been encountered

if Search (↑S′,Goal): return true
S.lowlink := min(S.lowlink, S′.lowlink)

if S.lowlink == S.index: // Is it a root node?

SCSU := ∅ // Set of locations SCSU
repeat // Construct SCSU

S′ := ST.pop()
q := location of S′

SCSU := SCSU ∪ {q}
until S’==S
foreach q ∈ Qmark ∩ SCSU do
U ′ := AllSZones (SCSU , q) // Get stable zones for SCSU
foreach S′ ∈ U ′do

if S ∩ S′ 6= ∅ and S′ /∈ U :
if Search(↑S′,Goal): return true

return false

and lowlink is equal to index initially. It is updated to be the lowest index of
states reachable from the given state. Each newly explored state is put on the
stack ST. We remove states from ST only when we finished exploring a given
state’s successors and its lowlink equals its index. We also maintain a list of Qmark

locations. A location is put into Qmark when there may be a potential stable zone
passing through the location. This will be the case when the state is contained
in some other state that we have seen before. After Qmark and SCSU are created,
we call AllSZones.

Algorithm 2: Function AllSZones(SCSU : 2Q, q : Q): 2Q×Z

Uprev := ∅; Ucurr := {(q, Z∞)}
while Uprev 6= Ucurr:
Uprev := Ucurr
Ucurr := ∅; Open := ∅; Useen := ∅
foreach S ∈ Uprev s.t. e � SCSU : and S

e→ S′ and S′ /∈ U do
Open.push(↑S′)

while Open 6= ∅:
S′ :=Open.pop()
if S′.location == q:

σ := edge cycle by which we arrived to S′ from location q
if ∀S ∈ Ucurr : preσ(S′) * S:
Ucurr := Ucurr ∪ {preσ(S′)}

Useen := Useen ∪ {S′}
foreach S′

e→ S′′: e � SCSU do
if S′′ /∈ U ∪ Useen:

Open.push(↑S′′)
return Uprev

3.2 Calculation of Stable Zones

The function AllSZones, called with arguments (SCSU , q), calculates a set of sta-
ble zones passing through a given location q. AllSZones is a fixpoint calculation
of states in location q. Intuitively, fixpoint calculation is a result of Lemma 2.
The fixpoint calculation uses two sets of symbolic states: Uprev and Ucurr to store
states at location q. Ucurr is initialised with (q, Z∞), where Z∞ is a zone con-
taining all clock valuations, that is a zone with an empty set of constraints. We
maintain the set of states that we visited in this iteration step in the set Useen.
The stack Open is similar to the stack ST. It holds the states that have their
successors processed. The calculation is finished when Uprev = Ucurr. In each
iteration step we calculate the set of reachable states from Uprev. In Ucurr we
store newly reached states for location q. We limit the generation of successors
to the locations from SCSU , that is, we consider edge e only if e � SCSU . When
Uprev = Ucurr, for each S ∈ Ucurr, we calculate the pre step and add the resulting
state to the Open list.

3.3 Complexity

Checking reachability of a state in a timed automaton using semantics [A] is a
PSPACE-complete problem [2]. Let P be the time needed for checking reach-
ability of a state. We will analyse the complexity of our algorithm relative to
P . Let n be the number of clocks, k be the highest constant appearing in the
specification, and m the number of locations in timed automaton A. In the pes-
simistic case, we may have to call AllSZones for each location and with SCSU
containing all locations. To calculate AllSZones we may need k cycles, as a

stable zone may shrink only by one time unit for a computation cycle. A small
improvement can be achieved thanks to the result presented in [16] in Lemma
2 on page 10. It states that if the fixpoint calculation of a stable zone has not
finished after n2 cycles then the stable zone is empty. Thanks to that we can
limit the number of iterations in a fixpoint calculation to n2. Thus, the worst
case scenario complexity is O

(
Pn2m

)
.

4 Correctness of the Algorithm

In this section we prove that the algorithm is correctly calculating the set of
reachable states S∗. The following lemma shows that by partitioning the loca-
tions into SCSU , we will not omit any stable zones during calculations.

Lemma 3. Let U ⊆ S be a set of reachable states in [A], and Wσ be a stable
zone, σ = e1 . . . en, and Wσ ∩ U 6= ∅. If ei � SCSU for some 1 ≤ i ≤ n then
∀1≤j≤n ej � SCSU .

Proof. Let qi be the source location of ei. Let (qi, v) ∈ Wσ ∩ U and qi ∈ SCSU .
From Definition 7 it follows that there exists (qi, v

′) such that (qi, v
′) ∈Wσ ∩ U

and (qi, v)
σ→ (qi, v

′). Then the lemma follows directly from Definition 8.

The following theorem shows that if we call AllSZones (SCSU , q) then all stable
zones passing through location q will be included in the result.

Theorem 1. Let R be the result of AllSZones, called with input (SCSU , q), as
presented in Algorithm 2. Then for all stable zones Wσ passing through location
q, there exists S ∈ R such that Wσ ⊆ S or Wσ is reachable from S.

Proof. We will prove this by induction on the number of times the while loop
has been executed. Let Ui denote Uprev after the ith iteration of the while loop.
Initially U0 = (q, Z∞), so it trivially contains any possible stable zone passing
through location q. Now let us assume that there exists S ∈ Ui such that Wσ ⊆ S
or Wσ is reachable from S. Inside a while loop we explore all states having
locations from SCSU . From Lemma 3, we know that we will be able to follow σ
or any other edge cycle. From the properties of stable zones, we know that there
exists U ′ such that Wσ ∈ U ′ and U ′ will be added to the Open stack. If U ′ was
reached using σ then Ui+1 will contain preσ(Wσ) = Wσ. If U ′ was reached using
some other path σ′ � SCSU , then we know that preσ′(Wσ) ∩Wσ will be added
to Ui+1 and we know that we can reach Wσ from Ui+1 using σ′ which concludes
the inductive proof.

The following theorem shows that the sequence of sets U1, . . . ,Ui calculated in the
function AllSZones is non-increasing. This shows that the function AllSZones

terminates.

Theorem 2. Let Ui denote Uprev after the ith iteration of the while loop in
the function AllSZones (SCSU , q) presented in Algorithm 2. Then ∀i>0∀S ∈
Ui+1 ∃S′ ∈ Ui such that S ⊆ S′.

Proof. In order to reduce the number of quantifiers, we will use s ∈ U to denote
∃S ∈ U : s ∈ S.

The proof will proceed by induction over the loop number i. Initially U1 =
(q, Z∞), so trivially all elements of U2 are included in U1. Let us assume that
∀1≤k<i ∀S ∈ Uk+1 ∃S′ ∈ Uk such that S ⊆ S′. We need to show that this
property holds for k = i.

Because all elements of Ui+1 are reachable from U1, ∀(q, Zi+1) ∈ Ui+1 there
exists a trajectory (q, Z1) →∗ (q, Z2) →∗ . . . → (q, Zi) →∗ (q, Zi+1) such that
∀1≤j≤i+1 (q, Zj) ∈ Uj . Using the induction assumption, we know that (q, Zi) ∈
Ui−1. We explore all possible paths in SCSU from Ui−1 to calculate Ui. Thus, if

(q, Zi) ∈ Ui−1, and (q, Zi)
σ→ (q, Zi+1), and σ � SCSU then (q, Zi+1) ∈ Ui, which

finishes the proof.

The next theorem states that all relevant zones are added to the set of reachable
states U by Algorithm 1. Together with Lemma 1 this proves completeness and
safety of Algorithm 1.

Theorem 3. Given timed automaton A, let U be a set of reachable states in
standard semantics. Then all stable zones Wσ such that Wσ∩U 6= ∅ are included
in the result of Algorithm 1.

Proof. For any given zone Wσ, let q be the first location from σ such that part
of Wσ is reached when doing reachability analysis. From the properties of stable
zones, we know that location q will be visited at least once more. When location q
is visited for the last time, the current state will be contained in the U list. Thus,
location q will be added to Qmark. As a result, function AllSZones will be called
for location q and using Theorem 1, we know that the zone Wσ will be added to
the reachable set of states or it will be discovered during later exploration. Thus
the zone Wσ will be included in the result of Algorithm 1.

5 Implementation and Experiments

5.1 Implementation

To prove that our algorithm is applicable in practice, we have implemented a
prototype tool and tested it on a number of examples. The tool can perform
the reachability analysis in standard semantics using a breadth-first or depth-
first search and in extended semantics using Algorithm 1. The tool has been
written in C++ and the source code has about 5.6 Klocs. Internally it uses the
Uppaal DBM Library3 and Uppaal Timed Automata Parser Library4. The input
format for the tool is in the XML format compatible with Uppaal. The tool,
source, and specifications used for experiments can be downloaded from http:

//satoss.uni.lu/members/piotr/verifix/.

3 http://people.cs.aau.dk/~adavid/UDBM/
4 http://people.cs.aau.dk/~adavid/utap/

5.2 Experiments

To check the performance of our implementation, we have used the examples
from the suite of Uppaal benchmarks taken from the Uppaal web-page [17].

As the first benchmark, we have used the CSMA/CD protocol (Carrier Sense,
Multiple-Access with Collision Detection). This is a media access control protocol
used most notably in local area networking with early Ethernet technology. A
detailed description of the protocol can be found in [22]. We have verified the
protocol with nine, ten, and eleven components.

Another example is Fisher’s Protocol which is a mutual exclusion algorithm,
described in [1]. We have verified the protocol for eight and nine components.

The FDDI (Fiber Distributed Data Interface) is a fiber-optic token ring local
area network, described e.g. in [15, 9]. FDDI networks are composed of N sym-
metric stations that are organized in a ring. We have used a simplified model
with 11-ary, 12-ary, and 13-ary networks.

The next verified model is a Mutual Exclusion protocol. The protocol ensures
mutual exclusion of a state in a distributed system via asynchronous communi-
cation. The protocol is described in full detail in [12]. For verification we used
models with three and four components.

The last model we have used is a lip synchronisation protocol described in
[6]. Specifically we have used the model which assumes an ideal video stream.
We simplified the model by scaling down each constant by a factor of ten and
five, as the original model proved to be too difficult to verify within reasonable
time.

Model

Run type Breadth-First Depth-First Extended Sem.
run
time

gen.
states

run
time

gen.
states

err.
loc.

run
time

gen.
states

err.
loc.

CSMA/CD – 9 comp. 0.3s 110k 0.7s 231k no 0.9s 260k no
CSMA/CD – 10 comp. 1.0s 287k 2.7s 775k no 3.5s 846k no
CSMA/CD – 11 comp. 2.9s 728k 11.6s 2 607k no 15.1s 2 790k no

Fisher – 8 comp. 0.3s 180k 0.4s 222k no 263.9s 348k no
Fisher – 9 comp. 1.8s 723k 2.4s 1 004k no 6151s 1 447k no

FDDI – 11-ary network 1.7s 28k 8.4s 68 k no 62.1s 122k no
FDDI – 12-ary network 10.4s 55k 42.3s 137k no 263.7s 224k no
FDDI – 13-ary network 53.4s 109k 187.5s 278k no 905.5s 1 775k no

Mutual excl. – 3 comp. 0.1s 61k 0.1s 35k no 7.5s 1 047k no
Mutual excl. – 4 comp. 4.8s 1 506k 2.2s 866k no 3545s 28 272k no

Lip synchr. – scale 0.1 0.06s 1 22k 0.06s 22k no 30.1s 5 244k yes
Lip synchr. – scale 0.2 0.1s 1 22k 0.1s 22k no 1537s 67 222k yes
Table 1. Validation time in seconds and number of generated states in thousands.

The experiments have been performed on an Intel i7 processor with a 2.4 GHz
system and 8 GByte of memory. The results for all the verified models were the
same for standard semantics – the models are correct and the error location is

not reached. In extended semantics only the Lip Synchonization Protocol proved
to be non-robust as we managed to reach the error location – meaning that
video and sound can desynchronize over time). The running times and number
of generated states for each verification model are shown in Table 1.

The results show that for the CSMA/CD protocol our algorithm is almost
as good as depth first search. The performance drops drastically when we have
a model with many parallel components like Fisher’s protocol and the Mutual
Exclusion protocol. For those two cases SCSU will contain almost all locations of
timed automaton A, implying that the function AllSZones must do reachability
on the original A, which is the main source of inefficiency. Checking reachability
in the proposed robust way can be up to thousand times slower. The inefficiency
comes from the fact that we define SCSU in terms of locations. Potentially,
this may lead to many calls to the AllSZones function for the same input.
The solution could be to introduce some form of caching or redefine SCSU to
include the timing aspect. The verification of the Lip Synchronization Protocol
proved to be the hardest. The specification uses a discrete variable as a discrete
clock which creates many stable zones that are not reachable from each other in
standard semantics, but are touching each other. As a result they are reachable
in extended semantics, but the algorithm needs to add new zones many times.

6 Conclusions and Perspectives

Our research shows the feasibility of automated verification of systems with
the (realistic) assumption of drifting clocks. Many communication protocols and
distributed algorithms have already been designed with this assumption in mind,
but up to now they could not be formally verified.

The main result of our work is the development of a symbolic algorithm for
computing the reachability of locations in timed automata when the clocks may
drift by an arbitrarily small amount. The analysis on which this algorithm is
based was originally defined [18, 11] for region automata and does not lend itself
to direct implementation in a tool. Our zone-based implementation is therefore a
very important step towards the analysis of robustness of timed systems. The key
concept on which our analysis is based is the notion of a stable zone, originally
defined in [8]. Unfortunately the concept of stable zone can be used only for
analysis of flat timed automata, which seriously limits this approach. Our zone-
based approach does not have this limitation.

We have developed a tool written in C++ implementing our algorithm. The
tool was tested on a number of benchmark specifications. The tests have shown
that the extended semantics performs three to four times slower in most cases,
but for some highly parallel specifications the verification time can be up to
thousand times slower, especially for specifications that are not robust.

In the future, we are interested in removing the limitations of bounded clocks
and the necessity of progress cycles. While removing the limitations may be
rather straight-forward to solve for flat automata, it is non-trivial in the general
case. If the extension is successful it would be interesting to check the robustness

of a wider class of real-life specifications. It will be interesting to investigate a
priori conditions for robustness, and techniques to repair robustness violations.

References

1. Mart́ın Abadi and Leslie Lamport. An old-fashioned recipe for real time. ACM
Transactions on Programming Languages and Systems, 16(5):1543–1571, 1994.

2. Rajeev Alur and David L. Dill. A theory of timed automata. Theoretical Computer
Science, 126(2):183–235, 1994.

3. Johan Bengtsson and Wang Yi. Timed automata: Semantics, algorithms and tools.
In Lectures on Concurrency and Petri Nets, pages 87–124. Springer, 2003.

4. Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust model-checking
of linear-time properties in timed automata. In LATIN, pages 238–249, 2006.

5. Patricia Bouyer, Nicolas Markey, and Pierre-Alain Reynier. Robust analysis of
timed automata via channel machines. In FoSSaCS, pages 157–171, 2008.

6. H. Bowman, G. Faconti, J.-P. Katoen, D. Latella, and M. Massink. Automatic
verification of a lip-synchronisation protocol using uppaal. Formal Aspects of Com-
puting, 10(5-6):550–575, 1998.

7. Hubert Comon and Yan Jurski. Timed automata and the theory of real numbers.
In CONCUR’99 Concurrency Theory, LNCS, pages 242–257. Springer, 1999.

8. Conrado Daws and Piotr Kordy. Symbolic robustness analysis of timed automata.
In FORMATS, LNCS, pages 143–155. Springer, 2006.

9. Conrado Daws and Stavros Tripakis. Model checking of real-time reachability
properties using abstractions. In TACAS, pages 313–329, 1998.

10. Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Ro-
bustness and implementability of timed automata. In FORMATS/FTRTFT, vol-
ume 3253 of LNCS, pages 118–133. Springer, 2004.

11. Martin De Wulf, Laurent Doyen, Nicolas Markey, and Jean-François Raskin. Ro-
bust safety of timed automata. Formal Meth. Syst. Des., 33(1-3):45–84, 2008.

12. Henning Dierks. Comparing model checking and logical reasoning for real-time
systems. Formal Asp. Comput., 16(2):104–120, 2004.

13. Cǎtǎlin Dima. Dynamical properties of timed automata revisited. In Formal
Modeling and Analysis of Timed Systems, LNCS, pages 130–146. Springer, 2007.

14. Thomas A. Henzinger, Xavier Nicollin, Joseph Sifakis, and Sergio Yovine. Symbolic
model checking for real-time systems. Inf. Comput., 111(2):193–244, 1994.

15. Raj Jain. FDDI Handbook: High-Speed Networking Using Fiber and Other Media.
Addison Wesley Publishing Company, 1994.

16. Rémi Jaubert and Pierre-Alain Reynier. Quantitative robustness analysis of flat
timed automata. In FoSSaCS’11, LNCS, pages 229–244. Springer, 2011.

17. Department of Information Technology at Uppsala University and the Department
of Computer Science at Aalborg University. UPPAAL. http://www.uppaal.org/.

18. Anuj Puri. Dynamical properties of timed automata. Discrete Event Dynamic
Systems-Theory and Applications, 10(1-2):87–113, 2000.

19. Robert Tarjan. Depth-first search and linear graph algorithms. SIAM Journal on
Computing, 1(2):146–160, 1972.

20. Howard Wong-Toi. Analysis of slope-parametric rectangular automata. In Hybrid
Systems V, pages 390–413, London, UK, 1999. Springer.

21. Mihalis Yannakakis and David Lee. An efficient algorithm for minimizing real-time
transition systems. In CAV, LNCS, pages 210–224. Springer, 1993.

22. Sergio Yovine. Kronos: A verification tool for real-time systems. International
Journal on Software Tools for Technology Transfer, 1:123–133, 1997.

