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1. Abstract 
Identifying accurate biomarkers of cognitive decline is essential for advancing early diagnosis and 

prevention therapies in Alzheimer’s Disease. The Alzheimer’s Disease DREAM Challenge was 

designed as a computational crowdsourced project to benchmark the current state-of-the-art in 

predicting cognitive outcomes in Alzheimer’s Disease based on high-dimensional, publicly available 

genetic and structural imaging data.  This meta-analysis failed to identify a meaningful predictor 

developed from either data modality, suggesting that alternate approaches should be considered for 

to prediction of cognitive performance. 

 

2. Background 

The Alzheimer’s Disease DREAM Challenge (http://dx.doi.org/10.7303/syn2290704) was designed to 

provide an unbiased assessment of current capabilities for estimation of cognition and prediction of 

cognitive decline using genetic and imaging data from public data resources using a crowd-sourced 

approach.  The ability to predict rate of cognitive decline – both prior to and following diagnosis – is 

essential to effective trial design for the development of therapies for Alzheimer’s Disease (AD) 

prevention and treatment.  Major collaborative efforts in the field are assessing the association of 



genetic loci with AD diagnosis and the application of structural imaging for development of early 

biomarkers of diagnosis, but the utility of these approaches to estimate cognition or predict cognitive 

decline is not well established. This project was designed under the advisement of a panel of experts 

in the field to evaluate whether these questions could be meaningfully addressed with current 

methodologies given existing public data sources.  To ensure that these questions were tested across 

a broad spectrum of the latest analytical approaches, the study was designed as a crowdsourced, 

community-based challenge in which participants were invited to address one or more of the following 

three problems: (1) The prediction of cognitive decline over time based on genetic data. (2) The 

prediction of resilience to cognitive decline in individuals with elevated amyloid burden based on 

genetic data. (3) The estimation of cognitive state based on structural magnetic resonance (MR) 

imaging data. 

 

 

3. Results 

3.1 Study design and data harmonization 

To ensure that predictors were detecting true biological variation rather than study-specific technical 

variation, this project required inclusion of data from multiple study sources.  While genetic and 

imaging data have been generated within many rich longitudinal cohorts across the field, the 

procurement and harmonization of these data sets was a non-trivial problem that required solutions to 

overcome political, ethical, and technical barriers.  For example, the generation of whole genome 

sequencing data across multiple AD cohorts within the NIH-funded AD sequencing project has 

resulted in a powerful resource for genetic analysis in the field but longitudinal information on 

cognitive traits is not readily available in those datasets.  Despite limitations on data accessibility, 

multiple relevant data sources were identified and used in this project including: the Alzheimer's 

Disease Neuroimaging Initiative (ADNI)(1), the Rush Alzheimer’s Disease Center Religious Orders 

Study(2) and Memory and Aging Project (MAP)(3) and the European AddNeuroMed(4) study, which 

is part of  InnoMed, a precursor to the Innovative Medicines Initiative.  Data selection and processing 

was performed based on data availability across these three datasets.  As such, cognition was 

defined using Mini Mental State Examination (MMSE) scores(5), genetic data was provided based on 

imputation across array-based genotype data, and structural MR imaging data was reprocessed in 

each cohort using a common processing pipeline. Genetic and imaging data was supplemented with 

a limited set of covariates including diagnosis, initial MMSE score, age at the initial examination, 

years of education, gender, and APOE haplotype.  Participants were provided with data from ADNI to 

train algorithms over a four-month period and, to ensure that participation was not limited by access 



to compute resources, they were offered use of the IBM z-Enterprise cloud to perform analyses.  The 

challenge generated significant interest with 527 individuals from around the world registered to 

participate.  A leaderboard displayed accuracy of submissions throughout the duration of the 

challenge: 1,157 submissions were made for problem 1,478 submissions for problem 2, and 434 

submissions for problem 3. Thirty-two teams submitted final results that were scored based on 

prediction/estimation of blinded outcomes within ROS/MAP for genetic predictions and AddNeuroMed 

for imaging-based estimations (Figure 1).  

 

3.2 Genetic prediction of cognitive decline 

The first challenge question assessed the ability of current methods to predict change in cognitive 

examination performance based on genetic data. High prediction accuracy would signal the potential 

for noninvasive biomarkers of cognition to have a major clinical impact on early AD diagnosis and 

prevention. Previous efforts to develop predictors of change in cognitive function have not succeeded 

in providing robust and replicable models(6-8). Genetic variation has been demonstrated to influence 

AD status: rare genetic mutations at several loci are implicated in familial forms of early-onset 

disease(9) while common variation contributes 33% to variance in sporadic AD and 22 loci have been 

implicated by large-scale genetic association analyses(10, 11). However, with the exception of the 

APOE4 haplotype, there has been little success in transforming these genetic associations into 

meaningful clinical predictions of cognitive decline. For this purpose, participants were challenged to 

predict 2-year changes in MMSE scores based on genotypes imputed from SNP array data. 

Participants trained their algorithms with 767 ADNI samples and the algorithms’ predictions were 

evaluated on a test set of 1,175 ROS/MAP samples with blinded outcome measures. The algorithm 

with the best predictive performance at the midpoint of the challenge did not contain any genetic 

features beyond APOE haplotype. Since the goal of this subchallenge was to assess genetic 

contribution to prediction of cognitive decline, this top-ranked algorithm was openly shared across 

teams as an interim baseline upon which to incorporate additional genetic predictors 

(http://dx.doi.org/10.7303/syn2838779). Eighteen teams submitted final predictions.  The majority of 

methods performed significantly better than a permutation-based random model prediction (Figure 

2a). A cluster of six methods performed significantly better than the others (including the interim 

baseline model) but were statistically indistinguishable amongst themselves (Figure 2d). Of these, the 

prediction with the best overall score (team GuanLab_umich from the University of Michigan) 

achieved a Pearson correlation of 0.382 and a Spearman correlation of 0.433 (the overall score was 

a rank-based combination of these two measures of performance; see online Supplement and 

Supplementary Methods: http://dx.doi.org/10.7303/syn3383106). However, no significant contribution 



of genetics beyond APOE haplotype to predictive performance was observed across any of the 

submissions.  Given the small sample size, no conclusions can be inferred from this analysis 

regarding the existence of genetic loci associated with cognitive decline.  Rather, these observations 

suggest that predictors of cognitive decline developed based on genetic data will not be useful within 

the clinical setting.    

 

3.3 Genetic prediction of cognitive resilience 

The second question challenged participants to identify genetic predictors that could distinguish 

individuals who exhibit resilience to AD pathology as defined by minimal change in cognitive function 

despite evidence of amyloid deposition(12, 13).  Identification of genetic signatures predictive of 

cognitive resilience would aid in the elucidation of mechanisms that may confer resilience, providing a 

powerful tool to help advance AD prevention strategies and treatment development. Eleven teams 

submitted predictions of resilience based on a training set derived from 176 ADNI subjects. 

Evaluations were made using data derived from 257 individuals from the ROS/MAP data. Despite 

using the largest such public dataset assembled to date, participants were unable to develop 

algorithms with predictive performances significantly better than random (see Figure 2b, online 

Supplement and Supplementary Methods in Synapse: http://dx.doi.org/10.7303/syn3383106). While it 

is likely that the study was underpowered due to small sample size and trait heterogeneity, this result 

suggest that information about cognitive resilience is not easily discoverable from SNP analysis.  

 

3.4 Structural imaging-based estimation of cognition 

The third question challenged participants to estimate cognitive state using structural brain image 

data (Figure 1, lower panel). Brain imaging has emerged as a powerful method for monitoring 

neurodegeneration and there is great enthusiasm in the field to make use of images for diagnosis and 

prediction. There have been many attempts in the past to correlate changes in brain shape with 

disease progression and/or diagnosis, conventionally using measures of volume for a given brain 

region(14, 15). More detailed shape measures of image features including cortical thickness, 

curvature, and depth have also been found to be relevant to a variety of neurological conditions(16). 

Participants were challenged to estimate MMSE scores based on structural brain images, or shape 

information derived from these images. Participants trained algorithms using ADNI data (N=628) and 

were evaluated using AddNeuromed data (N=182) for which they were blind to outcome measures. 

To engage as many participants as possible from both within and beyond the neuroimaging 

community, the data were provided both as raw MR images and as tables containing shape 

measures (volume, thickness, area, curvature, depth, etc.) for every labeled brain region. Thirteen 

teams submitted estimates for final evaluation and all teams performed better than a random model 



(see online Supplement and Supplementary Methods in Synapse: 

http://dx.doi.org/10.7303/syn3383106). Three teams performed significantly better than the others 

(teams GuanLab_umich from the University of Michigan, ADDT from the Karolinska Institute and 

Pythia from the University of Pennsylvania) (Figure 2c) but were statistically indistinguishable from 

one another and tied for top average rank (Figure 2e). The algorithm that generated the best absolute 

mean combined rank (Team GuanLab_umich) achieved a concordance correlation coefficient of 

0.569 and Pearson's correlation of 0.573 (the overall score was a rank-based combination of these 

two measures of performance). The most common features that contributed heavily to the MMSE 

estimates across the algorithms were hippocampal volume and entorhinal thickness, corroborating 

prior work(17-19). The top three teams also found that inclusion of shape measures of the entorhinal 

cortex (volume, curvature, surface area, travel and geodesic depth) improved overall estimation. 

Other features that contributed to predictions within the top three teams’ results included volume of 

inferior lateral ventricle and amygdala (see online Supplement and Supplementary Methods in 

Synapse: http://dx.doi.org/10.7303/syn3383106).  These results validate an established relationship 

between structural imaging data and cognition.  However, the correlative performance of these 

estimators was low suggesting that their application in the clinical setting may not be sufficient to 

inform patient care. 

 

4. Discussion 

The AD DREAM Challenge provided a formalized assessment of the ability to develop meaningful 

predictions of cognitive performance from public genetic or imaging data using contemporary state-of-

the-art predictive algorithms.  Predictive performance across all three of the subchallenges was 

modest and most methods performed roughly equivalently.  Given this uniform performance, we do 

not expect that the presented results are a failure of current modeling methodologies.  A more likely 

explanation is that the data used to address these questions were inadequate to support these tasks. 

We also note that the majority of research teams that participated in this challenge did not have 

expertise in the field of AD.  Although the few teams that did posses this knowledge did not do better 

than the others, there remains the possibility that performance would have been improved by the 

inclusion of more domain experts.  

 

  

4.1 Use of genetic information for cognitive prediction 

The modest performance observed in the subchallenges focused on genetic analysis demonstrated 

that contemporary algorithms were not able to leverage genetic signal to make useful predictions for 

cognition.   These results support the prevailing expectation that genetic variants of moderate to high 



frequency will not support viable biomarker development in AD (9-11).  Although heritability estimates 

and linkage studies have demonstrated that there is a considerable estimated genetic contribution to 

AD onset and progression (11, 20, 21), evidence both within the AD field and across other complex 

disease (22) traits has indicated that this overall genetic contribution is the aggregated compilation of 

a large number of loci with small – independent or epistatic – effects. Historically, this type of signal is 

difficult to capture in predictive models and unlikely to be useful in a diagnostic setting (23).   

Furthermore, cognition is highly influenced by a host of non-genetic factors relating to lifestyle choices 

and accumulated exposures that were not represented across all of these datasets and, in fact, are 

not fully captured in most cohorts (24-27).  Non-genetic contributions to cognitive performance may 

themselves provide an important base for successful predictions. Within the context of genetic 

analysis, the absence of these factors from models confounds the ability to detect real genetic signal 

and impacts the ability to accurately model state-specific genetic contributions. As such, future inquiry 

into the use of genetic testing for prediction of cognitive performance and AD risk assessment may be 

better served by focusing on the contribution of rare genetic variation.  Recently discovered disease-

associated rare variants have larger effect sizes than common variants and confer 2 to 5 fold greater 

risk or protection in carriers relative to the general population (28-30). Ongoing large-scale 

sequencing analyses will identify additional associated rare risk variants. In sufficient numbers, the 

aggregate prevalence would support the development of a genetic diagnostic containing a library of 

rare variants. 

  

4.2 Use of structural imaging data for cognitive estimation 

While the inexpensive and noninvasive nature of genetic testing makes this approach amenable to 

population-level disease screening, the resource-intensive nature of image-based testing is better 

positioned for careful evaluation of high-risk individuals. As such, these approaches are needed to 

provide a higher confidence estimate of cognitive performance.  Although a variety of methods 

developed within the context of this challenge were able to successfully estimate cognition, none of 

these methods were sufficiently accurate to merit clinical consideration.  These observations support 

previous work in the field (17, 19) and highlight the imperfect relationship between brain structure and 

function.  Newer imaging modalities that focus on brain function and/or pathology – such as FDG-

PET (31) or tau imaging (32)– may prove more successful for assessing cognitive dysfunction. 

  

4.3  Effective performance of meta-analysis across diverse cohorts 

A major consideration for any meta-analysis is the issue of appropriate harmonization of data across 

disparate sources.   Despite leveraging several of the most deeply phenotyped cohorts in the field, 

this challenge limited analysis to those traits that were in common across cohorts.  Although this 



approach to data harmonization is standard practice for meta-analyses (10), it greatly reduced the 

depth of the information available for modeling and influenced the selection of cognitive measures for 

use as prediction outcomes.  Because each cohort had performed a battery of study-specific tests, 

this greatly limited the ability for finer grained assessment across cognitive processes. A more 

sensible approach for future analyses may be to focus effort on more sophisticated methods to 

calibrate disparate cognitive phenotypes across cohorts (33).   Another undesirable consequence of 

the focus on traits measured in common was the inability to incorporate into model development the 

full spectrum of non-genetic and non-imaging factors that are known to influence cognitive 

performance (24-27).  This suggests the need for development of alternate approaches for integrating 

heterogeneous data and/or assessing replication across cohorts. Alternatively, smaller scale analyses 

that prioritize phenotypic depth over sample size may afford a more refined view of disease.  

 

In summary, this challenge demonstrated that predictions of cognitive performance developed from 

genetic or structural imaging data were modest across a diverse set of contemporary modeling 

methods.  Future efforts to identify clinically relevant predictors of cognition will benefit from a focus 

on alternate data sources as well as methods that work to incorporate greater phenotypic complexity.  
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FIGURE LEGENDS:  

Fig.1. Challenge overview. 
The top schematic summarizes the three challenge questions on the left column, the training data in 

the middle, and the test data on the right, including numbers of subjects. The symbols represent 

sources of data (demographic, ROS/MAP genetic, and ADNI or ANM brain images and shape 

information). The bottom panel provides example brain image labels and shape information provided 

to the participants for question 3. Anatomical labels for left cortical regions are shown on the left and 

just a couple of the cortical surface shape measures are shown on the right (travel depth on top and 

mean curvature below), for both uninflated and inflated surfaces (top and bottom rows, respectively). 

 
Figure 2.  Performance evaluation results. Panels a, b, and c report the p-values (in negative log10 

scale) for intersection union tests investigating which teams performed better than random for 

questions 1, 2, and 3, respectively. Explicitly, for question 1 (panel a) we tested the null hypothesis 

that at least one of the four correlation coefficients (namely, Pearson/clinical, Pearson/clinical + 

genetics, Spearman/clinical, Spearman/clinical + genetics) is equal to zero, against the alternative 

that all four correlation coefficients are larger than zero. Adopting a 0.05 significance level, 26 out of 

the 32 submissions were statistically better than random, after Bonferroni multiple testing correction 

for 32 tests (submissions crossing the black vertical line). For question 2 (panel b), we tested the null 

hypothesis that balanced accuracy = 0.5 or AUC = 0.5, against the alternative that balanced accuracy 

> 0.5 and AUC > 0.5. In this case, no model performed significantly better than random and, 

therefore, no best performer was declared. For question 3 (panel c), we tested the null hypothesis 

that Pearson's correlation (COR) or Lin's concordance correlation coefficient (CCC) are equal to zero, 

against the alternative that both COR and CCC are larger than zero.  Adopting a 0.05 significance 

level, all 23 submissions were statistically better than random, after Bonferroni correction. For all 

three questions, the p-values were computed from an empirical null distribution based on 10,000 

permutations.  Panels d and e report the bootstrapped assessment of ranks for questions 1 and 3, 

respectively. Samples were resampled with replacement from the original data (true outcome and 

team’s predictions), and the ranks of the different teams were re-assessed in each of 100,000 re-

samplings. Submissions were sorted according to the median of their bootstrapped average ranking 

distributions. The black horizontal line represents the posterior odds cutoff from the Bayesian 



analysis.  Teams above the black line are statistically tied to the top ranked model, according to a 

posterior odds threshold of 3. 
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