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Abstract. DragonflyDragonfly is a password-authenticated key exchange proto-
col that was proposed by Harkins [11] in 2008. It is currently a candidate
for standardization by the Internet Engineering Task Force, and would
greatly benefit from a security proof. In this paper, we prove the security
of a very close variant of DragonflyDragonfly in the random oracle model. It shows
in particular that DragonflyDragonfly’s main flows - a kind of Diffie-Hellman vari-
ation with a password-derived base - are sound. We employ the standard
Bellare et al. [2] security model, which incorporates forward secrecy.

1 Introduction

Authenticated Key Exchange (AKE) is a cryptographic service run between two
or more parties over a network with the aim of agreeing on a secret, high-quality,
session key to use in higher-level applications (e.g., to create an efficient and
secure channel.) One talks of Password -Authenticated Key Exchange (PAKE)
if the message flows of the protocol itself are authenticated by means of a low-
entropy password held by each user. The inherent danger in this setup is its
vulnerability to dictionary attacks, wherein an adversary - either eavesdropping
or impersonating a user - tries to correlate protocol messages with password
guesses to determine the correct password being used.

PAKE research is very active. New protocol designs are regularly proposed
and analyzed, and PAKE itself has been subject to standardization since at least
2002. In 2008 Harkins proposed DragonflyDragonfly [11]: Specifically tailored for mesh net-
works, it is up for IETF (Internet Engineering Task Force) standardization [12].
However, proving the security of DragonflyDragonfly remains open.

This paper1 proves secure a protocol similar to the version of DragonflyDragonfly
up for standardization, in the random oracle (RO) model [4]. Thus we can at
least assert that the scheme’s main flows - a Diffie-Hellman [10] variant with
a password-derived base - are sound. DragonflyDragonfly’s design is similar to that of
Jablon’s SPEKESPEKE [13]. MacKenzie having proved SPEKESPEKE secure in [17], we fol-
lowed [17]’s proof to structure ours. However, unlike in [17], we incorporated for-
ward secrecy into the analysis, and chose to work in the Bellare et al. model [2].
To our knowledge, this is the first time a protocol employing a password-derived

1 This paper is the full version of the extended abstract that appears in [16].
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Diffie-Hellman base is proven forward-secure and analyzed using [2]. As in [17],
DragonflyDragonfly’s security is based on the Computational Diffie-Hellman (CDH) and
Decisional Inverted-Additive Diffie-Hellman (DIDH) assumptions (see Sect. 2.2).

Related Work. PAKE has been heavily studied in the last decade. It began
with the works of Bellovin and Merrit [5] and Jablon [13], but with no precise
security analysis. Security models in the vein of [3] and [20] were then introduced
by Bellare et al. [2] and Boyko et al. [6] respectively, and the number of provably
secure schemes - with random oracles (RO) or ideal ciphers [2,7], common refer-
ence strings [14,8], universal composability [8], to name a few - has exploded. We
refer to Pointcheval’s survey [19] for a more complete picture. As for DragonflyDragonfly,
it first appeared in [11]. The attention it has received as an IETF proposal has
led it to being broken by Clarke and Hao [9], and subsequently fixed.

Organization. The rest of the paper is structured as follows. In Sect. 2, we recall
the commonly-used security model of [2]. Section 3 contains a description of the
version of DragonflyDragonfly we analyze, while the description of the original Dragonfly
protocol from [12] can be found in the appendix. Next, Sect. 4 presents the
security proof. Finally, the paper is concluded in Sect. 5.

2 Security Model

We use the indistinguishability-based framework of [2], designed for two-party
PAKE. In what follows, we will assume some familiarity with the model in [2].

2.1 Model

Participants, Passwords and Initialization. Each principal U that can par-
ticipate in a PAKE protocol P comes from either the Client or Server set, which
are finite, disjoint, nonempty sets whose union is the set ID. We assume that
each client C ∈ Client is in possession of a password πC , while each server
S ∈ Server holds a vector of the passwords of all clients πS = 〈πS [C]〉C∈Client.
Before the execution of a protocol, an initialization phase occurs, in which public
parameters are fixed and a secret πC , drawn uniformly (and independently) at
random from a finite set PasswordsPasswords of size N , is generated for each client and
given to all servers.

Protocol Execution. The protocol P is a probabilistic algorithm that defines
the way principals behave in response to messages from the environment. In
the real world, each principal may run multiple executions of P with different
partners, and to model this we allow each principal to have an unlimited number
of instances executing P in parallel. We denote client instances by Ci and server
instances by Sj . Each instance maintains local state (i.e. stateiU , sid

i
U , pid

i
U , sk

i
U ,

acciU , term
i
U ) and can be used only once. To assess the security of P, we assume

that an adversary A has complete control of the network. Thus, A provides the
inputs to instances, via the following queries:



– SendSend(U i,M):A sends message M to instance U i. As a result, U i processes M
according to P, updates its local state, and outputs a reply. A SendSend(Ci, StartStart)
has client Ci output P’s first message. This query models active attacks.

– ExecuteExecute(Ci, Sj): This triggers an honest run of P between Ci and Sj , and its
transcript is given to A. It covers passive eavesdropping on protocol flows.

– RevealReveal(U i): A receives the current value of the session key skiU . A may do
this only if U i holds a session key. This captures session key leakage.

– TestTest(U i): A bit b is flipped. If b = 1, A gets skiU . Otherwise, it receives a
random string from the session key space.Amay only make one such query at
any time during the execution. This query measures skiU ’s semantic security.

– CorruptCorrupt(U): πU is given to A. This models compromise of the long-term
key.2

Accepting and Terminating. An instance U i accepts (acciU = 1) if it holds
a session key skiU , a session ID sidiU and a partner ID pidiU . An instance U i

terminates (termi
U = 1) if it will not send nor receive any more messages. U i

may accept and terminate once.

Partnering. Instances Ci and Sj are partnered if: (1) acciC = 1 and accjS = 1;

(2) sidiC = sidjS 6= ⊥; (3) pidiC = S and pidjS = C; (4) skiC = skjS ; and (5) no
other instance accepts with the same sid.

Freshness. Freshness captures the idea that the adversary should not trivially
know the session key being tested. An instance U i is said to be fresh with forward
secrecy if: (1) acciU = 1; (2) no RevealReveal query was made to U i nor to its partner

U ′
j

(if it has one); (3) no CorruptCorrupt(U ′) query was made before the TestTest query
and a SendSend(U i,M) query was made at some point, where U ′ is any participant.

Advantage of the Adversary. Now that we have defined freshness and all the
queries available to the adversary A, we can formally define the authenticated
key exchange (ake) advantage of A against P. We say that A wins and breaks
the ake security of P, if upon making a TestTest query to a fresh instance U i that has
terminated, A outputs a bit b′, such that b′ = b where b is the bit from the TestTest
query. We denote the probability of this event by SuccSuccakeP (A). The ake-advantage
of A in breaking P is

AdvAdvakeP (A) = 2 SuccSuccakeP (A)− 1 . (1)

Authentication. Another ofA’s goals is violating authentication. In [2], Bellare
et al. define three notions of authentication: client-to-server (c2sc2s), server-to-client
(s2cs2c), and mutual (mama). We denote by SuccSuccc2sP (A) (respectively, SuccSuccs2cP (A)) the
probability that c2sc2s (resp., s2cs2c) authentication is violated, which happens if
some server (resp., client) has terminated before any CorruptCorrupt query without

2 This is the weak-corruption model of [2].



being partnered with a client (resp., server). The adversary is said to violate
mutual authentication if there exists some instance that terminates before any
CorruptCorrupt query without a partner. We denote by SuccSuccmaP (A) the probability of
this event occurring, and the ma-advantage of A in breaking P is

AdvAdvmaP (A) = SuccSuccmaP (A) . (2)

2.2 Security Assumptions

Here we state the assumptions upon which the security of DragonflyDragonfly rests. Let
ε ∈ [0, 1], and let B and D be probabilistic algorithms running in time t. Let
G be a finite group of prime order q, and g be a generator of G. We say that
the assumption holds if there is no (t, ε)-solver for polynomial t (in the security
parameter k governing the size of G) and non-negligible ε (also in k).

Computational Diffie-Hellman (CDH). Set DHg(g
x, gy) := gxy, for any x

and y in Zq. We say that B is a (t, ε)-CDH solver if

SuccSucccdhg,G(B) := Pr[B(g, gx, gy) = DHg(g
x, gy)] ≥ ε , (3)

where x and y are chosen uniformly at random.

Decisional Inverted-Additive Diffie-Hellman (DIDH). For x and y in
Z∗q , where x + y 6= 0, set IDHg(g

1/x, g1/y) := g1/(x+y). An algorithm D is a
(t, ε)-DIDH solver if

AdvAdvdidhg,G (D) := SuccSuccdidhg,G (D)− 1

2
≥ ε , (4)

where SuccSuccdidhg,G (D) := Pr[b′ = b] in the following game. First, x, y, and z are

chosen uniformly at random and a bit b is flipped. Let X := g1/x and Y := g1/y.
If b = 0, set Z := g1/z, and if b = 1, set Z := IDHg(X,Y ). D gets as input
(g,X, Y, Z), and outputs bit b′.

The DIDH assumption is less-known than the CDH one. It states that it is
hard to tell apart g1/(x+y) and a random g1/z when given g1/x and g1/y. [17]
shows that DIDH is as hard as the Decisional Diffie-Hellman problem in generic
groups. For a nice overview of the relations between the DIDH assumption and
other discrete-logarithm-style assumptions we refer the reader to [1].

3 The Dragonfly Protocol

We first fix some notation and then describe the version of DragonflyDragonfly to analyze.
Its cryptographic core is a Diffie-Hellman key exchange similar to the one used
in SPEKESPEKE [13], where a function of the password is the base for group values.



Notation. Let G be a finite multiplicative group of prime order q, and k be the
security parameter. When we sample elements from Zq, it is understood that
they are viewed as integers in [1 . . . q], and all operations on these are performed
mod q. Let H0 be a full-domain hash mapping {0, 1}∗ to G. We also define a

hash function H1 from {0, 1}∗ to {0, 1}3k. a← A denotes selecting a uniformly
at random from the set A. Let the function Good(E, s) be true iff: (1) s ∈ [1 . . . q]
and (2) E ∈ G. We assume the existence of an efficient algorithm to perform the
latter check; this is important, as it prevents instantiation-specific attacks, like
the small subgroup attack in [9].

Protocol Description. A high-level protocol description is shown in Fig. 1.
At initialization, the password is chosen at random from PasswordsPasswords and given
to the client and server. Then, both parties compute a base PW = H0(C, S, π)
for Diffie-Hellman values, where C and S are ID strings.

Client Server
InitializationInitialization

Public: G, p, q; H0 : {0, 1}∗ → G; H1 : {0, 1}∗ → {0, 1}3k

π ∈ Passwords, PW := H0(C, S, π)

m1, r1 ← Zq
s1 := r1 +m1

E1 := PW−m1 C,E1, s1

abort if ¬Good(E1, s1)

m2, r2 ← Zq
s2 := r2 +m2

S,E2, s2 E2 := PW−m2

abort if ¬Good(E2, s2)

σ := (PW s2 × E2)r1

tr := (C, S, s1, s2, E1, E2)

κ|τ̂ |skC := H1(tr, σ, PW ) κ

σ := (PW s1 × E1)r2

tr := (C, S, s1, s2, E1, E2)

κ̂|τ |skS := H1(tr, σ, PW )

τ abort if κ 6= κ̂

abort if τ 6= τ̂

Fig. 1: The Dragonfly protocol.

In nutshell, the protocol runs in two phases. In the first phase, each participant
chooses a random exponent ri and mask mi, computes their sum si ∈ Zq and the



group element Ei := PW−mi , and sends the commit message (ID,Ei, si), where
i = 1, 2. Upon receiving this message, Good(Ei, si) is called to check its validity.
At this point, the session IDs sidC and sidS are set to (C, S, s1, s2, E1, E2) for
each participant. In the second phase, both participants derive the Diffie-Hellman
value σ = PW r1r2 . This is followed by a computation of a hash value (using
the derived σ value), parsed into three k-bit strings: an authenticator for each
participant and the session key sk. Then, the authenticators are exchanged. If
the received authenticator is valid, the participant accepts and terminates the
execution, saving session key sk. Otherwise, it aborts, deleting its state.

Remarks. We point out here the main areas where the presented protocol
slightly differs from the IETF proposal (see Appendix A). First of all, we do not
model the “hunting-and-pecking” procedure explicitly, but this is not a problem
here. As pointed out in the proposal, “hunting-and-pecking” is just one way
among others to deterministically obtain a base group element from a password.
Thus, simply using a random oracle taking as input the participants’ identities
in addition to the password is appropriate.

The procedure we use to compute the confirmation codes and the session
keys is not that of the proposal. In particular, our construction makes all of
these direct functions of the shared secret, both identities, the main protocol’s
message flows, and the password element. This is similar to the PAK and PPK
protocols [6], for instance, as well as in MacKenzie’s analysis of SPEKESPEKE [17]. In
our view, it is more prudent to follow this pattern, as either removing identities
- or replacing them with generic “role” strings - can lead to attacks, e.g. [18]
and [1]. Thus, we recommend adding the receiver’s identity in the IEFT pro-
posal’s computation of the “confirm” message.

Finally, the protocol could have been dropped to three flows, but we chose to
keep it four, for two reasons. First, this way we stay close to the IETF protocol,
and secondly, despite reducing communication efficiency, four-flow PAKEs - in
which the first two flows commit to a shared password and the second two are
proofs-of-possession of the session key - are by design secure against many-to-
many guessing attacks on the server side, see [15].

4 Security proof of Dragonfly protocol

We now present a proof of security for DragonflyDragonfly in the RO model [4]. We show
that DragonflyDragonfly distributes semantically secure session keys, provides mutual au-
thentication, and enjoys forward secrecy. We also adopt the convenient notations
of [7].

Theorem 1. We consider DragonflyDragonfly as described in Sect. 3, with a password
set of size N . Let A be an adversary that runs in time at most t, and makes at
most nse SendSend queries, nex ExecuteExecute queries, and nh0 and nh1 RO queries to H0

and H1, respectively. Then there exist two algorithms B and D running in time
t′ such that AdvAdvakedragonfly(A) ≤ T and AdvAdvmadragonfly(A) ≤ T where



T :=
6nse
N

+
4(nse + nex)(2nse + nex + nh1)

q2
+
n2h0 + 2nh1

q
+
n2h1 + 2nse

2k
+

2nh1(1 + nse
2)× SucccdhPW,G(B) + 4n3h0 ×

(
AdvAdvdidhg,G (D) +

n3h1 + 3nse
q

)
(5)

and where t′ = O(t + (nse + nex + nro)texp) with texp being a time required for
exponentiation in G.

Proof. Our proof is given as a sequence of games G0, ...,G4. Our goal is to
prove that DragonflyDragonfly resists offline dictionary attacks, i.e. that A’s advantage is
proportional to that of the easily detected “dummy” online guesser. We define
events, corresponding to A attacking the protocol in game Gm and breaking
semantic security, and c2sc2s and s2cs2c authentication, for m = 0, ..., 4.

– SSm occurs if A returns b′ equal to the bit b chosen in the TestTest query.

– AuthAuthc2sm occurs if an Sj terminates saving skS as a state without being
partnered with some Ci.

– AuthAuths2cm occurs if a Ci terminates saving skC as a state without being part-
nered with some Sj .

Throughout the proof, we call A’s oracle query of the form H1(C, S, s1, s2, E1,
E2, σ, PW ) bad if σ = DHPW (m,µ) (where m = PW s1E1 and µ = PW s2E2),
and Good(E1, s1) and Good(E2, s2) are true. Also, we denote by πC the value of
the password selected for C and by PWC,S the value of the base derived from it
with server S. The number of instances that A can activate and of hash queries
that A can make are bounded by t. In addition, in case A does not output b′

after time t, b′ is chosen randomly. Let us now proceed with a detailed proof.

Game G0 : This game is our starting point, with DragonflyDragonfly defined as in Fig. 1.
A may make SendSend, ExecuteExecute, RevealReveal, CorruptCorrupt, and TestTest queries and these queries
are simulated as shown in Fig(s). 2, 3, and 4. From Def. 1 we have

AdvAdvakedragonfly(A) = 2 Pr[SS0]− 1 . (6)

Game G1 : This is our first simulation, in which hash queries3 to H0, H1 and
H ′1 are answered by maintaining lists Lh0,Lh1 and L′h1, respectively (see Fig. 5).
The simulator also maintains a separate list LA of all hash queries asked by A.
Note that we assume that the simulator knows the discrete logarithms of the
outputs of H0 queries. The simulator also keeps track of all honestly exchanged
protocol messages in the list LP . We say that a client instance Ci and a server
instance Sj are paired if ((C,E1, s1), (S,E2, s2)) ∈ LP . We can easily see that
this simulation is perfectly indistinguishable from the attack in G0. Thus,

Pr[SS1] = Pr[SS0] . (7)



SendSend queries made to a client instance Ci are answered as follows:

– A SendSend(Ci, StartStart) query is executed according to the following rule:

? Rule C1(1)

Choose an ephemeral exponent r1 ← Zq and a mask m1 ← Zq, compute
s1 := r1 +m1 and E1 := PW−m1 .

The client instance Ci then replies to the adversary A with (C,E1, s1) and goes
to an expecting state EC1.

– If the instance Ci is in the expecting state EC1, a received SendSend(Ci, (S,E2, s2))
query is first parsed and Good(E2, s2) is called. If the check passes, the instance
continues processing the query according to the following rules:

? Rule C2(1)

Compute σ := (PW s2 × E2)r1 .

? Rule C3(1)

Compute κ|τ̂ |skC := H1(C, S, s1, s2, E1, E2, σ, PW ).

The instance Ci accepts, replies to A with κ, and goes to an expecting state EC2.
Otherwise, it terminates (rejecting), saving no state.

– In case Ci is in the expecting state EC2, a SendSend(Ci, τ) query is processed according
to the following rule:

? Rule C4(1)

Check if τ = τ̂ . If so, the instance terminates, saving skC as a state.

If the equality does not hold, the instance terminates (rejecting), saving no state.

Fig. 2: Simulation of the Send queries to the client.

Game G2 : In this game, collisions on the outputs of H0 queries and collisions
on the partial transcripts ((C,E1, s1), (S,E2, s2)) are avoided. Let list LR keep
track of the replies generated by client and server instances as answers to SendSend
queries. We abort if a pair (E1, s1) generated by a client instance is already in
the list LR as a result of previous SendSend or ExecuteExecute queries, or in the list LA as
an input to an H1 query. Similarly, we abort in case a pair (E2, s2) generated
by a server instance is already in LR or LA.

? Rule C1(2)

Choose an ephemeral exponent r1 ← Zq and a mask m1 ← Zq, compute
s1 := r1 +m1 and E1 := PW−m1 . If (E1, s1) ∈ LR ∪ LA, abort the game.

? Rule S1(2)

Choose an ephemeral exponent r2 ← Zq and a mask m2 ← Zq, compute
s2 := r2 +m2 and E2 := PW−m2 . If (E2, s2) ∈ LR ∪ LA, abort the game.

Additionally, we abort in case of collisions on H0 outputs. This event’s prob-
ability is bounded by the birthday paradox n2h0/2q.

3 The private oracle H ′1 : {0, 1}∗ → {0, 1}3k will be used in the later, starting from
the G3.



SendSend queries made to a server instance Sj are answered as follows:

– A SendSend(Sj , (C,E1, s1)) query is first parsed and then Good(E1, s1) is called. If
both values are valid, the instance continues processing the query according to the
following rules:

? Rule S1(1)

Choose an ephemeral exponent r2 ← Zq and a mask m2 ← Zq, compute
s2 := r2 +m2 and E2 := PW−m2 .

The server instance Sj then replies to the adversary A with (S,E2, s2) and goes
to an expecting state ES1. Otherwise, it terminates (rejecting), saving no state.

– If the instance Sj is in the expecting state ES1, a SendSend(Sj , κ) query is executed
according to the following rules:

? Rule S2(1)

Compute σ := (PW s1 × E1)r2 .

? Rule S3(1)

κ̂|τ |skS := H1(C, S, s1, s2, E1, E2, σ, PW ).

? Rule S4(1)

Check if κ = κ̂. If so, Sj accepts, replies with τ , and terminates while saving
skS as a state.

If the equality does not hold, the Sj terminates (rejecting), saving no state.

Fig. 3: Simulation of the Send queries to the server.

? Rule H
(2)
0

Choose α ← Zq. Compute r := gα and write the record (w, r, α) to Lh0. If
(∗, r, ∗) ∈ LA, abort the game.

The rule modifications in this game ensure the uniqueness of honest instances
and that distinct passwords do not map to the same base PW . So we have:

|Pr[S2]− Pr[S1]| ≤ 2(nse + nex)(2nse + nex + nh1)

q2
+
n2h0
2q

. (8)

Game G3 : In this game, we first define event CorruptedCorrupted that occurs if the
adversary makes a CorruptCorrupt query while the targeted client and server instance
are not paired. From now on, if CorruptedCorrupted is false, instead of using H1 to compute
session keys and authenticators, the simulator uses a private oracle H ′1. The rules
change as follows:

? Rule C3(3)

If CorruptedCorrupted is false, compute κ|τ̂ |skC := H ′1(C, S, s1, s2, E1, E2). Otherwise,
compute κ|τ̂ |skC := H1(C, S, s1, s2, E1, E2, σ, PW ).

? Rule S3(3)

If CorruptedCorrupted is false , compute κ̂|τ |skS := H ′1(C, S, s1, s2, E1, E2). Otherwise,
compute κ̂|τ |skC := H1(C, S, s1, s2, E1, E2, σ, PW ).



An ExecuteExecute(Ci, Sj) query is simulated by successively running the honest simulations
of SendSend queries. After the completion, the transcript is given to the adversary.

As a result of the RevealReveal(U i) query, the simulator returns the session key (either skC
or skS) to A, only in case the instance U i has already computed the key and accepted.

As a result of the CorruptCorrupt(U) query, if U ∈ Client the simulator returns the password
πC , and otherwise the vector of passwords πS = 〈πS [C]〉C∈Client.

As a result of the TestTest(U i) query, the simulator flips a bit b. If b = 1, it returns session
key skiU to A. Otherwise, A receives a random string drawn from {0, 1}k.

Fig. 4: Simulation of the Execute, Reveal, Corrupt, and Test queries.

H0: For each hash query H0(w), if the same query was previously asked, the simulator
retrieves the record (w, r, α) from the list Lh0 and answers with r. Otherwise, the
answer r is chosen according to the following rule:

? Rule H
(1)
0

Choose α← Zq. Compute r := gα and write the record (w, r, α) to Lh0.

H1: For each hash query H1(w) (resp. H ′1(w)), if the same query was previously asked,
the simulator retrieves the record (w, r) from the list Lh1 (resp. L′h1) and answers with
r. Otherwise, the answer r is chosen according to the following rule:

? Rule H
(1)
1

Choose r ← {0, 1}3k, write the record (w, r) in the list Lh1 (resp. L′h1), and answer
with r.

Fig. 5: Simulation of the hash functions.

Then, since the shared secret σ and base PW are no longer used in above
computations in case the event CorruptedCorrupted is false, we can further modify the
following rules:

? Rule C2(3)

If CorruptedCorrupted is false, do nothing. Otherwise, compute σ := (PW s2 × E2)r1 .

? Rule S2(3)

If CorruptedCorrupted is false, do nothing. Otherwise, compute σ := (PW s1 × E1)r2 .

? Rule C1(3)

Choose ψ1, s1 ← Zq and compute E1 := gψ1 . If (E1, s1) ∈ LR ∪ LA, abort.

? Rule S1(3)

Choose ψ2, s2 ← Zq and compute E2 := gψ2 . If (E2, s2) ∈ LR ∪ LA, abort.

Note that after the above modification the simulator can determine correct and
incorrect password guesses and answer perfectly to all queries using the ψ1, ψ2,
and α values and the lists Lh0, Lh1, L′h1, LA, LP , and LR. Also, the values s1, s2,

E1, E2 obtained after applying rules C1(3) and S1(3) are identically distributed
to those generated in game G2.



Now that the password-derived base is absent from protocol executions (if
CorruptedCorrupted is false4), we can dismiss the event that A has been lucky in guessing
the right PWC,S without making the corresponding H0 query. Hence we abort
the simulation if the adversary A submits a H1(C, S, ∗, ∗, ∗, ∗, ∗, PWC,S)
query without prior H0(C, S, πC) query. The probability of this event occurring
is nh1/q.

? Rule H
(3)
1

If w = (C, S, ∗, ∗, ∗, ∗, ∗, PWC,S), ((C, S, πC), PWC,S) /∈ LA, and CorruptedCorrupted

is false, abort. Otherwise, choose r ← {0, 1}3k, write the record (w, r) in the
list Lh1, and answer with r.

Next, we avoid the cases where the adversary A may have guessed one of the
authenticators (κ or τ) without having made an appropriate H1 query (when
CorruptedCorrupted is false). A “lucky guess” occurs if A submits a SendSend(Sj , κ) query
with the correct authenticator κ to an unpartnered server instance Sj without
previously submitting a bad H1(C, S, s1, s2, E1, E2, σ, PWC,S) query. In this
case Sj aborts, even though it should have accepted. Similarly, if A submits
a SendSend(Ci, τ) query with the correct τ to an unpartnered Ci without having
submitted a bad H1(C, S, s1, s2, E1, E2, σ, PWC,S) query, Ci aborts.

? Rule S4(3)

Check if κ = κ̂. If so, check if ((C, S, s1, s2, E1, E2, σ, PWC,S), κ) /∈ LA,
where Good(E1, s1) is true, σ = DHPWC,S

(m,µ), and CorruptedCorrupted is false. If
the latter check is true, the server instance Sj aborts. Otherwise, Sj accepts,
replies to the adversary with τ , and terminates while saving skS as a state.

? Rule C4(3)

Check if τ = τ̂ . If so, check if ((C, S, s1, s2, E1, E2, σ, PWC,S), τ) /∈ LA, where
Good(E2, s2) is true, σ = DHPWC,S

(m,µ), and CorruptedCorrupted is false. If the
latter check is true, the client instance Ci aborts. Otherwise, Ci terminates,
saving skC as a state.

Since the authenticators are computed using a private random oracle H ′1 (when
CorruptedCorrupted is false), we can argue that the adversary can not do better than
a random guess per an authentication attempt via SendSend query. Therefore, the
probability of “lucky guessing” is bounded by nse/2

k.

Without the collisions on the partial transcripts and the “lucky guesses” on
the password-derived base and authenticators, one can see that A has to make
the specific combination of H0 and H1 hash queries for games G2 and G3 to
be distinguished. Let AskH1AskH13 be the event that A makes the bad query H1(C,
S, s1, s2, E1, E2, σ, PWC,S) for some transcript ((C,E1, s1), (S,E2, s2), κ, τ),
where H0(C, S, πC) has been already made. Depending on how the transcript is
generated, we distinguish between four disjoint sub-cases AskH1AskH13:

4 Notice that in case CorruptedCorrupted is true, a password-derived base is still used in H1

computations, hence we can not apply the same argument.



– AskH1-PassiveAskH1-Passive3 : ((C,E1, s1), (S,E2, s2), κ, τ) comes from an honest execu-
tion between Ci and Sj (via an ExecuteExecute(Ci, Sj) query);

– AskH1-PairedAskH1-Paired3 : ((C,E1, s1), (S,E2, s2)) comes from an honest execution
between Ci and Sj , while (κ, τ) may come from A;

– AskH1-withCAskH1-withC3 : before any CorruptCorrupt query, A interacts with Ci, so (C,E1, s1)
is generated by Ci, while (S,E2, s2) is not from Sj ;

– AskH1-withSAskH1-withS3 : before any CorruptCorrupt query, A interacts with Sj , so (S,E2, s2)
is generated by Sj , while (C,E1, s1) is not from Ci.

Since session key(s) are computed using the private oracle H ′1, the only way
A can break semantic security is via a RevealReveal query to honest instances that
generated the same transcript ((C,E1, s1), (S,E2, s2), κ, τ), a case we dismissed
in G2. Thus,

Pr[SS3] =
1

2
, |Pr[SS3]− Pr[SS2]| ≤ nh1

q
+
nse
2k

+ Pr[AskH1AskH13] . (9)

Similarly - and as already previously mentioned - the authenticators are com-
puted using H ′1 as well, and due to G2, A cannot reuse authenticators from
other instances. Thus,

Pr[AuthAuthc2s3 ] ≤ nse
2k

, Pr[AuthAuths2c3 ] ≤ nse
2k

. (10)

Game G4 : In this game, we estimate the probability of the event AskH1AskH13
occurring and thus conclude the proof. Notice that the probability of AskH1AskH1
occurring does not change between games G3 and G4. We also have that

Pr[SS4] = Pr[SS3] , Pr[AuthAuth
c2s (s2c)
4 ] = Pr[AuthAuth

c2s (resp., s2c)
3 ] . (11)

Since all the sub-cases of AskH1AskH14 are disjoint, we will treat them independently:
The following lemma upper bounds the probability of AskH1-PassiveAskH1-Passive4:

Lemma 1. For any A running in time t that asks a bad query H1(C, S, s1, s2,
E1, E2, σ, PWC,S) for some transcript ((C,E1, s1), (S,E2, s2), κ, τ) that comes
from an honest execution between Ci and Sj, there is an algorithm B running
in time t′ = O(t+ (nse + nex + nro)texp) that can solve the CDH problem:

Pr[AskH1-PassiveAskH1-Passive4] ≤ nh1 × SucccdhPW,G(B) . (12)

Proof. We construct an algorithm B that, for given random Diffie-Hellman values
〈X,Y 〉 such that X ← gx and Y ← gy, attempts to break the CDH assumption
(i.e. computes Z such that Z = DHg(X,Y )) by running the adversary A as a
subroutine. The algorithm B simulates the protocol for A with the modification
of the rules C1 and S1 in case an ExecuteExecute(Ci, Sj) query was made:

? Rule C1(4)
exe

Choose ψ1, s1 ← Zq and compute E1 := Xgψ1 . If (E1, s1) ∈ LR ∪LA, abort
the game.



? Rule S1(4)
exe

Choose ψ2, s2 ← Zq and compute E2 := Y gψ2 . If (E2, s2) ∈ LR ∪LA, abort
the game.

After the game ends, for every H1(C, S, s1, s2, E1, E2, σ, PWC,S) query the
adversary A makes, where the values s1, s2, E1 and E2 were generated by hon-
est client and server instances (after an ExecuteExecute(Ci, Sj) query), the password-
derived base is correct, and the corresponding H0(C, S, πC) query was made,

(σY −
ψ1
α X−

ψ2
α E2

−s1E1
−s2g−

ψ1ψ2
α g−s1s2α)α (13)

is added to the list LZ of possible values for Z = DHg(X,Y ). Equation 13
follows from the fact that a base PW := gα is generated in such a way that the
discrete logarithm α is known. Thus, the Diffie-Hellman values X and Y can be
represented as PW

x
α and PW

y
α , respectively. So we have:

σ = DHPW (E2PW
s2 , E1PW

s1)

= DHPW (PW
y+ψ2
α PW s2 , PW

x+ψ1
α PW s1)

= Z
1
αY

ψ1
α X

ψ2
α E2

s1E1
s2g

ψ1ψ2
α gs1s2α .

(14)

From the adversary’s view, the simulation B runs is indistinguishable from
the protocol in the game G3 up to the point AskH1-PassiveAskH1-Passive4 occurs, and in that
case, the correct DHg(X,Y ) value is added to the list LZ of size at most nh1.
The running time of B is t′ = O(t + (nex + nro + nse)texp). Thus, Lemma 1
follows from the fact that the probability of B breaking CDH assumption is at
least Pr[AskH1-PassiveAskH1-Passive4]/nh1. ut

The next lemma bounds the chance of AskH1-PairedAskH1-Paired4 occurring:

Lemma 2. For any A running in time t that asks a bad query H1(C, S, s1,
s2, E1, E2, σ, PWC,S) for some partial transcript ((C,E1, s1), (S,E2, s2)) ∈ LP
that comes from an honest execution between Ci and Sj, there is an algorithm
B running in time t′ = O(t + (nse + nex + nro)texp) that can solve the CDH
problem:

Pr[AskH1-PairedAskH1-Paired4] ≤ n2senh1 × SucccdhPW,G(B) . (15)

Proof. The proof is similar to the previous one, except that the simulator needs
to guess the client and server instances whose execution is going to be tested.
The reason for this comes from the fact that the private exponents of all the
instances would be unknown to the simulator if we applied the same reduction
as in the proof of Lemma 1. The problem in the simulation could arise in case the
adversary sends the authenticator after making the CorruptCorrupt query. Therefore, if
the simulator makes the right guess, the given random Diffie-Hellman values will
be inserted in the instances that are fresh (no CorruptCorrupt query). The reduction
goes as follows.



We construct an algorithm B that, for given random Diffie-Hellman val-
ues 〈X,Y 〉 such that X ← gx and Y ← gy, attempts to solve the CDH as-
sumption (i.e. computes Z such that Z = DHg(X,Y )) by running the ad-
versary A as a subroutine. The algorithm B chooses distinct random indexes
b1, b2 ← {1, 2, . . . , nse} and simulates the protocol for A with the modification

of the rule C1(3) in case of a b1th SendSend(Ci, StartStart) query and the rule S1(3) in
case of a b2th SendSend(Sj , (C,E1, s1)) query:

? Rule C1(4)

For the b1th query choose s1 ← Zq and set E1 := X. Otherwise, choose
ψ1, s1 ← Zq and compute E1 := gψ1 . In any case, if (E1, s1) ∈ LR ∪ LA,
abort the game.

? Rule S1(4)

For the b2th query choose s2 ← Zq and set E2 := Y . Otherwise, choose
ψ2, s2 ← Zq and compute E2 := gψ2 . In any case, if (E2, s2) ∈ LR ∪ LA,
abort the game.

After the game ends, for every H1(C, S, s1, s2, E1, E2, σ, PWC,S) query the
adversary A makes, where pairs (E1, s1) and (E2, s2) were generated after b1th
and b2th SendSend query, the password-derived base is correct, and the corresponding
H0(C, S, πC) query was made,

(σY −s1X−s2g−s1s2α)α (16)

is added to the list LZ of possible values for DHg(X,Y ) of size at most nh1.
From the adversary’s view, the simulation B runs is indistinguishable until the

adversary triggers AskH1-PairedAskH1-Paired4. The probability that B will guess the correct
client instance, the correct server instance, and the correct Z value from LZ is
at least 1/(n2senh1). The running time of B is t′ = O(t+ (nex + nro + nse)texp).
Thus, the Lemma 2 follows from the fact that the probability of B solving the
CDH assumption is at least Pr[AskH1-PairedAskH1-Paired4]/(n2senh1). ut

Before estimating the probability of AskH1-withSAskH1-withS4 occurring, we evaluate
that of CollCollS , which happens if A makes two explicit password guesses at the
same server instance. Since there are no collisions on H0 outputs, the only way
forA to accomplish this is if a collision occurs on the first k-bits of two H1 queries
made by A, with PW1 6= PW2. The probability of this occurring is bounded by
the birthday paradox n2h1/2

k+1.

? Rule H
(4)
1

If w = (C, S, ∗, ∗, ∗, ∗, ∗, PWC,S), ((C, S, πC), PWC,S) /∈ LA, and CorruptedCorrupted

is false or if CollCollS event occurs abort. Otherwise, choose r ← {0, 1}3k, write
the record (w, r) in the list Lh1, and answer with r.

Now, without any collision on H0 and H1 oracles, each authenticator κ coming
from A via a SendSend query corresponds only to one password π. Therefore,

Pr[AskH1-withSAskH1-withS4] ≤ nse
N

. (17)



To bound the probability of AskH1-withCAskH1-withC4, we first bound the probability
of CollCollC , which happens if A makes three implicit password guesses against the
same client instance. The following lemma gives such a bound:

Lemma 3. For any A running in time t that asks at least three bad H1 queries
with distinct values of PW for the same transcript ((C,E1, s1), (S,E2, s2), κ,
τ), generated in a communication between A and Ci, there exists an algorithm
D running in time t′ = O(t + (nse + nex + nro)texp) that can solve the DIDH
problem:

Pr[CollCollC ] ≤ 2n3h0 ×
(

AdvAdvdidhg,G (D) +
n3h1 + 3nse

2q

)
. (18)

Proof. This lemma actually shows that the DIDH assumption prevents the ad-
versary from making more than two password guesses per online attempt on the
client. We reduce from DIDH as follows.

We construct an algorithm D that given a triple 〈X,Y, Z〉 as input, where
X ← g1/x, Y ← g1/y and Z ∈ G, attempts to break the DIDH assumption (i.e.
determine whether Z is random or Z = IDHg(X,Y ) = g1/(x+y)) by running the
adversary A as a subroutine. The algorithm D chooses pair-wise distinct random
indexes d1, d2, d3 ← {1, 2, . . . , nh0}, chooses random non-zero exponents u1, u2,
u3 in Zq, and simulates the protocol for A as follows.

The simulation will be running as in the previous game G3 until the selected
H0 queries d1, d2, or d3 are made. The simulator will abort the game if the
inputs to three selected H0 queries do not satisfy following conditions : (a) the
passwords π1, π2, and π3 are pair-wise distinct and different from the correct
password πC ; and (b) the strings (C, S) in all three queries are the same.

If the selected H0 queries are valid, 〈X,Y, Z〉 values will be plugged in ac-
cording to the following rules:

? Rule H
(4)
0

For the d1th query set r := Xu1 . For the d2th query set r := Y u2 . For the
d3th query set r := Zu3 . For all three selected queries set α = ⊥. Otherwise,
choose α← Zq and compute r := gα. In any case, write the record (w, r, α)
to Lh0. If (∗, r, ∗) ∈ LA, abort the game.

The prerequisites for the CollCollC event to occur are: (1) valid d1th, d2th, or
d3th H0 queries are selected by the simulator; (2) a pair (E1, s1) is generated by
an honest client instance after a SendSend(Ci, StartStart) query; (3) the adversary gener-
ated a pair (E2, s2) and made a SendSend(Ci, (S,E2, s2)) query, where Good(E2, s2)
is true and E2 /∈ {X,Y, Z}; (4a) for each PWi, received from the selected H0

queries, at least one bad H1(C, S, s1, s2, E1, E2, σi, PWi) query is made for the
same transcript, where i ∈ {1, 2, 3}. (4b) σi 6= 1.

After the game ends, for every H1(C, S, s1, s2, E1, E2, σ, PWi) query A made,
where PWi is equal to any of the plugged values {Xu1 , Y u2 , Zu3}, a pair(

E2, (σ
ui
ψ1E2

−uis1
ψ1 PWi

−uis1s2
ψ1 g−uis2)

)
(19)



is added to the list Libad.

So, in the case of an H1(C, S, s1, s2, E1, E2, σ, Xu1) query, by stripping
away known values from σ, we may identify a guess at Ex2 and place it in the
list L1

bad together with the E2 value. Remember that the client instance uses

rule C1(4) to compute E1, which can be represented with Xu1ψ1x. In order to
extract the F1 = Ex2 value we do as follows. Since

σ = DHXu1 (E2X
u1s2 , E1X

u1s1)

= Es12 X
u1s1s2E

ψ1x
u1

2 gs2ψ1 ,
(20)

we get

Ex2 = σ
u1
ψ1E2

−u1s1
ψ1 PW

−u1s1s2
ψ1 g−u1s2 . (21)

The same goes for H1 queries where the values Y and Z are plugged, in which
case the corresponding F2 and F3 are computed, respectively. At the end of
the simulation, D checks if for any E2 value there exist pairs (E2, F1) ∈ L1

bad,
(E2, F2) ∈ L2

bad and (E2, F3) ∈ L3
bad, such that F1F2 = F3. If there exist three

such pairs, then D will output b′ = 1, and otherwise b′ = 0.
Now let us analyze the probability that D returns a correct answer. Suppose

first that Z is random. The algorithm D will return a wrong answer if by chance
equation F1F2 = F3 holds. Since the ui values are random, the probability
of this happening is at most n3h1/q by the union bound. Now suppose that
Z = IDHg(X,Y ). The probability of aborting in case E2 is equal to X, Y or Z is
at most 3nse/q. If the adversary triggers CollCollC , then D will correctly answer with
b′ = 1 only in case it correctly guessed d1, d2, and d3 from {1, 2, . . . , nh0}, which
happens with probability of 1/n3h0. Therefore, the probability of D returning a
correct answer is at least

Pr[b′ = b] ≥ Pr[b′ = 1|b = 1]Pr[b = 1] + Pr[b′ = 0|b = 0]Pr[b = 0]

≥
(

Pr[CollCollC ]

n3h0
− 3nse

q

)(
1

2

)
+

(
1− n3h1

q

)(
1

2

)
.

(22)

Thus,

Pr[CollCollC ] ≤ 2n3h0 ×
(

AdvAdvdidhg,G (D) +
n3h1 + 3nse

2q

)
. (23)

From the adversary’s view, the simulation D runs is indistinguishable unless
CollCollC event occurs. The probability of this happening is bounded by (23). D’s
running time is t′ = O(t+ (nex + nro + nse)texp) and thus Lemma 3 follows. ut

Now, without any collision on the H0 and H1 outputs, A impersonating the
server to an honest client instance can test at most two passwords per imper-
sonation attempt. Therefore,

Pr[AskH1-withCAskH1-withC4] ≤ 2nse
N

. (24)



Thus,

Pr[AskH1AskH14] ≤ 3nse
N

+
n2h1
2k+1

+ nh1(1 + n2se)× SucccdhPW,G(t′) + Pr[CollCollC ] . (25)

By combining the above equations the bound for semantic security follows.
The bound for the mutual authentication is derived in a similar way, by noting
that from Def. 2 we have AdvAdvmadragonfly(A) ≤ Pr[AuthAuthc2s0 ] + Pr[AuthAuths2c0 ]. ut

5 Conclusion

In this paper, using techniques similar to those MacKenzie used to study SPEKESPEKE
in [17], we proved the security of a slight variant of DragonflyDragonfly, which gives some
evidence that the IETF proposal of DragonflyDragonfly is sound. Furthermore, unlike
the analysis of [17], we also include forward secrecy. (It is highly probable that
SPEKESPEKE is forward secure as well.) Note that Theorem 1’s statements indicate
that the adversary may successfully guess up to six passwords per send query.
Using a much more complex analysis, most likely we could replace the constant
6 in the non-negligible term by 2, and count per instance rather than per send
query, but this would be at the cost of readability of the already intricate proof.
Also, by virtue of the contents of Lemma 3, 2 is certainly the best we could do
with this particular analysis.

It would also be nice to see if the proof can be made tighter. In particular,
while it helps readability, the technique of using private oracles as in [7] seems less
fine-grained than the systematic “backpatching” of, e.g. [18]. Finally, it would
be interesting to see if the security of DragonflyDragonfly (and SPEKESPEKE) could be based
on an assumption other than DIDH.
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A The original Dragonfly protocol

Client Server

Initialization

Public: G, p, q; H0, H2 : {0, 1}∗ → {0, 1}k; H1 : {0, 1}∗ → {0, 1}2k;

π ∈ Passwords; seed := H0(C, S, π, c)max,min; PW := H&P (seed, l1).

m1, r1 ← Zq m2, r2 ← Zq
s1 := r1 +m1 s2 := r2 +m2

E1 := PW−m1 E2 := PW−m2

C,E1, s1

S,E2, s2

abort if ¬Good(E2, s2) abort if ¬Good(E1, s1)

σ := (PW s2 × E2)r1 σ := (PW s1 × E1)r2

kck|skC := H1(σ, l2) kck|skS := H1(σ, l2)

κ := H2(kck, C, s1, s2, E1, E2) τ := H2(kck, S, s2, s1, E2, E1)

τ̂ := H2(kck, S, s2, s1, E2, E1) κ̂ := H2(kck, C, s1, s2, E1, E2)

κ
τ

abort if τ 6= τ̂ abort if κ 6= κ̂

Fig. 6: The original Dragonfly protocol.
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